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Abstract

This thesis introduces Informed Route Selection. The technique enables end systems
with a full network view to select routes based on information paths through an un-
derlying information graph. The work elaborates this on the example of improving
resilience in the internet using an overlay network, that is aware of the underlying In-
ternet structure. It explaines the necessity and the concept of Informed Route Selection,
develops a prototype and evaluates the performance.





Zusammenfassung

wird not übersetzt... wenn es passt im Englischen!! do what stands the-
re in german
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Chapter 1

Introduction

This thesis introduces Informed Route Selection as an alternative take on Internet rout-
ing. The approach will take a user’s perspective on how to optimize paths through the
Internet in the presence of an absolute network view. The thesis does not suggest to
put the control over routing paths in the hands of an ordinary user. But should rather
be seen as an experiment in thought and software, on how, for instance, a large content
provider or a company network could improve resilience by using di�erent router loca-
tions and an dynamic, underlay aware routing algorithm to increase its service quality.
As we explain from section 2.1, the Internet in its evolved and current structure is at the
same time a communication system of unique possibilities and size and a patchwork
system of tens of thousands of subsystems, that mostly try to run on the �ne line be-
tween a minimized contribution and a maximized pro�t.
In this course we explain how these systems collaborate to create a routing graph, that
re�ects these objectives and how this can lead to problems caused by human and by
technical failure. This leads to the main concern of this work: Resilience. We elaborate
di�erent views on this in section 2.2 and discuss the problems that emerge when trying
to improve it in section 2.3. This leads to the presentation of other scienti�c works, that
already approached this topic or a related one from section 2.3.2 onwards.
In chapter 3, we elaborate the pitch and the general idea of the contribution of this work.
We will therefore explain the general idea in section 3.1 and give several reasons for it
by explaining shortcommings of the BGP in section 3.2.1 and di�erent requirements on
paths in section 3.2.2 and the following.
From section 3.3 on, we address the topic of information quality, which is particularly
important as also explained. We do this on the example of link exploration, using tracer-
oute traces. In section 3.5, we explain how the optimization of routes for the pro�t of
ac subsystem a�ects the overall structure of the routing path of the Internet and the
con�ict with endpoint interests.
In chapter 4 we develop an algorithm for IRS and eventually explain design and imple-
mentation of a prototype for IRS routing over the Internet. To achieve that goal, we
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start to de�ne an optimization goal for paths. After that, there is section 4.2 in which we
introduce a information model that is used to model data in a structure for the prototype.
Afterwards, we elaborate the prototype’s algorithm in section 4.4. The second part of
the chapter will start in section4.5 and address the design of the software.
The last part of the thesis will be the evaluation of IRS in chapter 5. For this, we will test
IRS on generated internet-like topologies to experiment with di�erent graph setups and
�nally deploy the prototype in the Planetlab infrastructure to compare the performance
in the Internet with the laboratory conditions of generated graphs.
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Chapter 2

Background and Related Work

In this chapter we provide background information about topics, which in�uenced this
work. For that purpose we �rst look at the structure of the Internet and resilience mech-
anisms built in it. We will then discuss various attempts to in�uence the resilience and
close with a quick review of theoretical information necessary for a better understanding
of this work.

2.1 A Network of Autonomous Systems

The Internet is a collection of individual networks, build, operated and maintained
by organizations of di�erent size and orientation. The most prominent types might
be Internet Service Providers (ISP), data center operators, educational and scienti�c
networks, content distribution networks and internet exchanges. Those organization
networks are referred to as Autonomous Systems (AS). The name already implies that
organization operating the AS works as an autonomous sub unit of the Internet and
is only accessible using gateways. The communication protocol common to all those
networks is the Internet Protocol (IP). An AS is the home of one or more IP pre�xes,
which means that a certain range of IP addresses are associated and operated by this
network. The ASes are free to use any underlying technique to transport IP data,
residing on layer three of the OSI model, from one gateway to the other, in case of a
pure traversal, or to a endpoint within the AS.
On this layer three however, the ASes have to agree upon a protocol to make IP transport
possible. One of the most important of this protocol is to �nd a route to the destination
host for each packet. Since there are - at the time of this writing - about 76.000 ASes,
manual con�guration is not feasible. At this point Exterior Gateway Protocols like the
Border Gateway Protocol (BGP) are used. Those protocols however work on the basis
of information provided by their respective AS administrator and are therefore, in most
cases, selected to �t the economical or technical needs of the AS operator, as mentioned
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later in section 3.5. AS peering, the agreement between two ASes to exchange tra�c
mutually between them or in another form connect in a customer-provider relationship
for transit tra�c, has many more facets, that are not covered here.
This structure of the Internet is both it’s strength and weakness. It is a strength, that
there are almost always several di�erent theoretical paths from one endpoint to the
other. If one AS suddenly stops to transport tra�c, there is another path to connect
the two sites. The nature of the Exterior Gateway Protocols (EGP) makes sure, that
the routing tables will be adjusted in the next iteration and the outage will only a�ect
a small part of the Internet and only for a limited period of time. A comment on the
Border Gateway Protocol, the de-facto standard for EGPs can be found in section 3.2.1.
On the other side, it is a weakness that this system is highly trust dependent. Each AS
informs its neighbors about the destinations reachable through it. If one AS has several
neighbors who o�er the same destination, it usually takes the cheaper1 one. However,
this means an AS sending out wrong information - by accident or on purpose - is able
to redirect tra�c into its own network. As a prominent examples, this happened on the
8th of April in 2010 when 15% of all Internet tra�c was routed through China for 18
Minutes and further back Pakistan Telecom (AS 17557) began advertising a network
assigned to the video streaming service YouTube in response to a government order
on 22.02.2008 to block a video. In total it is estimated that almost 50% of the earths
population is connected through the Internet [2]. This should make it obvious, that
improving the robustness is desirable, not only for economic reasons, but to bring people
closer together.

2.2 Resilience in Networks

The Internet is not only a network for exchange of scienti�c data, but also a platform for
a huge number of small to extremely large commercial applications and infrastructure
for telephony, e-health and military applications. Depending on a third party to �x a
broken routing scenario can therefore be an inconvenience for one party and a major
�nancial loss for the other. For such an in�uential element of modern life and business,
there is a need for resilience and robustness.
Resilience however is not easy to achieve. Threats to connectivity are not only given
by the structure of the Internet but much more also by environmental circumstances,
for example natural disasters or human cause like when an excavator destroys a cable.
Also, as shown in [3], it is hardly possible to exactly know where a the course of a
packet actually runs. This means, events, no operator could foresee, could in�uence
packet �ows. In addition to all of this there are problems that come with the regular
use of the Internet like congestion induced by tra�c peaks, either because of local
patterns (entertainment like video streaming after work) or malicious tra�c caused by

1Here ”cost“ can be path length or it can be an actual price on the tra�c sent through an AS
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ampli�cation/network exhaustion attacks.

2.2.1 Resilience and Reliability

While resilience and reliability are often used as if they were synonyms, it is worth
noting, that they do refer to di�erent properties of a system: Reliability etymologically
comes from something that can be fastened, something that you can trust is available
at any time. Resilience comes from latin resilire, which means to rebound or spring
back. While the two words are obviously related, this observation makes it possible
to understand the di�erent intensions. The resilience property of a system therefore
describes the ability to fully recover after a (partial) system breakdown.

2.2.2 ResiliNet [1]

Facing many potential threads, J. P. Sterbenz et al. founded the ResiliNet Initiative to "to
understand and progress the state of resilience and survivability in computer networks,
including the Global Internet" [1].
Their de�nition of resilience divides into further subtopics:

• Challenge Tolerance

– Survivability is the ability to function properly in the presence of threats

– Disruption Tolerance is the ability to work in the presence of connectivity
disruption

– Tra�c Tolerance is the ability to handle unforeseen tra�c peaks caused
by a �ash crowd or an attack

• Trustworthyness

– Security is the protection against unauthorized access and the ful�llment
of common security goals

– Dependability includes availability and reliability of a system and therefore
has overlapping topics with Security

– Performability is the property to deliver the performance required by the
speci�cation

Since this work is considering connections through the Internet, and how to counter
problems regarding the routing protocols, it will mostly be located in the �elds that fall
under challenge tolerance.
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2.2.3 Resilience in other contexts

The National Infrastructure Advisory Council of the USA de�ned in its �nal report in
2009 [4]:

Infrastructure resilience is the ability to reduce the magnitude and/or
duration of disruptive events. The e�ectiveness of a resilient infrastructure
or enterprise depends upon its ability to anticipate, absorb, adapt to, and/or
rapidly recover from a potentially disruptive event.

2.3 Improving Resilience

To improve the resilience property in networks there are measures like: redundant cable
connections, forward error correction, load balancing and failover lines. But on the
layer of resilient end-to-end IP connections, the structure of the Internet introduces a
problem: AS coordination mechanisms like the use of Exterior Gateway Protocols makes
sure, that usually there is a route from every AS to a packet’s destination. These routes
however are not optimized for the endpoint’s needs but for those of the participating
AS operators. In particular there is exactly one path negotiated. In cases like those
described at the end of section 2.1, but also in cases of infrastructure breakdown in
an intermediate AS, there is nothing a normal endpoint can do to correct this path
except for waiting for the re-negotiation of a working route. The IP simply does not
consider alternative routing. Hence, an e�ective resilience solution for the Internet
needs some in�uence on the routing behavior of the systems between packet source
and destination.
In this section, we �rst broach a problem that so-called middleboxed bring into the
Internet. We then introduce di�erent resilience solutions from the past to create a
picture of the research conducted in that area. Common to all resilience solutions is of
course, that there is no recovery for a single point of failure as often seen in endpoint
Internet connections. For this kind of problem, multihoming systems can be used.

2.3.1 Middleboxes

When talking about resilience solutions it is important to acknowledge, that the straight
forward development and deployment of a path aware network protocol is not easily
possible. This has to do with the realization of networks. As described in [5], there are
a lot of specialized applications, called middleboxes, that o�er ”valuable bene�ts“ on
the one hand, but in�uence packets in certain ways. Such middleboxes are for example
�rewalls, that treat packets based on prede�ned rules. If a packet has an unknown
protocol and therefore doesn’t match any rule, it might be dropped. This violates the
end-to-end principle that belongs to the architectural principals of the internet [6]. Other



2.3. Improving Resilience 7

middleboxes can be VPN Concentrators, NATs, Security appliances, content engines,
ssl terminators or similar appliances. [5] also states that there are almost as many
middleboxes as IP routers. An e�ective protocol rollout would need to be supported by
many of those devices.

2.3.2 Resilient Overlay Networks

Resilient Overlay Networks (RON) is one of the earlier prominent works. David An-
derson describes in [7] how he uses an overlay network to implement its own routing
environment. His system, similar to the Internet, uses single hop decisions based on the
destination address of a packet. But additionally a tag is introduced, which allows the
so-called entry node to preselect a route under some constraints. This route however,
can be changed by intermediate nodes in case of link failures. Link failures and the
overall network state is aggressively probed over the whole time. Anderson explains,
that the design decision to limit the size of RONs make this approach possible.

2.3.3 Resilient Routing Layers and Multiple Routing Con�gurations

Even though it is not easily possible to roll out this method over the Internet, it is worth
mentioning, what Audun Fosselie Hansen et al. and Amund Kvalbein et al. describe
in [8] [9]. The idea of resilient routing layers is to generate several routing topologies in
a special way. If the failure of a node does not disconnect the network, it is considered
safe regarding this particular node. When a node fails, the network can easily use a
routing topology, safe for this node. This methodology used for recovery of whole
networks after single failures. In that scenario one administrative unit has full control
over all routers. In [9] the authors introduce a similar technique for Interior Gateway
Protocols (IGP) to shorten the recovery time after failures from both inside and outside2

the AS by having precomputed alternative routing layers and avoiding the need for an
IGP to converge.

2.3.4 Multi-Topology Routing

In 2005, Menth et al. [10] developed a system called Multi-Topology Routing. The
idea is that every node computes shortest paths to all other nodes in di�erent routing
topologies, creating those routing topologies from the real network topology by leaving
out edges. Packets sent through the network are tagged with the corresponding MT ID.
That way, if there is a link failure detected, a MT ID which leaves the failed edge out
can be selected and there is no need for a costly recalculation of paths.

2When changes require tra�c to be sent through another gateway router
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2.3.5 Path Splicing

In [11] the authors Murtaza et al. introduce a system called path splicing. Its main idea
is summoned as follows: Run several instances of a routing protocol (such as BGP) with
di�erent con�gurations. Those con�gurations should lead to as edge-disjoint topologies
as possible. The origin of the tra�c can then add some information to switch between
topologies at certain routers. In [11] they give a method as example to how to implement
this with just a few bits. This method gives a lot of freedom to the end system.

2.3.6 One Hop Source Routing

Gummadi et al. pursued another approach in [12]. They put it into the responsibility of
a packets source to avoid failed links. The source can, after detecting a transport failure,
chose a set of detour nodes. Using those nodes it tries to avoid the broken link. They
claim, that a random selection of detour nodes brought almost maximum bene�t in their
test scenario using 67 PlanetLab nodes in 2004. The approach is especially interesting
for this work, since the detour decision is at the source node.

2.3.7 Path Diversity via Routing De�ections

In [13] Yang et al. worked out a system, that introduces precomputed paths as a result
of de�ecting tra�c to a router other than the one providing the shortest path. They
give three rules on how to select the de�ection routes and prove liveness and safeness.
In their model the end systems do not need to know the full topology. Additionally, the
system is deployable one node at a time since the authors claim it is compatible with
shortest path routing.

2.3.8 Path Diversi�cation

In [14] [15] Rohrer et al. introduce a method to improve resilience and moreover de�ne
a set of metrics for the diversi�cation of paths. The diversi�cation metrics are embedded
into a process. These metrics are especially important for this thesis, since they help
de�ning the goal of resilience and can be applied to measure one aspect this property.
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2.4 Graphs and Node Disjoint Paths

2.4.1 Hyperbolic Graphs

In [16], the authors show, that if a network has a metric structure, which means, that
there is a de�ned distance between all pairs of members in it, and a heterogeneous degree
distribution, which the Internet both has, this network has a hyperbolic geometry. They
developed a generator for this kind of graphs that will be used in the analysis section
of this thesis.

2.4.2 Survivability in Communication Networks and Disjoint Paths

In [17], general objectives for the survivability, and therefore part of resilience, are
discussed. [17] and [14] discusses the necessity to have node- and edge-disjoint paths.
The overview in [18] compares various disjoint path problems and helps to understand
the properties of each problem, which lead to the conclusion that the Maximum Disjoint
Path problem (NP hard) is the best choice to represent the needs for resilience in real
Internet application.

2.5 Structure of and Information about the Internet Topology

When selecting paths based on information, it is of special relevance to understand the
quality of that information, used in the process. Especially as there are understandable
security concerns that make AS operators hide the real network structure from the
public. On the other hand, there is a necessary curiosity to understand the real structure.
This may help detect abnormal network behavior or develop new network concepts.

2.5.1 Invisible Hops

In [19], Sommers et al. discuss Multi Protocol Layer Switching (MPLS), a technique
used in the underlying structure of ASes. This technique can lead to a state, where an
IP hop displayed by a traceroute trace leads over an unknown number of other hops.
This happens when MLPS is used in, what is called, pipe mode, as opposed to the more
insightful uniform mode. In combination with [3], which analyses the long haul �ber
optic network in the USA this is particularly interesting. The combination suggests that
a packet could traverse the atlantic ocean several times in between two IP hops.
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2.5.2 Peer to Peer Tracing

In the work [20] of Chenet al., they started a large-scale analysis of traceroute traces,
using the plugin Ono for the popular Azure BitTorrent client. That way, they were able
to collect traces from over 992000 IP addresses in over 40000 routable pre�xes. That
way, they claim to have found almost 24000 new links which contained 26 AS numbers,
that were not available through the public BGP data. The paper shows, that there can
be huge di�erences between the publicly advertised structure and the real, measurable
structure of the Internet.
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Chapter 3

Informed Route Selection

In the previous chapter, we sketched an overview on the background of this thesis,
including an abstract perspective on the Internet as well as the related work in the
�eld of resilience, the ways to improve it, some graph theory and possible pitfalls while
gathering information.
In this chapter we will �rst explain what Informed Route Selection (IRS) is in section 3.1
and the motivation for it in more detail in section 3.2. Afterwards there will be an
explanation which kind of information can and should be considered for routing in
section 3.3. At the end of the chapter, from section 3.5 onwards, there will be an outlook
on the implications IRS has in di�erent surroundings.

3.1 IRS in Networks

A route in the Internet can be seen as a path in a graph, representing its topology.
Communication endpoints like source and endpoint nodes, communicate through the
network over other nodes, called hops. Neighboring nodes are connected over links.
Route selection is therefore the process of selecting a sequence of nodes, each two
succeeding nodes connected by a link, where the �rst node is the source and the last is
the destination.
IRS is the process of selecting a routes while taking into account the information col-
lected from the network and other indirect sources.

3.2 Why IRS?

In section 2.1 we explained the structure of autonomous systems and how they are
organized in the modern Internet. In the following sections we will illustrate further,
how this raises the necessity of advanced routing schemes. Likewise, we will explain
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the coherence with multipath networks and how the application of IRS can lead to
improved end to end resilience.

3.2.1 BGP and Convergence

The Border Gateway Protocol1 (BGP) is the de-facto standard for inter AS route negoti-
ation. It belongs to the Exterior Gateway Protocol category and experience shows that
it works well. BGP implementations are capable to negotiate everything an AS operator
can expect from a routing software. It scales with even in times of increasingly bigger,
more complex topologies [21] and gets steadily improved to �t the modern Internet’s
needs.
In case of link failures, however, a route re-negotiation is necessary, that involves a
converging process. Link failures are detected after one BGP partner does not receive
a Keep Alive message during the timeout of the Hold Timer, normally in the order of
90 seconds, as ( [22, chapter 10]) suggests. The convergence process has widely been
acknowledged to be slow and target of a lot of analyses as seen in [23], [24] and others.
But, as many of them state: the solution to this problem seems far away since it would
require a large portion of the AS operators to act; and, depending on the proposed
solution, require them to reveal more information about the inner structure of their
network.
BGP �nds one optimal path from one AS to another. What the term optimal means,
will be discussed in section 3.5. For now it is relevant, that at any given time, there are
zero or one established and working routes from any source to any destination in the
Internet. And if this route is failing, through any circumstance, there is no other route
left, until the BGP detects it and converges again.

3.2.2 Avoiding ASes

Related to the property that there is only one working path at a time, but more general,
is the question of whether it is possible to avoid certain ASes. This could be the require-
ment in a range of use cases: A company might want its tra�c to not leave ASes which
are bound to EU legislative. Some networks might be suspected to be not trustworthy in
regards to tra�c delivery, which makes it attractive to avoid them. Partners in a secret
negotiation might know the value of meta- or connection data ( [25]) and want to avoid
a spy. In such cases, the method IRS, by selecting a route around such ASes, and by
selecting a route according to the individual requirements enables a way to satisfy the
restrictions and still communication over the Internet. When only the BGP routes can
be used, there is no way for an endpoint to avoid an AS by choice.

1in the context of this work we will be talking about the EBGP, which stands for External Border
Gateway Protocol
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3.2.3 Multipath Networking

One other prominent application that su�ers from only having one working path at a
time, is multipath networking.
Multipath networking, in general, means that within the same communication, the
packets from source to destination take di�erent paths through the network. This
can be attractive for various sub applications such as resource pooling and resilience
through fallback paths or Forward Error Correction (FEC). It is understandable that,
if there is only one selectable path, there can not be real multipath networking. IRS
however can not only make multipath possible, but also select routes for the particular
cases. Resource pooling might want to split the tra�c just around a bottleneck node and
enjoy the perks of an optimal route over the rest of the communication route, resilience
applications might want a path, that is as edge disjoint and as node disjoint as possible
( [14]). Moreover, as noted in [1], there might be some requirement that forbids to route
through too much of a detour.

3.2.3.1 Fallback Paths

One way to achieve a better resilience through multipath networking is to utilize only
one path to send data from source to destination until there is suspicious behavior. In
case of an impending timeout or warning signs like the triggering of the fast retrans-
mission mechanism of TCP [26], one of the other established paths is already there
as a fallback. This avoids overhead in both time and data that go along with a recon-
nect procedure. For such an application however, certain things have to be considered,
especially the question which part of such a protocol detects suspicious behavior.

3.2.3.2 Forward Error Correction

Forward Error Correction (FEC) is a mechanism that can correct transmission errors
without retransmission of data. FEC encoded data therefore carries some redundancy
that makes it possible to verify the integrity of data or, if that fails, recover the original
data. FEC can be used inside one packet and therefore detect wrong bits and correct
them. In a multipath scenario another possibility is, to send packets over one path that
have correction information about packets on another path. A simple case would be
just cloning a packet, sending it down both paths and if one of them fails, there is still
the other path through which the packet is delivered.
In an ideal scenario with FEC, link failure can be handled unnoticed by higher network
layers. For this to be possible, it is necessary, that the failing entity is not part of more
than one of the selected paths. The multipath system can then, after detecting the failure
in a path, replace it by another. To raise the likelihood of this scenario we will introduce
a metric called node diversity in section 4.1 and take it into account when using IRS.



14 Chapter 3. Informed Route Selection

3.2.3.3 Pooling of Resources

Resource pooling can be a good usage of multipath networks. Use cases can be of
di�erent nature. Either there can be several connections with the same properties,
to be combined, or there are di�erent connections that can be used di�erent kind of
applications. An example for the �rst case would be using two connections to have a
combined bandwidth for high throughput applications and for the second case, there
would be the combination of a low latency but low throughput connection and a high
throughput but high latency, in such a way, that time-sensitive applications take one
connection and high bandwidth applications use the other.

3.2.4 Requirement Types

From the previous sections, we extract two types of requirement types:

• Boolean requirements, that are either ful�lled or not, like the avoidance of an
AS. We sometimes call those requirements constraints.

• Metric requirements, that can be rated and optimized, like, as we’ll describe in
section 4.1, the diversity of paths

3.3 Information Quality

Garbage in, garbage out, the principle, that the output of any computation can only be
as good as the input, is as true in IRS as in other algorithms. Therefore, when selecting
routes, it is important to carefully inspect the information we use. While a careful
selection of information is of course always advisable, for the scope of this work, we
focused on traceroute trace data. We decided so, because traceroute data is a well
researched �eld and example information is easy to gather. In the following sections,
we will explain how a trace can be gathered and what causes traces to be distorted.

3.3.1 Path Tracing

Getting detailed hop by hop information about a path can be done by tracing it. We
found, there is currentlyno way to get up-to-date route information between two nodesdoes this say "tracer-

outes is the easiest
possible way for to
do it?"

does this say "tracer-
outes is the easiest
possible way for to
do it?"

in the Internet, because keeping a database up to date would take a tremendous e�ort
since it would require constant, extensive probing or the cooperation of many AS
operators. This section is about the technique used to trace a path.
IP is a protocol to deliver packets from one host to another. For that purpose every
packet that is sent through the Internet, is pre�xed with a header. This header has in
both of the current versions, IPv4 and IPv6, a �eld that de�nes a maximum number of
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hops on a path to the destination, which is necessary to detect stale packets and prevent
them from circling forever through the network and cause congestion. It is named Time
To Live2(TTL) in IPv4 and Hop Limit in IPv6. In the scope of this work, we will refer to
it as TTL.
The packet’s source initially sets the �eld to a value3 and every routing node on the
path decreases it by one. When the value reaches zero, the packet is discarded and a
noti�cation in form of an Internet Control Messaging Protocol (ICMP) message is sent
to the packet’s source.
This error mechanism can be exploited to trace a packet’s path. For that purpose, a
test program, for instance the Linux command line tool traceroute, sends a packet with
a TTL value 1 to the destination. In order to properly identify the response later, in
IPv6 an identi�er like a random number should be the content of the �rst 64 bits of
payload. The �rst router will decrease the TTL �eld and notice it is zero. As a reaction
it will send an ICMP packet to the source, including header and the �rst 64 bits of the
discarded packet. The test program will recognize the packet and associate the �rst
hop with the source address of the ICMP message. This process is repeated several
times with an increasing TTL value until the source of the answer packet matches the
destination address. This last message however is no TTL exceeded message but rather,
an appropriate response for the sent packet. This is the case because the last router will
not send a packet with TTL equal to zero to the destination and the destination will
simply accept a packet with a TTL greater than zero and not decrease it �rst.
Traces can be done in several variations: the ICMP has a subtype called traceroute,
that will make the destination respond with an ICMP packet. When using UDP or TCP
packets, the responses will be according to the protocol speci�cations. This can make it
harder to get proper responses. They are however useful to exploit established rules in
stateful middleboxes.

3.3.2 Understanding AS Infrastructures

One problem of interpreting information about the topology of the Internet is that the
AS operators tend to keep their router level topology in con�dence [28]. This makes it
more di�cult to interpret the data gathered in traceroute traces. The problem with that
can be seen when considering one routing site with two routers, that share the burden of
routing of tra�c. Two traces, gathered using the method described in section 3.3.1, that
are both routed through this site, might not have common node in this hop, if the TTL
exceeded messages originate each from another router. If the traces take di�erent routes
after this site, this could create a false sense of di�erent routes. Because of the same
location and same environment, those routers might be subject to the same problem,

2According to [27, page 14], in IPv4 this was actually meant to be a time in seconds, that had to be
reduced by at least one per hop

3common initial values, depending on the implementation are 48 and 64
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like power outage, a link break, miscon�guration or similar problems. The path traces
are hence not as independent as one could think. A proper understanding of those
topologies could therefore enhance the traceroute data a lot.

3.3.3 Multi Protocol Label Switching

Multi Protocol Label Switching (MPLS) is a technique, which makes it possible to handle
AS internal routing particularly e�cient. It works as described in [29] by pre�xing a
data packet with a label that is associated to a precomputed path through the network.
A labeled packet can then be routed by a Label Switching Router (LSR) comparing the
label instead of comparing the pre�x of an IP address. This technique is especially useful
for tra�c, which has to be transported to a gateway router. The MPLS-network ingress
node, that comes in �rst contact with the data, can there match the IP address pre�x
with the BGP routing tables, determine the next AS and add the label of the gateway
router that is connected to that AS. After that, Label Switching is used to keep the
resources necessary for AS internal routing as low as possible.
In [19] [30], the authors describe two major modes of MPLS; In theUniformMode and the
Pipe Mode. The signi�cant di�erence for this thesis is, that the handling of the TTL �eld
is di�erent between them. The Uniform Mode considers the TTL �eld, and the egress
node, that is the last node of the MPLS network that handles the IP packet, decreases
the TTL �eld by the number of LSRs it has traversed. Pipe Mode only decreases the
TTL �eld of the IP header by one for the whole traversal.
This in�uences the reliability of trace information, since it violates the assumption that
every hop is decreasing the TTL �eld. As a result, two traces that traverse the same
MPLS network in Pipe Mode can be routed by the same LSRs, but because they use
di�erent ingress and egress routers, which are the only visible routers in this mode,
seem to have no common hops.

3.3.4 Missing Information

One signi�cant in�uence on the quality of gathered information is given by timeouts.
In case of a timeout there is no information about a hop on the path. Incomplete
information has a negative in�uence on the route selection result. We will discuss a
method to handle these cases in chapter 4.

3.4 Impact on the Internet

Qiu et al. elaborate in [31] the impact of ”sel�sh tra�c“, that means tra�c that uses the
network in a way ideal for the needs of itself, on network topologies. They state, that



3.5. Tra�c Engineering 17

while sel�sh tra�c can achieve near optimal results in regard to connection metrics
like bandwidth and Round Trip Time (RTT), the excessive usage of popular links can
lead to negative results for all participants. This is an instance of the Tragedy of the
Commons model. It states, that a limited resource, freely available for individuals,
is used ine�ciently with respect to the common good, to a degree where it harms
the individual use. This idea is also applicable to IRS. For the scope of this work, we
deliberately choose to neglect it.

3.5 Tra�c Engineering

Tra�c engineering is the process of optimizing tra�c �ow concerning a metric. Inter-
AS tra�c engineering is focused to move tra�c as fast as possible to a certain point.
This is either a target node inside the AS or it is a gateway node to route tra�c to
a neighboring AS. The optimization metrics are in �rst instance of technical nature:
less tra�c in the system means less load on the system. This is however driven by
the economic requirement to invest less in hardware. Techniques like MPLS, which is
described in section 3.3.3, are used in this process.
For the matters of IRS it is important, as already broached in section 3.2.1, to understand
which optimization e�orts lead to BGP routes. Therefore we distinguish between di�er-
ent kind of BGP inter-AS-partnerships. These di�erent kinds emerge from the variable
size and importance of ASes.

• Equal ASes can arrange a peering treaty. It is important to note, that peering
is a �xed expression, where peer, in the meaning of equal-ranked, refers to the
rank of the ASes. Peering treatys are usually of mutual bene�t for both partners.
Sometimes peering partners share speci�c transit tra�c.

• ASes of di�erent size and importance usually connect in a customer-provider-
relationship. This means, that the lower ranked customer-AS pays for the tra�c
with the provider-AS.

A provider-AS is a Transit AS, since the tra�c of a customer transits through it. Non-
transit ASes can be Stub ASes if they only have one provider or Multi-homed ASes, if
they have more than one provider.
A Stub AS must route all tra�c through its provider. A gigantic AS like AT&T has only
customers and peering partners, hence it will not consider transit costs. But all other
AS-constellations in between those two extremes will try to �nd the cheapest way to
get rid of tra�c with a destination in another AS.

• When paths cost the same, the shortest will be chosen

• A customer that announces a path is attractive, since tra�c with customers brings
money
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• A peering partner, that announces a path is always peferable to a provider, since
peering tra�c is cost-neutral

• A Multi-homed AS will send tra�c to the cheapest provider

• A Multi-homed AS will announce its pre�xes to its providers to be reachable, since
it will try to discourage paths through more expensive providers (section 3.5.0.1)

• An AS will not announce a route that costs more than it brings pro�t

3.5.0.1 Path Prepending

There are circumstances where an AS wants to discourage a certain route. For instance
when an AS wants to make sure, the most attractive path to reach its pre�xes is through
the transit AS of the cheapest provider. An AS will then try to make a path unattractive
by making it longer, but still keep it as a backup path to stay reachable in case of a
problem in the cheap provider’s AS. Length is given by the number of ASes in the path.
It can be in�ated by adding the own AS number several times. This technique is called
path prepending.

3.6 E�ect of Source Routing

In contrast to the techniques of ASes to optimize routes according to their own eco-
nomic advantage, as presented in section 3.5, there are also the desires of Internet users.
These two views of an optimal routing do often not overlap. In the following section we
will explain source routing, compare the goals presented in section 3.2 and section 3.5
and see how the application of source routing in�uences the e�orts of tra�c engineering.

3.6.1 Source Routing

In current IP networks, Hop-by-Hop routing is the standard4. This means, that each
router analyzes a packets destination address, selects the next router according to that,
and forwards the packet to that router. On the contrary, Source Routing (SR) means,
that the source of the packet selects a route, or important interims hops and the network
forwards the packet according to those instructions.
SR is not possible in the Internet as it is right now: It requires routers, positioned
on di�erent positions in the network, which are able and willing to read the source
instructions path and forward the packet according to that information. It has, however,

4Exceptions to that are for example MPLS routed segments
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A B

PA PB

Figure 3.1: Example con�guration that could lead to undesired routes

been done in several experimental setups ( [7], [32], [12]) using software deployed on
server machines in as many di�erent ASes as possible.

3.6.2 Unused paths in BGP routing

As understandable after reading section 3.5, there are links in the Internet, that are not
usable because of policy driven routing decisions. In a scenario as seen in �gure 3.1,
where a cloud represents an AS, a solid arrow shows a peering relationship and a dotted
one points from customer to provider.
A will not announce its relationship with PA, to B. A will however announce its own
pre�xes towards B. The path from B to PA will hence lead be B → PB → PA. The
path B → A → PA exists, but is not wanted by A and therefore not announced. Using
IRS, the combination of both paths would be great for resilience by multipath. Also,
assuming PB is an extremely large network, routing though A might be of advantage if
the path is shorter.

3.7 Comparing Ideal and Actual Situation

In section 3.2 and section 3.5, we explained the motives for route selection from two
di�erent perspectives: AS operators and Internet users. In the following table 3.1, we
will confront the real situation with the desired situation.
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Ideally BGP
number of paths many diverse One
path selection case speci�c optimized for AS policies
avoiding ASes con�gurable not possible
link failure recovery fast or in background slow convergence after detection

Table 3.1: Comparison of ideal and actual routing situation
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Chapter 4

Realization

In the previous chapter, we described the problems of the current Internet routing
system from a user’s perspective, what Informed Route Selection is and how it can help
to overcome those problems. In the following sections, we will explain an approach to
realize IRS. First, we will introduce some important metrics which will be important to
rate selected routes. Then, we will present an information model and an algorithm to
select routes. At the end of the chapter we will explain the design and implementation
of an application to experiment with IRS and evaluate the algorithm.

4.1 Conceptualities and Metrics

Before starting to describe the procedure of selecting nodes, one important part is to
set out a goal for the algorithm, which we do by de�ning metrics that will be used to
rate the quality of routes. The route selection can then be optimized in regard to these.

Fundamental Terminology

Information �owing through a network follows a certain route. This route can be
represented by a path, that traverses all routers, links and obstacles which in�uence
the information. The goal of IRS is a well selected path. A Path (P) is a sequence of
nodes starting with the Source (S) and ending with the Destination (D). Every item of
the sequence is a step.

PSD = (S,h1,h2 . . .D)

While selecting a path, Source and Destination node are �xed. everything else is, a
certain variety assumed, selectable. One Way to rate the character of a path is to look
at the set of nodes that make it up, without particular order or counting nodes twice.
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Therefore Node set (N) a set of nodes of a path without the endpoints S and D. Or
more formal:

NSD = {x | x ∈ PSD } \ S,D

If S and D are clear from the context, we can simplify by omitting the indexed SD, as in
P and N

Path Length

The length is an interesting feature of a path. The longer a path is, the more elements
can in�uence its emerging properties. The whole depends on parts to function properly.
Therefore, assuming all nodes have the same reliability, a path twice as long has a twice
as high risk to fail. Also especially in networking, a longer path can lead to a higher
propagation delay and other unwanted side e�ects.We use the notation |P | for the length
of a path P meaning the length of the sequence that de�nes P .

Node Diversity

In [15] Rohrer et al. develop a metric to measure path diversity. They argue that it has
to consider both nodes and edges of a graph. This is correct, following the explanation
in [15, Section III, B]. Based on the graph model explained in section 4.2, this is not
necessary, since every Point Of Failure(POF) is modeled as a node and a failing edge is
therefore modeled di�erently than in their case.
When we try to achieve resilience through multipath, it is important to have several
paths being as independent as possible with respect to those POFs. If two paths do share
a certain POF and it fails, then both paths also stop working and the goal is missed.
The metric from [15] takes the number of nodes that are in both paths and puts it in
relation with the number of nodes in the shorter path. A pair of ideally diverse nodes
does not have a single common node on the path, which means that a single failure in
the network can only a�ect one path. Therefore we de�ne, based on Rohrer et al. the
metric Node Diversity (ND) as:

ND (Na ,Nb ) = 1 −
|Nb ∩ Na |

|Na |
where |Na | < |Nb | and Nx , ∅

This results in 1 if the Na and Nb are node disjoint and in 0 if both sets are identical.
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Multi Node Diversity

The metric ND from the previous section only works for two paths. However, we wanted
a metric for an arbitrary number of paths. If a set of paths is pairwise disjoint for all
possible paths, it would be ideal. But much more relevant for our purpose is, if that is
not the case. We therefore consider three metrics over the whole set to rate diversity:
Lowest Node Diversity (LND) for the worst case in this set, Mean Node Diversity(MND)
to judge how the set will generally perform and and Highest Node Diversity(HND) to
see the optimal case.

Considering a set of node sets derived from paths as described in section 4.1, so that
M = {N1,N2 . . .Nm }, the Lowest Node Diversity metric is the lowest diversity between
all pairs of sets. This will be the main metric for the evaluation.

LND (M ) =min({ND (X ,Y ) | X , Y ∧ (X ,Y ) ∈ M×M })

accordingly for the Mean Node Diversity:

MND (M ) =mean({ND (X ,Y ) | X , Y ∧ (X ,Y ) ∈ M×M })

and Highest Node Diversity:

HND (M ) =max ({ND (X ,Y ) | X , Y ∧ (X ,Y ) ∈ M×M })

In an optimal case, these would all return 1 which would mean, that all paths are
pairwise fully disjoint. The most relevant metric is the LND, because it allows a good
assessment of the worst case.

Minimum Node Cut Size

Using multipath can be an ine�ective for improving resilience, if all paths share a single
POF and it fails. It does not matter wether this is the only overlapping node of all paths
or not. Node diversity gives a relative information, which can be misleading. In an
extreme example with a set of long paths that all share only one intermediate node, the
LND and MND can be close to ideal. If the shared node however is the same for all path
pairs, it can shut down all at once. Thus we are interested in the number of POIs that
had to fail to totally disconnect S and D.

We de�ne the metric Minimum Node Cut (MNC) as the minimum number of nodes in
a graph G, only made from the questioned paths, that had to be removed from G to
disconnect S and D
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The worst case for this metric has been explained above. The best case scenario would
be, if one node from each path had to fail, to totally disconnect S and D. For a Path Set
PSSD this would be |PSSD |.

Detour Factor

As shown in section 4.1, a shorter path is preferable to a longer one, if we assume that
all POIs fail with the same probability. Therefore it is interesting how much longer a
path has to achieve diversity. The detour factor therefore rates the length of a path
compared to the length of a shorter path.

DF (Pa , Pb ) =
|Pb |

|Pa |
− 1 with |Pa | ≤ |Pb |

This metric has a lower bound of 0, if the paths have the same length.

Multi Detour Factor

With the same argumentation as in the section about Multi Node Diversity, we also use
the Lowest Detour Factor (LDF), Mean Detour Factor (MDF) and Highest Detour Factor
(HDF).

LDF (M ) =min({DF (X ,Y ) | X , Y ∧ (X ,Y ) ∈ M×M })

MDF (M ) =mean({DF (X ,Y ) | X , Y ∧ (X ,Y ) ∈ M×M })

HDF (M ) =max ({DF (X ,Y ) | X , Y ∧ (X ,Y ) ∈ M×M })

It is of course ideal, if all of those three are zero but since the metric of DF is not bound
by a maximum value, neither are those.

Metric Range Good Value Bad Value
Path Length [2,∞) 2 ∞

Node Diversity [0, 1] 1 0
Minimum Node Diversity [0, 1] 1 0
Minimum Node Cut [1, |PSSD |] |PSSD | 1
Detour Factor [0,∞) 0 ∞

Table 4.1: Metrics Overview
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4.2 Data Model

To evaluate information algorithmically, we have to put the information into a structure.
As we already broached in section 3.1, we decided to follow the intuition to interpret
the Internet as a graph with network nodes modeled as vertices and links modeled as
edges. In this section we will explain, how the additional information can be interlaced
into this structure.

4.2.1 Two-Layered Graph

The fundamental concept of this approach is a Two Layered Graph (TLG). One of the
layers, called the Overlay Graph (Overlay, OG), contains vertices representing network
participants like endpoint nodes and routers and edges representing routable links. The
second layer is called Underlay Graph (Underlay, UG). Nodes in this graph represent
information of di�erent kind and the edges connect it. Every edge in the Overlay is
associated with a path in the Underlay. In this work, sometimes we call edges in the
Overlay ”virtual edges“ to symbolize the fact that they represent a whole path and not
only an edge. While the Overlay can generally be considered undirected, the Underlay
is preferably directed.

Figure 4.1: Virtual edges share underlay nodes

4.2.1.1 Overlay

The overlay graph represents the routable network. It contains every router and end-
point, which means all participants that try to select a route will �nd themself in that
graph. Every edge is annotated with a sequence of Underlay-nodes, representing a path.
If that is not possible in the Underlay, it can not be associated with a virtual edge. The
graph is also weighted. The speci�c weight of each virtual edge depends on the path
that the edge represents in the Underlay.
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4.2.1.2 Underlay

The Underlay is the information graph in this structure. It means, that every node
contains some information about a part of a link. Every node of the Overlay graph
but not the edges are present in the Underlay, too. But not all nodes in the Underlay
are selectable for routing. Even if there is a more attractive way in the Underlay: Only
the complete paths, associated with an Overlay edge can be chosen as units. Underlay
edges are not weighted. They are to be understood as relationships in an information
network and not as really selectable paths.

4.2.2 Information Mapping

The following examples expound the way di�erent types of information can be mapped
to the Underlay without any claim to comprehensiveness.

4.2.2.1 Direct Connection

The most trivial case is of a connection cause a direct connection between two overlay
nodes A and B. In that case, the edge (A,B) will be directly adopted in the Underlay. In
a real network this would represent a direct cable from one host to the other.

4.2.2.2 Point of Failure

Assuming a connection from A to B and another connection from A to C . Both connec-
tions lead over the gateway router R of As home subnet. If R fails, both connections
break down. This is a common point of failure for both connections. In the Underlay
there would be a path A→ R → B mapped to the virtual edge (A, B) and A→ R → C to
the virtual edge (A, C). Such a point of failure can be anything that is sharable and prone
to failure. Explicitly, we want to point out that a �ber optic cable, shared by di�erent
colors, should also be modeled as a point of failure and therefore as a node, not only an
edge. This will be the focus of a resilience model, since it can predict the impact of a
component’s failure on every edge of the Overlay.

4.2.2.3 Points of Interest

A Point of Interest (POI) could be anything, that is relevant for a routing algorithm. An
example is a node that signals a satellite connection.
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4.2.2.4 Areas

In section 3.2.2, we mentioned the idea to stay inside a certain legislative system. For
this, there can be areas de�ned in the Underlay. Considering an edge (n(1),n(2) ) that
has one node n(1) in one area and the other node n(2) in another one; a border node
b can be inserted and annotated, that signals the transit to another area and the edge
(n(1),n(2) ) can then be replaced by the edges (n(1),b) and (b,n(2) ). This has to be done
with every edge in the underlay, that has its ends in di�erent areas. Border nodes are a
special case of a node of interest.

4.2.2.5 Edge Annotations

An important convention is: there is no information in the Underlay edges, but all
information in the nodes of the Underlay. If there is the need to annotate an edge, it is
always possible to create a node, annotate it and put it between the edges endpoints.

4.3 Inserting Information

In this section, we will explain how information is gathered and added using the tracer-
oute information which is already known from section 3.3.1. For that purpose we
anticipate the setup of an overlay network from section 4.5. In this setup, the nodes in
the OG are hosts, that run our prototype routing software. Edges are links, established
between the nodes. In such a scenario, a packet, sent along the virtual edge from one
Overlay node to another follows a certain path through the Internet. Every hop along
this IP path is relevant for the edge. And it is possible, that one hop is used by several
edges in the Overlay. Each one on this path is therefore a Point of Failure and a sensible
information for the Underlay.
The �rst step is to gather trace information, as described in section 3.3.1. This raw data
has to be slightly altered to �t our needs as described in the following sections.

4.3.0.1 Adjusting Granularity

In section 3.3.2 we explained, that ASes tend to keep information con�dential. We also
illustrated how a site with several routers that share the load, are likely to be a�ected by
the same disruptive events. We also explained in section 3.3.3, how tra�c engineering
techniques, like MPLS can distort the information gathered using this method. But it
is possible to map the public IP of a hop-router to an AS, using BGP data. MPLS is
a AS internal tra�c engineering method and load balancing between routers is only
sensible, if the routers belong to the same AS. It seems hence reasonable to use AS-level
granularity. Also, from another point of view, it is reasonable: Most of the problems
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we are addressing are a result of the BGP protocol, which uses AS level routing. AS
level therefore seems to be coarse enough to handle the information inaccuracy and
�ne enough to solve the BGP problems.
It is most likely that with this method, some consecutive hops have the same AS assigned.
This can be countered by just merging all of those series into one hop. As a last step,
each AS is mapped to a node in the Underlay. If there is no node, for an AS, it is created.

4.3.0.2 Handle Missing Information

As already described in section 3.3.1, there are some probe packets, that are not answered.
This can be a connection issue, but more likely, it is a node, that is not willing to respond.
In such a case, there is no use in trying more than a few times1 to get the information
about the host. Again as in section 4.3.0.1, a sequence of several missing hops get
merged into one. Then we distinguish two cases:

• If there is the same AS before and after the missing hop: Since the structure of
BGP makes only one outgoing path per destination possible, otherwise a packet
had to traverse an AS twice. If it would it would leave towards the same next
hop as before and circle around until the TTL exceeds. Thus, in this case the
preceding, the missing and the succeeding hop can be merged into one.

• If the AS before and after this hop di�er, there is no way to tell what kind of
hop it is. As a consequence a node, which is identi�ed as ”the one between the
preceding and the succeeding AS“ is created and handled as a point of Failure.
This is furthermore a Point of Interest, that signals uncertainty.

4.3.0.3 Association

After all nodes have been setup in the correct way, the path through the Underlay can be
associated with the virtual edge in the overlay. This is done by annotating the Overlay
edge with the sequence of nodes.

4.4 Algorithmic Informed Route Selection

In this section, we will explain the selection algorithm. The method modi�es the graphs.
An implementation should therefore work on a copy of the graph or make sure, that
the initial state can be recovered after the process.
The general requirements for the path selection algorithm are: Given the TLG, �nd x

1most implementations repeat three times
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paths from a S to D while avoiding nodes of interest with a certain predicate and do so
while minimizing the impact of a failure.

4.4.1 Filter Nodes

The �rst step for IRS is to remove all Underlay nodes, matching certain criteria. The
algorithm iterates trough all nodes; if a node is a POI and it matches one criterion, it
is deleted. After this step, the Underlay only contains a subset of nodes, that ful�ll the
boolean requirements of IRS.
After this, the data model is in an inconsistent state, because the Overlay contains
virtual edges with paths, which are not longer possible. This state has to be corrected
by deleting all of those inconsistent Overlay edges. Afterwards, the Overlay represents
a graph, that matches the boolean requirements.

Figure 4.2: Node �ltering can isolate nodes even it they do �t the �lter

4.4.2 Maximum Disjoint Paths Problem

In the attempt to reduce the impact of a node failure on multipath networking, often
graph theory is consulted. From that, there are several possible problem statements,
that could �t di�erent setups. From the overview in [18], the Maximally Disjoint Paths
Problem seems promising, since it considers the case in which for parts of a network,
no node disjoint paths are available. While this is a necessary condition, it is not a
su�cient one for out needs. Modeling our problem into a Maximally Disjoint Paths
Problem would minimize the impact of a failure, but:

• It scales bad with an increasing number of nodes, since this is an NP-Hard problem

• An optimal solution for the Maximally Disjoint Paths Problem might not be an
optimal solution for IRS, because it may achieve a better result in node diversity
at the cost of long paths.

• Also, it would seem that most algorithms that deliver an optimal solution are not
built to �nd an additional path in case one breaks.
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For these reasons, we decided to develop an heuristic, that results in a non-optimal but
good enough path diversity, avoids big detours and works incremental, meaning it �nds
a path P (x ) after paths in {P (y ) | 0 < y < x } have already been found.

4.4.3 Find Shortest Paths

The heuristic works in an iterative way to incrementally create a set of paths. In
this section, will refer to the usage of a shortest path algorithm. This could be any
shortest path algorithm, that works on weighted directed graphs like the A* or Dijkstra’s
algorithm.
The �rst step in each iteration is to calculate the weights of the virtual edges. Afterwards
the shortest path through the Overlay is selected by a shortest path algorithm. Then,
each Point of Failure in the Underlay, that is associated with one of the virtual edges in
the returned path, gets burdened by this path. The path is added to the result set and the
procedure starts again in the next iteration. This is repeated until the break condition
holds.

4.4.3.1 Weight Calculation

The burden on a node is an integer annotation, that states how many Overlay paths
already rely on this particular node to work. By implication this is also how many
paths break down in case of a failure. A simple interpretation is, that a node with a
high burden is unattractive for new path. The burden is taken for the calculation of the
virtual edge weight afterwards each round of the algorithm. This results in a higher
edge weight for edges with a high burden and thus makes edges unattractive for an
algorithm if they share POFs with already selected paths. This results in the following
two steps to calculate an edge weight:
The Burden(B) function returns the burden of a node or the sum of the node-burdens
of a path.

B (X ) =



annotated burden if X is an Underlay node∑
n∈X

B (n) if X is a path

The Weight (W) function takes the path of a virtual edge to calculate its weight:

W (P ) = |P | + f (B (P ))

where f is a mapping from burden to additional weight. In chapter evaluation two
approaches will be compared:

fθ (x ) = θ ∗ x for a linear discouragement
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f (x ) = 2x for an exponential discouragement

The weight functionW of a path has two goals: Discourage non-diverse paths and if
there are two paths with the same burden, take the shorter one. This method does not
distinguish between one highly burdened POF and several lower burdened POFs since
the consequences of choosing one over the other were not irrefutably and would have
brought another dimension into the evaluation. The parameter θ will determine how
hard the reuse of a POF will be punished and be subject to the evaluation.

4.4.3.2 Break Condition

The obvious break condition, that ends the iterative process is reached if the requested
number of diverse paths is found. But, since this heuristic does not analyze the how
many paths are possible between two nodes, it will not be able to detect the end of the
possibilites. In such a case, the obvious break condition is never met. We decided to
abort the process after ten consecutive unsuccessful tries to �nd a new path.

4.5 Prototype of a Router Software

In the following section we describe the design and important implementation decisions
of a prototype. The software is a participant of a network of nodes that experiment
with IRS. The software is written in python, which allows a fast development due to a
very high level API.

4.5.1 Design Overview

The software consists of three components as sketched in �gure ??. It is deployed on
hosts over the internet. The software then connects to other hosts to build a network
on basis of manually con�gured pairings. The design is plugin based, without the
plugins, the system will read out a con�guration �le, setup the plugin environment,
manage connection states and apart from that run idle. The plugins will �ll the gap and
bring functionality. With this approach, we achieve a high modularity to experiment
with di�erent setups. The task sharing is outlined in the following way: The central
object, called ”VEdges-object“, is a singleton, that initiates all action and orchestrates the
interaction between the other parts. The communication system takes care of network
interactions of all kind. The PluginManager is responsible for the execution of plugin
calls and managing the plugin library. The software is a prototype for experiments with
multipath and IRS.
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4.5.2 Asynchronous Approach

The prototype is event oriented, since it reacts either to a local (user) interaction or to a
packet that comes over the network. This makes it especially suitable for an eventloop
based architecture with asynchronous nonblocking I/O. This means, there is a loop
running in one execution thread, that processes tasks. Those can be created externally,
for instance in the code before the loop is started, or in other tasks during the execution.
There is no scheduling that disrupts one task to schedule another during its execution,
there is however the possibility to voluntarily hand the control over back to the event
loop. This happens by registering to wait for another event. Those can be I/O operations,
interrupts or timers. There is however no forceful control stealing. Handling critical
sections in code can be easier in such an architecture, since one can make sure, data
is not accessed by another method between two operations. It does however raise the
importance of manual control management. Long term calculations in the background
can restrict the systems ability to react to events.
Python, after version 3.5, provides the package asyncio, which contains an eventloop
implementation.

4.5.3 Communication

The communication subsystem has two main segments. One constantly monitors the
consistency of it. Because the communication system is con�gured by setting properties,
not by using an active interface, and since other properties like the state of an connection,
can be changed through external in�uence, it is important to iteratively examine the
sanity of the system. The other subsystem reacts to external events and handles the
communication tasks. These external events are either local communication requests or
data from the network. This data must then be veri�ed, classi�ed and further processed.
The di�erent types of procedures in the system are highly entangled but separated by
purpose in the following sections.
One important design decision for the communication was the selection of UDP as a
link transmission protocol. This was, because we wanted to keep the option to build IP
transport and TCP over IP over this network on the table. But stacking TCP connections
is considered bad practice. It introduces uneccessary overhead and can lead to a TCP
meltdown [33].

4.5.3.1 Link Management

To simulate a routing environment, the software maintains links to a subset of the
network routers. In theory, the most �ne grained routing result can be achieved by
connecting to routers, that are close to each other, which in this context means a short
path in the Underlay. Moreover, the less Underlay nodes are in one path, the smaller is
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the chance of failure for a particular link as argued in section 4.1. In practice however,
we use pre-con�gured links. The underlay path length depends on the BGP and is not
�xed. A more dynamic system could lead to a better selection of neighboring nodes and
therefore a better performance of the algorithms.
A link is identi�ed by the address of the partner. This information is inserted into a list
by the VEdges system and then iteratively revised. A link can have one of several states,
which leads to certain required actions:

Disconnected means, the link is not active. Either because it has recently been added,
the connection attempts failed or because the other side sent a disconnection
notice. The suggested action is to try to connect to this partner.

Connecting is the state a link has, during the two way handshake. It means, a con-
nection attempt has been started but not been answered. The suggested action is
to check, wether a timeout has occurred or not. If not there is nothing to do, but
wait, else a disconnect noti�cation should be sent.

Connected the normal state, in which a link can be used so transfer data. It has to be
checked, whether or not the last interaction on this link is older than a certain
timeout. If so, a Keep Alive (KA) request is sent, to examine the sanity of the link.
An active partner will respond to the request with a KA response. Both packets
have the sole purpose to probe link sanity.

Incomming only is the one-way version of a connected link. The link partner is
allowed to send tra�c through the link, but it will not be used to forward tra�c,
which is received over the other links. The same sanity probe mechanism as for
connected links should be applied.

A connection is added by simply inserting a disconnected link into the link list. A
disconnect however happens by deleting a link and immediately sending a disconnect
noti�cation. After every change in a link’s state, an event is triggered via callback, that
noti�es all plugins of a certain type, as further explained in section 4.5.4.6.

4.5.3.2 Connection Establishment

The connection procedure has two steps.The �rst one is to send an association request
to the other host. The second one is to await the answer which is either an association
con�rmation or a disconnect noti�cation. When receiving a association con�rmation,
the link is considered connected. The connection procedure can be triggered by two
di�erent circumstances; either the link management detects a disconnected link, as
described in section 4.5.3.1, or the impulse is given by an association request from
the outside. In such a case, it is a policy decision to either connect, accept or reject.
Accepting means to only send an association con�rmation. This corresponds to a one-
way connection. Rejecting is, to send a disconnect noti�cation. Connecting implies to
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send an association con�rmation and follow up with an association request. A pseudo
random number is used to match a request to an answer. Although this is not su�cient
for security implications, it can help to raise the trust in the genuineness of a partners
IP address.
After the connection has been mutually accepted, both sides start a trace to the partner.
This is done, in order to understand the underlaying hops of the link. The technique
used is described in 3.3.1. We use UDP traces to the same ports that are also used in the
link connections. This gives the highest probability to be routed the same way a link
packet is routed.

connection_request
connection_con�rmation

connection_request
connection_con�rmation

Instance PartnerInstance

Figure 4.3: Bilateral Connection Process

4.5.3.3 Packet Structure and Types

All communication between the nodes, shares the same packet structure. We therefore
choose a layered approach. Each layer has a Type �eld, a Length �eld and data. Type
implies the interpretation of the data. Length holds the information how long the data
is. Some layer types do not use the data �eld. There are message packets, consisting
only of one layer. This is for example the KA packet. In general however, information is
transported in several stacked layers. The disconnect noti�cation for example consists
of a Management layer with data length zero, followed by a management layer of type
”Disconnect“.
In python, this is implemented as a linked list, where every PacketLayer object has
a reference to the next layer. During the transmission over the network, the packets
are transformed into a bytearray where one layer begins in the byte succeeding the
previous layer’s last byte. The length �eld is used to determine the boundary between
two layers. This layered approach is not e�cient in regard to saving data volume, but
it helps to stay �exible during development. Also, one might notice, there is no source
�eld. We decided to leave everything except the routing to the overlaying protocols, for
instance IP.
As there are several di�erent layer types, we present the most important ones without
particular order:
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Type Length

Next Hop Address




Forward
Layer

Type PayloadLength

Identi�er

Payload
· · ·




Payload
Layer

Figure 4.4: Payload Wrapped in Forward Layer

Management layers have direct connection to the link management. They are used
for association requests and con�rmations, disconnect noti�cations as well as KA
requests and responses. Indications for these are explained in section 4.5.3.1 and
4.5.3.2.

Payload layers carrie application data, is generated by the overlay applications as
explained in section 4.5.4.5, transported through the network and delivered to the
target’s overlay application.

Operation layers transport messages that are in a sense like Payload messages between
plugins but for all plugin types. They are however treated di�erently by both, the
routing system and the VEdges object, as described in section 4.5.4.3.

Forward layers hold the hop-wise routing information for a packet. The forwarding
procedure is explained in section 4.5.3.7.

Message Identi�cation The identity �eld of a payload is there for error handling. Un-
fortunately, we did not have the time to implement a full error handling in the prototype.
Yet we think, the idea should be mentioned here.

Since packets of the types Payload and Operation carry information for outside of
the communication system, they are treated slightly di�erent. This is also visible in the
structure if those layers. The Payload layer has an eight byte identi�cation �eld. The
Operation layer has an additional channel �eld. These channels will be explained in
section 4.5.4.3.
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4.5.3.4 Address Translation

Because the Overlay has its own address space, which can be totally independent from
the IP network this software is built upon, there must be a translation mechanism. Since
routes are a sequence of Overlay addresses and the links in the communication system
are IPv4 addresses, there is no way for the communication system to understand the
next-hop information without a proper translation mechanism. This translation is done
via callback. The VEdges system therefore sets a callback, for contacting the Overlay
plugin. Further information about the Overlay plugin will be in section 4.5.4.6.

4.5.3.5 Sending

Packets that ought to be sent over the network can have di�erent origins. We call
the those originating from inside the communication system internal packets. Data
from outside of the communication system, for example in a plugin, is used in external
packets.
Internal ones are generated, wrapped 2 in a layer that carries the next hop’s IP address
and then put into the send queue. This is a priority FIFO queue and thereby makes
it possible to prioritize management and operations messages, but keep the order of
packets in general. A task then gets elements from the send queue and processes them
further: It transforms the packet into the binary format and applies encryption and
hashing as described in section 4.5.3.8. Afterwards, it sends them to the next hop using
nonblocking socket operations.
External packets are given to the communication system as a combination of payload
and path. The payload is then wrapped into a payload layer and the id is computed by
using a randomly initialized hash function. Afterwards, it is wrapped into a forward
layer for every hop on the path - except the �rst - beginning with the last.

for i ndex in reversed ( range ( 1 , len ( pa th ) ) ) :
p a c k e t = Connect ionManager . _wrap_forward_hop (
↪→ packet , pa th [ index ] )

This will result in an onion-like packet structure, to be interpreted by the forwarding
hops as described in section 4.5.3.7. After this procedure, the �rst hop and the packet
are further processed like an internal packet and its destination.

2wrapped is a �gurative term that assumes, one layer encases the lower ones like a piece of cloth
forming a pouch or like the layers of an onion. This is used even though there is no tailing part after the
lower layers, as one could assume by the term.
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4.5.3.6 Receiving

On the receiving end, the �rst action is to read bytes from the socket and then reverse
the encryption and check the hash, as described in section 4.5.3.8. After a successful
veri�cation, the packet is put into a queue for further processing. Another task then sorts
the packets by their outer layer: Management and other internal packets are processed
immediately or send to an internal processing queue. Payload and Forward layers are
only put in queues for further processing, if they have been sent over an established
link. The same accounts for Operation packets which are sent to the respective plugin
using an event callback.

4.5.3.7 Forwarding

The forwarding procedure is the least complex one. The outer most Forward layer, is
interpreted as an instruction where to next send the rest of the packet. If the next hop
is not a link partner or the link state is not connected, an error is generated. Otherwise,
the packet is stripped of the most outer layer and then treated like an internal packet,
described in the sending procedure in section 4.5.3.5.

[Payload]
[D [Payload]]

[F2 [D [Payload]]]
S F1 F2 D

Figure 4.5: Forwarding Packets

4.5.3.8 Encryption and Error Checking

The software is made to use it over the Internet. Therefore, we decided to add the
possibility to encrypt data. This is done using a plugin as described in section 4.5.4.6.
The cryptographic operation is the last one applied before a packet is sent over the
Internet and thus the �rst to be performed after receiving a packet.
Right before the encryption a hash over the bytearray is calculated and appended to
it. This hash can then be reproduced on the receiving end, right after decrypting the
packet, to check if a packet has been transmitted without an error. Also, this is a
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good check to see if the right encryption key was used: If the decryption key di�ers
from the encryption key, it is unlikely, that the decryption process results in a matching
packet-hash combination. In the python implementation we used the non-cryptographic
Murmur hash. This seemed to be a good option, since it is fast and reproducible on
di�erent machines as compared to the normal python hash, that seems to use a random
initialization at the beginning of a session, which is su�cient for reproduction inside
one program run, but not over di�erent instances.

4.5.4 Plugins

A lot of the main program logic is outsourced into plugins. This section will explain
the purpose of the di�erent plugin types and how they have been implemented in this
thesis’s test implementation. It is important to bring to mind, that one plugin can have
several types.

4.5.4.1 Plugin Manager and Base Functions

The Plugin Manager (PM) is the object of the plugin subsystem. It provides an interface
to add and remove plugins from the library. Each plugin will add itself to the library
after its class de�nition, to be available for use. The PM however during the setup of
the system, is prompted to scan certain directories for plugin �les3 and import those.

from mul t i rou tema . v e d g e s p l u g i n import PM
PM . r e g i s t e r _ p l u g i n ( MyPlugin ( ) )

Every call to a plugin’s function is also processed through the PM. Therefore, it is
addressed by its name and type. The call to a �lter representing the �rst step of IRS, can
be seen in the example:

PM . e x e c u t e _ p l u g i n _ c a l l ( " a v o i d _ a s n " , # p l u g i n name
P l u g i n G r a p h F i l t e r , # p l u g i n t y p e
" f i l t e r _ n o d e s " , # p l u g i n method
u n d e r l a y ) # pa rame t e r

To make this possible, each class has to provide four essential methods:

get_plugin_name returns the name, used in con�guration �les and plugin calls

get_plugin_id returns a unique id number, used in messaging

get_plugin_dependencies returns names of plugins,necessary for its execution, in a
list.

3It is assumed, that all .py �les, that are put into the plugin directories, are in fact plugin �les
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set_state is the function to set the current state, which includes the current plugin
con�guration

The name works as the unique ID. It is used in method calls and for the identi�cation
of the plugin’s section in the con�guration �le.

4.5.4.2 Dependencies

If a plugin depends on another to be present, it is useful to verify this at initialization
time. Any plugin can call any other plugin even without having it in the dependency
list, but this can lead to malfunction. In general however plugins also call other plugins
using the PM.

4.5.4.3 Inter Plugin Communication

This type is used for plugins, wishing to communicate with other instances over the
network. For this purpose, they get a callback set by the control system to send messages.
The callback, puts the message in an operation layer with the channel identi�cation
number, given by the return value of the plugins get_plugin_id function. The idea is, to
have separate channels for di�erent plugins. Only messages of their counterparts on
other instances in the network will reach plugins, which can therefore interpret every
packet without a need to �lter. This is for convenience and not a security mechanism,
because every plugin can de�ne the channel it communicates on by responding with
the corresponding ID when queried.

4.5.4.4 Graph Filter and Path Finder

Those plugins bring the essential functionality for IRS. The Filter type is there for
boolean requirements. There can be several Filter plugins at the same time. These
plugins provide a graph, safe in regard to an unwanted POI.
The Path Finder plugins, of which only one can be selected at a time, then search for
the requested number of paths. We did,as mentioned in the previous chapters, focus on
IRS with respect to diversity, and optimize our paths for the metrics from section 4.1.
The plugin structure however allows to implement Path Finders, that are optimized for
any other kind of metric.

4.5.4.5 Overlay Applicatons

Overlay applications are plugins that use the whole network for a purpose. It can create
data to send or wait for input from other instances.
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As an example overlay application, we implemented a chat system, which can be used
to send any text that is typed into the command line prompt and sends it to a speci�ed
target. This application generates data by user inputs and at the same time waits for
messages from the network to display them to the terminal. A long-term goal would be
an overlay application that provides a TUN/TAP interface to send arbitrary IP tra�c
over the network.

4.5.4.6 Other Plugin Types

Node Labeler necessary to annotate underlay nodes. It creates POIs for IRS. In our
setup, we used this plugin type to tag underlay nodes with their AS number. These
labels can later be used in Filter-type plugins. There can be several plugins of this type
at the same time.

Cryptography provides an encrypt and a decrypt method. Our very basic version of
this uses python library for AES-CBC encryption. AES is an encryption algorithm, that
is widely seen as secure. CBS stands for Cypher Block Chaining and can be used to
encrypt messages of variable length.

Identity Provider important for the network construction, as it provides the node
identity in the layered graph. In our implementation we used an address string, set in
the con�guration �le. This is feasible enough with relatively small4 networks, as we
used them.

Graph Provider provides an interface to get Overlay and Underlay including the asso-
ciation between them. More details in section 4.5.4.7

Link Changed Responder if selected, gets called whenever a link state changes. This is
useful for plugins that want to keep track of the overlay topology. We also use this in
the example below.

4.5.4.7 Example: Gossip Graph Provider

As an example of how the plugins work, we will now describe a plugin, used as a graph
provider in the test setup, that is evaluated in chapter 5.
The plugin is of type Link Changed Responder, Communication Partner and of type
Graph Provider. It works by exchanging topology information with the direct neighbors

450 to 100 nodes per setup



4.5. Prototype of a Router Software 41

and propagating changes from one neighbor to the others.
To do so, the plugin reacts to link changes: A freshly established link with a partner
gets explored by asking the neighbor for his overlay identity and topology. This new
information gets then merged with the already existing topology the plugin has gathered
and updates about nodes get propagated to all already existing neighbors. If a link state
changes to disconnected, the overlay link to the corresponding neighbor gets removed
from the Overlay and again the other neighbors get informed. This plugin uses the
communication type API to exchange data with the neighboring instances. For data
synchronization, a vector clock is used, which keeps track of every nodes version. The
version gets raised by one, every time the node or its outgoing connections change.
That way, merging two graphs can be done using the most current information from
both sides.
Every node manages itself and the outgoing virtual links, including the exploration
of the underlay paths. A new information, gathered by the node or learned from a
neighbor, is propagated. So eventually all nodes have the same view on Overlay and
Underlay.

connection_request
connection_con�rmation

link_changed

GetID
"IDx"

Channel=2, GetID

Channel=2, "IDx"

GetID

"IDx"

GetID
Graphs

Channel=2, GetTopology

Channel=2, Graphs

GetTopology

Graphs

GGP Instance PartnerInstance PartnerGGP

Figure 4.6: GossipGraphProvider Example Sequence after Connection

4.5.5 Orchestration

The core element of the system is the VEdges object, which has been named after the
key idea of the system: Virtual Edges, that are associated with information paths. The
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subsystem’s tasks are interpreting the con�guration and setting up the system, the
management of interactions between plugins and networking, the management of data
streams in di�erent directions and logging basic information about the process.

4.5.5.1 Initialization and Plugin Selection

The initialization is done in three stages. First, the con�guration, which is given in a
�le, is further parsed and divided into the VEdges con�guration, used to con�gure the
control element itself, subsections, used for other subsystems, like the plugin system
and one additional con�guration section per plugin.
Another task is to select plugin instances for certain jobs as con�gured by the user. This
is important because it enables the software to have several instances of the same type
loaded, but only one selected for a certain task. The initialization process is also re-
sponsible for dissolving dependencies and it must be able to handle cyclic dependencies.
This stage is therefore also responsible for checking the formal saneness of the plugin
system.
The network setup is done by setting the parameters of the communication system,
opening the socket and binding it to an address. Moreover the callbacks, necessary for
the communication system to interact with plugins have to be set. We think, a callback
based approach is the best way to stay fast responding, while leaving the VEdges object
in full control over the interactions between the plugins and the network.
As the last step for the initialization, the eventloop is started. This starts the normal
operation mode.

4.5.5.2 Input and Output Loop

The input and output loop do mostly the same thing, but react to di�erent events. Their
purpose is to connect the overlay application, given by plugin, to the network. The input
loop waits for the local overlay application to initiate communication. The output loop
waits for the network and hence for a communication partner to initiate communication.
The output loop will then deliver the packet from the network to the overlay application.
In case the plugin callbacks yields data, it is forwarded to the send queue. One di�erence
between input loop and output loops is however: The send loop, if con�gured to do so,
will visualize the current topology. This is relevant for the evaluation of IRS results in
context with potential graph originalities.

4.5.5.3 Send Loop

The send loop waits for packets, to be sent over the network. Once such a packet is
available, it performs IRS and sends it through the network. This is done involving
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two plugin types. First, all selected �lter plugins are called, to make sure, the boolean
requirements are met. Afterwards, a plugin call to a path �nder, will select a requested
number of routes. Depending on the actual number of found paths a third plugin, of
the redundancy type, will prepare the data. The prepared data is then handed over to
the Connection manager and sent over the calculated paths. If anything fails in this
process, the overlay application is noti�ed and can react accordingly.

4.5.6 Visualization

To evaluate path selection algorithms or other plugin types in general, it can be useful for
the user to visualize the network. For this purpose, there is an option to visualize overlay
and underlay after sending a packet. This has to be enabled with care, because it slows
the program massively down. The visualization merges both graphs into one picture.
Typically for graph visualizations, there are circles for nodes and lines between them
for the connecting edges. This �ts well for the nodes, since the nodes in the Overlay
are also represented in the Underlay. Overlay nodes are therefore just drawn slightly
bolder. The edges however are also dashed to make a clear distinction possible. When
using the Path visualization, which is also con�gurable, a path and the corresponding
Underlay path are highlighted in the same color. If two or more paths share an edge,
it is colored in only one color. An example visualization can be seen in �gure 4.7 and
another, without underlay expansion can be seen in �gure 4.8.

Figure 4.7: Virtual Edge Visualization Example
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Figure 4.8: Multiple Paths Visualized Without Underlay
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Chapter 5

Evaluation

In the previous chapters, we elaborated why path diversity useful for routing, the
problems that arise in the Internet, how we plan to overcome those and which design
and implementation decisions were made in order to build a prototype. The following
chapter will cover the evaluation of IRS concerning its performance to provide diverse
paths in a network. We will explain the experiments’ intuitions, the experiment setup
and execution and in the end, analyze the results.

5.1 Intuitions

For the experiments, some fundamental assumptions are made. We will now explain
those and elucidate the experiment design decisions with respect to the algorithms,
used for comparison, the number of paths that are computed and compared and the
burden to weight mapping in IRS. The comparison will �rst be made on di�erent sized
graphs, generated with the Hyperbolic Graph generator from [16]. Afterwards, the
same measures will be applied to a topology, extracted from the Internet using the
Planetlab infrastructure.

5.1.1 Comparison Algorithms

To classify the performance of IRS, we decided to compare it to two other algorithms.

5.1.1.1 Random Selection Overlay Routing

This algorithm looks for routes in the Overlay only using the information given in that
graph. To achieve Path Diversity, it selects random nodes as relays. It then calculates a
shortest path to the relay node and a shortest path from there to the destination. If the
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path between source and relay leads over the destination node, it is shortened to this
direct path from source to destination. A Path can only occur once in the result path
set. Therefore, as in IRS, we use a mechanism to avoid endless iterations.
This is derived from the approach in [12]. They use a random set of detour nodes and
claim that this yielded the best results for reliability to have a fast recovery after a single
node failure.

5.1.1.2 Random Selection Full Mesh Routing

This algorithm will also select a random set of Overlay nodes as relays. The routing
between them is however not done by �nding a shortest path in the Overlay, but in
the Underlay. This violates the assumption, edges in the Underlay are only information
associations, from section 4.2.1.2. But since in our experiment, the underlay only con-
sists of (AS-wise) routing hops, this is nevertheless a legitimate routing algorithm. It
implements the algorithm from above (section 5.1.1.1) considering we had an ideal path
between each pair of nodes. This represents an idealized full mesh.

5.1.2 Variables

The experiments are executed with respect to several variables. The e�ect of each of
the variable on the performance of IRS, as compared to the other algorithms will be
subject of the evaluation.

5.1.2.1 Number of Paths

The number of paths requested and returned is an interesting variable. It helps to see
how well an algorithm �ts to a speci�c use case. We selected four di�erent values for
this variable:

Two Paths as a lower bound for multipath. An example use case was regular data
routing with an additional backup path if necessary.

Three Paths as an example multipath networking, with parallel utilization of several
lines and FEC for resilience without application layer visibility.

Five Paths as an example for multipath with very high resilience requirements or for
applications that use resource pooling.

Ten Paths as an prospect on how well the algorithm scales in the given graph.
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5.1.2.2 Burden Punishment Factor

As mentioned in section 4.4.3.1, the linear mapping function from burden to Overlay
edge weight will be parameterized by θ . By tweaking this factor θ , this parameter will
also be subject to the evaluation. In fact, we pick one particular θ value after a range of
experiments and use this experimentally determined parameter in the comparison of
algorithms.
Through sampling pre tests, we determined a value-range for θ to be good between zero
and 14. We noticed, that there are is very small rate of change after that. Also, negative
Values would encourage the use of already used virtual edges, which is not what we
want.

5.1.2.3 Di�erent Graphs

The size of the Overlay and Underlay Graphs are also taken into account when com-
paring algorithms, to observe the in�uence of the number of nodes and the number of
hops per virtual edge in�uence the performance of IRS.
The last step is to review the insight we have gained in the previous steps towards
the real world. For this, we use our software on the Planetlab infrastructure, create a
layered graph model and run the calculations again, with the optimized value for θ on
this data.
For graph sizes we used a very small graph, with 300 Underlay nodes and 40 Overlay
nodes to simulate a network as it could be in a company. A medium sized graph with
1.000 Underlay nodes and 100 Overlay nodes for an intermediate step. And to get an
Idea how it could perform in the Internet with about 75.000 ASes, we used another
Graph with 100 Overlay nodes and 10.000 Underlay nodes. The Planetlab graphs turned
out to have 80 Overlay nodes and 200 Underlay nodes.

5.2 Experiment Setup and Execution

The experiments are set up to determine how well IRS performs. The approach will be
to test whether or not IRS out performs random detour routing. If it does, we want to
�nd out how much better it can get. Because we want to use the algorithms on a set of
di�erent setups, we will test the applicability to the real world in a last step.

5.2.1 Planetlab

Planetlab is a research network of 1353 nodes at 717 sites around the globe [34]. A list
of the 81 nodes, used in our experiment, can be found in the appendix.
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On the Planetlab our software did not run natively. Because the nodes run di�erent
operating systems, we decided to compile Python3.5 on each node and created an
environment to run our software. Also, on some nodes the raw socket api was disabled,
even with root access. We therefore had to use the linux traceroute implementation for
information gathering.
We used several scripts to set up the nodes in two di�erent topologies: One was a full
mesh, to gather all traceroute data we could. the other one was a ring structure. We
chose the ring structure to make sure, there is always more than one completely Overlay
disjoint paths to a certain node. Because Planetlab nodes are in most cases not multi
homed, the underlay paths will have their home ASes twice: on the path to the node
and on the way back into the Internet.
The scripts uploaded a customized con�guration �le to the host. Afterwards, each node
had the same setup except from the con�guration �le and we were able to control all
nodes using the same commands.
On top of this structure, we also ran an experiment where we sent an echo request to
nodes. This was to verify, bidirectional communication throughout the network was
possible.

5.2.2 Overlay Application for Test

To test the algorithms, we created an OverlayApplication plugin. This application �rst
takes some input:

1. select a PathFinder plugin

2. select a con�guration �le parameter to increase after each round

3. select start and end value for the parameter

4. set a number of paths to request

5. add one or more graphs to test the algorithms with
those can be either pickled or generated hyperbolic graphs

6. specify the name of a results folder

It then, for each pair of Overlay nodes in each of the given graphs and for each value
of the con�guration parameter, tries to �nd the number of paths with the given plugin.
After that it calculate the metrics from section 4.1 and save the result of those to a CSV
�le. It will also dump a binary form of the calculated paths into subfolder.
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5.3 Results

In the following results we compare the three algorithms. The axis named Theta marks
the parameter θ . The two comparison algorithms that are not depending on θ , are
displayed as straight lines. Each Image displays all three algorithms and the whole
range of θ values but only in one graph and for one number of requested paths. Metrics
like LND, that are taken over a set, are susceptible for distortion if the set size is not
constant. Therefore, in order to have meaningful statistics, only used the runs, that
returned as many paths as requested. An overview over the used and unused data is
given in table 5.1. There, it is also striking, that the number of discarded runs is especially
high for IRS. Since Random Selection Full Mesh Routing (RSFMR) and Random Selection
Overlay Routing (RSOR) do successfully �nd enough paths, this has to be a problem
of the IRS algorithm. We assume, this occurs when the burdening leads to a weight
distribution that has been there before, in that particular run. A solution, we were not
able to test due to time constraints, could be non deterministic burdening, in case a path
is found, that is already in the path set.

In the graphs below, dashed lines will represent the results from the RSOR, dotted lines
show the results of the RSFMR and solid lines or box plots will show the IRS data.
Because only IRS depends on θ , we decided to draw a horizontal line over all θ values
for the other algorithm results. When box plots are used, the corresponding quantiles
are drawn as such lines. This makes it possible to exactly compare every θ value with
the other algorithms. Other metrics, like the Path Length and the Detour Factor are
represented through three lines, where the lowest is the averaged minimum, the middle
one is the averaged mean and the other is the averaged maximum.

5.3.0.1 Small Graph

The Node Diversity results for two and for three requested paths look similar. The
quantiles are generally higher than the comparison algorithms’. There is in both cases
a minimum θ from which on there are almost no changes in the Node Diversity. For
two paths we have θ2 = 9 and for three paths, we have θ3 = 3.
This does however not mean, that θ has no further in�uence on the routing. In contrary,
it can have a negative e�ect on metrics like the path length as seen in �gure 5.3. In this
plot, it is also visible, that RSFMR is better in �nding similar sized paths, compared to
IRS, that has an ideal �rst path and potentially increasingly longer additional paths. Why do the �gures

render in di�erent
sizes?

Why do the �gures
render in di�erent
sizes?In �gure 5.4 we see, that for �ve requested paths, the result for diversity looks a bit

di�erent, because the RSFMR 25% quantile and the median are bot higher than the
median for IRS. Apart from that, there seems to be no major in�uence on the LND of a
higher θ after θ5 = 2
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Algorithm Requested Paths Graph Total Runs Used Discarded
IRS 2 big 138600 118157 931
IRS 2 medium 138600 136054 2546
IRS 2 small 31200 29237 1963
IRS 3 big 138600 117273 727
IRS 3 medium 138600 130793 7807
IRS 3 small 21840 19995 1845
IRS 5 big 138600 110661 5307
IRS 5 medium 138600 128746 9854
IRS 5 small 31200 20041 11159
IRS 10 big 138600 101558 37042
IRS 10 medium 198000 198000 0
IRS 10 small 31200 31200 0
RSOR 2 big 9900 9900 0
RSOR 2 medium 9900 9900 0
RSOR 2 small 1560 1560 0
RSOR 3 big 9900 9900 0
RSOR 3 medium 9900 9900 0
RSOR 3 small 1560 1560 0
RSOR 5 big 9900 9900 0
RSOR 5 medium 9900 9899 1
RSOR 5 small 1560 1560 0
RSOR 10 big 9900 9898 2
RSOR 10 medium 9900 9899 1
RSOR 10 small 1560 1558 2
RSFMR 2 big 9900 9898 2
RSFMR 2 medium 9900 9894 6
RSFMR 2 small 1560 1558 2
RSFMR 3 big 9900 9890 10
RSFMR 3 medium 9900 9893 7
RSFMR 3 small 1560 1559 1
RSFMR 5 big 9900 9893 7
RSFMR 5 medium 9900 9869 31
RSFMR 5 small 1560 1557 3
RSFMR 10 big 9900 9894 6
RSFMR 10 medium 9900 9871 29
RSFMR 10 small 1560 1555 5

Table 5.1: Used and Unused Data
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Figure 5.1: LND, Varied θ , Two Paths,Small Graph

Figure 5.2: LND, Varied θ , Three Paths,Small Graph

5.3.0.2 Medium Sized Graph

In the medium sized graph, the most noticeable detail is, that, when requesting only
two paths, the RSOR’s 75% quantile is at a higher LND than IRS with a small θ , but with
a rising θ , they are equal. The performance gap gets bigger with a rising number of
paths. Apart from that, IRS performs well with respect to the LDN quantiles. Also, it
seems, IRS performs especially well for three to �ve paths. This might be, because in
the medium sized graph many detour nodes are only accessible using the same �rst
hops.
The plot for ten paths in �gure 5.8 shows very low quantiles for the Lowest Node
Diversity. To add some context, we put the Mean Node Diversity in �gure 5.9 right
below it. From that we can see either the limits of the metric LND or the limits of useful
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Figure 5.3: Detour, Varied θ , Three Paths,Small Graph

Figure 5.4: LND, Varied θ , Five Paths,Small Graph

multipath: As more paths are added to the set, they get pairwise less diverse. Therefore
a POF failure would more likely a�ect more than one path. Depending on the use case
however, this could be acceptable, since there are also more paths available. The MND
plot shows, that there is a good pairwise Node Diversity.

5.3.0.3 Big Graph

The big graph is especially interesting, because its Underlay size is closer to the Inter-
net’s than the others’ and the Overly size is in a frame that would be a�ordable for a big
company to build up. We will therefore analyze the results for this graph in more detail.
For that purpose, we have the LND in �gures 5.10 to 5.12, the path length in �gures 5.13
to 5.15 and the Minimum Node Cut in �gures 5.16 to 5.18.
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Figure 5.5: LND, Varied θ , Two Paths, Medium Sized Graph

For two paths, we look at θ2 = 4. IRS performs well here. 75% of the routing pairs have
a Node Diversity of better than 0.6 and the average highest path length is about 25.
When considering, a trace from Germany to a popular social network in the USA has
up to 18 hops, this is a good trade o� for more resilience with a backup path.
The three paths plot shows similar path lengths but a smaller LND for a θ3 = 2.
For the Five paths plot, the LND gets considerably worse. Which is, as explained above,
not implying that the pairwise Node Diversity can not be good. But also, the path
average worst case path length rises into unattractive heights. For θ5 = 5, it is almost
40 hops long. This is two and a half times the trace from above.
These values are all very good, when seen with respect to the results of RSOR, which
produces very long paths without achieving the LND quantiles of IRS and also with
respect to RSFMR, which despite producing desirably short paths, does not perform
well for our metrics, because the LND is also far worse than IRS.
Also, the Minimum Node Cut, meaning the number of nodes necessary to fail to dis-
connect source and destination completely is for every θx >= 2 constantly better with
IRS.

5.3.0.4 Transfer to Planetlab Graph

The last step of the evaluation is an experiment using the Planetlab infrastructure and
real traces, to see whether or not the assumptions made in this thesis hold. Therefore,
we deployed the prototype on Planetlab nodes and �rst executed a test to ensure, bidi-
rectional communication was possible; We wrote and OverlayApplication plugin to
perform an echo request based on the ICMP echo messages. Even though there was loss
because of some unstable links, the results, timing per host visualized in the boxplot in
�gure 5.19, showed a working bidirectional transport system. The timing includes all
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Figure 5.6: LND, Varied θ , Three Paths, Medium Sized Graph

IRS steps and for the transport, up to three paths were used.

For the last experiments, we set up two di�erent topologies: One that almost assembles
a full mesh network, seen in �gure 5.20 and one ring-like topology, but with every node
having direct connections to three other nodes, as seen in �gure 5.21.
It turns out, IRS on the the Planetlab graphs shows similar behavior as on the small
graph. This does make sense, because the size of the Underlay is the closest of all graphs.
In the �gures 5.22 to 5.24 we see the Node Diversity for the full mesh network plotted.
Those plots also show that after a certain θ , there is no major in�uence on the Node
Diversity. Similar behavior is also visible in the plots of the Planetlab ring topology, as
seen in �gure 5.25 to 5.27.

In �gure 5.28 however we see, that a variable θ has virtually no in�uence in the MNC
even in the full mesh. We found out, that almost every other virtual edge has the
AS11537 in it, which belongs to Internet2, an AS that has been built up by academic
institutions in the USA. Close to all Overlay paths use this AS and therefore share the
same POF. This was similar in all Planetlab runs, not only in the plotted example.
This setup can also explain, why the LND of the full mesh topology has not that much
higher quantiles. The transfer to shows, IRS, which has been simulated using the gener-
ated hyperbolic graphs and performed very good there, is also applicable to the Planetlab
network, but does not perform equally good. This might be, because the selection of
nodes was not very representative, because of the shared networks of institutions that
partake in the project or because of an inaccurately chosen proportion of Overlay to
Underlay nodes.
The results were however still very good. A LND of 0.5, which is the median value in
�gure 5.22 with a θ >= 2, after all means, that it is guaranteed, that up to 50% of the
shorter path’s node failures will not break the connection.
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Figure 5.7: LND, Varied θ , Five Paths, Medium Sized Graph

This evaluation shows, that even though the exact parameters should be further re-
searched, an Underlay aware Informed Route Selection is a working and good way to
improve routes from the perspective of the user.
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Figure 5.8: LND, Varied θ , Ten Paths, Medium Sized Graph
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Figure 5.9: MND, Varied θ , Ten Paths, Medium Sized Graph



5.3. Results 57

1 2 3 4 5 6 7 8 9 10 11 12 13

Theta

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

L
o

w
e

s
t 

N
o

d
e

 D
iv

e
rs

it
y

Figure 5.10: LND, Varied θ , Two Paths, Big Graph

1 2 3 4 5 6 7 8 9 10 11 12

Theta

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

L
o

w
e

s
t 

N
o

d
e

 D
iv

e
rs

it
y

Figure 5.11: LND, Varied θ , Three Paths, Big Graph
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Figure 5.12: LND, Varied θ , Five Paths, Big Graph
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Figure 5.13: Path Length, Varied θ , Two Paths, Big Graph
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Figure 5.14: Path Length, Varied θ , Three Paths, Big Graph
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Figure 5.15: Path Length, Varied θ , Five Paths, Big Graph
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Figure 5.16: MNC, Varied θ , Two Paths, Big Graph
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Figure 5.17: MNC, Varied θ , Three Paths, Big Graph
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Figure 5.18: MNC, Varied θ , Five Paths, Big Graph
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Figure 5.20: Planetlab Topology - Full Mesh

Figure 5.21: Planetlab Topology - Ring
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Figure 5.22: LND, Varied θ , Two Paths, Planetlab Full Mesh
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Figure 5.23: LND, Varied θ , Three Paths, Planetlab Full Mesh
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Figure 5.24: LND, Varied θ , Five Paths, Planetlab Full Mesh
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Figure 5.25: LND, Varied θ , Two Paths, Planetlab Ring
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Figure 5.26: LND, Varied θ , Three Paths, Planetlab Ring
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Figure 5.27: LND, Varied θ , Five Paths, Planetlab Ring
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Figure 5.28: MNC, Varied θ , Three Paths, Planetlab Full Mesh
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Chapter 6

Conclusion and Future Work

In this thesis we introduced IRS to improve end to end resilience in the Internet. We
did this by �rst explaining the current situation in the Internet in chapter 2, where
also resilience and di�erent approaches to improve it were elaborated. In the course
of the thesis, we looked further into routing techniques and requirements in chapter 3,
where we also introduced the concept of IRS. Afterwards, in chapter 4, we developed a
prototype, �rst in theory, then in praxis to experiment with IRS in di�erent scenarios.
This prototype and the concept of IRS were then evaluated in chapter 5, where we found
out, that IRS performs good on the arti�cial environment and also archieved a good
LND on the Planetlab infrastructure.
Yet, there are still questions open for further research:

Information Gathering IRS allows to model and evaluate all di�erent kinds of re-
quirements into a layered routing graph. In the course of this work, we were able
to successfully demonstrate this using AS information, extracted from traceroute
traces and optimized IRS for resilience. But di�erent information could be used to
improve di�erent goals. Examples like the requirement to stay in one jurisdiction
were named in section 3.2.

Dynamic Pairing As it is now, the prototype relies on precon�gured links. A better
system would try to pair with the closest nodes, with respect to underlay paths.
This would lead to a better performance, because a �ner path selection would
be possible. An example implementation could probe the paths to di�erent tar-
gets and select the most attractive ones while still taking care no subnetwork
segregation happens.

Router Distribution In the evaluation we used all of the Planetlab nodes we could
and since there was a certain shortage, were not able to use carefully selected
nodes for IRS. Similar to dynamic pairing, a carefully selected set of routing points
could improve the performance of IRS.
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IP Overlay Networking A very interesting OverlayApplication plugin would create
a TUN/TAP network interface and enable routing real IP tra�c over the network.

Intelligent FEC The current FEC plugin will only clone packets and therefore not use
the multipath capabilities e�ciently. A better plugin could improve the troughput
and take a step into the direction of resource pooling.

The plugin based design of the prototype will allow all of this and more.
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Appendix A

Planetlab Test

Allocated Nodes

mars.planetlab.haw-hamburg.de
planetlab3.cesnet.cz
ple1.cesnet.cz
planetlab2.inf.ethz.ch
ple2.cesnet.cz
planet-lab-node2.netgroup.uniroma2.it
onelab2.pl.sophia.inria.fr
planetlab3.inf.ethz.ch
planetlab2.tlm.unavarra.es
planetlab-2.research.netlab.hut.�
planetlab3.mini.pw.edu.pl
planetlab4.inf.ethz.ch
stella.planetlab.ntua.gr
planetlab4.mini.pw.edu.pl
dplanet2.uoc.edu
planetlab-05.cs.princeton.edu
planetlab2.cesnet.cz
planetlab1.cesnet.cz
plab1.cs.msu.ru
salt.planetlab.cs.umd.edu
planetlabone.ccs.neu.edu
planetlab3.rutgers.edu
pl1.rcc.uottawa.ca
planetlab1.dtc.umn.edu
plonk.cs.uwaterloo.ca
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planetlab2.dtc.umn.edu
planetlab5.eecs.umich.edu
planetlab-5.eecs.cwru.edu
node1.planetlab.mathcs.emory.edu
node2.planetlab.mathcs.emory.edu
saturn.planetlab.carleton.ca
planetlab1.cs.uml.edu
aguila2.lsi.upc.edu
planetlab2.cs.uml.edu
planetlab1.temple.edu
pl1.ucs.indiana.edu
pl2.ucs.indiana.edu
plink.cs.uwaterloo.ca
pl1.cs.montana.edu
planetlab-2.cse.ohio-state.edu
pluto.cs.brown.edu
planetlab2.cs.ubc.ca
planetlab3.eecs.umich.edu
planetlab3.wail.wisc.edu
planetlab1.cs.du.edu
ricepl-2.cs.rice.edu
planetlab02.cs.washington.edu
planetlab3.cs.uoregon.edu
ricepl-5.cs.rice.edu
planetlab04.cs.washington.edu
planetlab2.cs.uoregon.edu
planetlab1.cs.uoregon.edu
planetlab01.cs.washington.edu
planetlab4.cs.uoregon.edu
planetlab1.unr.edu
ricepl-1.cs.rice.edu
planetlab2.pop-mg.rnp.br
planetlab1.pop-mg.rnp.br
planetlab1.cs.ucla.edu
planet-lab1.uba.ar
planetlab2.cs.ucla.edu
pl1.sos.info.hiroshima-cu.ac.jp
planet-lab4.uba.ar
pl2.eng.monash.edu.au
pl1.eng.monash.edu.au
planetlab2.cs.otago.ac.nz
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planetlab2.ecs.vuw.ac.nz
planetlab1.cs.otago.ac.nz
planetlab1.ecs.vuw.ac.nz
planetlab-1.sjtu.edu.cn
planetlab-2.scie.uestc.edu.cn
planetlab-1.scie.uestc.edu.cn
pl2.pku.edu.cn
pl1.pku.edu.cn
pl1.6test.edu.cn
pl2.6test.edu.cn
planetlab-2.calpoly-netlab.net
planetlab-n2.wand.net.nz
planetlab-n1.wand.net.nz
planetlab2.cs.cornell.edu
planetlab2.utdallas.edu
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