
Technische Universität München
Department of Informatics

Master’s Thesis in Informatics

Privacy-preserving and transparent
access control for data queries in sensor

networks

Dominik Bitzer

Technische Universität München
Department of Informatics

Master’s Thesis in Informatics

Privacy-preserving and transparent access control for data
queries in sensor networks

Privatheitsschützende und transparente Zugri�skontrolle für
Datenabfragen in Sensornetzen

Author Dominik Bitzer
Supervisor Prof. Dr.-Ing. Georg Carle
Advisor Marcel von Maltitz, Holger Kinkelin
Date February 2, 2018

Informatik VIII
Chair for Network Architectures and Services

I con�rm that this thesis is my own work and I have documented all sources and material
used.

Garching b. München, February 2, 2018

Signature

Abstract

The current development and realization of the Internet of Things is leading to a steep
incline in the number of connected devices. They promise added value through sensing
their environment and using this information in order to react to it appropriately. A
currently wide-spread, centralized approach is to send this data to the cloud, where to
data is stored, analyzed and can be queried.

The privacy implications of this method raise concerns in potential users, since they lose
control over their data. Regularly, data leaks are discovered and unauthorized analysis
of data by cloud providers that allows conclusions about the personal lives of the users
is disclosed. This shows that without the users consent or knowledge the data can then
be used for illicit purposes. In this context, anonymization of data has been shown to
not be a su�cient method of providing privacy and might make the data unusable for
some desirable purposes.

At the same time, for many legitimate use cases the processed form such as aggregates
and averages is su�cient and raw data is not needed. Secure multiparty computation
technologies try to �ll the gap between useful data analysis and privacy by providing a
way of obtaining processed data without the di�erent data sources disclosing raw values.
As a disadvantage, their large variety and distributed nature incurs high complexity for
data queries. Furthermore a way of access control is needed so that the data sources
only provide data to authorized entities.

In this thesis, we will therefore develop a gateway solution that provides a central point
of contact for data sinks and data source. Data sinks can make simple queries to a
cloud-like interface while the complex SMC protocols in the background are hidden.
Data sources on the other hand are provided some assistant functions by the gateway,
especially privacy preserving access control.

The solution is based on an analysis of the requirements and a proposed set of concepts
and technologies used to ful�ll them. A protocol and an exemplary implementation are
provided and subsequently their applicability in a real-world scenario is evaluated. The
performance evaluation shows the feasibility of the solution and that it provides only a
small overhead.

Zusammenfassung

Die aktuelle Entwicklung und Umsetzung des Internet der Dinge führt zu einem starken
Anstieg an vernetzten Geräten. Diese Zusatzfunktionen kommen mit dem Versprechen,
einen Zusatznutzen zu generieren, indem sie Messungen ihrer Umgebung durchführen
und entsprechend auf sie reagieren. Ein momentan weit verbreiteter zentralisierter
Ansatz ist es, die Daten in die sogenannte Cloud zu senden. Dort werden die Daten
gespeichert, analysiert und können abgerufen werden.

Die Folgen dieser Methode für die Privatsphäre erwecken bei potentiellen Nutzern
Bedenken, da sie die Kontrolle über ihre Daten verlieren. Regelmäßig werden bei Cloud
Anbietern Datenlecks gefunden oder Methoden aufgedeckt, mit denen sie ohne Erlaub-
nis Daten auf eine Weise analysieren, die Rückschlüsse auf das Privatleben von Nutzern
ermöglichen. Dies zeigt, dass ohne Zustimmung oder Wissen von Nutzern die Daten
für unzulässige Zwecke genutzt werden können. In diesem Kontext hat sich gezeigt,
dass Anonymisierung von Daten keine ausreichende Maßnahme ist, um Privatsphäre
zu garantieren und möglicherweise die Daten für manche wünschenswerte Zwecke
unbrauchbar machen kann.

Hierbei ist für viele legitime Anwendungsfälle die verarbeitete Form von Daten (z.B.
die Summe oder der Durchschnitt von Werten) ausreichend und Rohdaten sind nicht
notwendig. "Secure multiparty computation" Technologien versuchen, diese Lücke zwi-
schen nützlicher Datenanalyse und dem Bedürfnis nach Privatsphäre zu schließen,
indem sie den Zugri� auf verarbeitete Daten ermöglichen, ohne dass die verschiedenen
Datenquellen Rohdaten o�enlegen müssen. Ein Nachteil besteht darin, dass die hohe
Vielfalt und die verteile Natur hohe Komplexität für Datenabfragen verursacht. Fer-
ner ist Zugri�skontrolle notwendig, damit die Datenquellen nur autorisierten Parteien
Zugri� auf Daten gewähren.

In dieser Abschlussarbeit wird daher eine Gateway-Lösung entwickelt, die eine zentrale
Kontaktstelle für Datensenken und Datenquellen anbietet. Datensenken können an
eine Cloud-artige Schnittstelle einfache Anfragen richten, während die komplexen
SMC-Protokolle im Hintergrund verborgen sind. Für Datenquellen werden hingegen
einige unterstützende Funktionen von dem Gateway angeboten, vor allem Privatsphäre-
schützende Zugri�skontrolle.

Die Lösung basiert auf einer Analyse der Anforderungen und Vorschlägen für Konzepte
und Technologien, die diese Anforderungen erfüllen können. Es werden ein Protokoll
und eine Beispielimplementierung vorgeschlagen, woraufhin ihre Anwendbarkeit in
einem realitätsnahen Szenario überprüft wird. Die Auswertung der Leistungsfähigkeit
zeigt die Anwendbarkeit der Lösung, und dass diese nur einen geringen Mehraufwand
verursacht.

I

Contents

1 Introduction 1
1.1 Goals and research questions of the thesis 2
1.2 Background and context of this thesis 3
1.3 Outline . 5

2 Analysis 7
2.1 Use cases . 8

2.1.1 Electricity smart meter in shared o�ce spaces 8
2.1.2 Use case: Hierarchical distributed Anomaly Detection System . 11

2.2 Generalization . 11
2.3 Security setting of the thesis . 13

2.3.1 Adversary models . 13
2.3.2 Information security and privacy protection goals 16

2.4 Anticipation of solution components 17
2.4.1 Access control (AC) . 17
2.4.2 Request processing (RP) . 18
2.4.3 Directory Service (DS) . 20

3 Requirements 23
3.1 Non-functional requirements . 23

3.1.1 Information security protection goals (ISP) 24
3.1.2 Privacy protection goals (PP) 24
3.1.3 Performance in dynamic environments (DE) 25

3.2 Functional requirements . 25
3.2.1 Access control (AC) . 26
3.2.2 Request processing (RP) . 27
3.2.3 Directory Service (DS) . 27

4 Background and State of the Art 29
4.1 Privacy beyond anonymity . 29
4.2 Access control . 31

4.2.1 Authorization policies . 31

II Contents

4.2.2 Proving authorization . 33
4.2.3 Authentication . 34

4.3 Request processing . 37
4.3.1 Unique addressing of artifacts 37
4.3.2 Using digital signatures as identi�ers 37
4.3.3 Blockchain storage of information 38
4.3.4 Web service interface protocols 38
4.3.5 Ful�lling information security goals in communication 40

4.4 Directory Service . 41
4.4.1 Lightweight Directory Access Protocol (LDAP) 41
4.4.2 Document-oriented databases 42

5 Design 43
5.1 System architecture . 43

5.1.1 Clients . 44
5.1.2 Peers . 45
5.1.3 Gateway . 46

5.2 Directory services component . 47
5.2.1 Stored peer attributes and state information 47
5.2.2 Tracking of peers . 48
5.2.3 Providing processed metadata 49
5.2.4 Storing information for later retrieval 50
5.2.5 Logging in a private blockchain 50

5.3 Access control component . 51
5.3.1 Proof of authorization through stateless grants 52

5.4 Request processing component . 56
5.4.1 Transparent and non-repudiatiable requests 56
5.4.2 Avoiding redundant transmission through unambiguous address-

ing of content . 57
5.4.3 Operability in dynamic environments 58
5.4.4 Post-processing of received results 59
5.4.5 Security considerations for information transmission 59

5.5 Protocol phases and content of messages 61
5.5.1 Directory services . 61
5.5.2 Access control . 68
5.5.3 Request translation . 70

6 Implementation 77
6.1 Modularization of system components 77
6.2 Access control . 79

6.2.1 Authorization as a service . 80
6.2.2 Certi�cate authority . 81

Contents III

6.3 Request processing . 82
6.3.1 Client and peer interface . 83
6.3.2 Request translation and SMC back end 83
6.3.3 Implementation interface for SMC back ends 84

6.4 Directory services . 86
6.4.1 Storage and retrieval of unprocessed directory information . . 86
6.4.2 Translation groups de�ned by attributes to peer 88
6.4.3 Querying and processing of metadata 89
6.4.4 Auditable and unforgable logging 89

6.5 Exemplary implementation of peers and a client 90

7 Requirements evaluation 91
7.1 Non-functional requirements . 91

7.1.1 Information security protection 91
7.1.2 Privacy protection . 92
7.1.3 Performance in dynamic environments 93

7.2 Functional requirements . 93
7.2.1 Access control . 93
7.2.2 Request processing . 94
7.2.3 Directory Service . 95

8 Performance evaluation 97
8.1 Methodology and metrics . 97

8.1.1 Test metrics . 98
8.1.2 Parameterization of tests . 99

8.2 Testing environment . 99
8.2.1 Network setup . 100
8.2.2 Hardware and software details 101

8.3 Analysis of results . 102
8.3.1 Number of peers . 103
8.3.2 Round-trip delay time . 106
8.3.3 Frequency of requests . 109
8.3.4 Summary of performance evaluation 112

9 Related work 113
9.1 Secret Sharing based signatures . 114
9.2 Decentralized authorization decisions using blockchain smart contracts 114
9.3 Enigma . 115
9.4 Sticky policies . 116
9.5 Purpose based access control . 117

10 Conclusion and future work 119

IV Contents

Bibliography 123

V

List of Figures

1.1 Architecture: cloud . 2

2.1 Architecture: virtual centrality . 12

5.1 Gateway providing central point of contact 44
5.2 Peer pairing and update . 62
5.3 Peer keepalive . 64
5.4 Directory query . 65
5.5 Requesting static data from gateway . 67
5.6 Posting an authorization policy . 68
5.7 Obtaining an authorization grant . 69
5.8 Information request . 71
5.9 Collection of results from peers . 73
5.10 Retrieval of results from gateway . 74

6.1 Overview of gateway components and their modules 79
6.2 Overview of the information request phase 82

8.1 Impact of number of peers on response time 103
8.2 Impact of number of peers on the time needed to forward a request . . 104
8.3 Impact of number of peers on gateway CPU utilization 105
8.4 Impact of number of peers on gateway memory usage 105
8.5 Impact of round trip delay time on total response time 106
8.6 Impact of round trip delay time on time until gateway has received

responses from all clients . 107
8.7 Impact of round trip delay time on CPU utilization of gateway (30 peers) 108
8.8 Impact of round trip delay time on memory usage of gateway 108
8.9 Impact of request frequency on gateway CPU utilization 109
8.10 Impact of request frequency on gateway memory usage 110
8.11 Impact of request frequency on total response time 111

1

Chapter 1

Introduction

One of the biggest recent development in IT is the steady movement towards an Internet
of Things, which means the introduction of interconnected devices to various areas of
life in homes and o�ces. A less obvious trend for customers is the inclusion of such
devices in industrial machines like gas turbines or vehicles such as trucks. This current
trend is fueled by falling prices of embedded systems hardware and the manufacturers’
proposition of additional services provided through these “smart” products.

A central feature of these services often is some form of analytics function, for which
embedded devices can include various types of sensors. Temperature, lighting conditions
or also noise levels in a factory may be measured. In the context of machines or vehicles,
di�erent indicators of wear and tear or safety indicators can be evaluated. In such
contexts, the validity of information might be critical for the life of users and anomalies
should be possible to detect.

Figure 1.1 shows the cloud architecture, that is typically used for data processing as of
today. Information from distributed embedded networks (green entities) is sent to some
central system (cloud symbol) in it’s raw form (red circles). The central system then
stores it and executes analyses. Upon request by data sinks, the gateway then provides
the information (blue circles).

This architecture has several drawbacks, among these are privacy implications, lack of
transparency (e.g. regarding purpose and data usage) and lack of accountability how
data has been used. In the context of security-critical data, person-related data or data
that could be related to persons, this is a serious drawback. Due to the growing amount
of information that is collected about each person, these e�ects of these shortcomings
will become even more serious and might hinder customer acceptance of such devices.

2 Chapter 1. Introduction

Figure 1.1: Architecture: cloud

On the other side, several methods of privacy-enhanced analysis methods have been
proposed, which involve the distributed processing of data without disclosure of raw
values. While this approach has many advantages regarding security and privacy, it
increases the architectural complexity and the management overhead. This complexity
stays visible for the data receiver, as it has to cope with querying data from a distributed
system instead of a single point of contact.

1.1 Goals and research questions of the thesis

We aim for a solution which has the advantageous privacy properties of a distributed
system combined with the management and organizational bene�ts of a centralized
solution. The goal of this thesis therefore is to design and subsequently implement
a gateway solution which enables data sinks to query data available at data sources
distributed in a network in a secure and privacy-preserving way.

Data sources should stay in control of their data and be able to account when and how
their data is used by requesting entities. Building on the mechanisms of Secure mul-
tiparty computation, the gateway should therefore provide sophisticated mechanisms
of access control. These should allow data sources to deliberately make authorization

1.2. Background and context of this thesis 3

decisions by giving them means of speci�cally describing their access control demands
and enforcing them at a �ne granular level on a per request basis.

The questions and the scope of this thesis are de�ned as follows:

1. What are the information security protection goals for privacy-preserving access
control in decentralized systems in contrast to older de�nitions and understand-
ings of privacy?

2. How can these goals, such as accountability, be ful�lled in communication be-
tween not fully trusted participants and interest groups?

3. What are the properties of a technical solution to these problems?

4. How can this complexity and the technology of this technical solution based on
distributed systems be hidden from data sinks in a general way in order to o�er
simple access to services as in classical centralized systems?

While this idea intuitively applies to the central asset of the system, the raw sensor data,
this understanding of privacy can comprise all aspects of an information system. These
might be metadata generated by the system such as frequency of requests, derived data
such as uptime of data sources or logs. Since the privacy of the various participants
might be contradictory to other requirements, the thesis focuses exclusively on the
privacy of data sources.

As the practical result of this thesis, a protocol will be designed and implemented in a
prototype solution. This comprise a complete system that can be used for secure and
transparent querying of sensor data. In order to show the usability of the developed
solution, an example setup will be deployed on a small computer network.

The conceptual result of the thesis is the present documentation of the chosen approach.
The answers to the research questions will be investigated as follows: In a �rst step,
the problem will be analyzed, the requirements for a possible solution will be deducted
and using these the state of the art and related work will be evaluated. The developed
protocol and the prototype implementation are then checked against the requirements
in a conceptual review and an performance evaluation. Lastly, starting points for future
research are described.

1.2 Background and context of this thesis

The described goals are motivated by two di�erent research projects, which both ex-
posed the need for such a gateway solution:

SMC as a Service In a former thesis [1], a solution for privacy-preserving collection
and processing of sensor data in distributed environments has been developed.

4 Chapter 1. Introduction

Small and locally distributed data sources sense their environment and collect
information about it. They store the information only locally and keep a history
of it.

A central entity can gather collected data and perform computations on it (e.g.
statistics) using secure multiparty computation (SMC); a technology which allows
distributed computation with input data, which has to be kept private and may not
be shared itself. This central entity also takes care of all connection management
and computation orchestration, so that these privacy-preserving computations
can be performed in an e�cient, stable and robust manner.

In this context, the proposed thesis shall provide SMC as a service. This means,
the whole SMC part and the data sources management shall be concealed and a
“normal” client-server interface shall be presented to data sinks which want to
query data from the distributed system.

Hierarchical distributed Anomaly Detection System The second use case is based
on the DecADe project, that is currently running at the same chair as this thesis is
written at. In a distributed embedded network (e.g. in Smart Cars and Airplanes),
sensor devices and components collect speci�c data from their proximity. They
are interconnected and data �ow between them is generally possible.

A hierarchical Anomaly Detection System (ADS) will be incorporated in these
networks in order to detect suspicious and/or faulty behavior. The �rst level
of the ADS consists of the measurement peers themselves which share certain
data with their neighbors. Higher levels of the ADS are realized by dedicated
components, called “Forensics Centers”, which use the information of a prede�ned
set of data sources (or other Forensics Centers of lower hierarchy levels). A
forensics center can only query data from the level directly below it, which then
in turn collects information from another level further down the hierarchy. Data
privacy should be protected by speci�cally controlling which ADS components
may access prede�ned types of collected information. Furthermore, data accesses
should be logged and hence accountability of data usage should be possible. Lastly,
it should be possible to revoke access previously given.

Similar to the previous context, data possessing components should provide a
gateway logic which enables speci�c querying of data currently relevant by an
ADS component. Again, this gateway has to provide sophisticated methods of
data access control and measures for ensuring accountability of accesses.

In both use cases, a distributed set of peers are data sources which collect and hold
speci�c data and its history. We take as premise that this information is privacy-critical
and should be protected (which happens di�erently in the use cases).

1.3. Outline 5

1.3 Outline

In order to ensure a successful implementation that ful�lls the requirements of practical
usability at the same time as gaining new scienti�c insights, the approach and according
structure is chosen for the thesis.

Analysis (Chapter 2): In order to de�ne the functional scope and the architecture of
the protocol, the abstract description of the goals is re�ned by detailed use cases.
These describe how the solution could be used in everyday application and what
expectations potential users might have regarding the software.

As a speci�city of this thesis, application in two di�erent �elds are considered. On
the one hand this is the querying of information collected in smart buildings, such
as energy consumption. The other use case is a hierarchical anomaly detection
system.

The use cases describe the information system from a users viewpoint that is not
interested in the design of the technological basis. In the analysis, the goal there-
fore is to convert the use cases in abstract components of the information system
that is to be developed and how it interacts with previously given components.

Also, the research question and some basic de�nitions such as for the privacy
de�nition of the thesis are made.

Requirements (Chapter 3): In order to de�ne the required functionality and deduct
a useful design, the requirements are analyzed in detail. This step is based on
the use cases and analysis described in chapter 2. Additional requirements might
arise from the used platform, previous architectural decisions or usability aspects.

The derived requirements can be split up into smaller sub-requirements, which
then are organized in categories and sorted into a requirement catalogue. This
catalogue constitutes a list of functional and non-functional requirements.

State of the art (Chapter 4): In order to to avoid redundant research or development,
the state of the art and existing solutions are described. An example might be
protocols for stateless authentication, that can be used in the context of this thesis.

The existing solutions are listed, summarized and evaluated in regards to their
applicability. In the evaluation customizability, performance and simplicity of
application are important aspects. If some applicable solutions already exist, the
decision for choosing this solution is explained. This analysis will be done for the
various required components like authentication and directory services.

Protocol design (Chapter 5): Using the gained insights about requirements and the
state of the art, the architecture, protocol and interfaces of the gateway are de-
signed. The single components are described and it is shown how they solve the

6 Chapter 1. Introduction

di�erent aspects of the described requirements.

Implementation (Chapter 6): A prototype for the described gateway and its proto-
col is implemented in Python 3. The chosen architecture and implementation
decisions are explained and documented in order to provide guidance for future
development. This gives a more practical guide on how the solution can be used
in the described contexts.

Requirements evaluation (Chapter 7): The developed solution is now compared to
the requirements that were identi�ed in chapter 3. In this conceptual evaluation
di�erent aspects are discussed, such as to which degree the previously described
requirements are ful�lled and if the chosen design is a feasible solution for the
initial use cases.

Performance evaluation (Chapter 8): In order to ensure good usability and perfor-
mance, the application of the implemented solution is evaluated using an example
setup. This will include aspects such as response times, maximum throughput
and performance boundaries.

Related work (Chapter 9): Some related work to the thesis will be described in this
chapter. They show alternative approaches for a possible solution to the same or
similar problems. Therefore they will be compared with the result of this thesis
and their comparative advantages and disadvantages will be explained.

Conclusion and outlook (Chapter 10): In conclusion, the thesis and the �ndings
are summarized, which shows the �nal context between the chapters.

Apart from the initial use cases, based on the developed and implemented solution
new possibilities for extension arise. Such possible future developments and
the role of the solution are outlined and starting-points for further research are
described.

This provides starting points for future research and extension of the protocol
and implementation. In order to provide a good overview about the arising
possibilities, they are therefore converted to a set of new research questions.

7

Chapter 2

Analysis

The introduction and problem statement in Chapter 1 describes a gateway and a protocol
for the centralized querying of distributed sensor data on an abstract level. This already
gives a large part of the requirements, but is too ambiguous for using them within
development. In order to ensure the successful development of systems that are accepted
by users, they should be designed according to the needs of these users. Therefore a
developer should have a description of the functioning of the desired information system,
that is as precise as possible.

The functional scope and architecture are now described in more detail. This step is
called requirements engineering in the context of software development and describes
a system for the identi�cation of desired properties of the developed artifacts.

As a �rst step, possible use cases and the desired behavior of the system from a user’s
point of view are described in detail in section 2.1. Subsequently, the similarities between
the di�erent use cases are worked out in section 2.2 in order to have an abstract overview
of the desired functions. This is necessary in order to develop a �exible system, that
serves several use cases. This is opposed to a system that just provides a large number
of very speci�c solutions to few problems.

Since it has been shown that various groups might be interested in obtaining unrightful
access to sensor-data, the security setting will be discussed in section 2.3.

From the results of this chapter follows an abstract description of the system in sec-
tion 2.4. It includes a description of the purpose of the system as well as the single
components that are necessary in order to ful�ll this goal.

8 Chapter 2. Analysis

2.1 Use cases

Two di�erent examples of use cases for the system developed in this thesis are described
in this section, which stem from current research projects. Since literature is only
sparse, the use cases are identi�ed by considering about the requirements of di�erent
groups. The goal is to describe in detail what the system should do. Technical details are
deliberately emitted, in order to provide a general and easy description of the problem.

2.1.1 Electricity smart meter in shared o�ce spaces

Use cases can be described with user stories, which is especially well known from
agile development methods. In this format, the work-�ows of di�erent user groups
are described from their perspective. This is especially useful, if no potential users
can be interviewed and requirements are collected by thinking from potential users’
perspectives. Structuring and identi�cation of the technical requirements will happen
in the following chapter 2.

The chosen use case is that of an electricity smart meter in an o�ce space, that is
shared between independent parties. Here these are several IT start-ups with only small
numbers of programmers and highly ambitious team leads. Since the o�ce �oor has an
open space concept, the layout of the o�ce might quickly change instead of the classical
case of separation by rooms.

In order to ensure acceptance of the collection of data through the sensors, the users
a�ected from the data collection need to be assured that their privacy will not be
impacted. The device for the measurement of electricity consumption should therefore
o�er some advanced connectivity functions and analyses while preserving privacy and
strictly enforcing access rights.

2.1.1.1 Billing of teams

An obvious requirement for an electricity meter is the billing of teams for their energy
consumption. For this the landlord wants to query the meter about aggregates over a
month’s usage. The amount of energy usage of separate outlets is not required for this,
just the sum over all of the outlets that are assigned to one team.

The landlord is suspicious about one team on the ground �oor though, since they have
above average electricity usage. The team claims that this is due to their high-end
computing stations, which are running around the clock. He is sure that somebody
is taking their e-bike inside in order to charge it, which is forbidden according to the
house rules for hygienic reasons. The landlord therefore wants to know if the electricity

2.1. Use cases 9

usage is evenly distributed over the team, or if one team member is far above average
with spikes during work hours.

The landlord maintains the network infrastructure and has full access to any commu-
nication. Also he runs the gateway and has full access over it. In a �rst variant, the
landlord uses their position while adhering to the protocol and therefore does not mod-
ify or forge any requests. In a second variant, they might try to use this position in
order to modify requests or send forged ones and cover up traces of spying on tenants.
The landlord does not have any privileges over the peers though and wants to stay
undetected so he won’t scare away any of the tenants.

2.1.1.2 Identi�cation of electricity leaks

Since the start-ups are working on a tight budget, the team leads want to cut unnecessary
costs. In order to do so, they want to know if there are any energy leaks such as broken
power adapters with high overnight consumption or permanently switched on lights.

For this they need an evaluation of hourly electricity consumption, which brings obvious
implications for the privacy of team members. This is due to the fact, that the boss
wants to �nd out when exactly signi�cant drops in electricity consumption take place
while he is on a business trip. In order to do so, he uses the system’s capabilities in
order to get information in high granularity.

First of all, this information should only be possible to request by the start-ups for their
own domain. Neither the utility provider nor the other start-ups or anybody else should
have access.

Secondly, privacy also needs to be preserved within teams. This means, that the boss
should not be able to and does not need to see the hourly data per outlet, which can be
associated with speci�c employees.

Lastly, an employee might choose to not take part of this analysis for various reasons.
They should therefore be able to reject this request and not provide any data, while still
providing data for other use cases like billing.

2.1.1.3 Overall occupation of o�ce space

The process of cleaning the building should work as e�ciently as possible while not
interrupting teams while they still are in the o�ce. It would therefore be very useful, if
the cleaning company starts with the parts that are currently the least occupied. The
landlord therefore wants to provide information about the current occupation of the
di�erent �oors of their o�ce building. This can be derived from the o�ce lighting and
electricity consumption.

10 Chapter 2. Analysis

Again this is a service that gives insights into the teams’ work processes. If for example
one �oor is occupied entirely by one team, they might choose to opt out of this comfort
function. A reason for this could be that the cleaning company seems highly suspicious
and the team lead doesn’t want them to sell any information about the team’s workload
to the competitor on the �oor below.

For the same reason, the cleaning company should only be able to derive this information
Monday through Friday at speci�c hours between 19:00 - 21:00 when they are usually
working. Apart from these times, they should not have any interest in this information
and therefore don’t need to know.

Peers in especially privacy-critical areas, such as bathrooms, should not participate in
these requests. Since queries may frequently be rejected or peers may fail, the system
should still provide usable results based on the rest of the information.

The team lead actually was right about his suspicions of the cleaning company and now
tries to prove to the landlord, that they should hire a new cleaning company. In order
to improve their salary, one cleaning clerk o�ered the competitor start-up from the
�oor below to sell information about the start-up. Now that the team lead blocked this
access, the clerk is worried that they will lose this additional income. They therefore
try to request information from the gateway using forged requests.

2.1.1.4 Management of o�ce and outlet setup

One of the challenges in most of the previously described case is the open space concept
and teams with high �uctuation and growth. The landlord therefore wants to �exibly
assign electricity outlets to teams. For e�ciency reason this should work with the
highest possible degree of automation and without any physical modi�cations.

The system is therefore highly dynamic with frequent changes in its devices and setup.
In order for users to be able to make requests, they �rst of all need to know what
nodes and what kind of data is available though. If there are any changes in the o�ce,
this information should be quickly available and easy to gain knowledge of. Therefore
information about all of the currently connected devices and their capabilities in the
o�ce should be easy to request.

Such management tasks are especially privacy critical, because the con�guration could
be modi�ed in a way that private information could be leaked. At the same time, they
are not needed on a daily basis and do not need to be available through any device, as
e.g. when somebody is working from home.

Access should therefore be granted only from trusted devices in the management o�ce of
the utility provider. This means that the authorization decision is not only dependent on

2.2. Generalization 11

the identity of the person making it, but also of the device that it is made through. Such
authorization decision processes are currently developing in information security. [2]

2.1.2 Use case: Hierarchical distributed Anomaly Detection System

A primary example of a use cases for the second system described in section 1.2 is
transportation. While the context is di�erent, the use case is structurally very similar
to the previous one. This section will therefore only brie�y describe the use case and
discuss the aspects that make up the di�erence.

In cars and airplanes essentially separate components collect data about their function-
ing. Other components in the same vehicle may want to request insights that can be
won from this information. For example it is used to track the state of the system in its
entirety and should provide information about anomalies in order to detect e.g. failure
of components. At a higher level a stationary back end may exist, that in turn requests
data from the vehicle-side forensics center.

For central collection only the results of computation within such modules is necessary
rather than the raw collected information. Additionally, the di�erent physical groups
are mostly independent from each other from a functional point of view. For example,
the collected information about the landing gear don’t have to be set into relation with
the steering mechanism in an airplane.

Therefore local processing of data within such groups is su�cient. A gateway such as
the one that is proposed within this thesis can serve as a forensic center in this context.
It can take care of collection of data and process it close to the source. A central system
then directly queries results from the forensic center as a single point of contact.

The di�erence to the previous use case is, that each forensic center receives raw data
from a lower level and then processes it itself. Therefore no SMC-protocol has to be
used for actual data queries when collecting data that is aggregated by component.

2.2 Generalization

Even though the described use cases are very di�erent in the type of application �eld
and kind of clients, they have a similar underlying problem. In order to serve both use-
cases, a �exible solution should solve this abstract problem instead of solving only the
very speci�c separate problems. The similarity between the use cases are the following:

Data sources, sets of peers that collect and store critical data, need to protect information.
At the same time, di�erent data sinks are interested in analyses that are based on this
data. The raw data is actually not of interest for the data sinks, apart from serving as a

12 Chapter 2. Analysis

basis for these analyses. According to the need-to-know principle, as few as possible
entities should have access to this raw information.

Therefore technical solutions have been developed, that try to solve this problem. These
solutions add complexity and make it very di�cult for data sinks to request information.
In order to make the usage of collected data as easy as possible, the complexity of the
underlying technologies should therefore be hidden.

A central point of contact for data sinks is desirable, which serve as a gateway to the
data sources as seen in �gure 2.1. While o�ering a simple interface to the outside world,
they o�er functionality that assist clients in obtaining desired data and take care of
management tasks. Most importantly, they translate received requests into technology-
speci�c protocols and then forward them to data sources. The results should then be
provided to consumers in a form that is as simple as possible.

As a central di�erence to the architecture as seen in �gure 1.1, the raw data (red circles)
stays at the data sources (green entities). Information is only provided in aggregated
form (blue circles) after computations (yellow circles) have been executed directly in
the data source network.

Gateway

Peers

Clients

Figure 2.1: Architecture: virtual centrality

Since the collected information is critical, these gateways should obviously not aid
unauthorized parties in their goal of collecting information. Therefore they should not
only take care of executing analysis and making any desired requests. In order to help
protecting the data and ensuring access for rightful consumers, a layer of access control

2.3. Security setting of the thesis 13

has to be provided.

The discussed primary use-cases are increasingly large and complex, dynamic networks.
This is due to the fact, that with the move towards more smart devices new sensors
and data sources constantly are added while others are being removed. In order to keep
the complexity of the system landscape low, all of these devices should be possible to
integrate with the developed system.

2.3 Security setting of the thesis

The use cases have shown real-world applications of a privacy understanding that
includes control over data. It now has to be de�ned, what exactly this understanding of
privacy is and how it di�ers from more established de�nitions. It will then be re�ned
by speci�c requirements that it brings with itself.

2.3.1 Adversary models

In section 2.1.1 it could be seen, that di�erent people and organizations were interested
in gaining more information than they are supposed to have. There were big di�erences
in the kind of information they want, how far they would go in order to obtain this
information and what are their abilities and prerequisites. Since they also come from
within di�erent organizational boundaries, their position in the use cases varies from
insider to outsider.

It is therefore useful to analyze these aspects for each of the entities in order to have
a clear picture of the kinds of attacks that the designed system might face. This will
show, that between some of the attackers there are similarities in the traits they have.

Therefore there there will once again be an abstraction of the attackers, in order to gain
transferable results. This is an established approach in security research and is called
"attacker model" [3].

2.3.1.1 Classi�cation of adversaries

In the described use-cases, the di�erent attackers can therefore be classi�ed in two
dimensions. The �rst is the position of the adversary in the system. The second is the
adherence of the adversary to the protocol, or di�erently said if they are willing to
modify communication in a malicious way.

For the position of the adversary, three dimensions were picked:

14 Chapter 2. Analysis

Global: The models AM.1) and AM.4) describe adversaries with access to any messages
sent over the network. They don’t have control over any participants other than
the messages sent over the network.

Outside: The models AM.2) and AM.5) describe adversaries from outside the network
that try to make requests through the gateway.

Inside: The models AM.3) and AM.6) describe adversaries with access to the central
component of the network, which is the gateway. Due to the central position in
the solution this comprises all requests and messages sent through the gateway,
where they are not secured by transport layer security.

Since the thesis covers the secure querying of sensor data through a gateway, comprised
peers are not considered. They therefore are assumed to be trusted, where the respective
querying protocol has to ensure that malicious peers can be handled correctly.

For the adherence to the protocol, there are two possible dimensions:

Honest but curious: The adversary only work within the boundaries of the protocol
and ful�ll all of the functions that they are supposed to ful�ll.

Malicious: The adversary uses all means they possess in order to gain additional
information. They may therefore forge, modify or withhold and messages.

Combining the both dimensions gives us the following possible adversary models:

Honest but curious Malicious
Global AM.1) Global passive observer AM.4) Dolev-Yao attacker
Outside AM.2) Honest but curious client AM.5) Malicious client
Inside AM.3) Honest but curious gateway AM.6) Malicious gateway

Table 2.1: Adversary models

2.3.1.2 De�nition of adversaries

Below are the detailed descriptions of the identi�ed attacker models relevant to this
thesis. For each of them their goals and their capabilities are shown together with an
example.

AM.1) Global passive observer: As the least invasive of the presented attacker mod-
els, the global passive observer is able to record any communication between
any peers that is sent over the network. They do not initiate or modify any com-
munication though and only have access to the data as it is transmitted starting
from the network interface of a device. Using this information, they want to draw
conclusions about the peers and the contents of their communication.

2.3. Security setting of the thesis 15

An example for this is the �rst variant of the use case of the landlord who controls
the network infrastructure as it was discussed in section 2.1.1.1.

AM.2) Honest but curious client: The honest but curious attacker uses only their
granted privileges and communicates according to the protocol. By these means
they still try to gain information that they are not intended to have. This could be
possible by combining information from di�erent requests or specifying a valid
request in a way that leaks information from the system. An example for this is
the curious team lead on a business trip, as they were described in use case 2.1.1.2.

AM.3) Honest but curious gateway: The gateway takes a special position due to the
central position it has in the network and the trust that it receives, since it is
presented all communication between services and peers. Even when adhering to
the protocol, it therefore might use this information in order to make conclusions
about both services and peers.

An example for this case once again is the landlord in the �rst variant from case
2.1.1.1.

AM.4) Dolev–Yao attacker: Similar to the global passive observer, the Dolev-Yao
model constitutes some form of global man-in-the-middle attacker. [4] Such an
attacker can therefore modify and forge any messages sent over the network
in addition to just reading them as the attacker in model AM.1). They might
therefore try to trick participants into disclosing private information or comprise
the used cryptography.

An example for this is the second variant of the use case of the landlord who
controls the network infrastructure as it was discussed in section 2.1.1.1.

AM.5) Malicious client: The malicious client does not adhere to the speci�ed protocol
or it’s authorizations. It might therefore try to forge messages in all possible ways,
communicate with devices it is not supposed to and not collaborate in any way
voluntarily. Any information that the client is able to receive this way can be
stored and combined.

An example for this can be found with the spying cleaning company in use case
2.1.1.3.

AM.6) Malicious gateway: Same as in the last model, the gateway itself might forge
messages and communicate with any devices it possibly can. Additionally though,
it can access any information that is not end-to-end encrypted and store, modify
or resend these messages at any time. The gateway therefore already has access
to a lot of information to begin with and might use it’s privileges to enrich it’s
knowledge by the described methods.

An example for this case is the landlord in the second variant from case 2.1.1.1.

16 Chapter 2. Analysis

2.3.2 Information security and privacy protection goals

In the usecases in section 2.1.1, several parts of the system were shown to need protection
from various potential adversaries. This section will therefore sum up the di�erent
kind of protection goals that were identi�ed. The descriptions include examples from
the described use cases, how attackers with the various attacker models might try to
unrightfully gain access to information.

In all use cases the necessity of con�dentiality of di�erent information assets were
shown. This goal would be violated if con�dential raw data of peers can be accessed by
an adversary (AM.1-AM.6).

In order to ensure the correct and secure functioning of the protocol, information and
systems need to be secure from modi�cation by attackers. This goal would be violated,
if a request that was made by a client is modi�ed before reaching a peer such as in use
case 2.1.1.1, therefore requesting additional information under the identity of a trusted
client (AM.5).

If an attacker can make fake requests in the name of legitimate clients, they would be
able to abuse other entities’ authorization rights. Such attacks should be detected and
the access to resources should be denied. An example for this would be an attacker with
AM.3 or AM.5 such it was described in use case 2.1.1.1, which tries to make requests on
behalf of another client.

Since not only intruders but also malicious insiders (AM.2, AM.3, AM.5, AM.6) are
possible, the clear attribution of communication to a communication partner is impor-
tant in the case of abuse. It should therefore be possible to identify the entity making
this request, proof that they have made it so that then further steps can be taken in
order to penalize such adverse behavior. An example for this would be a highly speci�c
query by selecting various groups in a way that only one peer could possibly fall into
the requested category such as in use case 2.1.1.2. Another important aspect is the
identi�cation of compromised peers that suddenly change to unusual request patterns.

Continuing the previous example, it has to be proven that the identi�ed entity (AM.2,
AM.3, AM.5, AM.6) actually was responsible for the identi�ed request as it was described
in use case 2.1.1.2. Otherwise there could for example be no legal means of prosecuting
the privacy breach.

As a very central requirement, transparency is necessary in order to make sure that
only rightful requests are made, since otherwise the provided data analysis operations
might be abused in order to gain additional knowledge (AM.2-AM.6). This requirement
was described in section 2.1.1.3, where the tenants want to know the purpose and origin
of requests that were made to them.

Another threat is the combination of di�erent sets of data, where each instance of

2.4. Anticipation of solution components 17

them doesn’t bring privacy problems but the combination of them does. It is therefore
closely related to the idea of purpose binding. An example for this can be found in
section 2.1.1.2, where the identi�cation of electricity leaks should not give hints about
the working times of team members.

Lastly, data sources need to be able to reject a requests, if it is identi�ed as a try of
breaching privacy and should not be processed further (AM.2-AM.6). An counterexam-
ple to this would be storing data centrally, which would therefore not be in the locus of
control of a data source any more. An example for this was described in section 2.1.1.2,
where an employee should be able to reject the gathering of information about their
electricity usage time pro�le. They should be able to selectively reject such requests,
while allowing others such as requests for billing.

2.4 Anticipation of solution components

In this chapter so far use cases and possible usage settings for a system for the querying
of sensor data have been described. Technological details or possible architectures were
so far left out though and therefore at this point a precise question about the kind of
system that should be developed has not been de�ned yet. In order to structure the
loosely coupled use-cases from section 2.1 into an abstract information system, this
section will therefore specify the components that are necessary for a gateway in order
to serve this purpose.

In the abstraction of the use cases in section 2.2, the need for a central point of contact
for the querying of data has been shown. Therefore from now on we assume that a
dedicated gateway is installed which separates data sources and data sinks (=clients).
The purpose of the gateway is to take care of all management tasks (also protocol-speci�c
tasks such as SMC) and perform the orchestration of connected data sources.

In order to be able to o�er the services that were described in chapter 2.1, the following
components need to be o�ered:

2.4.1 Access control (AC)

In the described use cases it had to be made sure, that only authorized entities get access
to data. The gateway therefore should carry out a �rst layer of authorization so that
only valid and legitimate requests are further processed (2.1.1.3). This process needs to
securely identify the authenticating entity. In other words, they should not be able to
access information that is restricted to other clients (2.1.1.3).

To make this decision, it needs to hold authorization information about the clients. In
the described use cases, the authorization decisions were not only based on the identity

18 Chapter 2. Analysis

of the requester but actually on various factors, such as e.g.:

Attributes of the requester: An example might be the device used to make the re-
quest, such as for example in section 2.1.1.4.

Attributes of the requests: In some cases, the authorization decision might depend
on the requests themselves. High frequency requests should for example be
treated di�erently than only sparse requests as in the example in section 2.1.1.2.

Environmental conditions: This is the case of the the time of the request is used in
order to make an authorization decision such as in section 2.1.1.3.

Attributes of the requested resource: The authorization decision might depend on
the requested resource, such as the criticality of the sensor data that it provides
(section 2.1.1.3).

The authorization framework should therefore be able to re�ect such information and
base it’s authorization decisions on various factors at the same time.

Since the system should not rely on trust for the gateway 2.1.1.1, the peers should be
able to provide an own second layer of access control and make their decision about
requests. This is a concrete measure of ensuring the protection goal of accountability
and intervenability. In order to do so, they need to receive all relevant information of
a request and be able to selectively reject or accept them without interfering with the
correct functioning of the system.

The system was described as highly dynamic with possibly frequent changes in the
network topology and devices that are participating (2.1.1.4). Since many requests
might fail and have to be retried, this incurs a large management overhead. Due to
scalability considerations and in order to rely on a single point of failure, no state
information should have to be held on the side of the gateway for the authorization and
authentication process.

Clients should therefore receive authorization documents, which must be presented
to the gateway when performing a query. The gateway should then be able to decide
legitimacy of the request by the presented certi�cate, which afterwards allows clients
to perform a set of prede�ned queries.

2.4.2 Request processing (RP)

The described gateway doesn’t store any raw data and has to obtain it by other means in
order to o�er analysis functions. Hence, it must be able to interpret the client’s request
and communicate with the the peers in their protocol in order to provide meaningful
results. In order to o�er this service in a way that ful�lls the boundary conditions, some
steps need to be taken in this process in addition to the request translation.

2.4. Anticipation of solution components 19

2.4.2.1 Central point of contact

Most importantly, a central point of contact has to be provided to all the systems involved
in the protocol. More speci�cally, this is an interface that accepts requests from clients
or peers and then handles coordination between the various gateway components in
order to provide simple access to all services and functionality.

Most importantly, this comprises the following steps:

• accept requests

• pre-processing of request, such as authorization checks

• translate the given request into a target protocol

• query data from peers

• post-processing of results

• provide results to clients

2.4.2.2 Request translation

Due to the privacy understanding as it will be described in section 4.1, the request
processing should actively support accountability by providing authentication and
authorization information to peers and clients. Therefore, as a second layer of autho-
rization on the side of data sources, they should receive information about requests in a
way that they can verify and log themselves (2.1.1.3).

They should therefore be able to obtain the original request, understand and track the
purpose of it and validate its legitimacy (2.1.1.3). This means, that the gateway has to
provide proof that the request actually stems from a client who requested it at the given
timestamp (AM.3+AM.5) (2.1.1.1).

The actions of the gateway and the client are then validated by the peers. If some of
these checks fail, data sources must be able to reject the request and be allowed to veto
against it (2.1.1.2).

Regardless of the acceptance or rejection of requests, peers (e.g. the tenants in the
smart building) want to retrieve detailed information about the further processing of
queries. This includes information about the purpose of the request, the person or
system requesting the information and the time that it was made. This information can
be used to identify abuse of privileges.

While therefore removing itself as a single point of failure, the gateway should still
validate and certify the legitimacy of requests itself and store all relevant information
in appropriate logs.

20 Chapter 2. Analysis

2.4.2.3 Handling of protocol exceptions

In dynamic environments, peers and communication might frequently fail and require
multiple tries until they are successful. The outcome of requests is therefore largely
dependent on dynamic groups, peer failures or partially to fully rejected requests. While
such cases are also are possible in traditional systems, the probability and frequency is
much higher in the discussed use case of sensors. While this might be partially handled
by the connected protocol, the gateway should transparently re�ect these circumstances
in the communication with clients.

So that missing information can be interpreted in a useful way, the processing of re-
quests should therefore provide a way of handling such exceptional cases. If a data
gathering action fails, interrupted queries should be addressed by some form of recov-
ery mechanism and a retry should be e�cient since not all checks are necessary to be
made again. If requests are rejected, there should be a prede�ned manner of constrain-
ing queries while providing at least partial results and transparently communicating
information about this outcome.

2.4.3 Directory Service (DS)

Users need to know about currently available nodes and the kind of information that
they o�er in order to make speci�c requests 2.1.1.4. In a dynamic environment, data
sources and types of data available through the gateway are constantly changing 2.1.1.4.

The gateway should therefore maintain a directory and provide an interface, through
which clients can obtain information about currently available data for query through
this gateway. In the DecADe context, this functionality is vital, as it allows clients
(which can be higher order Forensics Centers) to automatically �nd out which gateway
o�ers a currently desired type of information.

Most importantly, the gateway needs to provide di�erent kinds of information about
the peers in the sensor network, such as the following:

• Generally and currently available peers

• Peers’ capabilities

• Peers’ metadata such as location

• Groups of peers, e.g. functional such as all kitchen spaces, or spatial such as 1st
�oor

Since peers might be added or removed at any time, the directory should serve as a
point of contact for them. The �rst contact of a peer with the gateway is called pairing

2.4. Anticipation of solution components 21

in this context. Afterwards, the gateway should keep track of peers’ availability since
they might be permanently removed or temporarily unavailable and returning later.

23

Chapter 3

Requirements

The analysis in section 2 has structured the use cases from chapter 2.1 into an abstract
gateway system. For application in the described use cases, it was shown that there
are requirements regarding topics such as privacy or scalability. These speci�c and
veri�able requirements will now be described, summarized and classi�ed.

The result of this is a list of functional as well as non-functional criteria of di�erent
groups like users, operators or developers that may want to maintain or enhance the
software. Each requirement is assigned an unique ID in order to easily describe and
identify it in later parts of the thesis. These groups give a useful structure of the
mentioned catalogue. An additional criterion for the requirements is their prioritization
in comparison to each other.

The analysis and de�nition of research questions in section 1.1 has shown the focus of
this thesis on requirements such as security and privacy. At the same time, the desired
functionality of the gateway largely depends on these global requirements. Therefore
such non-functional requirements are discussed �rst, while functional requirements
will be listed afterwards.

3.1 Non-functional requirements

In contrast to functional requirements, which describe the directly observable behavior
that users expect of the system during regular operation, non-functional requirements
de�ne some general boundary conditions, that the designed system has to ful�ll. Exam-
ples for this are privacy considerations and reliability.

The non-functional criteria for this thesis are described below.

24 Chapter 3. Requirements

3.1.1 Information security protection goals (ISP)

In section 2.3.2, it has been shown that the system is supposed to protect the data in dif-
ferent ways. In order to systematically examine the necessary protection of information
and systems, information security requirements are usually approached using abstract
desired goals, such as keeping a certain piece of information secret. As a minimal set,
usually the CIA triad of con�dentiality, integrity and availability are used, but di�erent
additional requirements have been de�ned in literature. Below are the seven goals
de�ned in the ISO 27000 standard [5].

Since they are of varying importance for the purpose of this thesis, only those that are
of particular interest are assigned a requirement ID. Two requirements are not within
the focus of this thesis, which is privacy. For example an unavailable system has no
privacy implications, which is why the according requirement will not be considered.

The speci�c implications of these abstract goals on the developed system and its com-
ponents will be further speci�ed in section 3.2.

ISP.1) Con�dentiality: Only authorized entities may gain access to information that
they were intended to have.

ISP.2) Integrity: Information and devices are secure from unwanted modi�cation.

Availability: Information or devices are accessible when needed. While an important
aspect in production systems, this aspect is not concerned with privacy and will
not be in a special focus in this thesis.

ISP.3) Authenticity: Entities can assure through some form of authentication, that
the sender of information or commands is actually the communication partner
that they are claiming to be.

ISP.4) Accountability: Entities need to be able to securely identify all direct and indi-
rect communication partners that sent information or commands. While ensuring
accountability at the gateway itself, also peers should have all necessary informa-
tion that is needed in order to ensure accountability.

ISP.5) Non-repudiation: An entity can not deny having sent a message

Reliability: The used procedures work reliably and whenever needed. This protection
goal is also not a main focus of this thesis, since it is similar to "availability" and
does not state anything about the privacy of information.

3.1.2 Privacy protection goals (PP)

While the previously mentioned goals partially address privacy concerns, they are not
su�cient for serving as requirements for privacy protection in information systems.

3.2. Functional requirements 25

Some, such as availability and reliability, have a focus other than privacy that is not
covered by the scope of this thesis and are therefore not applicable. Additionally, a
di�erent understanding of privacy has recently been establishing itself, as it will be
described in section 4.1.

Therefore additional and more precise goals that come with this understanding have
been de�ned in order to specify the desired behavior of systems that follow the privacy-
by-design approach. [6] Below are the three main goals, that will serve as a basis in the
design of the protocol and the system that are developed in this thesis. These directly
relate to the use-cases that have been discussed in section 2.1.

PP.1) Transparency: Ability to review the collection and processing of data before,
during or after such operations take place.

PP.2) Unlinkability: Provided data should not be possible to be combined or pro-
cessed in a way that makes drawing conclusions about other information possible.

PP.3) Intervenability: Data sources should be able to reject a data analysis request.

3.1.3 Performance in dynamic environments (DE)

Some additional requirements with regard to performance and functionality in such
environments have to be ful�lled in order to provide an extensible system as it was
described in section 2.2. Below are some central aspects that are necessary for the
desired functioning or such a system. They should be ful�lled by all components of the
gateway, as far as applicable in their context.

DE.1) Scalability: The system should be capable of sustaining acceptable performance
levels even when large numbers of requests are processed by the sensor network.

DE.2) Extensibility: Adding new kinds of sensors and smart devices into the network
can mean the demand for additional functionality, which was not planned in the
initial design of the system. Therefore there should be e�cient ways of extending
the protocol while remaining compatibility with the rest of the system.

3.2 Functional requirements

As opposed to the previous requirements, parts of the expected behavior can simply be
described by what the system does. These requirements therefore follow the description
of the components from section 2.4.

Other requirements are derived from the previously discussed non-functional require-
ments in section 3.1. These are solved by the di�erent components of the gateway, while
each partial solution is referenced to the requirement it ful�lls.

26 Chapter 3. Requirements

3.2.1 Access control (AC)

A central purpose of the gateway is to serve as a �rst layer of access control, therefore
checking if requests only are further processed if su�cient authorization can be pre-
sented (2.4.1). The gateway must therefore o�er a service, that makes the decisions
based on a process as follows:

AC.1) Privacy-preserving access control: The authorization decision process should
ful�ll the information security (3.1.1) and privacy protection goals (3.1.2). In order
to do so, it ful�lls some of the goals itself while for the rest it cooperates with the
other gateway components. For requests that the gateway receives from clients,
it must therefore ensure the following:

ISP.1: granting and rejecting authorization is solved in a way, that doesn’t leak
any information about the system and network

ISP.2: any authorization information as described in section 2.4.1 is safe from
modi�cation

ISP.3: clients (data users) must authenticate before querying

ISP.4+ISP.5: requests and authorization information are bound to an entity in a
manner that can be traced back to them in a a way that is possible to prove
securely

PP.1: relevant request and authorization data can be presented to the peers, so
they can understand the authorization process (also see section 3.1.1)

PP.2: no information about peers can be derived from the access request, since it
contains no information that allows a deeper understanding of the state of
the peers, beyond what was already provided by the client in the authoriza-
tion request. Therefore it only states abstract groups for de�ning the scope
of an authorization decision

PP.3: peers are able to make their own authorization decision based on this
information and able to reject requests

AC.2) Dynamic authorization decisions: The authorization decision can be based
on various factors such as the attributes of the requester, requested resource, the
desired operations or environment conditions.

AC.3) Stateless authorization grants: In order to allow e�cient retry, clients should
be able to proof authorization without having to rely on the gateway to store this
information.

3.2. Functional requirements 27

3.2.2 Request processing (RP)

The most important reason for developing a gateway is the goal to o�er services to
clients for gathering information about and from peers at a central point of contact. In
order to o�er a successful �nal product, the request processing component therefore
needs to ful�ll the customers’ needs. At the same time, it needs to assist in order to
ful�ll some of the information security and privacy protection goals.

The process of processing requests should therefore ful�ll the following requirements:

RP.1) E�cient failure recovery and retry: Since the peers of the system are dis-
tributed in very heterogeneous networks with varying quality of connection or
peer failure rates, frequent loss of communication is possible. The system should
therefore o�er means of e�cient failure recovery, in order to provide ways of
completing pending requests without major implications for performance.

RP.2) Dynamic job building and execution: Since the members and topology of
the networks might be constantly changing, the system should as little as possible
rely on the availability or static state of entities. Even if changes in the state of
involved systems happen before or during execution of the request, the execution
of jobs should still at least be partially possible and the response should re�ect
the outcome of this job execution process.

3.2.3 Directory Service (DS)

The gateway should e�ciently provide information about the current state of the sensor
network and it’s peers. It therefore needs to o�er some directory service, that assists
the clients and other components of the gateway. The kind and mode of providing
information therefore needs to ful�ll the following requirements:

DS.1) Extensible peer information storage: In order to successfully execute requests,
the gateway needs to store and provide various data about the current state and
metadata about peers and clients. New types of information should be be possible
to add (DE.2).

DS.2) Pairing and tracking of peers: The gateway needs information about the cur-
rent state of the network, in order to adapt it’s communication and other behavior
to the dynamic system. It should therefore o�er an initial point of contact and
then keep track of peers’ availability in an e�cient manner (DE.1).

29

Chapter 4

Background and State of the Art

The largest part of the goals of this thesis are solutions to well-known and common
problems. For example, many authentication and authorization solutions are already
well established.

The challenge of this thesis therefore rather is �nding solutions that are feasible in
a new context: providing privacy in distributed and dynamic systems according to a
new understanding. These systems might have completely di�erent constraints and
requirements than traditional ones. This understanding, the motivation for it and the
reason of its necessity will �rst be explained in section 4.1.

In order to base this thesis on established approaches, after a short introduction the
advantages and drawbacks of the application of di�erent existing solutions in this
particular case will be evaluated. The functionality is compared to the requirements
that were identi�ed in chapter 3, which provides the mode of evaluation.

Even if the described requirements are not completely ful�lled by any of the protocols,
partial aspects already are solved. The identi�cation of such approaches allows to re-
use them in the own design and base the system on known standards. This allows to
avoid common sources of mistakes and provide a familiar and intuitive design for users,
operators and developers.

4.1 Privacy beyond anonymity

The introduction to this thesis in chapter 1 has shown the privacy implications of the
traditional setup for data analyses. Once peers commit their data to a central entity,
they do not have any control over it and how it is used any more. Therefore there is a
requirement for trust between several of the entities.

Most importantly, all of the information is stored and analyzed at a central entity, which

30 Chapter 4. Background and State of the Art

therefore has to make privacy guarantees that can not be reviewed let alone be enforced.
Furthermore it has to protect the data from attackers, which try to gain access to the
data by breaching the system. Also, data sinks may use the data they are authorized to
access in any way they want since they do not have to state a purpose per request. Data
sources can not review those requests and need to trust the data sinks not to abuse the
data.

Traditionally, many systems follow the approach of anonymization or pseudonymization
of data in order to provide privacy. An example for this is the TOR network, which aims
to hide the origin of requests. [7] In research, many di�erent anonymization techniques
and measures have been suggested for providing and measuring anonymity, such as
l-diversity and k-anonymity [8]. While this is supposed to prevent a direct connection of
information to the data source, the raw data can still be analyzed without any limitations
and conclusions about the data source can be drawn.

A current development is the collection of more and more data with increasing accuracy
while data mining capabilities are improving [9]. This has raised the question about
with methods are suitable for providing privacy in this context. Research has shown,
that even from seemingly harmless, anonymized sensor data such as from gyroscopes
and accelerometers signi�cant conclusions can be made about users [10]. The release
of anonymized AOL search engine queries and movie ratings on Net�ix lead to privacy
concerns as several cases were documented where the de-anonymization of users was
possible [11]. Furthermore, the actual information as such itself may be critical. An
example of this would be if somebody has searched their own credit card or Social
Security Number on AOL.

The use cases in section 2.1 have shown the necessity for a privacy understanding
beyond the discussed anonymization concepts. For example, for billing of electricity a
landlord only needs to have access to data as a monthly total rather than raw data with
high temporal and spatial resolution (2.1.1.1). In other examples, users of smart devices
may want to selectively opt out of data collection (2.1.1.2 and 2.1.1.3).

Research has since presented alternative models of providing privacy for data sources
[12]. Together with these new models and methods comes a new understanding of
privacy, that involves the users’ control over data [6]. The solution presented in this
thesis therefore constitutes a proposed model of providing privacy that goes beyond
the classical concept of providing privacy through anonymization.

This approach of ensuring privacy through the mechanisms used by a system is called
privacy by design [13]. Di�erent strategies may be employed in order to provide privacy
by design, such as minimizing the amount of private information processed by a system
and using private information only at the highest feasible level of aggregation [14].

4.2. Access control 31

4.2 Access control

A central mechanism needed for ensuring privacy is restricting access to resources. It
should then only be granted in legitimate cases, where a requester can prove it has been
su�ciently authorized for the intended usage of a resource beforehand. This section
will explain the di�erent mechanisms that are used to provide such functionality while
considering the requirements that were explained in section 3.2.1.

4.2.1 Authorization policies

Access control requires the de�nition of access rights for users. These de�nitions are
called authorization policies. The authorization decision can be made based on various
attributes of the various subjects and objects in such a process. Therefore a system has
to be found that de�nes how the policies are expressed and formalized.

In literature, several possible approaches have been discussed and the state of the art has
changed several times due to the di�erent requirements that came with changing infor-
mation systems and security considerations. A selection of those and their applicability
for the gateway solution is discussed in the following.

4.2.1.1 Traditional approaches for Access Control

Discretionary Access Control (DAC) means managing access rights per user. Mandatory
Access Control (MAC) already provided some abstraction at the cost of granularity, since
access is granted based on con�dentiality levels of the resource and the clearance of
the subject requesting access. In both cases, the management of access rights is user-
centric [15].

As an improvement, Identity Based Access Control (IBAC) is based on constructs such as
Access Control Lists (ACLs). In this resource-centric approach, users provide a credential
that is checked against a white-list that is managed per object [15].

These solutions quickly showed scalability problems in big and quickly changing net-
works. Getting information about the current state of access rights is complex, which
made withdrawing access rights from users or limiting access to resources a big admin-
istration e�ort. The discussed solutions had their strength in either one of the cases but
not both at the same time.

The information handled by the system developed in this thesis is privacy critical.
Therefore, access rights should be easily apparent and due to the �exible and possibly
quickly changing topology, a reliable and easy way of changing access rights has to be
present.

32 Chapter 4. Background and State of the Art

Early solutions for access control considered only a limited number of users, that rarely
changed. Therefore, most traditional access control solutions are not feasible for use in
this case.

4.2.1.2 Role Based Access Control (RBAC)

In contemporary IT systems, Role Based Access Control [16] is the most established
model of granting access to resources. Compared to Discretionary Access Control and
Mandatory Access Control, it provides easier management of permissions.

This is made possible by using abstract roles, to which privileges for the objects are
assigned. When access is requested, the privileges of the assigned group are evaluated. A
subject is granted access by including them into one of the applicable groups. Changing
access rights is therefore possible by changing group membership or updating group
privileges.

Due to the �exible nature of sensor-networks, this approach provides a considerable
reduction of complexity in the management of access rights. Since the di�erent types
of subjects requiring access to various types of information can be managed in groups,
at the same time a su�cient granularity of access rights is given.

On the other hand, this approach doesn’t o�er inclusion of any other types of informa-
tion in the access request process though. In case the evaluation reveals such higher
�exibility is useful in the described cases, this solution would not su�ce.

4.2.1.3 Attribute-Based Access Control (ABAC)

The �exibility of the previously discussed access control solution "RBAC" is limited,
since additional aspects other than group membership are not included in the decision of
granting access. An example for this are environmental conditions, such as the current
time, or attributes of the resources, such as their classi�cation (public, secret etc.).

These aspects might be very useful in a setting of heterogeneous sensor networks
though. This is due to the di�erent parties that might need access to the sensor data, as
well as due to the large number of types of sensors. Privacy and security considerations
should be taken into account, depending on the location of peers. For example, a light
sensor in the living room handles more sensitive data than one in a hotel lobby.

In order to provide such �exible solutions, the approach of Attribute-Based Access
Control (ABAC) [15] has been suggested. Such an IAM may grant access based on
attributes of the requester, requested resource, the desired operations or environment
conditions. While allowing for far more �exible solutions, it therefore is by far more
complex than the three previously described principles.

4.2. Access control 33

Decision: Sensor networks in real-world scenarios are far more complex then resources
such as �les or printers traditionally handled in information systems. At the same
time, sensors can provide signi�cant insights about the environment that they are
deployed in and therefore the users that live in this environment as seen in the
various of examples provided in section 2.1.1.1. Due to this increased complexity
and privacy requirement, a �exible model is needed.

Therefore Attribute-Based Access Control will be used as an access control model
in this thesis.

4.2.2 Proving authorization

Since PP.1) demands transparency for peers and AC.3) requires independence from the
gateway, it is not enough for the gateway to simply store authorization information
and only communicate the results of the authorization decision process to peers. The
protocol needs a possibility of directly proo�ng authorization to peers in a way that
allows them to verify the information. This solves part of the problem that is presented
by AM.6), where the gateway could otherwise grant itself access to data of the peers.

4.2.2.1 X.509 authorization certi�cates

The X.509 [17] standard is one of the most widespread solutions for certi�cates and
describes a format of public key certi�cates that can be used to de�ne a hierarchy of
keys that are signed by certi�cate authorities. It is best known for being used in TLS
connections, which again is used in many application layer protocols such as HTTP or
SIP.

In X.509 infrastructures, usually a CA or their delegates issue certi�cates. These might
not be the most apt entity for deciding authorization questions, since their scope usually
is just the identity. In order to solve these shortcomings, an Attribute Certi�cates Pro�le
is de�ned for Authorization and the authorization process transferred to an attribute
authority. [17] This means, that certi�cates are speci�ed that can contain information
about the privileges of a subject. In one of the described use-cases this could be the
authorization to access information about the amount of electricity used.

The biggest problem of revocation of access rights will be discussed in section 4.2.3.3.

4.2.2.2 SAML and XACML

Security Assertion Markup Language (SAML) [18] and eXtensible Access Control
Markup Language (XACML) [19] are two complementary standards for authentication
and authorization. They were both developed by the Organization for the Advancement

34 Chapter 4. Background and State of the Art

of Structured Information Standards (OASIS) while considering their interoperability.
The standards describe XML-based markup languages and the communication process
for their respective scope.

SAML can be used for communication of authentication information but also about
entitlement and attributes of authenticating entities. Sharing this kind of information
allows to provide single sign-on, since the identity of the requester can be described.

XACML on the other hand is a standard for the description of access rights and a
request/response language for queries about these. It allows for the implementation of
an ABAC solution and therefore also of most other authorization schemes.

In the context of this thesis, the authentication process for an information query might
happen centrally at the gateway. Subsequently, peers can request authorization infor-
mation about the requester from the gateway. The protocols are especially interesting
since they have their focus on easy extensibility. Also, environmental attributes such as
clearance for con�dential sensor data could be included.

The XACML standard describes a JSON pro�le, which can be used in order to provide a
format that is consistent with the other messages in JSON-based services.

Decision: The concept of cryptographically secured authorization certi�cates as very
useful in the use case described in this thesis. This is due to the fact, that autho-
rization can be proved directly between two parties and no third party is required
after issuance of the grant. XACML on the other hand provides a very �exible
way of representing authorization information.

Therefore this thesis will develop a solution that is based on the concept of autho-
rization certi�cates while using the XACML format for representing authorization
information.

4.2.3 Authentication

The attacker models of malicious entities AM.5) and AM.6) constitute a threat to nearly
all of the protection goals, since they might try to assume a false identity in order to
execute illegal requests. By breaching protection goal ISP.3), it would therefore by proxy
also have implications for the protection goals ISP.1), ISP.4), ISP.5) and PP.1) since any
entities could not be sure about the identity of the communication partner any more.

The necessity of a secure authentication solution is therefore obvious.

4.2. Access control 35

4.2.3.1 Kerberos

In a dynamic setting such as described above, using stateful authentication solutions
requires additional communication of resources with the gateway and has additional
drawbacks such as redundancy and limited scalability.

Kerberos is a widespread, stateless authentication protocol that o�ers a solution to this
problem. Instead of using centrally stored and managed sessions, clients can request
a ticket from a "Key Distribution Center". This ticket then can be used in order to
request further tickets or access to a resource, each by authenticating directly to the
counterparty.

The advantage of this is, that a client only has to authenticate once at the beginning at
the KDC and can then use the proof of authentication for further requests. Additionally,
multiple KDCs may be used, which provides redundancy and easier scalability.

4.2.3.2 Public key authentication

Since authentication through secret credentials, such as passwords or tokens, comes
with security �aws, an alternative approach is the usage of public key authentication.
Here a challenge is sent to the authenticating party, which subsequently signs it with
their private key and sends it in their response. The response can then be veri�ed with
the public key.

Such as it is a challenge in most public/private cryptography applications, this brings
the need for public key distribution since those must be stored on all peers that need to
provide authentication. Remembering the large-scale and �exible networks considered
as a primary use-case of this thesis, scalability and regular re-keying of large numbers
of system consumers need to be covered.

4.2.3.3 X.509 certi�cate authentication

The public keys contained in X.509 certi�cates can be used as a basis for solutions
of security requirements such as authentication and con�dentiality. Since the solu-
tion has proofed itself as highly scalable due to its use in many internet applications,
consideration for the described use cases is an obvious option.

A major �aw is the problem of revocation. Additions to the standard such as certi�-
cate revocation lists exist, which are accompanied by approaches such as the Online
Certi�cate Status Protocol or Certi�cate Stapling. These mean additional tra�c and
complexity though, which also has implications for the scalability in large-scale net-
works. At the same time, strict enforcement might come with usability restrictions. The
di�erent certi�cate revocation schemes all have their own drawbacks, which mostly

36 Chapter 4. Background and State of the Art

consists of incurring an overhead [20]. As an alternative, short validity periods can be
de�ned and certi�cates then are periodically renewed and re-distributed.

4.2.3.4 OAuth

When devices are authenticating on behalf of another authorized entity, using their
password means putting it to risk since it is revealed to possibly untrusted parties. This
would mean full access to all their privileges, even if just a part of these is required for
an application to function.

OAuth [21] provides an authorization framework for access delegation. If a user grants
access to applications, a token is issued that the application then can use to access the
resource. Even though OAuth is an authorization protocol, the token can be used to
authenticate to a server, if it provides the service and the token at the same time or the
tokens are distributed to the resources.

A use case for this would be granting access to certain information of a sensor network
to a system, so that it can access the resources for automated analyses.

4.2.3.5 OpenID

In the OAuth section it already became clear, that direct authentication through se-
crets requires knowledge of this secret by all accessible resources. This brings obvious
implications for security in case of compromised peers or connections.

In order to avoid local storage of such information, OpenID [22] provides an open
standard for centralized authentication. If a subject requests access, it states it OpenID
and proves ownership of this ID which then is veri�ed by a central server.

This process transfers well to the described cases of sensor networks. If some party
requests access to information from a sensor, it could proof ownership of an ID that is
associated with an account that is stored on the gateway. The gateway would therefore
become the central server, that veri�es the login information.

Decision: Some of the solutions presented here directly or indirectly involve a third
party in the actual authentication phase, since it needs to verify a secret or grant
a temporary document proo�ng authentication. Public key and certi�cate authen-
tication is a wide-spread standard, that allows to proof authentication directly
between two entities. The problem of revocation is solved by setting short validity
periods in order to keep the complexity of the system low.

Therefore this thesis will use certi�cate authentication for all communication
between the di�erent entities.

4.3. Request processing 37

4.3 Request processing

In order to provide the data of peers to clients, the gateway needs a component that
processes requests and translates protocols. The solution has to ful�ll the requirements
that were discussed in section 3.2.2.

4.3.1 Unique addressing of artifacts

In information systems, automated processing makes handling of large numbers of
artifacts such as messages, records or physical assets possible. For later reference or
usage, they may need to be referenced from other artifacts. This raises the question,
how an automated method can be used to speci�cally identify such an artifact without
the risk of mixup with others.

Such an identi�er can be generated in various ways and many di�erent standards have
been proposed. For example the Universally Unique Identi�er (UUID) standard proposes
a 128 bit identi�er [23]. Choosing a value from this extremely large range can be based
on various factors such as time, simple hashes or random values.

The disadvantage of using such values is, that they provide no way of validating the
contents of the artifact that they address. A malicious entity, that is asked to present
the artifact that belongs to an identi�er, could present any contents. In cases such as
such as authorization grants, this is security critical if forged information is presented.

4.3.2 Using digital signatures as identi�ers

Modern cryptographic hashes or digital signatures can be used as an identi�er for
data objects. Due to their size, collisions are extremely improbable and infeasible if
the underlying signature scheme is computationally secure. A plain hash provides the
advantage of making it possible to verify the data. Using a signature adds the advantage,
that the source of a message can be attributed to an entity.

If the signatures are calculated anyway, no additional overhead is incurred by this
method. Such addressing of objects by a cryptographic digest is used by protocols such
as IPFS [24].

Decision: Since signatures are impossible to be tampered with and at the same time
provide integrity for the data object that they belong to, they will be used for
addressing content in this thesis.

38 Chapter 4. Background and State of the Art

4.3.3 Blockchain storage of information

The blockchain is an append only medium that ensures correctness of newly inserted
information using a consensus protocol [25]. Using cryptographic primitives it is en-
sured under certain circumstances, that no entity can modify the contents of previously
included records without this being detected. No party can deny the validity of the
contents of the blockchain as long as the boundary conditions are met. It therefore
provides a way of guaranteeing accountability and non-repudiation for information
once it has been added.

These properties provide advantages for many applications apart from the original
purpose, which was the transfer of digital assets. For example, it can be used to per-
manently store any kind of messages or requests to resources. Later on, it can then be
proved that the respective message has been sent by an entity. Therefore it provides
accountability by making the information accessible, while non-repudiation is ensured
by the contained message.

Decision: The properties of the blockchain, especially it being an append-only medium,
are very useful for logging data. Therefore it is used as a supporting feature and
will be used as a medium of storing information for later forensic purposes.

4.3.4 Web service interface protocols

All involved entities should be able to communicate with the gateway easily, reliably
and using standard protocols. This helps to integrate the data and functionality o�ered
by the gateway into new applications without a signi�cant amount of knowledge about
the SMC protocols used in the background.

The gateway should therefore expose an interface that is easy to understand and im-
plement. This raises the question, how to de�ne the endpoints of the interface and the
message formats that it uses for communication

4.3.4.1 Simple Object Access Protocol (SOAP)

The Simple Object Access Protocol (SOAP) [26] is an example for a general protocol for
interface design. Based on XML, it de�nes how web service interfaces can be designed
in a standard way and how participants can communicate over those interfaces.

Due to the underlying format, the standard is very �exible and extensible. All messages
can be validated using schema de�nitions as they are typical for any XML protocols.

On the other hand, the extensive standard makes fully compliant implementations more
complicated. Furthermore, the XML is less easy to read or write. Using SOAP therefore

4.3. Request processing 39

is only feasible on the client- or server-side when using special tools and libraries, that
help with the implementation.

4.3.4.2 JSON communication over HTTPS following the REST paradigm

Representational State Transfer (REST) de�nes a set of principles, that should be used
when designing web service interfaces [27]. Examples for this are using a stable format
for messages or using the URI for addressing an object while the method used in the
request is transmitted in a di�erent manner.

It is not de�ned however, which speci�c protocols or technologies should be used for
an actual implementation. Furthermore, the REST paradigm is not standardized but
rather constitutes a widespread convention on how to design and use interfaces.

A common combination of technologies used in this context are JSON messages trans-
ferred over HTTP or HTTPS. Messages that are serialized in the JavaScript Object
Notation (JSON) format [28] are by comparison with e.g. XML by far easier to read or
write. Furthermore, they can be easily represented by native map-datatypes of modern
programming languages, such as dictionaries. Using HTTPS provides the advantage of
using a widespread standard and compatibility with most platforms that are connected
to the internet.

4.3.4.3 gRPC and protocol bu�ers

The textual representation of the messages in the previous two communication protocols
causes performance losses. On the one hand, message sizes are increased since the values
of the di�erent attributes are not optimized for size but rather for easy readability.
Additionally, messages have to be serialized and then again de-serialized before and
after transmission.

Simply transferring information in it’s binary format as it is stored in memory is no
solution, since the representation would then be platform dependent and complicate
interoperability between programming languages. gRPC 1 provides a protocol that uses
the binary format Protocol Bu�ers 2 to transfer information between communication
partners. It can be used for communication over the network between di�erent platforms
and can be used with many di�erent programming languages.

Decision: Since the thesis describes networks of embedded devices and is supposed
to provide easy integration of the provided data in other systems, a compromise
needs to be made.

1https://grpc.io/
2https://developers.google.com/protocol-bu�ers/

40 Chapter 4. Background and State of the Art

gRPC and protocol bu�ers are interesting in cases where very high performance is
needed. Since SMC protocols are expensive and a lot of information is transmitted
during communication with the gateway anyway, the relative impact of perfor-
mance improvements through using protocol bu�ers would be minimal though.
At the same time, the integration of the gateway interface in other software would
be made considerably more complicated.

XML-based SOAP messages are not very compact since they contain a lot of
information that doesn’t relate to the actual information that needs to transferred
and at the same time di�cult to read by humans.

JSON messages will therefore be used, since they are compact and simple to use.
Using HTTPS and the REST paradigms, it follows a contemporary and wide-
spread way of providing APIs.

4.3.5 Ful�lling information security goals in communication

Since the request processing component is the central component for handling and
forwarding all communication, it has a central position in ful�lling information security
goals. The following technologies are options for providing this security.

4.3.5.1 Javascript Object Signing and Encryption (JOSE) formats

The standards of the JOSE series [29] of the IETF describe a set of formats for represen-
tation of di�erent cryptographic information in the JSON format. The container formats
allows to include all information necessary for application of the correct method such
as method identi�ers, versions and keys and describes the representation of informa-
tion resulting from the cryptographic methods. A set of algorithms that can be used
with those formats for cryptographic processing of data are described in the JSON Web
Algorithms standard [30].

JSONWeb Signatures (JWS) provide a standardized way of deriving and represent-
ing signatures for arbitrary objects that can be represented as text, without im-
pairments in the veri�cation process that would e.g. result from the �exible order
of �elds in JSON documents [31].

JSONWeb Encryption de�nes the representation and description of encrypted con-
tent in the JSON format [32].

JSONWeb Keys are a format for representing and describing key and certi�cate in-
formation [33]. A method to obtain a distinct identi�er a key is described in the
JWK thumbprint standard [34].

4.4. Directory Service 41

Decision: The formats of the JOSE series provide simple integration when using the
JSON formats such as in this thesis. Therefore they will be used for providing a
solution for di�erent security requirements.

4.3.5.2 Transport layer security

The Transport Layer Security protocol [35] de�nes a standard approach for providing a
secure channel for communication of application layer protocols. Due to it’s usage in
many protocols such as HTTP, SMTP and SIP, it constitutes a widely spread standard.
It therefore is highly likely that clients will be able to communicate over this protocol.
Apart from con�dentiality it also provides integrity through message authentication
codes.

The protocol is initiated with a handshake, where protocol details are negotiated and
information such as certi�cates are exchanged for authentication as described in section
4.2.3.3. Based on the result of the handshake, data can then be exchanged using TLS
records as a container format.

Decision: TLS is a widespread standard and supports the X.509 certi�cates for authen-
tication as described earlier, therefore it will be used to secure communication
between the entities.

4.4 Directory Service

The following technologies exist as possible components for a solution that needs to
ful�ll the requirements de�ned in section 3.2.3.

4.4.1 Lightweight Directory Access Protocol (LDAP)

The gateway needs to store and provide information, both as a primary function such
as in directory queries and as a supporting function for the other components. LDAP
provides a full directory service, which can provide distributed directory services in IP
networks [36]. E.g. active directory provides a common implementation of LDAP, that
is widespread for use in corporate networks.

Through the so-called subordinate and superior knowledge information, one LDAP
directory service can refer to other services for further information. [37] An example
for this could be running some central directory service, that holds information about
all currently available devices. For further information about the current state of the
sensors, the requester would have to contact a local directory service though.

42 Chapter 4. Background and State of the Art

The possibility to set up such a hierarchical, distributed network might prove useful for
the described use case of storing information about sensor networks and attributes of
the single peers that are connected to it.

The extensive standard and covered functionality make the protocol very complex
though.

4.4.2 Document-oriented databases

Contrary to relational databases, document-oriented databases store data in key-value
pairs. Unique identi�ers can be used as the key, while the value may be arbitrary content
that does not require any special structure.

An example for such a database is MongoDB [38]. The representation of objects in the
database uses the same structure as JSON-serialized documents. Queries can be made
involving the sub�elds of such objects.

Decision: LDAP is highly complex, while the organization of entities in this thesis is
�at and they can be described by a few simple attributes. Therefore the directory
will be based on a simple document-oriented database, where each document
represents one peer.

43

Chapter 5

Design

After analyzing the requirements of the gateway solution in chapters 2 and 3, they were
compared to currently existing solutions in chapter 4. A solution that covers all of the
requirements was not identi�ed, therefore a system will be proposed in this chapter.
The goal is to provide a design that makes the retrieval of information from distributed
and dynamic system environments easy and feasible in practice. At the same time, the
system should support and actively enable data sources to protect their privacy.

Based on the previous �ndings, �rst an architecture of the system including all of the
entities will be derived in section 5.1. The components and the architecture of the
gateway are then discussed in more detail in sections 5.2 to 5.4. The description consists
of the used methods and their application in the protocol, and the format of the messages
that are used for transmission.

Then the speci�c mode of functioning of the protocol has to be de�ned. As a combination
of the architecture and the interaction, an exemplary protocol is laid out in section 5.5.
This protocol shows how the system can be used to cover the functional requirements
described in section 3.2

5.1 System architecture

In section 2.2, a system with a central point of contact for querying data and coordinating
communication with peers was described. The system shall therefore provide virtual
centrality. This system design paradigm means hiding the complexity of decentralized
systems to clients while maintaining the advantages it provides in other �elds such as
privacy [1]. This functionality is provided by the gateway.

An abstract view of the di�erent parties involved in communication in the designed
system can be seen in �gure 5.1. On the top, the clients can be seen. They request
data from the gateway solution, which can be seen in the middle. The gateway consists

44 Chapter 5. Design

of di�erent components, which are coordinated with the goal of processing and then
forwarding the requests. The peers on the bottom, which constitute the data sources in
this system, then accept and process this forwarded information.

Client interface (Request Processing)

Access
Control

Directory
Services

Request
Translation

(Request
Processing)

SMC backend

Authorization
information

Information
request

Directory
queries

T
ra

n
sla

tio
n

:
g

ro
u

p
s

to
p

eers

Static data +
Peer tracking

Authorized
request

SMC

Pairing Keep-Alive Authorized
request

Authorized
request

G
a

te
w

a
y

P
e

e
r

s
C

li
e

n
ts

Grant
request

Information
request

Retrieve
results

Directory
query

Figure 5.1: Gateway providing central point of contact for all communication while coordinating
components

The speci�c scope, functionality and abstract architecture of each of these entities is
described in the following subsections.

5.1.1 Clients

In the context of this thesis, the data sinks that make information requests are called
clients. Since they are not trusted, it has to be assumed that their goal is to gain access
to as much information as they are able to obtain. All of their communication happens
directly with the gateway, which processes their requests and handles the subsequent
steps of the protocol.

5.1. System architecture 45

As a �rst step they can query information about available peer groups. Using this
information they can then request an authorization decision and document from the
gateway, which is necessary for further steps. Using this document, they can send their
information requests to the gateway. Lastly, they can then request the results of earlier
information requests.

The data they demand in legitimate requests is supposed to be used in various use cases.
Without receiving this requested information, they may not be able to function correctly
or provide the added value that they promise. Therefore a deliberate trade-o� has to be
made between granting the authorization that they need for correct functionality and
the privacy requirements of the peers.

5.1.2 Peers

The peers constitute the data sources in the setting of this thesis. They don’t directly
communicate with clients in order to provide information. Much rather, after registering
to the gateway and periodically sending updates with their attributes and metadata,
they are available for receiving and processing information requests. Depending on
the SMC protocol used, they then collaborate in order to provide results. For their
deployment they therefore only need a peer certi�cate and the address of an gateway.

Due to their physical location, ownership or operator they are likely to be under control
of somebody other than the gateway or the client provider. Therefore, as little trust as
possible should be necessary between the peers and the gateway or clients.

Since they are in possession of the actual raw data that is queried, their goal is to enforce
the privacy protection goals discussed in 3.1.2 by using the mechanisms that ensure
information security goals discussed in 3.1.1. Therefore they provide the second layer
of privacy-preserving access control.

They should only allow queries from authorized peers that they trust and evaluate
the legitimacy of the request itself. In case any of these circumstances are not given,
they should make use of their veto right that is given to them due to the demand of
requirement PP.3.

In the context of this thesis, the peers are trusted to act in a trustworthy and non-
malicious manner, as long as they can provide a certi�cate that has been signed by the
certi�cate authority. Therefore there is no process for checking the plausibility of any
information that they provide.

46 Chapter 5. Design

5.1.3 Gateway

Clients and peers directly communicate with interfaces exposed by the gateway for all
the di�erent phases of communication, such as directory queries, grant requests and
data queries themselves. The gateway then processes these requests and manages the
interaction between the di�erent components within the gateway that were de�ned in
section 2.4. After taking care of the communication with peers, it provides processed
results.

Based on the di�erent components that were identi�er in section 2.4, the gateway design
follows a modular approach, which has several advantages. First of all, some privacy-
critical parts like the access control component can be provided by a trusted party. This
is especially important in the adversary models AM.3 and AM.6. Second, the scalability
is improved since the di�erent components can run on a distributed system rather than
one single system which is important for requirement DE.1. Third, if in such a system
one of the components fails, it can easily be exchanged while the other components can
continue their work which helps to ful�ll requirement RP.1.

These are the di�erent components and their functionality on a high-level view:

5.1.3.1 Directory services

Section 3.2.3 described the scope and requirements of the directory component. Most
importantly, it keeps track of the current state of the dynamic network. This information
can then either be o�ered to communication partners or be used for processing of
requests that the gateway receives.

Details of the di�erent functions of the directory services component can be found in
section 5.2. The de�nitions of the messages that implement this functionality can be
found in section 5.5.1.

5.1.3.2 Access control

A central purpose of the gateway is to o�er a �rst layer of access-control as it was
described with the scope and requirements for the access control component in section
3.2.1. Looking at it from the client-side, the gateway needs to provide some form of
authorization policy management and authorization veri�cation process for requests.

These authorization decisions are independent of actual information queries. The deci-
sions are then provided in a format that can be presented in later information queries.
These two processes, which usually happen in conjunction with other systems, are
therefore decoupled. The authorization grant itself will be discussed in further detail in
section 5.3.1.

5.2. Directory services component 47

Details of the di�erent functions of the access control component can be found in section
5.3. The de�nitions of the messages that implement this functionality can be found in
section 5.5.2.

5.1.3.3 Request processing

Clients with su�cient authorization should then be able to obtain information from
peers. The boundary conditions and mode of functioning for this request translation
process was described in section 3.2.2.

After an initial information request from the client, the gateway veri�es it and then
forwards an "authorized request" to the peers and to the original requester. The peers
process this request and subsequently contact the gateway with their response, that
either holds results or a veto or failure message. The client can query the gateway about
the current level of completion of the information request and intermediate results.

Details of the di�erent functions of the request processing component can be found in
section 5.4. The de�nitions of the messages that implement this functionality can be
found in section 5.5.3.

5.2 Directory services component

The directory maintains all information needed for the correct functioning of the gate-
way, apart from the authorization information which is handled by the access control
component as described in section 5.1.3.2. The directory component therefore mainly
serves an assistant function when storing data. All of the information speci�ed here
is stored persistently, e.g. in a database, in order to ensure correct functioning of the
gateway in case of a temporary system outage.

5.2.1 Stored peer attributes and state information

As stated in requirement DS.1, the gateway needs to store information about the state
and capabilities of peers.

The current address and state of availability are need for information requests. Informa-
tion about the certi�cate of a peer has to be stored in order so that it can authenticate
later.

The information that a peer o�ers can be de�ned by dynamic attribute key:value-list
mappings. If two or more peers de�ne the same set of attributes, they form a group.
These groups don’t necessarily have to be re�ected in a distinct data structure. These

48 Chapter 5. Design

attributes and the derived groups can be used to describe the peer in di�erent ways,
such as it’s location, required clearance and o�ered data.

Ambiguous semantic meaning of groups is possible and no speci�c groups have to be
de�ned from the code-side. As a simple example though, the following list 5.1 can
describe a temperature-measuring peer that is located in the 3rd-�oor meeting room of
an o�ce, that has high con�dentiality requirements:

1 {

2 "peer_attributes": {

3 "clearance": [9],

4 "rooms": ["all", "meeting_room"],

5 "floor_number": ["all", "3rd_floor"],

6 "sensor_data": ["temperature", "light"]

7 }

8 }

Listing 5.1: Example for peer attributes

While at least one speci�c value was given for each attribute, multiple or no values per
attribute are also possible. The value all in the attribute-�elds rooms and �oor_number
shows, how this can be used to assign a peer to multiple groups. In this manner, groups
of sensors in either all rooms on a certain �oor or e.g. the meeting rooms on all �oor
can be de�ned.

The retrieval of this information is discussed in section 5.2.2. In summary, the following
information needs to be stored about each peer:

• Peer identi�er (serves as certi�cate identi�er)

• Last seen

• Next planned keepalive message

• Current state of availability

• Current contact address

• Peer attributes and capabilities

5.2.2 Tracking of peers

As stated in requirement DS.2, the gateway should provide a central point of contact for
peers, where they can announce their state and capabilities or any changes to it. This
functionality describes the mechanism of obtaining and curating the information that
was described in section 5.2.1.

5.2. Directory services component 49

The initiation of such a tracking process between a peer and the gateway is a pairing
mechanism. If at a later stage the state changes due to re-location of the peer, it should
be able to provide the gateway this updated information.

Since the setting of this thesis is a dynamic environment, a peer may not be able to
properly temporarily de-register itself before becoming unavailable. Therefore the
gateway keeps track of the last contact it has had with a peer. This value is for example
reset, when an update is received by the gateway.

Sending an entire update message for this purpose would constitute a large overhead
due to re-transmitting information about attributes and state information, that has
not changed. Therefore as a more e�cient mechanism, peers can periodically renew
their availability information by sending a keepalive message to the gateway, as it was
described in requirement DS.2). If too much time has elapsed since the timestamp of
this last communication, the gateway can assume the peer to be unreachable.

The connection quality between the peers and the gateway strongly depends on the
purpose that they are used for. Di�erent usage scenarios therefore require for di�erent
frequency of keepalive messages sent. Therefore the time that needs to elapsed until a
peer is set to inactive can be de�ned by the peer in a separate �eld.

5.2.3 Providing processed metadata

As stated requirement DS.1, the clients need to be able to query the contents of the
directory about peer information in order to be able to make relevant requests. The
data that is described in section 5.2.1 therefore needs to be made accessible in a simple
and privacy preserving manner.

The attribute described in section 5.2.1 can be used in order to describe the peers that
provide the desired kind of information. When clients make requests, they therefore
need to specify which kind of data they want (temperature, electricity consumption
etc.) from which peer groups.

However, before a request they want to know which groups are available and how big
they are. The gateway should therefore provide aggregated information. This abstract
view makes the information easier to understand by clients, that don’t need to know the
exact state of all peers. Furthermore this removes privacy implications, since providing
raw instead of aggregated metadata would be privacy critical.

If the peer doesn’t de�ne any attributes that it wants to query by, all attributes and their
number of occurrence are presented. Adding more attributes to the request increases
the speci�city of the query and re�nes the granularity of the groups. An example for
the aggregated contents in a response to a directory query can be seen in listing 5.7.

50 Chapter 5. Design

5.2.4 Storing information for later retrieval

The previously described peer information is dynamic. Apart from this, the gateway
also needs to store some static data that is requested from other components or other
entities as described in the section 5.4.2.

The following information is stored for quick retrieval (e.g. <100ms) when requested
by other components as described in section 5.5.1.4: All of the records are stored in
their JOSE container formats as they were described in section 4.3.5.1. If not speci�ed
di�erently, this is the JWS container, while the signature is used as a unique key for
retrieving the object.

• Client and peer certi�cates in JWK format, using the key thumbprint as an iden-
ti�er

• Authorization grants

• Authorization policies

• The original request of an authorized request

Information is added to this storage by the respective components such as access control
or request processing.

5.2.5 Logging in a private blockchain

Other than that, storing static data also serves for logging. Requirement ISP.4 stated the
need for accountability, which needs to be ensured in gateway communication. Section
5.2.4 stated, that all received and sent messages are being logged in order to provide
traceability of requests. Generally, the purpose of logging is to provide accountability
since the course of communication can be reconstructed later. It allows to proof illicit
behavior of entities, in this case malicious clients. Since the logging is controlled by the
gateway, the deletion of data would be possible in normal storage solutions.

In contrast to the data stored for retrieval during queries, the data that is being logged
is only used for forensic purposes. This means, that the later retrieval of data that has
been logged is not time critical. Therefore large quantities of data can be stored without
special performance requirements.

The proposed solution uses a blockchain for this purpose, as it was discussed in section
4.3.3. Using the blockchain in the background therefore adds non-repudiation in case of a
malicious gateway. Since it provides an append-only medium, once data has been added
later deletion could be immediately noticed. By using a private blockchain, performance
is higher than when using a public blockchain and it is guaranteed that only authorized
entities can gain access to information.

5.3. Access control component 51

The records that are stored are the raw JWS containers of the messages, which provides
an additional layer of veri�cation of the source and integrity of data. Integrity of data
is ensured by the signature of this container that all messages are stored in.

The private blockchain runs at a minimum of one node, which is part of the gateway
directory component. Additionally, other entities may connect to the blockchain in order
to have a copy for later proofs or increase the certainty level by providing an additional
node in the consensus process. Entities may only connect if they are authorized to do
so. The authorization process requires that the gateway operator actively adds a node
to the blockchain network together with their public key that is used for authentication
and sets the according permissions of the node.

If a node connects without adding further access rights, they may read all of the contents
of the blockchain. If they are granted mining permissions, they participate in the
consensus mechanism of approving data additions to the blockchain. Then a proof of
work mechanism is used between entities, since they potentially don’t trust every node.
In that case, a single party would only be able to withhold adding of information if they
o�er more than 50 percent of the computing power in the network. There is no risk
when false information is included, since the signatures stored with the records allow
to verify any information added to the blockchain logs.

The storage of data is by default triggered by the directory component of the gateway,
if the request processing component calls the according function. Other nodes may also
store information, if they are granted the appropriate access rights.

5.3 Access control component

Making information requests requires proof of authorization. The access control com-
ponent keeps track of all authorization information and makes authorization decisions
based on this (AC.2). In order to do so, it implements the XACML standard as it was
described in section 4.2.2.2. Authorization information is represented as policies as they
are de�ned by XACML and it’s JSON pro�le [19].

The big advantage of using this standard is, that as demanded in requirement AC.2 it is
very �exible and extensible regarding the attributes that can be used for access decisions.
The gateway solution and request protocol therefore do not need to make decisions
about the allowed attributes, which makes the developed solution very �exible for using
it in di�erent contexts.

If a client should be authorized for access of data, such a policy can be sent to the gateway
that contains all of the information that a client may request and the constraints under
which a request will be approved. Examples for these attributes like the location of the
peer and the time of the request can be found in section 2.4.1.

52 Chapter 5. Design

5.3.1 Proof of authorization through stateless grants

In section 4.2.2.1, the X.509 authorization certi�cate format was presented. It de�nes
exactly the kind of authorization proofs that is necessary for a stateless proof of autho-
rization. In the described dynamic system there were some drawbacks due to the high
complexity and low �exibility though. While preserving the general mechanism of a
signed document that contains authorization information, a more lightweight custom
solution is used in this protocol and will be described in this section.

The client may request this document from the gateway in order to have a veri�able
document that it can present in further requests. This document will from now on
be called authorization grant. The format of this authorization grant is described in
detail in section 5.3.1.3. The process and the messages that are used to obtain this
authorization grant are based on XACML and described in section 5.5.2.

5.3.1.1 Obtaining an authorization grant

The XACML standard de�nes a format for authorization requests. Here, the attributes
of the request like client attributes or current time at the moment of the request can be
de�ned. The access control component then compares this information to the previously
stored policies, in order to decide if su�cient access rights could be proven, and if the
request will be permitted or denied.

The outcome of this decision process needs to be made available to the peers in later
requests. Since the gateway should not need to hold any state information, requirement
AC.3 demanded a form of stateless authorization grant that a client can use for such
proofs without such authorization states. This document should then be possible to be
veri�ed and contain all information so that an entity can assess the legitimacy of the
request that the authorization grant was presented in.

The access control component therefore provides an authorization decision as de�ned in
the XACML standard. This document provides all of the information that is necessary
to allow privacy-preserving access control (AC.1). It clearly identi�es the client that was
granted access and the attributes and therefore groups that he was granted access for.
Also other information can be included here, such as recommendations or directives to
components that enforce the decision.

A central measure of providing transparency to peers consists of providing them in-
formation about the source of this authorization as demanded in requirement AC.1. In
order to verify this information, the decision document contains the identi�er of the
authorization policy that the decision was based on. After the access control component
signs this decision, it can be veri�ed by any other party. This therefore allows this
signed document to be used as a stateless authorization proof.

5.3. Access control component 53

5.3.1.2 Attributes de�ning the scope of a grant

The authorization decision can be made based on various factors, which is necessary
due to requirement AC.2). While the format was designed in a way that is extensible, a
set of common attributes was de�ned within the thesis.

As an continued example from the listing 5.1, the following attributes are used by the
exemplary solution:

• Room and �oor number (peer attributes)

• Sensor data (resource attribute)

• Clearance of client (client attribute)

• Current time (environmental attribute)

Since authorization is de�ned by a list of attribute-value pairs, only peers that constitute
a conjunction of all of these attributes are covered by such an authorization grant. Since
a peer can de�ne several values for each of their attributes, it is still possible to de�ne
various groups with this approach. Therefore, a process for disjunctive attribute groups
is not necessary in the authorization grant and not provided in this context (de�ning
such access policies is possible though).

Additional attributes can be de�ned in accordance with the XACML standard, which is
entirely supported by the access control component.

5.3.1.3 Authorization grants format

Listing 5.2 shows the format of the authorization grant, while the di�erent contained
�elds are described below. The document is embedded in a JWS object as described in
section 5.4.1, which provides the certi�cate information of the gateway and a veri�able
signature.

1 {

2 "request_status": "successful",

3 "valid_until": "2018-02-17T10:46:43.599008+00:00",

4 "authorization_grant_xacml": {

5 "Response": {

6 "Result": {

7 "Decision": "Permit",

8 "Attributes": [

9 {

10 "@Category": "client_identifier",

11 "Attribute": {

54 Chapter 5. Design

12 "@AttributeId": "client_identifier",

13 "@IncludeInResult": "true",

14 "AttributeValue": {

15 "@DataType": "http://www.w3.org/2001/XMLSchema#string",

16 "\$": "92429d82a41e930486c6de5ebda9602d55c39986"

17 }

18 }

19 },

20 {

21 "@Category": "sensor_type",

22 "Attribute": {..., "AttributeValue": {

23 ..., "\$": "temperature" }}

24 },

25 {

26 "@Category": "room_name",

27 "Attribute": {..., "AttributeValue": {

28 ..., "\$": "meeting_room" }}

29 },

30 {

31 "@Category": "floor_number",

32 "Attribute": {..., "AttributeValue": {

33 ..., "\$": "3rd_floor" }}

34 },

35 {

36 "@Category": "time",

37 "Attribute": {..., "AttributeValue": {

38 ..., "\$": "12:00:00" }}

39 },

40 {

41 "@Category": "clearance",

42 "Attribute": {..., "AttributeValue": {

43 "@DataType": "http://www.w3.org/2001/XMLSchema#integer",

44 "\$": "9" }}

45 }

46],

47 "PolicyIdentifierList": {

48 "PolicyIdReference": {

49 "@Version": "1",

50 "\$": "92429d82a41e930486c6de5ebda9602d55c39986"

51 },

52 "PolicySetIdReference": [

5.3. Access control component 55

53 {..., "\$": "1b6d20788dea279d8156c9dbe6bec46c96316e87"},

54 ...,

55 {..., "\$": "__root_policy_placeholder__"}

56]

57 }

58 }

59 }

60 },

61 "request_status_message": "Authorization successfully granted, the

client may therefore request the data in scope of this

authorization grant"

62 }

Listing 5.2: Authorization grant format

Note: In case of repetition of information, that was seen in other �elds, it has been
emitted.

The request_status �elds shows the result of the authorization request, while some addi-
tional information can be provided in the request_status_message �eld. The valid_until
�eld in the ISO 8601 format de�nes a validity period of this authorization grant, which
can be freely con�gured.

The �eld authorization_grant_xacml provides the actual authorization information in
the XACML format. While the exact contents and format depend on the speci�c XACML-
implementation, it should at least contain the following information:

The Decision �eld contains the original decision message from the access control com-
ponent. The Attributes �eld contains a list of the attributes that the client has requested
access to as described in section 5.3.1. In each of the attribute dictionaries, the name of
the attribute can be found under @Category, the speci�c value is found in the Attribute-
Value �eld.

The PolicyIdenti�erList shows the source of the authorization decision, which leads to
the identi�er of the message that originally announced these access rights (here shown
by the exemplary stub signature 1b6d....6e87). Using the message that can be obtained
by this identi�er, the peer can check who posted this authorization policy and if they
trust this source to grant this authorization. The PolicyIdReference is used as the client
identi�er, which here has the value 9242....9986.

56 Chapter 5. Design

5.4 Request processing component

This section will describe the transmission of messages between the gateway and the
di�erent entities of the protocol and how these design decisions ful�ll the di�erent
requirements. Since security and privacy are in scope of the message exchange protocol,
the format and mode of transmission of messages is especially in�uenced by the non-
functional requirements that were discussed in chapter 3.1.

Due to it’s lightweight structure and easy implementation in interface consumers, the
information that is exchanged between the di�erent entities is serialized as JSON in a
manner that is based on the REST paradigms as described in section 4.3.4.2. Furthermore,
the developed system uses the three standards of the Javascript Object Signing and
Encryption (JOSE) series, that were discussed in section 4.3.5.1.

5.4.1 Transparent and non-repudiatiable requests

Most importantly, the protocol needs to provide a way of making transparent requests
(PP.1) that support accountability (ISP.4) of the requester. After receiving an informa-
tion request, the gateway �rst veri�es all included information such as the signature,
timestamp, authorization grant and client certi�cate.

In order to provide transparency (PP.1) and intervenability (PP.3), all information that
helps the peer to understand the purpose and origin of the request should be provided.
By including the original request into an authorized request message, the gateway
provides all of this information, which the peer needs in order to understand the source
and legitimacy of the request.

This transparency makes it possible to log request details and present them later-on as
proof of requests that try to exceed the client’s access rights as it was demanded in re-
quirement ISP.4). Any request comprises the risk of disclosing con�dential information.
Integrity, authenticity and accountability (ISP.3, ISP.4, ISP.5) of the messages that result
from this request translation should therefore be ensured in all protocol phases.

This can be achieved through cryptographic signatures over data such as requests or
authorization information. Using the public key that belongs to the signing entity, any
peer that receives this document can then verify the origin, countering the adversary
models AM.4-AM.6. Storing these authorized requests makes it possible for any entity
to later hold the original requester accountable.

This authorized request is sent to the client regardless of any other SMC protocols
that are potentially used, since it provides the information that is used for the privacy-
preserving property of the request translation.

In the present design, the JSON Web Signatures standard as discussed in section 4.3.5.1

5.4. Request processing component 57

is used. The corresponding key and certi�cate certi�cate can be identi�ed by a key
thumbprint in the "kid" �eld in the header of the JWS-object. In order to evaluate and
verify the signatures, the certi�cates and keys can be obtained from the gateway as
described in section 5.5.1.4.

5.4.2 Avoiding redundant transmission through unambiguous addressing of
content

In every message of the protocol, static information that does not change between
communication phases and protocol runs is necessary. An example for this are the
certi�cates and keys that are necessary for veri�cation or decryption of messages as
described in sections 5.4.1 and 5.4.5.2. Another example are the stateless authorization
grants that are described in section 5.3.1.

In order to provide an example that shows the scale of this problem, the informa-
tion request shown in listing 5.13 has a size of approximately 300 Bytes excluding the
authorization grant. The exemplary authorization grant shown in listing 5.2 has an
approximate size of over 3000 Bytes. Due to the way that transparency is provided as
described in section 5.4.1, this redundancy is necessary though.

This very frequent re-transmission of redundant data to a potentially large number
of hosts would therefore severely impair the goal of the performance requirements in
section 3.1.3. The scalability (DE.1) is a�ected, since the amount of bandwidth required
for the message grows with the number of sensors. In case of failure recovery, complete
re-transmission of those �les would be ine�cient and contradict the requirement RP.1.

It is therefore desirable to cache information locally at entities, since due to the high
frequency of requests signi�cant savings are to be expected. This raises the need to
distinctly specify all of the contents in these data objects in their current version as it
was described in section 4.3.2. It therefore should be possible to speci�cally instruct
them about which data object they should use based on an object identi�er.

Since the signatures of the data objects already are unique and un-forgable cryptographic
hashes, they will be used for this purpose. Instead of sending the object itself, therefore
only the identi�er is included in communication. It can easily be veri�ed by clients and
�les that contain false information can instantly be identi�ed by checking the signature.
At the same time, this mode allows them to verify the origin of the information that
they base their authorization decisions on.

If an entity in the network now receives an identi�er that it doesn’t yet have in it’s
storage, it can request the speci�ed object from the object storage as speci�ed in section
5.5.1.4. Information can therefore be cached locally, while the entity does not have
to trust the prevailing validity of the contents unless it advised to do so through the
identi�er in a message.

58 Chapter 5. Design

Due to the sheer size of the range of possible hashes, guessing a valid ID is practically
impossible. As long as a brute force attack is not feasible, no additional security measures
are necessary. If an adversary learns about a valid ID from an entity, this entity could
also directly present them the data object. It therefore would make no di�erence, if
additional authentication would be used.

5.4.3 Operability in dynamic environments

Furthermore, the request processing should take the dynamic setting into account.
Possible implications of this setting are temporary connection disruptions and problems
(RP.1), or failures of involved systems like peers or gateway components (RP.2).

Since the gateway may frequently lose connection to other entities (RP.1), it does
not keep an connection open with the peers until they can provide the results. After
forwarding the authorized requests to peers, it therefore is continuously accepting result
messages from nodes in order to store them until retrieved by clients.

A connection disruption therefore does not cancel the entire request, the peer just has
to keep on trying to provide the result to the gateway until it is successful. In case of
failure or loss of data at the request processing component, the authorized request can
be re-transmitted by the client and then be forwarded by the gateway.

Without further measures, allowing this behavior would make request �ooding possible:
if peers already has answered to a request before, a new SMC computation round could
be highly expensive and possibly provide unwanted insights, if an attacker can request
sensor data with a high temporal resolution.

The peer should therefore keep track of answered requests. Since the id of this authorized
request stays the same, the peers can identify this duplication and re-transmit their
former response. This approach therefore allows to save resources through an e�cient
retry mechanism.

These mechanisms try to guarantee eventual reception of the results. The collection
of data from peers can take a non-speci�able amount of time though, since they are
possibly deployed in a context with high-latency and slow connections. In case of
permanent failure of a peer, the request will never be possible to be entirely completed.

The gateway therefore provides an interface for collection of results, that provides
information about the current progress of the request such as successful peer responses,
veto messages or failures. At the same time, it provides an intermediate result that is
based on the responses that have been received so far. This procedure allows dynamic
job execution as demanded in requirement RP.2.

5.4. Request processing component 59

5.4.4 Post-processing of received results

The gateway gradually receives results from peers as described in the previous section
5.4.3. When peers query the current status of their earlier information request, as
demanded in requirement RP.2 they should receive information even if some peers are
not done yet or have failed.

In order to understand the reliability and completeness of the provided result, clients
should receive some statistics. The possible options for the status of a information
requests to peer are the following:

• successful response

• the peer has accepted the request but the response is still pending

• veto

• failure, e.g. due to connection problems

Furthermore, when secure multiparty computation is used for calculating the responses
of peers, they may all provide an identical response. When forwarding results to clients,
those duplicates provide no additional value and should therefore be removed before.

The gateway therefore needs to apply some post-processing to the received responses,
before forwarding them to clients.

5.4.5 Security considerations for information transmission

The adversary models have described in section 2.3.1.2, while the implication of each
for the security (section 3.1.1) and privacy (section 3.1.2) of peers has been shown in
section 2.3.2.

Therefore in order to ensure privacy, the communication between the gateway and the
peers and clients has to be secured. Hereby the di�erent attacker models require various
precautions, which will be described below in conjunction with their purpose.

5.4.5.1 Authenticity of communicating entities

Section 4.2.3 has shown di�erent approaches for a secure authentication solution, which
is necessary due to the attacker models AM.4-AM.6. In order to not leak any information
by communicating with false devices, authentication should always be required from
both of the communication partners.

Certi�cate authentication as discussed in section 4.2.3.3 provides a large number of
advantages and will therefore be used in all communication of the gateway solution,

60 Chapter 5. Design

that is not covered by the connected protocol. The TLS protocol, of which the purpose
is described in further detail in the subsection 5.4.5.2, supports certi�cate authentication
for the server and the client and will therefore be the way of implementing X.509-
authentication.

The X.509-certi�cates require a public-key infrastructure, since in the Dolev-Yao attacker
model (AM.4) a trust-on-�rst-use approach is not feasible. This is due to the fact that
the attacker could provide their own certi�cates to communication partners in an
man-in-the-middle-attack in an attempt to wiretap their communication. Each of the
communication entities is therefore equipped with a certi�cate authority certi�cate
before deployment, which will be used to verify the authenticity of the certi�cates that
any communication partners may present.

Since any other attribute may change over time, the certi�cate and it’s public key of
any entity serves as their only stable identi�er. The advantage of such a solution is, that
basing the peers identity on cryptographic primitives promises a high level of security
as long as these primitives hold secure. The identi�er therefore is as secure from being
forged as the primitive is according to the current state of knowledge.

5.4.5.2 Con�dentiality and integrity

Any of the attacker models AM.1-AM.6 constitute a threat to the con�dentiality of
transmitted data. In order to solve this problem, encryption can be used in order to
keep information secret from unauthorized entities.

A special challenge in this context is the privileged position of the gateway in the
protocol, that it needs in order to provide it’s functionality. Therefore a di�erentiation
in the cryptographic solutions needs to be made for the di�erent attacker models in
order to ensure privacy and security in all of them.

Transport security

If transmitted data can be intercepted from e.g. a wireless channel by an adversary
of any of the models AM.1, AM.2, AM.4 or AM.5, they should not be able to �nd out
the raw contents of the data. This means, that tra�c has to be encrypted so that the
contents are secret for any unauthorized entity even when transmission happens over
an insecure network layer.

All communication over the interfaces described in this thesis happens above TCP as
a reliable network communication protocol. Therefore the TLS protocol as it was de-
scribed in section 4.3.5.2 is an ideal candidate for the purpose of providing a con�dential
and integrity-protected channel for communication with the gateway. Therefore peers
and clients use HTTPS for communication with the gateway.

5.5. Protocol phases and content of messages 61

End-to-end encryption between clients and peers

The transport encryption only provides con�dentiality for the two direct communication
partners in a TCP connection. Since the purpose of the gateway is hiding peers and
connected services, such as an authorization provider behind a central gateway, it is not
desired that direct communication between clients and these other entities takes place.
In order to cover the attacker models AM.3 and AM.6 therefore a special provision needs
to be made.

This can be solved by using end-to-end encryption. Any information that should not be
disclosed to the gateway can be encrypted with the public key of the communication
partner before sending it to them through the gateway.

The solution used in this thesis is the JSON Web Encryption standard as discussed in
section 4.3.5.1.

5.5 Protocol phases and content of messages

The di�erent messages, that can be seen on an abstract level in �gure 5.1, will now be
de�ned in more detail. Due to the dynamic nature of the environment and in order
to ful�ll the requirement RP.1, the di�erent phases of the protocol were designed to
be independent from each other. The communication �ow that is described below is
therefore just exemplary, while the di�erent phases can happen isolated from others,
depending on the data that is already present at the di�erent communication entities.
Each of the phases described in the following sections is coherent in itself though.

The sections start with a �gure that shows an overview of the messages of the respec-
tive phase. The messages and their contents are then described, while they are each
referenced by their ID number as it can be seen in the �gure that provides the overview
of the protocol at the beginning of the description of each phase. Exemplary contents
such as signatures and times are provided. In cases where a �xed set of possible values
is pre-de�ned, all possible values are given.

5.5.1 Directory services

The gateway directory accepts, stores and provides information about the current state
of peers. As a secondary function, it stores static information for retrieval in other
requests and for logging.

62 Chapter 5. Design

5.5.1.1 Pairing and peer update

The process of registering new peers, updating them or deleting them as it was described
in requirement DS.2 and section 5.2.2 can be seen in �gure 5.2:

REST endpoint: /directory/pairing/<string:peer_identi�er>

Client

Client

Gateway

Gateway

Peers

Peers

Pairing and peer update

alt [New peer]

1Pairing request

[Exisiting peer]

2 Update request

[Deregistration]

3 Deregistration request

4 Store or update peer information

5 Pairing or update confirmation

Figure 5.2: Peer pairing and update

1 Pairing: All information about peers comes from the pairing process, where peers
announce their identi�cation proofs and share information about their setup in a
request.

HTTP request method: POST

2 Update: In order to update their information, a peer sends a message that equals the
format of a pairing message with a "Update" type.

HTTP request method: PUT

3 De-registration: De-registration from the gateway can be achieved by sending an
update request with the "deregistration" type, while it contains empty �elds for
the attributes, the capabilities and other metadata.

HTTP request method: DELETE

Since their contents are very similar, messages 1-3 share the same structure as
described in listing 5.3. In case �elds are not needed, such as the attributes during
de-registration, they may contain empty values.

5.5. Protocol phases and content of messages 63

1 {

2 "peer_identifier": "kndn....EhaG",

3 "announcement_type": "pairing/update/deregistration",

4 "announcement": {

5 "available": "True/False",

6 "timestamp": "2017-10-20T13:37:55.144Z",

7 "current_address": "https://3buzkt6hd:30653",

8 "peer_attributes": {

9 "clearance": [9],

10 "rooms": ["all", "meeting_room"],

11 "floor_number": ["all", "3rd_floor"],

12 "sensor_data": ["temperature", "light"],

13 "...": ["...", "..."]

14 }

15 }

16 }

Listing 5.3: Pairing and peer update message

4 Store or update peer information: The gateway then processes the received in-
formation and subsequently stores it in the directory, updates an existing record
or deletes it.

5 Pairing con�rmation: Afterwards a con�rmation as seen in listing 5.4 is sent to
the peer.

1 {

2 "peer_identifier": "kndn....EhaG",

3 "originating_request_signature": "7820...7d5e", # Signature of

4 # the pairing, update or de-registration message

5 "request_status": "success/error",

6 "announcement_status_message": "Free text"

7 }

Listing 5.4: Pairing and peer update con�rmation message

5.5.1.2 Keepalive

Section 5.2.2 described a keepalive process, that lets peers communicate a subset of
their current state such as the address and availability to the gateway as demanded in
requirement DS.2. This process can be seen in �gure 5.3:

64 Chapter 5. Design

REST endpoint: /directory/keepalive/<string:peer_identi�er>

Client

Client

Gateway

Gateway

Peers

Peers

Keep-alive

1Keep-alive message

2 Reset peer inactivity timeout

3 Keep-alive confirmation

loop

4 Compare current time with field "next timestamp"

alt [Current time > next timestamp]

5 Set peer to inactive

Figure 5.3: Peer keepalive

1 keepalive message: The peer periodically sends a message containing information
it about its availability to the gateway.

HTTP request method: PUT

1 {

2 "peer_identifier": "kndn....EhaG",

3 "available": "True/False",

4 "current_address": "http://localhost:36824",

5 "keepalive_timestamp": "2017-10-20T13:37:55.144Z",

6 "next_keepalive": "2017-10-20T13:56:56.415Z"

7 }

Listing 5.5: Default keepalive message

2 Reset peer timeout: The gateway then updates it’s local peer record with the val-
ues contained in the message as it can be seen in listing 5.5.

4 Compare current time with next timestamp �eld: The cleanup worker of the
gateway periodically checks, if the time for the next keepalive that the peer
has previously de�ned has already passed.

5 Set peer to inactive: If the gateway has not received a keepalive message until the
time that the peer has previously announced to do so, the record of the peer is
set to inactive.

5.5. Protocol phases and content of messages 65

5.5.1.3 Directory queries

Section 5.2.3 described an information query of clients, that they can use to learn about
available data and peer groups. This data is requested and results are provided as seen
in �gure 5.4.

REST endpoint: /directory/peer_info

Client

Client

Gateway

Gateway

Peers

Peers

Directory query

1Directory query

2 Evaluate directory query

alt [Request accepted]

3 Directory contents

[Request denied]

4 Request denied

Figure 5.4: Directory query

1 Directory query: In the initial directory query, the client de�nes the information
it desires to obtain with a message as seen in listing 5.6. The de�ned group
comprises all peers in a building up to clearance level 9, which provide light as
their sensor data.

HTTP request method: GET

1 {

2 "client_identifier": "exlE....xD5x",

3 "queried_information": {

4 "clearance": [9],

5 "rooms": ["all"],

6 "floor_number": ["all"],

7 "sensor_data": ["light"]

8 }

9 }

Listing 5.6: Directory query

66 Chapter 5. Design

2 Evaluate query: The gateway then needs to evaluate the received request. Apart
from obtaining the data from the database, it must be aggregated into the di�erent
groups so no peer-speci�c information can be derived.

3 Directory contents: The contents of the directory are then provided to the clients
in the format that is speci�ed in listing 5.7.

1

2 {

3 "request_status": "successful/denied/failure",

4 "query_results": {

5 "clearance": {

6 "3": 8,

7 "5": 4,

8 "9": 6,

9 },

10 "rooms": {

11 "kitchen": 5,

12 "bathroom": 3,

13 "open_space": 3,

14 "ceo_office": 2,

15 "meeting_room": 5

16 },

17 "floor_number": {

18 "1st_floor": 4,

19 "2nd_floor": 6,

20 "3rd_floor": 5,

21 "4th_floor": 3

22 },

23 "sensor_data": {

24 "light": 18

25 }

26 }

27 }

Listing 5.7: Directory contents

4 Request denied: In case the gateway decides to not present the requested informa-
tion to the client, it sends a message with the same format as seen in listing 5.7.
All �elds are left blank except for the message which states the error or request
denied code.

5.5. Protocol phases and content of messages 67

5.5.1.4 Request static data from gateway by ID

As described in section 5.4.2, messages may contain identi�ers instead of actual data
in cases such as certi�cates, authorization grants and the "original_request" �eld in an
authorized request. If an entity receives a message that contains such an identi�er and
does not have the according object cached locally, it needs to request the information
from the gateway storage that was described in section 5.2.4.

Figure 5.5 shows the process of obtaining a document by it’s ID, which has been received
within a di�erent request.

REST endpoint: /directory/blobs/<string:blob_identi�er>

Client

Client

Gateway

Gateway

Peers

Peers

Query authorization grant

1Query data object by id

alt [Data object exists]

2 Data object

[Invalid ID]

3 Query failed

Figure 5.5: Requesting static data from gateway

1 Query data object: The message, that entities send to the gateway in order to re-
quest data objects, is described in listing 5.8.

HTTP request method: GET

1 {

2 "blob_identifier": "dTO1....B2qc",

3 "origin_request_identifier": "oWrv....mA1g",

4 "blob_type": "certificate/original_request/authorization_grant"

5 }

Listing 5.8: Querying authorization grant by ID

2 Data object: In case of a valid identi�er, the gateway provides the data object to the
peer in a message as speci�ed in listing 5.9.

68 Chapter 5. Design

1 {

2 "request_status": "success/denied",

3 "blob_identifier": "dTO1....B2qc",

4 "blob": {...}, # Either JWS or JWK container

5 "blob_type": "certificate/original_request/authorization_grant"

6 }

Listing 5.9: Data object query response

3 Query failed: In case the query failed due to e.g. an invalid ID, the gateway sends
a message as seen in listing 5.9, while the blob �eld is left empty.

5.5.2 Access control

The access control component provides an interface for posting authorization policies
and requesting authorization grants. The logic and di�erent attributes of both are
described in further detail in section 5.3.1.2.

5.5.2.1 Post authorization policy

Figure 5.6 shows, how an XACML authorization policy can be posted to the gateway.

REST endpoint: /access_control/authorization_grants

Client

Client

Gateway

Gateway

Peers

Peers

Post authorization policy

1Authorization policy

2 Authorization policy posting response

Figure 5.6: Posting an authorization policy

1 Authorization policy: The peers, or a party that they trust, can post an authoriza-
tion policy container message containing an XACML authorization policy, as it is
seen in listing 5.10. The JWS container of the message contains the information
about the original poster by providing the key ID.

5.5. Protocol phases and content of messages 69

HTTP request method: POST

1 {

2 "PolicySet": {...}, # An example for possible attributes and data

3 # types can be found in listing 5.2

4 "timestamp": "2017-10-20T13:37:55.144Z"

5 }

Listing 5.10: Authorization policy container message

2 Authorization policy posting response: The gateway then returns a status for the
authorization policy post.

5.5.2.2 Obtaining an authorization grant

Figure 5.7 shows the process of requesting an authorization grant from the gateway.

REST endpoint: /access_control/authorization_grants

Client

Client

Gateway

Gateway

Peers

Peers

Obtaining an authorization grant

1Request authorization grant

2
Gather authorization
information for client

alt [Client has sufficient authorization]

3 Authorization Grant

[Client does not have sufficient authorization]

4 Request denied

Figure 5.7: Obtaining an authorization grant

1 Request authorization grant: The client can send a request for an authorization
grant as it is described in listing 5.11. The contents of the XACML part of the
message follow the XACML standard and it’s JSON pro�le.

70 Chapter 5. Design

HTTP request method: GET

1 {

2 "client_identifier": "exlE....xD5x",

3 "grant_request_xacml": {...} # An example for possible attributes

4 # and data types can be seen in listing 5.2

5 }

Listing 5.11: Request to issue an authorization grant

2 Gather authorization information and check validity: The gateway now has
to process the XACML access request and compare it to the stored XACML policies.
Based on this information, it decides if the request is valid and should be processed
further.

3 Authorization Grant: If the client can prove su�cient authorization, the gateway
provides it with a message containing the authorization grant, as it can be seen
in listing 5.12.

1 {

2 "request_status": "successful/rejected",

3 "request_status_message": "Free text",

4 "authorization_grant_xacml": { # For an example see listing 5.2

5 "...": "..."

6 },

7 "valid_until": "2018-03-20T13:56:56.415Z"

8 }

Listing 5.12: Authorization grant container message

4 Request denied: In case the client does not have su�cient authorization rights for
the requested grant, the gateway sends a request denied message containing the
XACML authorization decision It has the same format as the message in listing
5.12, while the valid_until �eld can stay empty.

5.5.3 Request translation

The following protocol phases provide the request translation service.

5.5.3.1 Information request

The central purpose of the gateway is allowing clients access to data that is present at
the peers. Therefore requests are made at and executed through the gateway, which

5.5. Protocol phases and content of messages 71

translates them to the integrated target protocol. The according process works as seen
in �gure 5.8.

REST endpoint: /request_translation/info_requests/<string:original_request_signature>

Client

Client

Gateway

Gateway

Peers

Peers

Request creation

1Request

2 Check client authorization

alt [Request partially or fully accepted]

3 Signed request

4 Signed request

5 Request received

[Request fully denied by gateway]

6 Request denied

Figure 5.8: Information request

1 Initial request: The format of the original client request can be seen in listing 5.13.
It speci�es the attributes of the queried peer groups and the client and grant
identi�er so that peers can later verify the request after it has been forwarded.

HTTP request method: POST

1 {

2 "requested_information": {

3 "clearance": "9",

4 "rooms": "meeting_room",

5 "floor_number": "all",

6 "sensor_data": "light"

7 },

8 "client_identifier": "exlE....xD5x",

9 "authorization_grant_identifier": "mBm7....pbhx",

10 "original_request_timestamp": "2017-10-20T13:37:55.144Z"

11 }

Listing 5.13: Initial information request

2 Check client authorization: Check, if the client was able to present a valid autho-
rization grant, that is su�cient for the requested group-attributes.

72 Chapter 5. Design

3 Signed request for client: If the checks were successful, the gateway compiles all
relevant information in a signed request as seen in listing 5.14 and sends it to
the client. The purpose of this is, that the client may resend the signed request
later-on. This is useful for e�cient failure recovery, e.g. in case of data loss on
side of the gateway.

4 Signed request for peers: A list of applicable peers is obtained from the database
through the directory component based on the attributes that the client has
provided in it’s request. The gateway then forwards the signed requests to these
peers as it can be seen in listing 5.14.

REST endpoint on peer side: /peer_data/info_requests/<string:request_id>

HTTP request method: POST

1 {

2 "original_request": "c47b...7e0a", # JWS signature of the

3 # original request seen in listing 5.13

4 "gateway_timestamp": "2017-10-20T13:37:55.144Z",

5 "request_status": "accepted/denied/failure"

6 }

Listing 5.14: Signed request

5 Request received message: The client then answers with a request received mes-
sage as seen in listing 5.15.

1 {

2 "request_status": "accepted/veto/failure"

3 }

Listing 5.15: Request received message from peer

6 Request denied: If the client could not provide su�cient authentication or speci�ed
invalid attributes, a message as seen in listing 5.14 can be sent with the according
request_status �eld.

5.5.3.2 Collection of results from peers

Due to possible loss of connection between peers and the gateway, the collection of
results from peers is a process separate from the initial information request that was
described in section 5.5.3.1. The background to this decision is described in further
detail in section 5.4.3. Figure 5.9 shows the collection process.

The support for end-to-end encryption of results was described in section 5.4.5.2.

5.5. Protocol phases and content of messages 73

REST endpoint: /request_translation/peer_response/<string:original_request_signature>

Client

Client

Gateway

Gateway

Peers

Peers

Collect results

loop

alt [Request accepted]

1Result

[Request rejected]

2 Veto

3 Result received

Figure 5.9: Collection of results from peers

1/2 Result or veto message: After the peer has processed the original request, it
provides a message containing either the results or a veto to the gateway. The
format of this message can be seen in listing 5.16.

It should be especially noted, that the actual results contained in the message (�eld
"result_message") may contain the results in encrypted form in a JWE container.

HTTP request method: PUT

1 {

2 "request_identifier": "oWrv....mA1g",

3 "peer_identifier": "kndn....EhaG",

4 "peer_response": "success/veto/error",

5 "peer_computation_results": { # Dictionary may contain any

6 # information. Encrypted information represented in a

7 # JWE container is possible.

8 "temperature": "30"

9 },

10 "timestamp_computation": "2017-10-20T13:37:55.144Z"

11 }

Listing 5.16: Response to information request of peers

In case of a veto, the peer can leave the �eld "peer_computation_results" empty.

3 Result received: After receiving the results, the gateway con�rms this with a con-
�rmation message as seen in listing 5.17.

74 Chapter 5. Design

1 {

2 "request_status": "received/failure"

3 }

Listing 5.17: Peer response received message sent by gateway

5.5.3.3 Retrieval of results from gateway

After a client has made a successful information request as described in section 5.5.3.1,
they can query the status of this request until the full results are available. The gateway
should therefore provide information about the progress of the request and then present
either intermediate or �nal results. Figure 5.10 shows the result retrieval process.

REST endpoint: /request_translation/info_requests/<string:original_request_signature>

Client

Client

Gateway

Gateway

Peers

Peers

Result retrieval

1Query for request completion

2 Post-processing of received result messages

3 Aggregated results

Figure 5.10: Retrieval of results from gateway

1 Query for request completion: The client can query about the status of the re-
quest as speci�ed in listing 5.18

HTTP request method: GET

1 {

2 "request_identifier": "oWrv....mA1g"

3 }

Listing 5.18: Request for results

2 Post-processing of results: As long as results have been received from some or all
peers, the post-processing as described in section 5.4.4 can be applied.

3 Aggregated results: The gateway then provides the results to the client as speci�ed
in listing 5.19. The �eld results is a list, since in the use case of DecADe each

5.5. Protocol phases and content of messages 75

peer could provide di�erent results that need to be speci�ed separately. In case
of SMC, only one value should be contained in the list, since only one aggregate
exists and the duplicates were removed during post-processing.

1 {

2 "request_status": "successful/in_progress/veto/failure",

3 "results": [{...}, {...}, ...], # List of dictionaries as

4 # provided in field "peer_computation_results" from listing

5.16

5 "request_details": {

6 "last_response_complete": "2017-10-20T13:37:55.144Z",

7 "request_identifier": "oWrv....mA1g"

8 },

9 "request_statistics": {

10 "success": 15,

11 "accepted": 2,

12 "veto": 2,

13 "failure": 3

14 }

15 }

Listing 5.19: Aggregated results

77

Chapter 6

Implementation

The description of the design of the system in chapter 5 has shown, how di�erent
technologies as described in chapter 4 can be used in order to solve the problem and
the requirements that were described in chapters 2 and 3. The outcome of this was a
precise description of an architecture and protocol that solves these problems.

This chapter will now use these results and show the feasibility of the proposed approach
and protocol and how it can be implemented in order to provide a solution for privacy
preserving data retrieval from distributed and dynamic systems in a real-world scenario.
It describes some implementation decisions that were made in the exemplary solution
that was developed in the course of this thesis.

First, section 6.1 will show the approach of modularization of the gateway and how the
di�erent components can be integrated with each other for simple and e�ective deploy-
ment. Then the technological solution and the �nal scope of the di�erent components
of the gateway are described in sections 6.2 to 6.4. Section 6.5 will �nish the chapter by
describing the exemplary mock implementations for the peer and client systems, which
can be used to show the interaction of the system and network as a whole.

All software was developed in the programming language Python 3, while few bash
scripts were used for deployment of components. For each of the components it is
listed, which modules in the subfolder components of the implementation provide the
described functionality. If external software was used in the form of docker images,
they also will be listed. The interaction between the containers will be discussed in
section 6.1.

6.1 Modularization of system components

Adhering to the architecture of the gateway derived in section 2.4, the gateway was
developed as a set of components that are as independent of each other as possible. The

78 Chapter 6. Implementation

upsides of this approach were described in section 5.1.3. In order to fully leverage these
advantages, the di�erent functional parts of each component were further modularized
into sub-components that each provide one speci�c functionality. Each of the following
subsections describes one of them.

The modularization is re�ected in the �le structure of the code, which is separated
by the di�erent components and their sub-components. Additionally, clear interfaces
are de�ned through functions that can be called by the request processing or other
sub-components.

Apart from a clean-up worker that is started in a separate thread on start up, at run-
time the components developed within this thesis are not distinct though. The request
processing component waits for requests and then takes care of the interaction between
the di�erent sub-modules.

In the developed system, existing solutions were used and integrated when possible.
Therefore in some cases, components draw on external programs in order to provide
functionality though. These are each run as a separate instance and waiting for com-
munication that is initiated by the gateway. These implemented components and how
their functionality is integrated in the gateway will be described in the section of the
respective gateway component. These cases are marked with a note that speci�es the
container image of the software. Communication with any additional software, that
was not developed in the course of this thesis, happens over TCP connections.

All of the software developed in this thesis can optionally be deployed using the docker
platform.In this case, all external software and libraries don’t have to be installed man-
ually. While it is also possible to run the software directly on a system without such
virtualization, it signi�cantly reduces the setup e�ort. The docker-subdirectory of the
code contains the information for the creation of the images, while the �le docker-
compose.yml speci�es their setup and interaction between each other.

In summary, the gateway is modularized as shown in �gure 6.1. For each component,
the modules are grouped by their functional scope.

6.2. Access control 79

Directory
Services

Access
Control

Request
Processing

Webserver: Nginx with uWSGI

AuthzForce Server

Certificate authority

MongoDB

Multichain

REST

interface

API-Framework: Flask

Signing and verification

Message (de-)serialization

Request

translation

SMC connector

Result post-processing

Authorization

as a Service Provision of verifiable grants

Authentication

Data storage Providing static data by identifier

Cleanup worker

Peer meta

information

Peer pairing and tracking

Group translation

Metadata processing

Logging
Data storage and retrieval

Certificate authentication (Nginx)

D
o

ck
er

Figure 6.1: Overview of gateway components and their modules (software provided by external
docker images marked with logo

It is important to stress, that not all of the described sub-components need to be operated
by the same organization or on the same physical system. For various possible reasons,
it could be decided to transfer their operation to a third party or one of the entities
involved in the system other than the gateway provider. It will be discussed for some
components, if such a form of outsourcing could be useful.

6.2 Access control

The design of the access control component was discussed in section 5.1.3.2.

Implemented in modules:
AuthForce/
smc_gw/access_control/

80 Chapter 6. Implementation

6.2.1 Authorization as a service

A number of di�erent access control solutions support the XACML standard. Integration
of them can be achieved by the gateway through translating requests that it receives
to the speci�c software. Implementation, interoperability and exchangability of those
solutions is facilitated by the XACML standard through providing a pro�le for such
REST interfaces including JSON message formats [39].

In this thesis, the AuthZForce Server was chosen for this purpose. [40] It supports
multiple tenants, which allows to use the same instance of the software for multiple
separate systems. This could e.g. be used, if one gateway should be used for several
separated buildings (not in the currently implemented scope).

For a simple setup and usage process, the following steps are necessary. [41] All of the
message formats used for this are de�ned in the XACML standard [19].

• First an authorization domain needs to be set up, which comprises all information
added later such as policies and general settings.

Implemented in modules:
AuthForce/authforce_initialize.py

• Adding policies:

– Policies can then be posted to the Policy Administration Point (PAP). It just
provides the storage and takes care of assistant functions such as versioning,
doesn’t ful�ll any other purposes though.

– Since posting policies alone is not su�cient for them to be used in later
authorization decisions, they need to be made known by adding them to the
root policy.

Implemented in modules:
smc_gw/access_control/authorization_grants.py

• As soon as appropriate authorization policies have been added, an authorization
request can be sent. The server responds to this with an authorization decision
message, which is used in the authorization grant.

Implemented in modules:
smc_gw/access_control/authorization_grants.py

Since just the authorization decisions by themselves don’t provide access control, the
gateway needs to assist in enforcing them. This means to deny a request of a client
if the authorization decision was negative or if authorization grants are invalid due
to age. Additionally it needs to check plausibility of the requests forwarded to the

6.2. Access control 81

authorization provider. Examples for this are comparing the client identi�ers in the
XACML documents to the certi�cates that are actually provided during requests.

Due to the clear separation of functionality and due to the critical information stored in
this component, it is an obvious candidate for provision by a more trustful third party
or the owner of the peers. Since the posted authorization documents are secured by
signatures, little trust is required from the authorization provider though, because the
source of the authorization can be veri�ed and this information is cryptographically
secure.

Some software provided by docker image:
authzforce/server:release-8.0.0

Implemented in modules:
smc_gw/access_control/authorization_grants.py

6.2.2 Certi�cate authority

As a form of identity management, section 5.4.5.1 suggested certi�cates that are based
on a public key infrastructure. The certi�cate authority takes care of maintaining this
infrastructure by providing certi�cates and revocation services.

The certi�cate authority has the central position in the trust model of the designed
system. It therefore most be ensured, that it only provides certi�cates with the correct
roles to entities that are entitled to have the position that the certi�cate attests. It
therefore presents a candidate for being operated by somebody other than the gateway
provider.

Due to the hierarchical structure of X.509 certi�cates, it would also be an option to de�ne
di�erent trusted certi�cate authorities that each only have validity for their scope, e.g.
all of the o�ces of a company in a building. The peers could then trust only certi�cates
that were issued by their trusted certi�cate authority. Otherwise the peers could also
be equipped with a list of trusted certi�cates (e.g. of their owners). They then only
trust authorization documents, that were signed with a key that belongs to one of these
certi�cates.

Since key management was not in the central scope of this thesis, only a minimal certi�-
cate authority was implemented using the standard tool OpenSSL [42] and some scripts.
It only possesses one root certi�cate and provides all entities involved in communication
with a certi�cate and the according private key.

Some software provided by docker image:
paulczar/omgwtfssl

82 Chapter 6. Implementation

6.3 Request processing

Providing most of the functionality of the gateway as seen by the clients, the design of
the request processing component was discussed in section 5.1.3.3.

Implemented in modules:
smc_gw/request_processing/

Information
request

SMC

Authorized req.
+ peers list

G
a

te
w

a
y

P
e

e
r

s
C

li
e

n
t

Information
request

1 6
Authorized

request

2

3
4

5
Authorized

request
Requested
attributes

Peers list

Authorized req.
+ peers list

7

1
0 # accepted

failed

8 9 Accept

16

Results

1
81
7 Accept

Static
data ID

1
51
2 Static

data

Static
data ID

1
41
3 Static

data
Results

1
9

20

24

Results

Peers

Result
request

2
2 2
5 Aggregated

results

Result
request

2
1 2
6 Aggregated

results

23
Request ID

Client interface (Request Processing)

Directory
Services

Request
Translation

(Request Processing)

SMC backend

SMC

16

11
Auth. Req.

Figure 6.2: Overview of the information request phase

Figure 6.2 shows an overview of the implementation of the di�erent phases of an infor-

6.3. Request processing 83

mation request, that are handled by the request processing component. The numbers
will be referred to in the respective subsections.

6.3.1 Client and peer interface

The client interface (orange box in �gure 6.2) provides the central API that then passes
requests (#1-#2 in �gure 6.2) to the request translation component of the gateway.

The client interface uses JSON messages transferred over HTTPS for communication,
as it is typical in interfaces that follow the REST paradigms. The JSON messages
themselves are in the JSON Web Signatures format in order to provide solutions to some
of the privacy and information security requirements as discussed in section 5.4.1. The
implemented interface endpoints are de�ned in section 5.5.

The Python framework Flask [43] was used in conjunction with the extension Flask-
RESTful [44]. The developed web service must be delivered by a web server, that
supports server side scripts and HTTPS with client-side authentication. In this thesis,
Nginx1 was used together with uWSGI2. JOSN Web Signature �les are generated using
the JW Crypto library3.

Implemented in modules:
smc_gw/api/smc_api.py
smc_gw/api/smc_client_side.py
smc_gw/api/smc_peer_side.py

6.3.2 Request translation and SMC back end

The request translation component handles the communication with peers and for-
wards requests in a form that ensures transparency as described in section 5.4.1. If a
di�erent SMC back end should be used, section 6.3.3 provides information about the
implementation through the request translation component.

Each request translation process contains the following phases:

Initial information request: If an initial information request as described in section
5.5.3.1 is received, the request translation component forwards the request using
the following steps:

1. The client’s authorization grant is checked for validity. It therefore must
still be within the time speci�ed by the valid_until �eld.

1https://nginx.org/
2https://uwsgi-docs.readthedocs.io/en/latest/
3https://github.com/latchset/jwcrypto

84 Chapter 6. Implementation

2. The attributes de�ned in the authorization grant need to match the attributes
of the requested peer groups.

3. Then the authorized request is compiled, which most importantly contains
the identi�er of the original request.

4. The groups de�ned by the attributes in the request are translated to a set of
peers as described in section 6.4.2 (#3-#4 in �gure 6.2).

5. The authorized request is then forwarded to the client (#5-#6 in �gure 6.2)
and to all the peers (#7-#10 in �gure 6.2) that were found in the query.

6. A record is created in the database, which uses the signature of the original
request as the unique identi�er as described in section 6.4.1.2 (#11 in �gure
6.2). It contains the authorized request and the identi�ers of the peers that
the request has been forwarded to. The initial result is added for each of
them, which is either "accepted" in case of success or "failure" in case the
request could not be forwarded to them.

Implemented in module:
smc_gw/request_processing/client_information_requests.py

Collection of results: The results are then collected from the peers by waiting for
their results as described in section 5.5.3.2. Upon reception of a response (#17-#19
in �gure 6.2), the results are stored (#20 in �gure 6.2) in the record that was
previously created in the data base.

Implemented in module:
smc_gw/request_processing/peer_incoming_communication.py

Retrieval of results: The client can check the state of completion of the request (#21-
#22 in �gure 6.2) and receive either intermediate or �nal results (#25-#26 in �gure
6.2) as described in section 5.5.3.3. The gateway compiles the information by
applying the post-processing as it was described in section 5.4.4 (#23-#24 in �gure
6.2).

Implemented in module:
smc_gw/request_processing/client_information_requests.py

6.3.3 Implementation interface for SMC back ends

The gateway provides an interface for implementing SMC back ends, which can be
implemented as follows:

6.3. Request processing 85

6.3.3.1 Forwarding a request

When the client interface receives a new request, it actively calls the request processing
component in order to trigger communication with peers. All functions that are used
for this purpose are contained in one �le. By replacing the functional parts therein, the
request can be forwarded using a di�erent protocol.

The function add() speci�es how to compile the message that is forwarded. The class
Peer_Request_Thread is then used by this function and de�nes how the request is for-
warded to each applicable peer.

In the exemplary implementation, the request is forwarded as a simple HTTP POST
request containing the authorized request as described in message 4 of the protocol
phase described in section 5.5.3.1. The forwarding itself was handled in a di�erent
thread for each peer, in order to ensure the number of peers has a smaller impact on
the time that it takes to forward the authorized request to all peers.

Implemented in module:
smc_gw/request_processing/client_information_requests.py

6.3.3.2 Receiving a response

On the other hand, some functions can be triggered by the SMC back end in order to
store results from a peer.

The functions needed for handling incoming peer-communication are contained in one
�le. Another form of receiving peer responses can be can be integrated by triggering
the process of adding the response to the request processing component of the gateway.
When the SMC back end receives a response from a peer, it therefore needs to call the
function inforeq_peer_response() while providing all contents de�ned in listing 5.16 as a
dictionary.

The function then stores the results of each peer in the database in the record that
represents the information request.

The formats and process used in the exemplary solution are described in section 5.5.3.2.

Implemented in module:
smc_gw/request_processing/peer_incoming_communication.py

6.3.3.3 Pairing and keepalive mechanism

The process for pairing and updating peers or handling keepalive messages is contained
in a dedicated �le.

86 Chapter 6. Implementation

If a di�erent pairing and peer information update process is desired, the functions add(),
update_details() and delete_peer() can be called by the SMC back end. They expect a
dictionary containing the contents of the messages as they are de�ned in the exemplary
solution. The process and said messages can be found in section 5.5.1.1.

A di�erent keepalive mechanism can be implemented by calling the function keep_alive(),
which expects the contents found in listing 5.5.1.2. It then resets the keepalive timer for
the peer, therefore keeping the peer marked as active until the speci�ed time.

The process and formats used in the exemplary solution can be found in section 5.5.1.2.

Implemented in module:
smc_gw/directory_services/peers.py

6.4 Directory services

As described in section 5.1.3.1, the directory service component mainly has three tasks:

• Persisting static data that will be used in the protocol, as described in section 5.4.2
and storing peer metadata.

• Providing information that is derived based on this data as described in section
5.2.3.

• Logging requests in order to provide accountability as discussed in section 5.2.5.

Implemented in modules:
smc_gw/directory_services/

6.4.1 Storage and retrieval of unprocessed directory information

For simple storage of the information as it was described in section 5.2.4, the gateway
can use a document-oriented database as described in section 4.4.2. In the context of this
thesis this approach is especially useful, since any information is addressed by a single
identi�er as described in section 5.4.2 and data is present in the JSON format anyway.
Each of the key-value pairs represents one object and the attributes that describe it,
such as a request or a peer. Due to the simple structure and hierarchy of information
contained in the design, solutions such as LDAP that was described in section 4.4.1
would incur signi�cant complexity that is not needed.

In the implementation of this thesis, MongoDB was used. The following collections in
the database smc_gw are created and used to store information.

Some software provided by docker image:
mongo:3

6.4. Directory services 87

Implemented in modules:
smc_gw/directory_services/blob.py
smc_gw/directory_services/peers.py

6.4.1.1 Peer records

The database is used to store the metadata of peers discussed in section 5.2.1. The format
of the records is equivalent to the JSON message used for pairing and updates without
any further container, as it can be seen in listing 5.3. The peer_identi�er is used as a
unique identi�er for the record.

Their state is not static but frequently changes which is why the record needs to be
updated. In case of an update message, that de�nes a new set of attributes, the record
is overwritten with the updated object. In case of a keepalive message, the according
�elds provided by the keepalive message are updated while leaving the rest of the record
untouched.

Each record in the collection therefore represents one peer and contains all information
that describes it.

Database collection: peers

6.4.1.2 Aggregation of metadata for directory queries

The request translation described in section 5.4.3 waits for peer responses to an informa-
tion request and gradually receives them. They then need to be stored in the database
as described in section 6.3.2 so that they can later be forwarded to the client.

The record that is used to store the information can be seen in listing 6.1.

1 {

2 "_id": "ATU7....DS78",

3 "authorized_request": { # Identical to the message seen in

4 # listing 5.14 without a JWS container

5 "original_request": "c47b...7e0a",

6 "gateway_timestamp": "2018-01-16T10:46:45.161577+00:00",

7 "request_status": "accepted"

8 },

9 "queried_peers": { # Each of the keys represents the identifier of

10 # one peer, that the request has been forwarded to

11 "UVmg....mKDM": {....}, # Each of the values contains a dictionary

12 "X68f....E3-R": {....}, # of the peer response as seen in

13 # listing 5.16 without a JWS container

88 Chapter 6. Implementation

14 }

15 }

Listing 6.1: Information request database record

Storing the response is a simple matter of updating the record by setting the contents
of the response as an update to the key representing the peer.

Database collection: inforeqs

6.4.1.3 Quick retrieval of static information

Some components store static data in the gateway for quick retrieval. Entities request
this data, when it was referenced in a di�erent message from the gateway as described
in section 5.5.1.4 (#12 in �gure 6.2). This quick retrieval is in contrast to logging as it
was described in section 6.4.4.

MongoDB simply returns the object queried by it’s ID (#13-#14 in �gure 6.2). The
information is contained in their JWS container and passed on to the requesting entity
without any further modi�cations (#15 in �gure 6.2).

Database collection: blobs

6.4.2 Translation groups de�ned by attributes to peer

A group in this thesis is de�ned by a set of peers that contain the same attributes. No
separate data structure is created in order to gather information about group member-
ship. Therefore the attributes need to be translated to a set of peers when making an
information request.

The format of the attributes �eld of each peer record is de�ned in section 5.2.1, while
the format of a possible query is de�ned in listing 5.6. Since the number and contents
of attributes de�ning a peer are not �xed, a general approach is needed. This can be
done by iterating over every key-value pair of the dictionary of requested attributes,
while adding each key as a "�eld" and each value as a "value" in a MongoDB query.

In case of special attributes that don’t require exact accordance of values but more
di�cult comparisons, these need to speci�cally speci�ed on the code side. As an example
for this, the clearance �eld in the thesis speci�es a maximum value that should contain
all of the sensors of lower clearance levels as well, which is why a less then or equals
comparison is used.

The referenced exemplary directory query would therefore result in a MongoDB query
as seen in listing 6.2.

6.4. Directory services 89

1 {

2 ’peer_record.announcement.peer_attributes.rooms’: [’all’],

3 ’peer_record.announcement.peer_attributes.sensor_data’: [’light’],

4 ’peer_record.announcement.peer_attributes.clearance’: {’\$lte’: 9},

5 ’peer_record.announcement.peer_attributes.floor_number’: [’all’]

6 }

Listing 6.2: MongoDB query for translation of attributes to a set of peers

In case of very large numbers of peers, which is not in scope of the use case of this
thesis, an index can be created over the attributes to increase e�ciency of queries.

6.4.3 Querying and processing of metadata

In this thesis, not all information that the database stores should be returned in it’s
raw format but rather in processed form as described in section 5.2.3. While the raw
metadata of available peers can be queried from the database as described in section
6.4.2, it is aggregated as follows:

The attributes of all peers are stored in lists separated by their attribute identi�er. Then
the number of occurrences of each value per list is counted.

The dictionary returned to the client does not contain any information about the peers
any more but only the attributes that describe their group.

Implemented in modules:
smc_gw/directory_services/content_queries.py

6.4.4 Auditable and unforgable logging

Section 5.2.5 has shown the advantages of logging requests in a blockchain. The solution
developed in this thesis uses that approach by posting all of the log data in a private
blockchain. It does not need to be operated by the gateway provider either and it is
even possible to operate it on a number of peers that use the proof of work consensus
algorithm to validate the contents of the blockchain.

This thesis uses the software Multichain, which provides a private blockchain and is
compatible to the bitcoin protocols and formats [45]. In order to provide a medium that
can be used for storage of information, a so-called stream "storeage_stream" is created
in the blockchain during setup4.

4https://www.multichain.com/developers/data-streams/

90 Chapter 6. Implementation

Communication with the daemon happens with commands transmitted over JSON-
RPC5 using a regular HTTP connection, as de�ned by the Bitcoin blockchain6 with
some extensions provided by MultiChain that support simple information storage7.

Items can then be published to this stream by issuing a remote procedure call, while
each item represents one data record. Each item is a key-value pair. The proposed
solution uses the signatures of the JWS containers of messages as keys. The content is
the JWS container itself.

The records can then be accessed by making a request to the stream, while specifying
the desired object by its unique identi�er.

Some software provided by docker image:
tilkal/multichain

Implemented in modules:
smc_gw/directory_services/request_logging.py
smc_gw/directory_services/multichain_storage.py

6.5 Exemplary implementation of peers and a client

In the course of the thesis, simple implementations for the functionality of the peer
and the clients as they were described in section 5.1 were developed. They serve as an
implementation reference of the protocol and can be used for testing and evaluation as
described in section 8.

The peers don’t provide any actual functionality or SMC protocol, but much rather
just register to the gateway, accept requests and answer with a static response after a
speci�ed amount of time. JOSN Web Encryption support for the end-to-end encryption
is provided using the JW Crypto library 8.

5http://www.jsonrpc.org/speci�cation
6https://en.bitcoin.it/wiki/API_reference_%28JSON-RPC%29
7https://www.multichain.com/developers/json-rpc-api/
8https://github.com/latchset/jwcrypto

91

Chapter 7

Requirements evaluation

Chapters 5 and 6 have suggested a theoretical and a practical solution for the require-
ments that were described in chapters 2 and 3. This section will summarize for each of
the categories de�ned in section 3, how the requirements were solved.

First, the non-function requirements are discussed on an abstract level in section 7.1.
Then it is discussed in section 7.2, how the components of the gateway ful�ll their
speci�c functional requirements.

7.1 Non-functional requirements

The description of the three groups of non-functional requirements can be found in
section 3.1.

7.1.1 Information security protection

ISP.1) Con�dentiality: Con�dentiality is provided by several means:

• Communication is secured through TLS between the gateway and other
entities as described in section 5.4.5.2 and between clients as peers through
end-to-end encryption as described in section 5.4.5.2.

• The con�dentiality during computation of values is given by the used SMC
back end.

• The con�dentiality of data when responding to information requests is
solved through privacy-preserving access control, as discussed further in
section 7.2.1.

92 Chapter 7. Requirements evaluation

ISP.2) Integrity: The integrity is ensured on two levels. Communication between the
gateway and all participants is secured through the message authentication codes
of TLS as described in section 5.4.5.2. Due to the transparent request translation,
reference to the authorization policies and authorization grants are included
in some messages. The signatures contained in the objects requested from the
gateway make end-to-end veri�cation possible as described in section 5.4.1.

ISP.3) Authenticity: Authentication for all entities is handled through certi�cates as
described in section 5.4.5.1. In communication between the gateway and the
clients and peers, TLS uses them for client-side certi�cate authentication of con-
nections. In the end-to-end veri�cation, they are used to verify the authenticity
of the JSON Web Keys that are needed to verify the JSON Web Signatures.

ISP.4) Accountability: Accountability can be ensured through checking the validity
of all requests and logging them in a secure medium as discussed in section 5.2.5.
All messages that are sent and received by the gateway are stored for later forensic
purposes. Communication can be traced back to the participating entities, since
the JWS containers of the messages provide the key identi�er of the party that
has sent them.

ISP.5) Non-repudiation: Signatures as they were explained in section 5.4.1 provide
non-repudiation, since without knowledge of private keys of an entity they can’t
be generated. It therefore can be proven, that an entity in possession of the
keys has sent a message containing exactly the contents that are stored in the
log. Since all relevant messages contain a timestamp, it is not possible to claim
a message has been replayed. Logging in the auditable append-only medium
blockchain provides additional non-repudiation and makes logged messages safe
from modi�cation as discussed in section 5.2.5.

7.1.2 Privacy protection

PP.1) Transparency: Transparency of the requests that the processing component
handles is provided by including all information necessary for understanding the
source and purpose of a request as described in section 5.4.1. This information
consists of references to the original request and the authorization grant, which
in turn contains a reference to the veri�able authorization policy that it is based
on.

PP.2) Unlinkability: Several measures ensure unlinkability of the information gener-
ated during communication:

• The client only receives a processed results rather than raw information.

• The connected SMC back end ensures that the data of single peers is not

7.2. Functional requirements 93

disclosed.

• Result messages, authorized requests and grants contain no information
about the speci�c peers that are part of a group, and therefore which peers
have participated in a SMC round.

Unlinkability of information that can be queried is given through de�ning appro-
priate XACML policies as described in section 4.2.2.2. E.g. the current electricity
usage should not be possible to be queried during certain times of the day.

PP.3) Intervenability: Peers are granted the option to deny and veto against requests
as described in section 5.5.3.2. Since they are provided all relevant information as
described in PP.1 of this section, they may send a veto message without making
the results of the entire information request unusable.

7.1.3 Performance in dynamic environments

DE.1) Scalability: Scalability of the design is supported by avoiding redundant trans-
mission of data where possible, as it is described in section 5.4.2. From the im-
plementation side, the modularization allows scalability in case of performance
limits on the hardware side 6.1.

DE.2) Extensibility: The possibility to add new kinds of devices and re�ect their prop-
erties in a data structure is possible through the free de�nition of peer attributes as
key value-list pairs as described in 5.2.3. The access control component supports
this �exible de�nition of attributes as described in section 5.3.1.3.

7.2 Functional requirements

The functional requirements were grouped by the components of the gateway and can
be found in section 3.2.

7.2.1 Access control

AC.1) Privacy-preserving access control: The di�erent protection goals, that to-
gether make up the requirements needed for privacy-preserving access control,
are solved by the authorization as a service component discussed in section 5.3.
The access control component has a central role in the privacy model of this
thesis. If a special solution is put in place apart from the system-wide solutions
described in section 7.1, it is described for the speci�c context here.

ISP.1-ISP.5 are solved by the system-wide mechanisms described in section 7.1.1.

94 Chapter 7. Requirements evaluation

PP.1: Even though the authorization decision is �rst enforced by the gateway
during request processing as described in section 5.5.3.1, the transparency
makes it possible for peers to also enforce the decision themselves.

Transparency in access control is provided the attributes that authorization
has been requested for. In case of a successful authorization decision, the
source of the authorization policy is included. Accountability and non-
repudiation for the contained information is then ensured by the general
approach of verifying and logging messages. The exact process for this is
described in section 5.4.1.

PP.2: Unlinkability is provided by including only a minimal necessary amount
of information in authorization decisions. Speci�cally as stated earlier, they
contain no information about the speci�c peers that are part of a group.

PP.3: Any authorization decision can be reviewed by data sources and potentially
rejected as described in section 5.5.3.2.

AC.2) Dynamic authorization decisions: Section 5.3 describes, how attribute based
access control following the XACML standard makes authorization decisions
based on a variety of attributes possible. Various attributes can be included in the
authorization policies and the decision process. The set of attributes is not �xed
but can be dynamically de�ned.

AC.3) Stateless authorization grants: The stateless authorization grants are imple-
mented by signing XACML authorization decisions as it was described in section
5.3.1. It contains all information that is necessary in order to validate it and trust
the grant without any further communication.

7.2.2 Request processing

RP.1) Failure recovery and e�cient retry: The central approach for providing re-
silience and failure recovery is the statelessness of the protocol. Section 5.4.3
discusses, how temporary connection interruptions are handled and information
requests can be completed despite them.

Re-sending references to data objects with unique identi�ers rather than re-
transmitting them provides e�cient retry as described in section 5.4.2.

RP.2) Dynamic job building and execution: The target systems of requests are not
statically de�ned but dynamically built from attribute groups as they were ex-
plained in section 5.2.3.

Execution and provision of partial results in case of failure or veto decisions
is possible as described in section 5.4.3. Peers which are not providing results

7.2. Functional requirements 95

therefore will not a�ect the information request as a whole.

7.2.3 Directory Service

DS.1) Extensible peer information storage: Section 5.2.3 shows how information
about peers can be stored with a general approach that supports the the later
de�nition of new attributes. This allows to extend the peer information storage
in case devices with new types of attributes are added later.

DS.2) Pairing and tracking of peers: Peers can be tracked with a simple pairing
and keepalive mechanism as described in section 5.1.3.1. It lets them announce
their metadata and attributes and update them later-on.

This process can be replaced by an SMC back end in order to support other
methods of discovery of services.

97

Chapter 8

Performance evaluation

The implementation that was described in chapter 6 is used for evaluation of the per-
formance of the developed solution. The purpose of this empirical approach is to show
the practical feasibility of the solution in addition to the theoretical discussion of re-
quirements that were discussed in chapter 7. Such an evaluation is especially called for,
since some of the requirements discussed in section 3.1.3 speci�cally stated performance
goals that should be met in dynamic environments. In this context it will be discussed,
how the di�erent aspects demanded by the requirements are measured.

First the methodology that was used for evaluation is explained together with the
measured metrics in section 8.1. Then the environment which was used for testing is
described in section 8.2. The results that were obtained by carrying out those tests will
then be discussed in section 8.3.

The performance evaluation should stay close to the initial purpose of the solution and
provide an example that demonstrates the purpose of the used approaches in a way
that is easy to grasp. Therefore the example of the smart building that was explained in
section 2.1.1 will be used.

8.1 Methodology and metrics

The purpose of the developed system is to provide access to information to clients over
a simple interface within a period as short as possible, under the boundary condition of
ensuring privacy for peers. Acceptance of the system can only be achieved if it achieves
the performance and simplicity goals visibly to potential users. From the point of view
of clients, the most important metric is performance. Therefore the majority of the
measurements happens using a blackbox approach and end to end tests.

Some measurements require a lower-level approach in order to investigate the source
of the systems behavior. In those cases, more detailed results are obtained by making

98 Chapter 8. Performance evaluation

some measurements directly in the sub-components of the system. These measurements
require modi�cation of the applications code and may distort the test results. Therefore
close attention was paid to keep the overhead of those measurements as low as possible.

Most of the communication described in section 5.5 consists of the communication
between two partners and only has some database accesses on the gateway side as a
result. The exception to this is the peer information request. Here the client sends a
request to the gateway, which then uses a database query to �nd applicable peers and
forward the request to them. They then perform their calculations and send the results
to the gateway. All messages are logged in the blockchain by the request translation
component.

Since this process contains all of the components and technologies that were developed
in the course of the thesis, it will be the communication phase that is used for all
measurements.

8.1.1 Test metrics

A lot of aspects of a system can be measured, while they have a varying degree of
importance for the discussed use cases. It is therefore important to focus on aspects
that are critical for potential users and evaluate if the system behavior doesn’t restrict
applicability in constrained environments that are given from the context that the system
was developed for. The following metrics are therefore derived from the discussed use
cases and scenarios.

Total response time: The responsiveness of a system is a central measure of usability,
since for users it is directly visible during operation. For all requests it was
therefore measured, how much time passes between initiation of request sending
and the end of the reception of results.

Memory usage and computation e�ort: The collection of data in the speci�ed use
cases happens from sensor platforms. Since in comparison to full-scale comput-
ing systems those are designed for low cost and low energy consumption, the
resources that they have access to are constrained. Therefore an interesting as-
pect is the consumption of those resources and how it develops under di�erent
circumstances that are tested.

Maximum request load handled: The number of application �elds for smart de-
vices and therefore their deployed number are quickly increasing, while the data
they provide becomes easier to process. In order to assess applicability of the
developed solution in other use cases and contexts, conclusions about it’s perfor-
mance boundaries have to be made. It will therefore be shown, which is the limit
that the developed system and protocol can handle.

8.2. Testing environment 99

8.1.2 Parameterization of tests

Di�erent aspects can in�uence the performance of a system. For example, a low number
of peers and information requests in a reliable and fast network constitute good condi-
tions for testing and promise desirable results for the di�erent metrics. In the present
evaluation, the in�uence of the following parameters on the previously discussed met-
rics were investigated.

Number of peers: The cost of each request increases together with the number of
peers, since data is requested from a bigger number of sources. This number is
therefore varied for each of the previously described parameters "frequency of
requests" and round-trip delay time.

Due to shortcomings of the used test platform used in the setup, the peers had
to be set up manually, which made it di�cult to test an arbitrary number of
peers. The number therefore was scaled up only to a number of entities that
can be expected in the use case discussed in section 2.1.1, which was 30 peers.
This number also constitutes a su�cient bu�er considering the cost of the SMC
protocols, which increases together with the number of peers. The thesis that
was at the same chair tested the orchestation of up to 11 SMC peers [1].

Round-trip delay time: Sensor platforms may be deployed in environments where
reliable connections are not given, for example wireless connections with high
numbers of collisions or other indicators of signal quality. The round-trip delay
time is used to simulate such connections by increasing the amount of time it
takes to receive any kind of response to a signal.

The round-trip delay time is set on the operating system level, while pair-wise
symmetric delays are used for every connection between two physical systems.
The value is varied, while only one request per ten seconds is made in order to
ensure the absence of correlations between the di�erent requests.

Frequency of requests: This parameter simulates the in�uence of a higher number
of information queries. Due to the physical limitations of a system, it has direct
in�uence on all of the described test metrics.

This parameter can easily be set for each run of the client stub.

8.2 Testing environment

Meaningful results are achieved though deploying the solution on a hardware and
network infrastructure that allows to simulate the behavior of scenarios that could
occur in real use-cases. In the use cases that the system would be used comprise highly
complex environments with very heterogeneous systems as seen in �gure 5.1. Staying

100 Chapter 8. Performance evaluation

too close to such a setup would over-complicate testing though and lead to results that
are hard to reproduce and interpret.

Such reproduction of results should be possible for later comparisons though, e.g. in
regression tests that are used after modi�cations were made to the system. Additionally,
not every aspect of such a complex network is relevant for the evaluation of the system.

The system is therefore deployed on a setup that constitutes a simpli�ed model of the
expected deployment infrastructures. It will therefore be elaborated, how such a setup
can be emulated in a controlled testbed environment. For later reproduction of results
on a similar system, this section will speci�cally describe the test setup.

8.2.1 Network setup

Simplifying the network setup of the testbed environment and reducing the number of
physical machines that host the entities in the protocol’s communication makes some
assumptions about the performance implications of di�erent possible options necessary.
The decisions that were made are based on the following considerations.

Location of gateway components: The di�erent components and modules of the
gateway can be distributed over various machines in order to scale the solution.
The communication between those and the management overhead incurs delays,
that would distort the measurements though.

Therefore, all of the components of the gateway will be deployed on a single
physical system.

Location of client stub: Most of the communication that happens in the proposed
protocol is triggered by the clients in simple requests with a single response be-
tween the two communication partners client and gateway. While it is important
to measure the total response time as described in section 8.1.1, measuring the
cost of the communication between the client stub and the gateway would distort
the results. This part of communication is not of major interest for the evaluation,
since it is similar to classical systems and does not allow any conclusions about
the performance of the protocol that does the actual collection of data. Further-
more, no computationally expensive tasks are handled by the client anyway, that
could distort the results on the gateway side.

Due to these reasons, the client stub will be run on the same physical system as
the gateway in order for them to be as close together other as possible.

Location of peers: As described at the beginning of the section, the main communi-
cation in the protocol happens when an information request is forwarded to the
peers by the gateway since the amount of messages is ampli�ed by the number

8.2. Testing environment 101

of peers. It is therefore desirable to observe and modify the parameters of the
network interface between the peers and the gateway.

The computational load on the side of each of the peers is very small though,
since only a stub is implemented that returns a message that is almost always the
same. Also, no communication between the peers is implemented.

The peers are therefore deployed on a single physical system, that is separate
from the system that the gateway system is running on.

8.2.2 Hardware and software details

The described network setup leaves us with two physical systems, that will be used to
simulate the participants. The application is containerized in order to de�ne a system
with easily reproducible state of software dependencies. Containerization incurs a
slight distortion of network performance [46]. Due to the computational intensity of
the developed system due to e.g. cryptographic actions, the e�ect of raw network
latency in the range of only microseconds is does not signi�cantly distort the results
though.

Running an actual SMC protocol with high computational intensity on the peer-side
would distort the results of the measurements of the gateway performance. The peers
are therefore represented only by a stub that doesn’t run any computation of results but
provides �xed values. For the purpose of the tests, expensive cryptographic functions
were disabled. For example the end-to-end encryption between the peers and the clients
were disabled, since it has no impact on the performance of the gateway but would
incur a load for the peers.

Therefore in each request they have to do very little amounts of computation in com-
parison to the gateway side. It therefore is assumed that the peers have a by far lower
load than the gateway system.

Therefore two servers can be used in a symmetrical setup. While one system will run all
of the components of the gateway and the client stub, the peers will be run as replicated
containers of the peer image on the other system. Both servers are equipped with the
following hardware:

• Intel(R) Xeon(R) CPU E31230 @ 3.20GHz, 4 physical cores with hyper-threading

• 16 GiB DDR3 main memory @ 1333 MHz

• 1 GBit LAN network connection between hosts

The following software versions were installed on the systems during the tests:

• Operating system Linux, distribution Grml 2017.05 with Kernel 4.12.0

102 Chapter 8. Performance evaluation

• Docker server version 18.01.0-ce

• Python version 3.6.4

• Application server Nginx 1.13.7 delivering content from uWSGI 2.0.15

• MongoDB version 3.6.2

8.3 Analysis of results

Building on the parameters de�ned in section 8.1.2, reasonable ranges for their values
were deduced in an iterative approach used during test development. For example the
frequency of requests was increased until the gateway could not answer in a timely
fashion any more.

Also the use case of SMC in a smart building was considered. For example, SMC can only
be run between a limited number of peers and the e�ect of round trip delay times is also
critical due to the high number of messages exchanged between all peers. Considering
these limitations, a bu�er was added to the limitations and included into the values
tested for the gateway.

This resulted in the parameter values and their combinations as they can be seen in
table 8.1.

Run ID Number of peers Round-trip delay time Requests per second
1 10 0, 200, 400, 600, 800, 1000 0.1
2 30 0, 200, 400, 600, 800, 1000 0.1
3 10 0 1, 2, 3, 4, 5, 6, 7, 8
4 30 0 1, 2, 3, 4, 5, 6, 7, 8
5 10 0 6, 8, 10, 11, 12, 13, 14, 15

Table 8.1: Combination of parameters used in tests

It was then observed how the metrics were a�ected in each of the cases. The following
sections lay out the conclusions that were made about the impact on the performance
of the system.

The boxplots show the lower and the upper quartiles, while the whiskers show the
maximum and minimum values observed in the measurements. [47]

8.3. Analysis of results 103

8.3.1 Number of peers

The number of peers was varied between the two values 10 and 30 in the test cases
described in listing 8.1. The measurements were made for each of the metrics made in
the di�erent test runs, where all parameters apart from the number of peers were left
the same. The following observations were made using this approach.

8.3.1.1 Total response time

The in�uence on the response time for the initial posting of a request is signi�cant for
low latencies, as it can be seen in �gure 8.1. As the �gure shows, this e�ect gets even
stronger if the number of requests per second are getting close to the maximum load
that the gateway can handle (the value of 6 requests per second will be discussed in
section 8.3.3.2). In both cases, the time that a client waits for the response to the initial
request is more than doubled but still on a very low level of under 300 milliseconds.

0,0

0,1

0,1

0,2

0,2

0,3

0,3

0,4

0,4

10 peers
0 ms

0.1 rps

30 peers
0 ms

0.1 rps

10 peers
0 ms
6 rps

30 peers
0 ms
6 rps

S
e
c
o
n
d
s

Figure 8.1: Impact of number of peers on response time

This is even though it was tried to keep the e�ect relatively small by forwarding requests
using a thread for each peer as discussed in section 6.3.3.1. Therefore the reason for this
signi�cant impact was investigated.

The gateway waits for a response of all peers in order to provide a correct status message
for the initial acceptance or failure of a request in the response to the client. As it will
be shown in section 8.3.2.2, the initial response of the gateway depends largely on the
initial response of the peers. The gateway therefore only adds a signi�cant overhead

104 Chapter 8. Performance evaluation

per peer, if the responses from peers are received extremly fast. Figure 8.2 shows, that in
case of higher latencies, the relative overhead provided by the gateway when forwarding
a larger number of requests is relatively small.

0,0

0,5

1,0

1,5

2,0

2,5

10 peers
0 ms

0.1 rps

30 peers
0 ms

0.1 rps

10 peers
0 ms
6 rps

30 peers
0 ms
6 rps

10 peers
400 ms
0.1 rps

30 peers
400 ms
0.1 rps

S
e
c
o
n
d
s

Figure 8.2: Impact of number of peers on the total amount of time it takes to forward a request
to all applicable peers

This shows, that as long as the gateway has su�cient resources to handle the forwarding
of messages, the number of peers should not a�ect the response time strongly. In case
the initial posting of a request does not require a status message, the server could return
a success or failure message to the client immediately in order to directly be able to
respond to a client request.

Interpretation: The overhead added by the request handling executed by the gateway
is not a�ected strongly by the number of peers in networks with higher latency. In
case of low latencies, the relative impact of the gateway overhead increases. The low
absolute values show though, that this increase is not signi�cant for the response times
as perceived by humans.

8.3.1.2 Memory usage and CPU utilization

For each received request, the gateway has to forward it multiplied by the number
of applicable peers. Each of them may in turn request static data from the gateway
afterwards. In the test setup this requested data object was the original request, normally
the key of the client may also be necessary if the results should be encrypted. The e�ect
of the number of peers therefore has a direct e�ect on the computational e�ort, as can

8.3. Analysis of results 105

be seen in �gure 8.3. It shows the CPU utilization in dependency of the requests per
second and the number of peers.

0

50

100

150

200

250

300

350

400

C
P

U
 u

ti
li

z
a

ti
o

n

10 peers 30 peers

1

req / sec
2

req / sec
3

req / sec
4

req / sec
5

req / sec
6

req / sec
7

req / sec
8

Figure 8.3: Impact of number of peers on gateway CPU utilization

The data is signed and due to TLS the communication is encrypted with a di�erent key
for each of the peers. The steep incline can therefore be explained by the cryptography
used during information request forwarding.

Figure 8.4 shows the memory usage in dependence of the requests per second and the
number of peers.

0

50

100

150

200

250

M
e

m
o

r
y

 u
s

a
g

e
 i

n
 M

B

10 peers 30 peers

1
req / sec

2

req / sec
3

req / sec
4

req / sec
5

req / sec
6

req / sec
7

req / sec
8

req / sec

Figure 8.4: Impact of number of peers on gateway memory usage

Higher numbers of peers lead to increased memory usage, whereas the spikes in the
graph can be seen especially during periods where requests are being received.

106 Chapter 8. Performance evaluation

Interpretation: Since the number of peers is limited by the SMC protocol, this limit
should not be a problem in the use cases considered in this thesis and applicability is
given. This is due to the fact, that SMC will incur a higher load for peers due to the
amount of messages exchanged between them in comparison with the request that is
only forwarded once by the gateway.

8.3.2 Round-trip delay time

The added round-trip delay time was varied between 0ms and 1000ms in steps of 200ms
in the test cases as described in listing 8.1. Following observations were made about the
in�uence of the round trip delay times:

8.3.2.1 Total response time

As �gure 8.5 shows, the resulting delay for a response is therefore strongly in�uenced
by the added latency.

0,0

1,0

2,0

3,0

4,0

5,0

6,0

30 peers
0 ms

30 peers
200 ms

30 peers
400 ms

30 peers
600 ms

30 peers
800 ms

30 peers
1000 ms

S
e
c
o
n
d
s

Figure 8.5: Impact of round trip delay time on total response time

For each 200 ms of round trip delay time added, the time that the gateway needs for
a response increases by one second. This is due to the fact that for each request, the
gateway forwards the authorized request to the peers. TLS increases the amount of
messages exchanged with a peer before communication, since a handshake has to be
executed before actual information can be exchanged.

As shown in section 8.3.1.1, the number of peers has no strong in�uence in higher
latency settings.

8.3. Analysis of results 107

Interpretation: The client would have to wait for peer responses also if making a
request directly to them which would also result in increased round-trip delay times
of no gateway was used. If a similar protocol that uses TLS and the same mechanisms
would be run directly between the clients and the peers, the only additional overhead
for response times is incurred by the communication between the client itself and the
gateway.

8.3.2.2 Time until initial response from all peers for an information request

As an additional metric for the round-trip delay time test case, the time until the peers
have initially responded to the request were measured separately. Figure 8.6 shows the
total response time to an initial information request in comparison to the total amount
of time it takes to forward a request to all peers. As can be seen, this amount of time it
takes to forward a request to all peers makes up the largest part of the overall response
time of the gateway to a client.

0,0

1,0

2,0

3,0

4,0

5,0

6,0

Total response
time 0 ms

Forward all
0 ms

Total response
time 200 ms

Forward all 200
ms

Total response
time 400 ms

Forward all 400
ms

Total response
time 600 ms

Forward all 600
ms

Total response
time 800 ms

Forward all 800
ms

Total response
time 1000 ms

Forward all
1000 ms

S
e
c
o
n
d
s

Figure 8.6: Impact of round trip delay time on time until gateway has received responses from
all 30 peers

Interpretation: The initial answer time by peers is strongly a�ecting the total time it
takes the gateway to respond to a request. This leads to longer times that clients need to
wait. The e�ect of the overhead presented by the gateway on response times is therefore
only minimal.

8.3.2.3 Memory usage and computation e�ort

The e�ects of the round-trip delay time on the gateway’s CPU utilization can be seen
in �gure 8.7. While the median doesn’t di�er signi�cantly, for low delay times the CPU

108 Chapter 8. Performance evaluation

utilization is less evenly distributed than for high delays.

0,0

5,0

10,0

15,0

20,0

25,0

30,0

35,0

40,0

45,0

0 ms 200 ms 400 ms 600 ms 800 ms 1000 ms

C
P

U
 u

ti
li

z
a

ti
o

n

Figure 8.7: Impact of round trip delay time on CPU utilization of gateway (30 peers)

In settings with low delays, all requests can be forwarded very quickly which explains
the strong outliers in comparison to the high delay settings where the forwarding of the
request is stretched out over a longer time. The results with the strong outliers could
be con�rmed in an alternative run with less peers, while the outliers were not as strong
since the messages were forwarded to less peers.

Figure 8.8 shows the e�ect of delays on the memory usage of the gateway.

0,0

20,0

40,0

60,0

80,0

100,0

120,0

140,0

160,0

180,0

0 ms 200 ms 400 ms 600 ms 800 ms 1000 ms

M
e

m
o

r
y

 u
s

a
g

e
 i

n
 M

B

Figure 8.8: Impact of round trip delay time on memory usage of gateway

No clear e�ect on the memory usage could be observed.

8.3. Analysis of results 109

Interpretation: The impact of delays on gateways resources is minor since the same
computations are executed as usually, just slower. This spreads out the load, that the
gateway has to handle over a longer period of time.

8.3.3 Frequency of requests

The frequency of requests was varied between 6 and 15 requests per second for a setting
with 10 peers, while smaller steps between the higher values were chosen as can be
seen in listing 8.1. The goal was to observe how the request limit of the gateway slowly
is being reached. Following observations were made about the in�uence of the round
trip delay times:

8.3.3.1 Memory usage and computation e�ort

The request frequency has a strong e�ect on the CPU utilization of the gateway as can
be seen in �gure 8.9.

0

50

100

150

200

250

300

C
P

U
 u

ti
li

z
a

ti
o

n

6 8 10 11 12 13 14 15

Figure 8.9: Impact of request frequency on gateway CPU utilization

This is due to the cryptography, that has to be executed for each of the peers that the
messages are forwarded to. At a certain amount of requests per second, the maximum
CPU utilization is reached which in�uences the maximum handled load and will be
discussed in section 8.3.3.2.

The used amount of main memory can be seen in �gure 8.10.

110 Chapter 8. Performance evaluation

100

110

120

130

140

150

160
M

e
m

o
r

y
 u

s
a

g
e

6 8 10 11 12 13 14 15

Figure 8.10: Impact of request frequency on gateway memory usage

The amount of used memory jumps between di�erent levels, while no trend can be
derived from the graph. This e�ect is likely due to the application server used to
deliver the gateway interface, which automatically adds and removes process instances
depending on the amount of requests currently being handled. Once such an instance
is spawned, the gateway logic itself only has minor impact on the memory usage.

Interpretation: The resource load handled by the gateway due to the cryptographic
operations mainly uses the CPU while the memory is underutilized. The gateway should
not provide a bottleneck in actual SMC runs though, since the protocols run between
peers are even more arithmetically intensive.

8.3.3.2 Maximum handled load

As seen in �gure 8.9, the maximum load of requests handled by the gateway is limited
by the CPU. If more requests are made per second than can be handled by the gateway,
it will slowly become overloaded. During the execution of test cases, the frequency was
therefore increased until the response time was higher than the period between each
request. It could then be seen, starting at which request frequency the gateway took
longer to respond than the period between requests.

With a number of 10 peers, the limit was seen at around 13 requests per second. With
a number of 30 peers, the limit was seen at around 5 requests per second. This limit
therefore describes the maximum continuous load which the gateway can handle. The
peak limit is depends on the platform used for delivery and how well it can queue
un�nished requests.

Interpretation: Considering the use case of SMC, the number of requests that can be

8.3. Analysis of results 111

accepted per second are su�cient since they also cause long-running and expensive
computations for peers. Furthermore such a high continuous load should not be expected
in normal o�ce buildings with the described use cases anyway.

8.3.3.3 Total response time

Since the the application server showed the behavior of blocking connections when
becoming overloaded for longer periods of time, only sequential requests were tested.
The increase of total response time with higher request frequencies can be seen in �gure
8.11.

0,00

0,02

0,04

0,06

0,08

0,10

0,12

6 requests
per second

8 requests
per second

10 requests
per second

11 requests
per second

12 requests
per second

13 requests
per second

14 requests
per second

15 requests
per second

S
e
c
o
n
d
s

Figure 8.11: Impact of request frequency on total response time

As long as the gateway does not come close to it’s performance limit, no increase is seen.
As soon as the resources are fully utilized as described in section 8.3.3.1, the response
times increase though.

Interpretation: The increasing response times are a sign for the fact that the gateway
is becoming overloaded. If a load is so high for a longer period of time, the gateway
would after a short time not be able to handle the requests any more anyway. The slight
increase in response times therefore is a smaller problem, that should not occur in case
of a load that is within the limits of what the gateway can handle anyway.

112 Chapter 8. Performance evaluation

8.3.4 Summary of performance evaluation

The analysis has made several insights about the gateway performance possible. For one,
the overhead added by the gateway is slightly noticeable by clients in case of su�cient
resources of the gateway. Second, the protocol doesn’t delay the communication with
peers noticeably in case of low latencies.

These boundary conditions are in�uenced by various factors though. Most importantly,
the utilization of gateway resources is strongly in�uenced by the number of peers. The
second relevant factor is the frequency of requests made to the gateway.

High latencies slow down the response times, which are largely dependent on the
request time of peers. This e�ect is independent of the usage of a gateway though,
since also in direct communication between peers and clients the delay would a�ect
the response times.

The gateway therefore only adds a small overhead to the communication under normal
circumstances. The observed performance boundaries are more than su�cient for the
use cases set out at the beginning of the thesis. Applicability is therefore given and
could be further optimized as will be discussed in the conclusion.

113

Chapter 9

Related work

The shortcomings of the traditional trust-based approach for privacy have been shown
in section 4.1. In contrast to this it has been suggested to design systems in a way that
by itself ensures privacy [48]. This eliminates the necessity for entrusting a third party
with personal information while not being able to enforce their privacy guarantees or
observing the actual usage of information.

The secret multiparty computation and decentralized anomaly detection systems that
de�ned the scope of this thesis in section 1.2 are an example for this approach. What
makes them special is the fact, that information is supposed to stay at the data sources
and give them full control over this information. It is then still possible to derive
aggregated information from the data that is stored only locally.

The authorization decisions that lead to such computations are made on the basis of
previously de�ned policies. This thesis has proposed a solution, where the policy that an
authorization decision is made is speci�cally stated in conjunction with the request that
was made. Furthermore the source of both the policy and the request can be veri�ed.

It is possible to verify the following privacy-critical aspects of authorization decisions.
A second layer of access control can ensure that the policy was enforced correctly
and in accordance with the access rights and constraints speci�ed in the policy. Using
the original policy and request, verifying their signatures can ensure integrity of the
policy storage, since any modi�cations would be immediately noticed. While therefore
removing the need for trust, a central entity is still responsible for all authorization
decisions that are made.

This chapter describes some alternative approaches that have been suggested in order
to provide privacy-preserving access control.

114 Chapter 9. Related work

9.1 Secret Sharing based signatures

The setting of this thesis described use of the protocol in embedded devices in dynamic
environments. They therefore possess limited resources and quality of their network
connection may potentially vary signi�cantly. This limits the amount of data that can
be transmitted, processed and handled with cryptographic operations.

Since in the present setting trust does not need to be removed entirely, it would be
enough if a set of entities trusted by a peer would con�rm the validity of an authorization
decision. In that case, said entities could be operated in a controlled environment and
with su�cient resources. When an authorization decision is made, they can receive and
review it. If they agree on the validity of the information that they are provided, they
can issue a veri�cation message that is then forwarded to the peers.

Secret sharing based signatures suggest a way how participation of a set of entities,
called players, is required in order to access a secret such as a key [49]. Coming back to
the example, a veri�cation message could then be granted only if all players participating
in the veri�cation process agree on the result.

This process could therefore be used as an alternative to the approach of forwarding
veri�able authorization grants to all involved entities.

In comparison to the solution presented in this thesis, the advantage is increased per-
formance and lowered complexity in the side of the data sources. As a disadvantage,
it increases the overall e�ort and complexity of the system and just shifts it to other
parties, the players of the secret sharing scheme. The need for trusted third parties in
turn is in contrast to the central bene�t developed in this thesis, where full transparency
is provided to the data sources.

9.2 Decentralized authorization decisions using blockchain
smart contracts

Since the contents of the policy and the request are disclosed to peers anyway, the
authorization decisions could be made on a distributed set of nodes as described in [50].
In such a scenario, access policies are stored in a blockchain. When access to a resource
is needed, the according request is made to this network. The resulting access decision
can then be enforced by the requested resources.

One possible alternative approach for ensuring correct evaluation of policies is using
a distributed approach based on smart contracts. In smart contracts, instructions are
stored in a blockchain distributed on a set of peers that participate [51]. In the present
context, policies could be stored in a distributed manner and contain the access control
demands of peers. The according set of instructions is then carried out by the network

9.3. Enigma 115

by a trigger as de�ned in the contract, for example on request. An example for this
approach is Slock.it, which makes access decisions for physical devices based on smart
contracts [52].

The advantage of such distributed consensus mechanisms is, that they remove the need
for a single, central entity. The authorization decision can therefore be trusted and
doesn’t have to be re-evaluated at the second layer of access control.

In comparison to the solution developed in this thesis, only one layer of access control
is needed in contrast to the proposed two-tier model where authorization decisions are
made centrally and then re-evaluated during second layer veri�cation checks. On the
other hand, the distributed nature of policy storage and evaluation requires ways of
ensuring privacy for the authorization information in the network executing the smart
contracts.

9.3 Enigma

Enigma promises to provide distributed data storage and computations while ensuring
privacy [53]. It is a combination of secret sharing based secure multiparty computation,
smart contracts and a distributed hash table (DHT) that allows to �nd referenced infor-
mation. Through this combination it tries to achieve scalability and e�ciency for the
provided services.

Information is split in the categories public and private. The public part needs to be
stored on a blockchain as a record that provides correctness e.g. for access control
and identity information and is not privacy critical since it only links to data with
non-disclosed contents. The private information is then stored in encrypted form in a
separate network and can be obtained using a modi�ed protocol that is based on a DHT
in order to use it for computation.

In order so that no single entity may gain access to information, the di�erent parts of
a computation process are split up. The hierarchical SMC scheme that is used o�ers
scalability for complex computations and redundant computations are avoided.

A possible application in the described use case would be a set of peers transferring
their data to the network while providing authorization information in the blockchain.
When a client requests access, the networks evaluates the query and can then provide
data in aggregated form. The requests are logged and therefore accountability is given.

In comparison to the solution developed in the thesis, a central similarity is the use of
SMC for computation of results. An addition is the distributed authorization process as
described in section 9.2. Centralization such as with the gateway solution is completely
avoided, which brings advantages but also incurs complexity of queries.

116 Chapter 9. Related work

Out of the central privacy requirements, transparency (PP.1) is given. Unlinkability may
not be given, since peers directly provide their information to the enigma network and
therefore have to trust that it will not use the derived information such as frequency
or size of measurements to draw conclusions about the peers. Since data is transferred
to the enigma network and computed there based on the decision made based on the
access control information present in the blockchain, intervention (PP.3) is not possible
for peers after a request has already been made.

9.4 Sticky policies

A common problem when providing data to someone is that they may share it with a
third-party. An example for this would be an online shop that passes payment informa-
tion to a service provider that takes care of the invoice.

Since the data may be passed on several times, there is no relation to the original purpose
and statement of agreement of the data source. Also, anybody in possession of the data
can use it for e�ectively anything they want without any technological constraints.

Sticky policies are an abstract concept for bundling data with access policies [54]. The
idea therefore is to include the policies about the circumstances of allowed data process-
ing operations when providing it to another party. This is supposed to ensure usage for
only the speci�ed purposes, while the data source would have to newly agree to any
other intended uses.

An exemplary implementation to this could be encrypting personal data while attaching
a document containing the policies to it. [55] It furthermore contains information
about a trusted party that is in possession of information that allows decryption of the
information and therefore access to it’s processable representation. The goal is to be
able to pass on a �le between multiple parties without accessing the contents in clear
text form.

When a service provider �nally requires access to the data, it contacts the trusted party
party with information about the intended usage of the information. The trusted party
then decides if the requester should be granted access or not and in case of a positive
result provides the key for decryption. Removing the policy part would make the �le
useless, since access to the raw information can’t be gained through the third party any
more.

In comparison to the solution developed in this thesis, a third party is introduced again.
Furthermore once access to the raw form of information is given, it may be replicated
and used for other purposes later on. Therefore privacy as de�ned in this thesis and
especially transparency and intervenability are not given for peers.

9.5. Purpose based access control 117

9.5 Purpose based access control

Contemporary access control principles such as RBAC have been described in section
4.2.1. Policies are based on attributes of the di�erent entities involved in the access
control process. In the authorization decision phase they are then evaluated against
the attributes stated in a request. The decision can therefore be based on attributes of
artifacts, while no statement is made about the purpose of the request.

The purpose based access control approach tries to close this gap [56]. The allowed
purposes that information can be used for are stored together with it. During an
information request, its purpose has to be stated. Those two values are then checked
against each other and the contents are only provided if a match occurs.

An approach for purpose de�nitions and deductions has been suggested in [57]. Pur-
poses and requester roles can be de�ned in a hierarchical structure. In comparison
with the earlier solution, data may be present in complex data structures while XML is
used as an example. This would lower the complexity of systems as the one that was
proposed here, where a separate access control components needs to make the autho-
rization decisions. Using such purpose based access control could have the advantage
of bundling all aspects of a request in a single component, such as a data base system
that deduces access rights by itself.

A central similarity of this approach with the thesis is including information in an
authorization request, that helps to understand it. The weakness of the proposed mode
is, that the purpose only constitutes another attribute of the information that can be
used when making an access decision. A correct value can be stated in order to gain
access, while no control or observation over the further usage is possible. Data sources
therefore again have no control over the data in a form that was demanded in the
requirements.

119

Chapter 10

Conclusion and future work

The present thesis proposed a solution for a general approach of querying data from
distributed sources while introducing two central novelties. It uses a recently developing
understanding of privacy and suggests how to preserve it according to this de�nition.
For data sinks it drastically simpli�es the process of querying data over distributed
protocols by concealing them behind a central interface.

The solution therefore o�ers the advantages of two architectures: the privacy preserving
properties of secure multiparty computation protocols and the ease of use of cloud
solutions. The conceptual result is the present thesis, that describes the concepts that
were used to achieve these goals. The practical results of the thesis are the designed
protocol and the implemented prototype, that show the feasibility of the proposed
concepts.

The question that motivated the thesis about how privacy can be ensured when analyz-
ing increasing amounts of sensor data was described in chapter 1. It was then analyzed
in chapter 2 in order to provide an abstract de�nition of the scope of this thesis, while
access control, directory and request processing were identi�ed as the necessary compo-
nents of a practical solution. This lead to a set of veri�able non-functional information
security, privacy and performance requirements and functional requirements for the
components of the developed solution that was described in chapter 3.

Di�erent technologies were considered and described as a basis for the solution of the
components in chapter 4 and chosen as solution candidates for the system. Since none
of those could solve the requirements in their entirety, a new architecture of a system
and a protocol that provides it was speci�ed in chapter 5. The implementation of the
modularized solution in Python and the use of external software such as for example
an authorization provider was then described in chapter 6.

In chapter 7, the results were discussed on a theoretical basis using the initial set of
requirements and it was shown, that the developed solution can ful�ll the goals as

120 Chapter 10. Conclusion and future work

they were previously speci�ed. Using the exemplary implementation, the feasibility of
application of the results of this thesis was shown in a model of a real world scenario
in chapter 8.

Alternative approaches to the same or similar problems were �nally presented in chapter
9.

While the proposed solution gives a possible solution to all of the requirements de�ned in
the beginning, several starting points for further research were uncovered in the process.
The following topics should be considered and evaluated as possible improvements or
extensions:

Improvements though peer to peer communication: The gateway solution intro-
duces a central point of contact for clients and peers. In the current form, many
tasks such as distribution of data are directly handled by the gateway itself. This
brings several limitations that are inherent to centralized systems, such as for
example providing a bottleneck due to the maximum network load. While the
design lays a foundation for scaling the gateway both vertically and horizontally,
due to cost and the limited resources in embedded networks, ways of decreasing
the load of central components and the network itself should be investigated.

The interaction between the di�erent components of the gateway is already
designed in a way that eliminates the need for trust to a high degree. Therefore
information doesn’t have to be obtained from the gateway directly but could
come from any other entity and then be veri�ed using signatures. It is therefore
interesting to investigate the advantages that peer to peer communication could
provide in this context.

For example, data such as keys and authorization grants are addressed by hashes
and provided by the gateway on demand as described in section 5.4.2. During
an information request, it is highly likely that the same information is requested
by peers that are in spatial proximity of each other. Therefore the static objects
could be requested from the gateway only once, while the peers then take care of
distributing them among each other. Since they are close to each other, not only
the network load of the gateway but even the overall network load decreases.

The approach of addressing content by a secure and veri�able identi�er used in
the thesis is very similar to peer to peer �le distribution protocols. Therefore
look-up could be solved by a protocol such as Kademlia [58] in order to obtain
static data from a close source.

It should therefore be investigated, how peer to peer communication can improve
security, scalability and reliability of di�erent phases of the protocol.

Decoupling gateway components: The use of cryptographic primitives has elimi-
nated the trust that needs to be provided to the gateway to a high degree. Integrity

121

of all information that is forwarded by the gateway such as information requests
and access control information is completely ensured through signatures. Con�-
dentiality of results is provided by using end to end encryption.

Section 5.1.3 has described how the modular design of the gateway can be used
to distribute the di�erent components in order to decrease the dependence on
it. Even when using this method, almost all information still passes it in an
unencrypted form though, contradicting the con�dentiality requirement. While
the gateway solution leverages the advantages of SMC protocols, it therefore
introduces a point of concentration of private information.

The largest part of the information that is contained in every request is only
of interest for the speci�c component providing the functionality and not the
request processing component or the rest of the gateway. For example, only the
access control component processes authorization policies and requests, while
only the directory component processes the groups speci�ed in a directory queries.
This information could therefore be passed on in an encrypted form without any
limitations of functionality.

Further research could therefore show, how gateway components can be de-
coupled to a higher degree while only components that process an information
artifact have access to the contents of it.

123

Bibliography

[1] S. Smarzly, “Flexible and robust orchestration of secure multi-party computation
for privacy-preserving services in dynamic environments,” https://www.net.in.
tum.de/�leadmin/bibtex/publications/theses/smarzly2017�exsmc.pdf, 03 2017.

[2] M. Mimoso, “No �rewalls, no problem for google,” https://threatpost.com/
no-�rewalls-no-problem-for-google/123748/, 02 2017, (Accessed on 10/03/2017).

[3] Z. Benenson, E.-O. Blaß, and F. C. Freiling, “Attacker models for wireless sensor
networks,” it-Information Technology Methoden und innovative Anwendungen der
Informatik und Informationstechnik, vol. 52, no. 6, pp. 320–324, 2010.

[4] D. Dolev and A. Yao, “On the security of public key protocols,” IEEE Transactions
on information theory, vol. 29, no. 2, pp. 198–208, 1983.

[5] M. Brenner, N. Felde, W. Hommel, S. Metzger, H. Reiser, and T. Schaaf, Praxisbuch
ISO/IEC 27001: Management der Informationssicherheit und Vorbereitung auf die
Zerti�zierung. Carl Hanser Verlag GmbH & Company KG, 2017.

[6] M. Rost and K. Bock, “Privacy by design and the new protection goals,” Datenschutz
und Datensicherheit - DuD, vol. 01, 2011.

[7] D. McCoy, K. Bauer, D. Grunwald, T. Kohno, and D. Sicker, “Shining light in dark
places: Understanding the tor network,” in International Symposium on Privacy
Enhancing Technologies Symposium. Springer, 2008, pp. 63–76.

[8] B. Zhou, J. Pei, and W. Luk, “A brief survey on anonymization techniques for
privacy preserving publishing of social network data,” ACM Sigkdd Explorations
Newsletter, vol. 10, no. 2, pp. 12–22, 2008.

[9] S. John Walker, “Big data: A revolution that will transform how we live, work, and
think,” 2014.

[10] N. D. Lane, J. Xie, T. Moscibroda, and F. Zhao, “On the feasibility of user de-
anonymization from shared mobile sensor data,” in Proceedings of the Third Inter-
national Workshop on Sensing Applications on Mobile Phones. ACM, 2012, p. 3.

https://www.net.in.tum.de/fileadmin/bibtex/publications/theses/smarzly2017flexsmc.pdf
https://www.net.in.tum.de/fileadmin/bibtex/publications/theses/smarzly2017flexsmc.pdf
https://threatpost.com/no-firewalls-no-problem-for-google/123748/
https://threatpost.com/no-firewalls-no-problem-for-google/123748/

124 Bibliography

[11] A. Narayanan and V. Shmatikov, “Robust de-anonymization of large sparse
datasets,” in Security and Privacy, 2008. SP 2008. IEEE Symposium on. IEEE, 2008,
pp. 111–125.

[12] C. C. Aggarwal and S. Y. Philip, “A general survey of privacy-preserving data
mining models and algorithms,” in Privacy-preserving data mining. Springer,
2008, pp. 11–52.

[13] A. Cavoukian, “Privacy by design [leading edge],” IEEE Technology and Society
Magazine, vol. 31, no. 4, pp. 18–19, 2012.

[14] J.-H. Hoepman, “Privacy design strategies,” in IFIP International Information Secu-
rity Conference. Springer, 2014, pp. 446–459.

[15] National Institute of Standards and Technology, “Guide to Attribute Based Access
Control (ABAC) De�nition and Considerations,” http://nvlpubs.nist.gov/nistpubs/
specialpublications/NIST.sp.800-162.pdf, 01 2014.

[16] American National Standards Institute Inc., “American National Standard for Infor-
mation Technology – Role Based Access Control,” http://profsandhu.com/journals/
tissec/ANSI+INCITS+359-2004.pdf, 02 2004.

[17] S. Turner, S. Farrell, and R. Housley, “An Internet Attribute Certi�cate
Pro�le for Authorization,” RFC 5755, Jan. 2010. [Online]. Available: https:
//rfc-editor.org/rfc/rfc5755.txt

[18] OASIS Open, “Assertions and Protocols for the OASIS Security Assertion
Markup Language (SAML) V2.0,” https://docs.oasis-open.org/security/saml/v2.0/
saml-core-2.0-os.pdf, 03 2005.

[19] OASIS Open, “eXtensible Access Control Markup Language (XACML) Version 3.0,”
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.pdf, 01 2013.

[20] P. Zheng, “Tradeo�s in certi�cate revocation schemes,” ACM SIGCOMM Computer
Communication Review, vol. 33, no. 2, pp. 103–112, 2003.

[21] D. Hardt, “The OAuth 2.0 Authorization Framework,” RFC 6749, Oct. 2012.
[Online]. Available: https://rfc-editor.org/rfc/rfc6749.txt

[22] N. Sakimura, et al., “OpenID Connect Core 1.0 incorporating errata set 1,” http:
//openid.net/specs/openid-connect-core-1_0.html, 11 2014.

[23] P. J. Leach, R. Salz, and M. H. Mealling, “A Universally Unique IDenti�er
(UUID) URN Namespace,” RFC 4122, Jul. 2005. [Online]. Available: https:
//rfc-editor.org/rfc/rfc4122.txt

[24] J. Benet, “IPFS - content addressed, versioned, p2p �le system,” arXiv preprint
arXiv:1407.3561, 2014.

http://nvlpubs.nist.gov/nistpubs/specialpublications/NIST.sp.800-162.pdf
http://nvlpubs.nist.gov/nistpubs/specialpublications/NIST.sp.800-162.pdf
http://profsandhu.com/journals/tissec/ANSI+INCITS+359-2004.pdf
http://profsandhu.com/journals/tissec/ANSI+INCITS+359-2004.pdf
https://rfc-editor.org/rfc/rfc5755.txt
https://rfc-editor.org/rfc/rfc5755.txt
https://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf
https://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.pdf
https://rfc-editor.org/rfc/rfc6749.txt
http://openid.net/specs/openid-connect-core-1_0.html
http://openid.net/specs/openid-connect-core-1_0.html
https://rfc-editor.org/rfc/rfc4122.txt
https://rfc-editor.org/rfc/rfc4122.txt

Bibliography 125

[25] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2008.

[26] M. Gudgin, M. Hadley, N. Mendelsohn, J.-J. Moreau, H. F. Nielsen, A. Karmarkar,
and Y. Lafon, “Soap version 1.2 part 1: Messaging framework (second edition),”
W3C, W3C Recommendation 7515, April 2007.

[27] R. T. Fielding and R. N. Taylor, Architectural styles and the design of network-based
software architectures. University of California, Irvine Doctoral dissertation, 2000.

[28] T. Bray, “The javascript object notation (json) data interchange format,” 2017.

[29] R. Barnes, “Use Cases and Requirements for JSON Object Signing and Encryption
(JOSE),” RFC 7165, Apr. 2014. [Online]. Available: https://rfc-editor.org/rfc/rfc7165.
txt

[30] M. Jones, “JSON Web Algorithms (JWA),” RFC 7518, May 2015. [Online]. Available:
https://rfc-editor.org/rfc/rfc7518.txt

[31] M. Jones, J. Bradley, and N. Sakimura, “Json web signature (jws),” RFC, IETF, RFC
7515, May 2015. [Online]. Available: http://www.rfc-editor.org/rfc/rfc7515.txt

[32] M. Jones and J. Hildebrand, “JSON Web Encryption (JWE),” RFC 7516, May 2015.
[Online]. Available: https://rfc-editor.org/rfc/rfc7516.txt

[33] M. Jones, “JSON Web Key (JWK),” RFC 7517, May 2015. [Online]. Available:
https://rfc-editor.org/rfc/rfc7517.txt

[34] M. Jones and N. Sakimura, “JSON Web Key (JWK) Thumbprint,” RFC 7638, Sep.
2015. [Online]. Available: https://rfc-editor.org/rfc/rfc7638.txt

[35] T. Dierks and E. Rescorla, “The transport layer security (tls) protocol
version 1.2,” RFC, IETF, RFC 5246, August 2008. [Online]. Available: http:
//www.rfc-editor.org/rfc/rfc5246.txt

[36] J. Sermersheim, “Lightweight Directory Access Protocol (LDAP): The Protocol,”
RFC 4511, Jun. 2006. [Online]. Available: https://rfc-editor.org/rfc/rfc4511.txt

[37] K. Zeilenga, “Named Subordinate References in Lightweight Directory Access
Protocol (LDAP) Directories,” RFC 3296, Jul. 2002. [Online]. Available: https:
//rfc-editor.org/rfc/rfc3296.txt

[38] MongoDB, Inc., “A MongoDB Architecture Guide,” 2015.

[39] OASIS Open, “REST Pro�le of XACML v3.0 Version 1.0,” https://docs.oasis-open.
org/xacml/xacml-rest/v1.0/xacml-rest-v1.0.pdf, 10 2017.

[40] OW2, “AuthZForce (Community Edition),” https://authzforce.ow2.org/, (Accessed
on 02/02/2018).

https://rfc-editor.org/rfc/rfc7165.txt
https://rfc-editor.org/rfc/rfc7165.txt
https://rfc-editor.org/rfc/rfc7518.txt
http://www.rfc-editor.org/rfc/rfc7515.txt
https://rfc-editor.org/rfc/rfc7516.txt
https://rfc-editor.org/rfc/rfc7517.txt
https://rfc-editor.org/rfc/rfc7638.txt
http://www.rfc-editor.org/rfc/rfc5246.txt
http://www.rfc-editor.org/rfc/rfc5246.txt
https://rfc-editor.org/rfc/rfc4511.txt
https://rfc-editor.org/rfc/rfc3296.txt
https://rfc-editor.org/rfc/rfc3296.txt
https://docs.oasis-open.org/xacml/xacml-rest/v1.0/xacml-rest-v1.0.pdf
https://docs.oasis-open.org/xacml/xacml-rest/v1.0/xacml-rest-v1.0.pdf
https://authzforce.ow2.org/

126 Bibliography

[41] OW2, “5. user and programmers guide — authzforce ce 5.4.1e docu-
mentation,” http://authzforce-ce-�ware.readthedocs.io/en/release-5.4.1e/
UserAndProgrammersGuide.html, (Accessed on 02/02/2018).

[42] OpenSSL Software Foundation, “OpenSSL Cryptography and SSL/TLS Toolkit,”
https://www.openssl.org/, (Accessed on 02/02/2018).

[43] A. Ronacher, “Flask (a python microframework),” http://�ask.pocoo.org/, (Accessed
on 02/02/2018).

[44] K. Burke, K. Conroy, R. Horn, F. Stratton, and G. Binet, “Flask-RESTful,” http:
//�ask-restful.readthedocs.io/en/latest/, (Accessed on 02/02/2018).

[45] G. Greenspan, “MultiChain Private Blockchain — White Paper,” 2015.

[46] W. Felter, A. Ferreira, R. Rajamony, and J. Rubio, “An updated performance compar-
ison of virtual machines and linux containers,” in Performance Analysis of Systems
and Software (ISPASS), 2015 IEEE International Symposium On. IEEE, 2015, pp.
171–172.

[47] D. F. Williamson, R. A. Parker, and J. S. Kendrick, “The box plot: a simple visual
method to interpret data,” Annals of internal medicine, vol. 110, no. 11, pp. 916–921,
1989.

[48] M. Langheinrich, “Privacy by design—principles of privacy-aware ubiquitous sys-
tems,” in Ubicomp 2001: Ubiquitous Computing. Springer, 2001, pp. 273–291.

[49] M. Stadler, “Publicly veri�able secret sharing,” in Eurocrypt, vol. 96. Springer,
1996, pp. 190–199.

[50] G. Zyskind, O. Nathan et al., “Decentralizing privacy: Using blockchain to protect
personal data,” in Security and Privacy Workshops (SPW), 2015 IEEE. IEEE, 2015,
pp. 180–184.

[51] V. Buterin et al., “A next-generation smart contract and decentralized application
platform,” white paper, 2014.

[52] K. Christidis and M. Devetsikiotis, “Blockchains and smart contracts for the inter-
net of things,” IEEE Access, vol. 4, pp. 2292–2303, 2016.

[53] G. Zyskind, O. Nathan, and A. Pentland, “Enigma: Decentralized computation
platform with guaranteed privacy,” arXiv preprint arXiv:1506.03471, 2015.

[54] M. C. Mont, S. Pearson, and P. Bramhall, “Towards accountable management of
identity and privacy: Sticky policies and enforceable tracing services,” in Database
and Expert Systems Applications, 2003. Proceedings. 14th International Workshop on.
IEEE, 2003, pp. 377–382.

http://authzforce-ce-fiware.readthedocs.io/en/release-5.4.1e/UserAndProgrammersGuide.html
http://authzforce-ce-fiware.readthedocs.io/en/release-5.4.1e/UserAndProgrammersGuide.html
https://www.openssl.org/
http://flask.pocoo.org/
http://flask-restful.readthedocs.io/en/latest/
http://flask-restful.readthedocs.io/en/latest/

Bibliography 127

[55] S. Pearson and M. Casassa-Mont, “Sticky policies: an approach for managing
privacy across multiple parties,” Computer, vol. 44, no. 9, pp. 60–68, 2011.

[56] J.-W. Byun and N. Li, “Purpose based access control for privacy protection in
relational database systems,” The VLDB Journal, vol. 17, no. 4, pp. 603–619, 2008.

[57] J.-W. Byun, E. Bertino, and N. Li, “Purpose based access control of complex data for
privacy protection,” in Proceedings of the tenth ACM symposium on Access control
models and technologies. ACM, 2005, pp. 102–110.

[58] P. Maymounkov and D. Mazieres, “Kademlia: A peer-to-peer information sys-
tem based on the xor metric,” in International Workshop on Peer-to-Peer Systems.
Springer, 2002, pp. 53–65.

	Introduction
	Goals and research questions of the thesis
	Background and context of this thesis
	Outline

	Analysis
	Use cases
	Electricity smart meter in shared office spaces
	Use case: Hierarchical distributed Anomaly Detection System

	Generalization
	Security setting of the thesis
	Adversary models
	Information security and privacy protection goals

	Anticipation of solution components
	Access control (AC)
	Request processing (RP)
	Directory Service (DS)

	Requirements
	Non-functional requirements
	Information security protection goals (ISP)
	Privacy protection goals (PP)
	Performance in dynamic environments (DE)

	Functional requirements
	Access control (AC)
	Request processing (RP)
	Directory Service (DS)

	Background and State of the Art
	Privacy beyond anonymity
	Access control
	Authorization policies
	Proving authorization
	Authentication

	Request processing
	Unique addressing of artifacts
	Using digital signatures as identifiers
	Blockchain storage of information
	Web service interface protocols
	Fulfilling information security goals in communication

	Directory Service
	Lightweight Directory Access Protocol (LDAP)
	Document-oriented databases

	Design
	System architecture
	Clients
	Peers
	Gateway

	Directory services component
	Stored peer attributes and state information
	Tracking of peers
	Providing processed metadata
	Storing information for later retrieval
	Logging in a private blockchain

	Access control component
	Proof of authorization through stateless grants

	Request processing component
	Transparent and non-repudiatiable requests
	Avoiding redundant transmission through unambiguous addressing of content
	Operability in dynamic environments
	Post-processing of received results
	Security considerations for information transmission

	Protocol phases and content of messages
	Directory services
	Access control
	Request translation

	Implementation
	Modularization of system components
	Access control
	Authorization as a service
	Certificate authority

	Request processing
	Client and peer interface
	Request translation and SMC back end
	Implementation interface for SMC back ends

	Directory services
	Storage and retrieval of unprocessed directory information
	Translation groups defined by attributes to peer
	Querying and processing of metadata
	Auditable and unforgable logging

	Exemplary implementation of peers and a client

	Requirements evaluation
	Non-functional requirements
	Information security protection
	Privacy protection
	Performance in dynamic environments

	Functional requirements
	Access control
	Request processing
	Directory Service

	Performance evaluation
	Methodology and metrics
	Test metrics
	Parameterization of tests

	Testing environment
	Network setup
	Hardware and software details

	Analysis of results
	Number of peers
	Round-trip delay time
	Frequency of requests
	Summary of performance evaluation

	Related work
	Secret Sharing based signatures
	Decentralized authorization decisions using blockchain smart contracts
	Enigma
	Sticky policies
	Purpose based access control

	Conclusion and future work
	Bibliography

