
Technische Universität München
Department of Informatics

Bachelor’s Thesis in Informatics: Games Engineering

Privacy Implications of mDNS

Winfried Baumann

Technische Universität München
Department of Informatics

Bachelor’s Thesis in Informatics: Games Engineering

Privacy Implications of mDNS

Auswirkungen von mDNS auf die Privatsphäre

Author Winfried Baumann
Supervisor Prof. Dr.-Ing. Georg Carle
Advisor Dr. Matthias Wachs
Date February 15, 2017

Informatik VIII
Chair for Network Architectures and Services

I con�rm that this thesis is my own work and I have documented all sources and material
used.

Garching b. München, February 15, 2017

Signature

Abstract

With Zeroconf computers automatically create a network without requiring the user
to make any con�guration. Service Discovery is one part of this idea which enables
devices to announce and discover services like music or �lesharing. These services are
primarily used in home networks and have potential to publish sensitive information
about the user providing the service. This becomes a problem with the growing number
of mobile devices such as smartphones [1] and laptops, because they leave the trusted
network and still announce their services. Thus the goal of this thesis is to analyze
Multicast DNS with DNS Service Discovery, Apple’s approach to Zeroconf, in real
networks to assess the privacy and security impact for users whose devices announce
services. We start by learning how Zeroconf works and have a special look at Multicast
DNS Service Discovery. This knowledge is then used to develop a tool for collecting
service announcements in real networks. After collecting service announcements we
analyze them, to learn about the current state of mDNS-SD and the implications on
privacy and security, and come to the conclusion that the biggest problem of mDNS-SD
is the naming of the devices because they contain the �rst name of the user in 55% of
all cases and 10% even contain the full name.

Zusammenfassung

Hinter Zeroconf steckt die Idee, dass man Rechnernetze ohne Kon�guration duch Men-
schen aufbaut. Ein Teil davon ist das automatsche Au�nden von Diensten wie z.B.
Musik- oder Dateisharing. Diese Dienste werden eigentlich in Heimnetzwerken benutzt,
aber die steigende Anzahl an mobilen Geräten, wie Laptops und Smartphones [1], bringt
diese Dienste auch in fremde Netze und gibt dort möglicherweise private Daten preis.
Deshalb ist das Ziel dieser Arbeit die Analyse von Multicast DNS zusammen mit DNS
Service Discovery, einer Variante von Zeroconf entwickelt von Apple, in echten Net-
zen und das Bestimmen der Auswirkungen auf die Privatsphäre und die Sicherheit der
Dienstanbieter. Um die Auswirkungen bestimmen zu können eignen wir uns zuerst
Hintergrundwissen zu Zeroconf im Allgemeinen und dann Multicast DNS Service Dis-
covery (mDNS-SD) im Speziellen an. Mit diesem Wissen wie mDNS-SD funktioniert
bauen wir ein Werkzeug, welches uns hilft die Informationen zu sammeln welche die
Dienste im Netz verö�entlichen. Nachdem wir die Daten gesammelt und analysiert
haben, um den aktuellen Stand von mDNS-SD und die Auswirkungen auf Sicherheit
und Privatsphäre zu kennen, kommen wir zu dem Schluss, dass das größte Problem bei
mDNS-SD die Namensgebung der Geräte ist und diese in vielen Fällen (65% aller Geräte)
den Namen des Benutzers zumindest teilweise (55%) oder sogar ganz (10%) enthält.

I

Contents

1 Introduction 1
1.1 Goals of the Thesis . 1
1.2 Outcome . 2
1.3 Outline . 2

2 Multicast DNS and Service Discovery 3
2.1 Zero-con�guration Networking . 3
2.2 Multicast DNS . 4
2.3 DNS - Service Discovery . 6
2.4 Examples . 7

2.4.1 Querying for Instances . 7
2.4.2 Getting Instance Information 8

2.5 Summary . 8

3 mDNS-SD Privacy Analysis 9

4 mDNS-SD Analysis Toolchain 11
4.1 Objective . 11
4.2 Requirements . 11
4.3 Structure . 12

4.3.1 Logger . 12
4.3.2 Database Server . 12
4.3.3 Analyzer . 13

4.4 Implementation . 13
4.4.1 Logger . 13
4.4.2 Database Server . 13
4.4.3 Analyzer . 14

4.5 Summary . 14

5 Ethical Discussion 17
5.1 Data Economy . 17
5.2 Data Privacy . 17

II Contents

5.3 Disclosure . 17

6 Real World mDNS-SD Analysis 19
6.1 Methodology . 19

6.1.1 Categorization by the Accessibility of Networks 19
6.1.2 Approach to Collection of Announcements 19
6.1.3 Categorization by Data in Announcements 20
6.1.4 Analysis of Operating Systems 20

6.2 Data Collection . 20
6.2.1 Network Analysis . 21

6.3 Hostnames and Devices . 21
6.4 Services . 22

6.4.1 Apple Mobile Device Protocol (apple-mobdev2) 23
6.4.2 Apple File Sharing (afpovertcp) and Server Message Block (smb) 23
6.4.3 NVIDIA streaming service (nvstream) 23
6.4.4 iTunes Home Sharing (home-sharing) 24

6.5 Di�erences by Network Accessibility 24
6.5.1 Private Networks . 24
6.5.2 Semi-Public Networks . 24
6.5.3 Public Networks . 25

6.6 Service Categories . 25
6.6.1 Personal . 25
6.6.2 Semi-Personal . 25
6.6.3 Non-Personal . 25

6.7 Analysis of Di�erences in Operating Systems 26
6.8 Analysis of Queries . 26

7 Related Work 27

8 Conclusion 29
8.1 Discussion . 30
8.2 Future Work . 30

Bibliography 31

III

List of Figures

2.1 Hostname resolution in a local network using mDNS 5
2.2 Querying for airplay instances in a local network using mDNS-SD . . . 7

4.1 The Service Instance Explorer of the Analyzer 15

V

List of Tables

6.1 Overview over the location, date and duration of service announcement
collection . 21

6.2 Service Instance Distribution . 22
6.3 Instance Name Distribution . 22
6.4 Service Distribution by Network Accessibility 24

1

Chapter 1

Introduction

Zeroconf Networking(Zeroconf) aims to create usable networks without con�guration
by enabling automatic network address assignment together with resolution and distri-
bution of computer hostnames. Service Discovery is also a component of this technology:
It allows devices to �nd and o�er services like printing or �lesharing. That behavior is
handy for users of the network because they can simply utilize services announced by
other clients without the trouble of con�guration.
Due to the fact that the user has to be able to distinguish between announced instances
of a service, each one of them has to share metadata like a name and other information
depending on the type of service it o�ers. Sharing images from a smartphone to be able
to have a look at them on a laptop with a bigger screen is not a real problem as long
as you are in a network you can trust like your home network. The issue arises when
these mobile devices connect to other networks in which unknown clients reside and
still o�er the service to everyone altogether with its metadata.

1.1 Goals of the Thesis

This Bachelor’s thesis has a look at the e�ect of mobile devices announcing their ser-
vices in foreign networks by answering the following question:
Which sensitive information can be extracted from local networks using Mul-
ticast DNS Service Discovery andwhat are implications in terms of privacy and
security for the user?
This question can be split into several subquestions:
Q1: How does Multicast DNS Service Discovery realize service announcement and
discovery?
Q2: Which data is published during announcement and discovery of services?
Q3: Which parts of the announcement and discovery may contain sensitive data?
Q4: Can we qualify and quantify privacy violations?

2 Chapter 1. Introduction

Q5: Can the leakage of data be limited or prevented?

To answer this question we start with an analysis of Zeroconf and its current state of the
art technology. Afterwards we will have a look at the current deployment of Multicast
DNS Services in real networks by implementing a tool that allows the collection of
service announcements.

1.2 Outcome

Answering the questions above will result in a deeper understanding of how Multicast
DNS-based Service Discovery works, how its current state in terms of deployment is
and the impact on privacy and security. We will discuss which actions can be taken to
preserve privacy and security. The tool we will implement for discovering and analyzing
service instances will be made available to the public [2]. This enables others to redo
the analysis and if necessary improve it in the future.

1.3 Outline

The thesis is structured as follows: We start with a description how Multicast DNS
and DNS-based Service Discovery works (Chapter 2). After a privacy analysis of the
Multicast DNS Service Discovery technology (Chapter 3) we will design a toolchain
(Chapter 4) for collecting and analyzing service announcements to be able to evaluate
the current deployment in real world networks. In the analysis chapter (Chapter 6) we
will have a look at the collected information. Finally, the thesis is concluded with a
summary of our �ndings (Chapter 8).

3

Chapter 2

Multicast DNS and Service Discovery

Classical computer networks require the presence of special con�guration servers to be
able to connect to other clients and use services like printing or �lesharing. Examples
for con�guration servers are Dynamic Host Con�guration Protocol (DHCP) [3] servers
used to distribute IP addresses or Domain Name System (DNS) [4] servers for name
resolution, which describes the process of obtaining an IP address for a given hostname.
But even if everything is set-up correctly the servers need to be operated and can fail
because their underlying hardware malfunctions or other events shut down the device.
This creates the need for a decentralized solution for the problem.

2.1 Zero-con�guration Networking

The idea of Zero-con�guration Networking (Zeroconf) is that computers automatically
con�gure themselves to create a usable computer network. Automatic assignment of
network addresses, distribution and resolution of hostnames and automatic location
of network services make up the core of this technology. This facilitates building
the network which would otherwise require manual con�guration as described above.
Failure is impossible with this setup because every client manages itself by talking to
the other clients in a prede�ned way. The problem was that there existed no standard
for all three core features of Zeroconf so companies and organisations came up with
di�erent approaches:

• Microsoft proposed NetBIOS [5] for IPv4 and Link-local Multicast Name Resolution
(LLMNR) [6] for IPv6, since NetBIOS is not available over IPv6, for name reso-
lution. Service Discovery is provided using NetBIOS Service Discovery which
allows devices to simply share their services or even share services of other hosts
connected to them for example a printer connected over a parallel port. One
major drawback of this choice is that two di�erent technologies are used for the

4 Chapter 2. Multicast DNS and Service Discovery

single task of resolving names.

• Web Services Dynamic Discovery (WS-Discovery) [7] was shaped by Microsoft,
Intel, Canon and other companies and is primarily used by printers. Communi-
cation is realized using SOAP over UDP in combination with other web service
standards.

• AllJoyn, a collaborative open source software stack, was created to allow devices
to communicate with each other. A part of the stack contains the Zeroconf idea
where Multicast DNS is used in combination with HTTP over UDP.

• Apple’s Bonjour [8] implementation uses Multicast DNS and DNS-based Service
Discovery and is one of the most used Zeroconf implementations today, probably
due to its simplicity and reuse of existing structures of DNS.

A lot of companies, including the big ones like Apple and Google, use Multicast DNS
Service Discovery in their products. MacBooks, iPhones, Android-based smartphones,
computers running Linux but also printers, Streaming-Devices and other IoT devices
use it to connect to each other. It is possible to discover �lesharing devices, game servers
like Minecraft, voice communication servers, printers and a lot more.

The following sections contain the necessary parts of Multicast DNS and Service Dis-
covery required as background for subsequent chapters.

2.2 Multicast DNS

Multicast DNS (mDNS) is speci�ed in RFC 6762 [9] written by Cheshire et al.. With
mDNS, clients request DNS-like resource records from authoritative clients in the local
network using IP Multicast. Query and response messages are similar to classic DNS so
the main and most noticeable di�erence is that there is no central DNS instance involved.

The speci�cation contains several parts of interest for the upcoming chapters:

mDNS uses a local namespace, separated from global DNS, with the pseudo-top-level
domain „.local“ for hostnames of devices in the local network which can be resolved
using mDNS. These hostnames are unique and have the form of single-dns-label.local.
with a maximum length of 255 bytes. Each query must be sent to the multicast address
224.0.0.251 for IPv4 or FF02::FB for IPv6 and use port 5353. These queries will not be
routed due to the fact that mDNS is link-local.

There are two ways of querying for information in an mDNS network:

2.2. Multicast DNS 5

1. One-Shot Querying:
Suitable for requests where only one answer is enough, like resolving a hostname
to an IP address.
After sending the query only the �rst answer will be used.

2. Continuous Querying:
Suitable for all requests but especially for queries where multiple answers are
possible, e.g. searching for one of multiple printers.
After sending the query all answers will be gathered until the program is inter-
rupted. The time between successive queries must increase at least by a factor of
two.

Using multicast has the following major advantages: Everyone in the network can see
the responses to a query and if clients have queried the same question before they can
silently update their caches and detect con�icts.
When new clients join the network they can tell the responder that unicast responses
are allowed if the question has been answered not so long ago to reduce network load.
Responding to queries is only allowed for authoritative sources for a given record and
when the response is positive, non-null or the message that a particular record doesn’t
exist. Responses may not contain questions but multiple answers.
To reduce collisions queriers and responders send each message with a random delay.

RouterQuerier

Client 1

Client 2

Internet

1) Who is ’Client2.local’?

1) Who is ’Client2.local’?

1) Who is ’Client2.local’?

2) ’Client2.local’ is 192.168.0.42

2) ’Client2.local’ is 192.168.0.42

2) ’Client2.local’ is 192.168.0.42

Figure 2.1: Hostname resolution in a local network using mDNS

6 Chapter 2. Multicast DNS and Service Discovery

2.3 DNS - Service Discovery

The DNS-SD (RFC 6763 [10]) mechanism allows discovering named instances of services
using standard DNS queries.
Services are identi�ed by the service type and protocol they use. IANA provides a list of
currently registered services [11] and o�ers the option to register own ones. Examples
for services are �lesharing (e.g. afpovertcp), printing (e.g. ipp) and music streaming (e.g.
tivo-music). Each instance of a service announces a DNS SRV and DNS TXT record.
The SRV record with a name of the form Instance.Service.Domain contains the host and
port where this instance can be found. The TXT record contains further information in
a key/value based structure such as the version of the service this instance is running.
The content of the TXT record depends on the application, so even if both applications
implement the same service the their payload can di�er due to the fact that some values
are optional.
Acquiring a list of available instances of a service is done by querying for PTR records
using a name with the pattern Service.Domain. The result of this query is a list of PTR
records giving instance names of the queried service which describe SRV/TXT record
pairs.

Instance names should be precon�gured and changeable by the user to be in line with
the idea of Zeroconf. There are some limitations which must be considered when pick-
ing one automatically. They are limited to 63 octets in length (worst case: 15 Unicode
characters) and should be readable by the user which means that names containing
only spaces or similar characters should be avoided. These names must be using Net-
Unicode [12], which enforces the UTF-8 encoding and limits the amount of control
characters to the ones really needed like spaces. The name should not contain any parts
of the MAC address, serial number or anything else to make it globally unique, because
it only has to be unique in the current local network and easy for humans to map the
name to a real device.

The paragraph below will explain the remaining parts of the SRV resource record
name: Two DNS labels make up the Service part. The �rst one starts with an underscore
followed by the service name, which describes what the service does and has a maximum
length of 15 characters. And the second one is „_tcp“ when the services run over TCP
or „_udp“ for UDP or every other connection protocol like SCTP or DCCP. The last part
in a service instance name is the Domain. This can be anything ranging from standard
unicast DNS domain names like „example.com“ to domain names with rich-text service
subdomains like „Apartment 3, 1st Floor.example.com.“. When using mDNS the domain
is always „local.“ as described in the previous section.
„_services._dns-sd._udp.Domain“ is a special address which returns when queried all

2.4. Examples 7

available service types in the queried domain.

The lifecycle of a service instance consists primarily of the following events:

1. Announcing Services:
When service instances start they cannot send responses containing the new
instance because there is no query they can respond to. Some implementations
of mDNS-SD (e.g. Avahi [13]) use the trick of querying their own instance on
start to announce themselves to the network. In general announcing the service
simply comes down to responding to queries if a record exists which matches the
query.

2. Responding to queries:
If a record contains the service type queried for then the DNS server or the client,
in case mDNS is used, o�ering the service responds with the instance name of
the service. To reduce network load the response may also contain the SRV an
TXT resource record of the instance because the querier is very likely to issue a
request for these records in the not so distant future.

RouterQuerier

Client 1

Client 21) Query (PTR):
_airplay._tcp.local.

1) Query (PTR):
_airplay._tcp.local.

1) Query (PTR):
_airplay._tcp.local.

2) Response:
DJ._airplay._tcp.local.

2) Response:
DJ._airplay._tcp.local.

2) Response:
DJ._airplay._tcp.local.

Figure 2.2: Querying for airplay instances in a local network using mDNS-SD

2.4 Examples

2.4.1 Querying for Instances

This example requests PTR records of all instances o�ering the presence service. The
presence service is used for local chats in applications like iChat/Messages or Pidgin.

8 Chapter 2. Multicast DNS and Service Discovery

_Query: presence._tcp.local type PTR
_presence._tcp.local

name = michael@Michael’s IPhone._presence._tcp.local
_presence._tcp.local

name = michael@Michael’s Laptop._presence._tcp.local

There are two devices currently running the presence service.

2.4.2 Getting Instance Information

After �nding an interesting instance the next step would be to get information on how
to connect to the instance.

Query: michael@Michael’s Laptop._presence._tcp.local type SRV
service = Michael’s Laptop.local 5298

Query: michael@Michael’s Laptop._presence._tcp.local type TXT
text = "textvers=1"

"client=Pidgin"
"clientvers=4.11"
"�rst=Michael"
"last=Maier"
"status=Away"

Querying for the SRV and TXT records returns information about „michael@Michael’s
Laptop“ required to be able to connect to the instance together with some additional
information like his status.

2.5 Summary

Multicast DNS with DNS-based Service Discovery is the current standard to create a
network where clients can connect to each other and use their services that requires
zero con�guration and is thus easy to set up. mDNS allows clients to communicate with
each other by sending and listening to a speci�c multicast address which removes the
need for a central DNS server. Discovery and announcement of services like �lesharing
and printing is achieved with DNS Service Discovery to simplify the their use.
Every service can announce sensitive information in the instance name or the TXT
resource record depending on the application implementing the service, thus even
though two users announce the same service one might leak more sensitive information
than the other.

9

Chapter 3

mDNS-SD Privacy Analysis

With the knowledge of how mDNS-SD works, this chapter is about �nding the critical
spots for the users privacy.

Announcing services shows the services and hosts a client is interested in. This shows a
potential attacker which services he can o�er to the victim if the original instance is not
available. O�ering fake versions of services a client is looking for can lead to privacy
and security issues.

Discovering services is a three step process, where each of the steps shows potential to
leak information:

1. Announcing services:
This has two problems: The �rst one being the fact that everyone can enumerate
services and options for private services doesn’t exist which shows information
to all clients in the whole link-local domain.
The second one relates to the naming of instances because they are often con-
�gured to contain the username and/or the hostname. When looking at the
examples in the previous chapter all users �nd michael@Michael’s Laptop in
their Pidgin IM-Application even without having each other sent a buddy request.
Even tough this seems to be constructed it is common practice to use the user-
name in combination with the hostname to make the users of a service unique in
the network.

2. Getting SRV and TXT resource records:
After �nding the instance, the querier tries to connect to the service using the
SRV and TXT records. These two records face the same problems of containing
instance/service name and the service type like the PTR record in the enumeration
does but there are even more problems.

10 Chapter 3. mDNS-SD Privacy Analysis

The SRV record contains the port number which often refers to a particular service
type, e.g. port 22 for ssh. This is not only a privacy problem but an even bigger one
in terms of security, because it enables passive port scanning without rendering
the attacker suspicious like a port scan would do. The list of key and value pairs
in the TXT record has an even greater probability to provide others with sensitive
information. In the example above the users full name and his status is announced
to the anyone on the network. Security hazards arise when the record contains
the version of the service which can be used to test whether it is vulnerable to an
attack or not.

3. Resolving the hostname:
When getting the IP from the A or AAAA record found in the SRV resource
the hostname, which is used as DNS name to create the mapping, is once again
publicly accessible in the network. The creation of a mapping from hostname to
IP might allow gaining even more insights about the client.

The elaboration shows that the announcement of services has a high potential of creating
a privacy threat if services use personal data to announce themselves. Due to the fact
that the services have the capability of publishing sensitive information, real world
service need to be looked at to be able to gauge the current privacy implications.

11

Chapter 4

mDNS-SD Analysis Toolchain

4.1 Objective

It is not possible to talk about privacy impacts without knowing the data found when
using mDNS-SD, because there is no complete list of all services, no list of applications
announcing a service and registering services at IANA [11] is voluntary. Due to the
fact that the speci�cation doesn’t de�ne what information services announce there
will be di�erences in the amount of data a service publishes. There might even be
di�erences between implementations of programs which use the same service type, e.g.
chat programs which only publish the username in contrast to ones that also show the
real name and status. The goal is to build a set of tools which collect and analyze the data
advertised by mDNS-SD services to gain insights which information is published and
the privacy hazards this creates for the user. These tools can then be run continuously
as a service.

4.2 Requirements

The �rst task of the service is to �nd all mDNS-SD instances currently running in the
link-local domain. Then it has to query each instance for their SRV and TXT record
to get detailed information about the service instance and store it continuously in a
database. With all the data in the database, the service is able to generate statistics which
can help the user to reveal privacy risks and understand the information transmitted
by the services.

Out of it the following requirements for the service can be derived:

1. Querying all service-instances in the local domain

12 Chapter 4. mDNS-SD Analysis Toolchain

2. Ability to query in intervals (e.g. every 15 seconds)

3. Support for parallel collection of data in di�erent networks

4. Persistent storage of information about each instance

5. Simple interface for storing and accessing data in the database

6. Continuous monitoring

7. Visualization of the data collected

4.3 Structure

The requirements can be separated into three modules:
The �rst three requirements are part of the logging module because they describe how
data is collected. The next two describe a storage module and the last two depict an
analysis module to help the user analyzing the services.

4.3.1 Logger

The logger is responsible for querying service instances in the link-local domain in
con�gurable intervals. Each service instance found will be sent with additional data to
the database.
The information stored consists of the following:

• the domain name

• the service name

• the service protocol

• the instance name

• content of the TXT resource record

• time when service was discovered

• descriptive name of the location where the logger is used

4.3.2 Database Server

The primary task of this application is to permanently store the logs received from the
logger. To be able to support multiple logging modules in parallel the database needs to
be reachable from several locations at once. With this in mind and the requirement of

4.4. Implementation 13

having a simple interface for querying and adding logs to the database it is reasonable
to use a central database server for persistent storage.

4.3.3 Analyzer

Analysis of the collected data happens in the analyzer. It uses the database servers
interface to query for data and displays it in di�erent formats for the user. These
formats include a table containing all the instances found at a certain location and the
ability to �lter the results to display only one service type. Another table is used to
count the number of available service instances of a service type which allows to quickly
see the most announced service. This helps the user to quickly see the information
services publish and to �nd sensitive announcements of services.

4.4 Implementation

4.4.1 Logger

Querying all available service instances is the primary task of the logger. Due to the
fact that most Linux systems have Python preinstalled and libraries for the required
tasks exist, it seems to be a good choice for collecting the announcements and sending
them to the database server. The implementation of this module makes heavy use of
two libraries:
With the zeroconf [14] library searching for all available instances is done by searching
for all service types currently available �rst and afterwards continuously querying for
all instances using one of the services for a few seconds (15) which is enough for running
instances to reply. The result of this querying process is a list of instances which is sent
to the database server for persistent storage using the requests [15] library to be able to
evaluate them later on.

4.4.2 Database Server

The database server receives service instances from the logger and needs to be able to
send them to the analyzer.
Using REST is the current state of the art for servers which want to o�er a simple and
clean interface for their clients. Due to the fact that REST makes use of the HTTP
protocol and every major programming language has support for web queries, it is
reasonable to use it as the technology of choice for the server.
We use the Spring-Boot [16] framework which consists of a REST implementation writ-
ten in Java and o�ers database integration by adding the database url, username and
password to a properties �le (application.properties) and annotating the class which

14 Chapter 4. mDNS-SD Analysis Toolchain

we want to save. Spring-Boot creates database schemes automatically by analyzing the
annotated Java classes and uses the Java Persistence API [17] when storing or access-
ing data from the database. The REST-API we designed consist of four actions which
transmit their data in the JSON format and only use strings:

• POST /log/add
Adds a single service instance with additional data found to the database. The
data which needs to be sent was de�ned in Section 4.3.1.

• GET /log/get
Returns all logged instances from the database.

• GET /log/getOrigins
Returns all origins which is the name the logger used to describe the location of
the network.

• GET /log/getByOrigin
Returns all logged instances for the requested origin.

4.4.3 Analyzer

The analyzer module requests found service instances from the database server by
querying the REST API and o�ers a user interface which displays the instances to see
the information they published.
The querying is done with the help of Unirest [18], a library which simpli�es the
generation of REST requests in Java. JavaFX [19], Javas latest user interface toolkit,
is used to build a desktop application which contains di�erent views on the data that
help the user when making an analysis. One example for such a view is a table that
displays the number of instances for each service. This helps the user to quickly identify
important services which might be worth to look at.

4.5 Summary

Collecting the required information for the analysis is split into three modules: A logger
to collect the announced information. The database on a server for persistent storage
and an analyzer for continuous monitoring of the data collected.

4.5. Summary 15

Figure 4.1: The Service Instance Explorer of the Analyzer

17

Chapter 5

Ethical Discussion

Considering the amount and kind of data which can be gathered with the tool and the
possible privacy hazards this creates, an ethical consideration has to be made.
The two points which will be taken into account are data economy and data privacy.

5.1 Data Economy

The tool for collecting the data published by the services was designed in a way that
only relevant parts for this work are collected and stored to be analyzed later on. In
this case relevant data is data which will be used in the privacy analysis.

5.2 Data Privacy

It is not enough to limit the collection to the required minimum because in this particular
instance the information collected is expected to be sensitive. Hence all pieces of
information which will serve as examples in this paper are changed to prevent the
mapping to a real person.

5.3 Disclosure

The database with all the aggregated resource records along with other metadata like
when and where it was collected is not anonymized because it would go beyond the
scope of this project and was thus permanently deleted after the study.

18 Chapter 5. Ethical Discussion

The two elements of reducing the data to the minimum and anonymizing the data
when published create a solid foundation for using real world data as examples while
preserving the owners privacy.

19

Chapter 6

Real World mDNS-SD Analysis

This chapter is about the �ndings in the data collected with the service described in
Chapter 4.

6.1 Methodology

6.1.1 Categorization by the Accessibility of Networks

We categorize networks by their accessibility:
Private or home networks are networks which are not accessible for everyone because
they require a password. Semi-Public networks can be found in cafés or inns which
require a password that is obtainable from the sta� or corporate networks where all
employees have access. Public networks form the last category and describe networks
that everyone can access without any requirements.

6.1.2 Approach to Collection of Announcements

Public and semi-public networks were searched at central places like train stations,
shopping malls or large squares. Private networks were di�cult to choose due to their
nature of being password protected so we collected announcements in networks of
friends with their permission. This is not a perfect solution but the idea is to gain a basic
understanding of which services can be expected in home networks so we can make
basic comparisons between them. We collected the data by going to the place where
the network is and connecting to the network. To test whether a network allows mDNS
tra�c, we used a laptop to generate test announcements and if the announcement is
displayed in the ZeroConf Browser [20], an Android application for discovery of mDNS
Services, the network allows mDNS. During data collection, we followed our ethical
considerations made in Chapter 5.

20 Chapter 6. Real World mDNS-SD Analysis

6.1.3 Categorization by Data in Announcements

Services can be assigned one of three groups depending on the amount of private data
they announce: Personal services share information like the name of the user which
is information that can be directly linked to a person. Semi-personal services leave a
clue about the user for example which device or hardware he or she uses. Non-personal
services provide no data about the user.

6.1.4 Analysis of Operating Systems

Apple’s preferred Zeroconf technology is mDNS and DNS-SD which has integrated plat-
form support in all their devices which means the underlying platform can be directly
used to publish and discover service announcements without the requirement of an
external library.
Windows does not ship with platform support for mDNS but Apple’s mDNSRespon-
der [21] has interfaces for C and Java which can be included in an application to an-
nounce services. With the ongoing development of native mDNS-SD support for Win-
dows 10 will be able to announce and discover services in the future.
Linux devices have Avahi [13] at their disposal which allows them to announce and
discover services.

6.2 Data Collection

We analyzed sixteen public networks near train stations and central squares, four semi-
public networks and �ve home networks. Service announcements were collected be-
tween January 25th and February 8th as shown in Table 6.1. After analyzing the �rst
two private networks it became clear that analyzing this type of network for a longer
period does not yield additional information because no instances joined or left the
networks. Thus the following collection times in this network category were halved.
Longer collection times help at public and semi-public networks because a lot of people
were joining and leaving the network during the collection of data. Half an hour was
enough to see which services were the most dominant in the network and everything
after that made the measurement more precise.

Altogether data of 189 di�erent service instances, 19 di�erent services and 167 unique
devices was collected during the research.

6.3. Hostnames and Devices 21

Category Location Date Duration
Private Private1 February 5, 2017 30 min

Private2 February 5, 2017 30 min
Private3 February 6, 2017 15 min
Private4 February 6, 2017 15 min
Private5 February 7, 2017 15 min

5 locations 1.75 hours
Semi-Open Café1 January 25, 2017 30 min

Café2 February 1, 2017 30 min
Inn February 1, 2017 30 min

University February 1, 2017 1 hour
University February 7, 2017 1.5 hours
4 locations 4 hours

Open Train station February 4, 2017 45 min
Shop1 February 8, 2017 15 min
Shop2 February 3, 2017 30 min

3 locations 1.5 hours

Table 6.1: Overview over the location, date and duration of service announcement collection

6.2.1 Network Analysis

In only three of the sixteen public networks mDNS services can be announced and
discovered which shows that a lot of public network providers are aware of mDNS. All
four semi-public networks allowed mDNS tra�c with the exception being the eduroam
network, a world-wide study and research network, but only the access points in the
computer science building at TU Munich. A similar result was found in home networks
where every one of them allowed mDNS messages to roam freely.

Some of the public networks required a form of authentication (e.g. username and
password or a special code) before accessing the Internet is possible but allowed com-
munication via mDNS before login. These networks are not part of the sixteen tested
networks and not included in the measurement.

6.3 Hostnames and Devices

55% of the hostnames contained the �rst name of the user and 10% used the full name.
Only one instance was announced with the last name. The other 35% can be split
into 14% nicknames, 11% model names and 10% miscellaneous/random names (e.g.
LAPTOP-fHfani13Fa). Having the users name in the hostname is problematic because
the hostname is part of every service announcement which makes it easy to track
speci�c persons by collecting their announcements.

22 Chapter 6. Real World mDNS-SD Analysis

It is not surprising to see that the majority of hostnames (74%) can be linked to Apple
products (iPad, iPhone, iMac and MacBook) because they introduced mDNS and DNS-
based SD. A lot of the other devices (7%) can be categorized into laptops or desktop
computers because they o�er the nvstream service which will be looked at in Section
6.4.3. When looking at the data it is interesting to see that there is not a single Android-
based smartphone announcing mDNS-SD services. This could be because the Android
world is not that interwoven with other devices like the Apple world is, for example
when looking at music or �le sharing.

6.4 Services

Instances of Service Distribution
apple-mobdev2 65%

homekit 8%
nvstream 6%

smb 3%
afpovertcp 3%

ipp 2%
other services 13%

Table 6.2: Service Instance Distribution

Looking at Table 6.2 most announced (65%) are instances announcing the apple-mobdev2
service. The homekit service, used to control smart home devices, follows by a distance
with only 8% and thereafter comes the nvstream service with 6%. The �rst and last
service mentioned will be analyzed in Section 6.4.1 and Section 6.4.3. Smart home devices
are currently known to be hackable [22] because producers lack incentives to enhance
security [23]. Research about the homekit service showed that currently no security
�aws were found but similar services might have �aws and such announcements help
attackers to �nd vulnerable services.

Service Instance Names Distribution
Hostname 48%

Hostname and Text 21%
MAC address 5%

MAC address and local IPv6 address 5%
Hostname and MAC Address 5%

Random 16%

Table 6.3: Instance Name Distribution

Table 6.3 shows that 74% of all services use the hostname in the instance name and
26% use either the MAC address (10%), or the local IPv6 address (5%), or a random

6.4. Services 23

combination of letters and digits (16%). To be able to identify an instance it has to
have a meaningful name to be able to distinguish it from the others. Thus using the
instance name is a good choice but has the same implications as described in Section 6.3.
Publishing the local IP or MAC address is not a problem because both can be acquired
by listening to the network tra�c, too.

75% of the services found did not use the TXT record to provide additional information.
Only 25% published information about their service like which �le formats are allowed
for printing.

The further content of this section is about the most frequent, interesting or chatty
services found during the collection of announcements.

6.4.1 Apple Mobile Device Protocol (apple-mobdev2)

This service [24] is by far the one with the most announced instances (65% of all
instances) and allows system administrators to manage iOS devices by sending messages
to them. Authorized IT administrators can modify or install pro�les, remove passcodes
or even erase the device. This functionality is primarily used by companies which need
to manage a lot of devices. Private individuals make use of this service to synchronize
their iTunes library [25] at home with the one on their mobile device.
Instances announce themselves with their MAC address followed by their local IPv6
address separated by the @ symbol which is no security problem as explained above
but it is di�cult for the user to distinguish between three di�erent instances.

6.4.2 Apple File Sharing (afpovertcp) and Server Message Block (smb)

Both services are primarily used for �lesharing and all devices o�ering one of the ser-
vices also announced the other. The instances use, in contrast to to the apple-mobdev2
service, the hostname to announce the service. Devices are identi�able as MacBooks
and all of them only contain the �rst name.
The default con�guration for these services doesn’t allow access to the �les without
entering the username and password of the device which protects �les from intruders.

6.4.3 NVIDIA streaming service (nvstream)

The nvstream service [26] allows owners of a NVIDIA graphics cards to stream games
from laptops or desktop computers to the NVIDIA Shield, a handheld game console.
Instances of the service use the hostname as the name to announce themselves but no

24 Chapter 6. Real World mDNS-SD Analysis

Private Networks Semi-Open Networks Open Networks
apple-mobdev2 13% 63% 83%

nvstream 38% 6% 0%
afpovertcp 0% 4% 0%

ipp 25% 0% 5%

Table 6.4: Service Distribution by Network Accessibility

instance found contained any information about the user of the device because the host-
names were using the name of the model name of the device, the device manufacturer
or the word „Laptop“ or „Desktop“ followed by a seemingly random combination of
numbers and letters as a name. This was the most used service (32%) of non-Apple
devices.

6.4.4 iTunes Home Sharing (home-sharing)

As the name suggests this service [27] can be used to share the iTunes library to other
devices in the home network. Even though only one instance of this service was found
in all the di�erent networks, the service is listed here because it utilized the full name
of the user in the instance name and the TXT content as well.
After setting up an own iTunes home-sharing service to test the naming convention, it
came to light that once again the service only uses the name of the device which was
the full name in case mentioned above.

6.5 Di�erences by Network Accessibility

6.5.1 Private Networks

Private networks feature static devices like printers or desktop computers, as well as
mobile devices like smartphones or laptops. This can be seen when looking at the
services announced: Printers announcing instances of the Internet Printing Protocol
(IPP) [28] and Printer Page Description Language Data Stream (pdl-datastream). Laptops
and desktop computers with NVIDIA graphics cards announce the NVIDIA streaming
service and iPhones can be found by looking at apple-mobdev2 service instances.

6.5.2 Semi-Public Networks

Networks that are more accessible like WiFi networks in cafés, protected by a password
handed out to customers, or university networks contain less static devices and more
mobile ones like laptops and smartphones. Filesharing services become more frequent

6.6. Service Categories 25

because the data is moved between the mobile devices and not stored on the central
desktop computer.

6.5.3 Public Networks

The results of this network type are not that di�erent to semi-public ones: The relation
between smartphone and laptop shifts even more towards smartphones which can be
seen by looking at the apple-mobdev2 service. This could be due to the fact that the
WiFi networks which had mDNS enabled were at locations where using a smartphone
was more comfortable than using a laptop.

6.6 Service Categories

Services fall into one of three categories in terms of privacy.

6.6.1 Personal

There are very sensitive services which often announce the full name of the user, parts
of it or additional data like the status of the user.
A lot of services we found use the hostname as instance name to announce their service
(see Table 6.3). The problem is that 65% of hostnames contain the full or parts of the
users name which shows that the service itself is not the problem but the hostname is.

6.6.2 Semi-Personal

These services don’t publish directly usable data like names of a user but due to the fact
that the service is available information about the user can be inferred. We found the
nvstream service to match this category because it shows which hardware, in this case
a NVIDIA graphics card, someone uses. Even though this case might not be problematic
other services also share information about a device which can be used by an attacker to
get to know the system before he starts his attack. In general, tracking an instance over
time can reveal the users habits by looking at the times when the instance is available
and when it is not.

6.6.3 Non-Personal

This category of services provide data in their announcement which cannot be linked
to a user. Printing services like ipp and pdl-datastream match this category as well as

26 Chapter 6. Real World mDNS-SD Analysis

the scanner service. These services do not have any information about the user and are
thus not able to announce sensitive information.

6.7 Analysis of Di�erences in Operating Systems

Android and Linux devices have mDNS-SD support [29] but not a single device was
found which it can be mapped to Android or Linux.

Apple OS devices are currently by far the most devices which use mDNS-SD (74%). This
share could decrease after Microsoft �nishes the integration of mDNS-SD into Windows
10 because with this feature implemented it is likely to see more Windows devices in
the networks announcing their services.

In contrast to iOS and Linux, Windows has the feature of selecting the network type
when connecting to a network the �rst time. This could be used to block mDNS tra�c
in public networks automatically but currently has no in�uence on neither sending
nor receiving mDNS packages. Further analysis should be made when mDNS is imple-
mented because this would be a simple way of disabling such tra�c by network location
awareness.

6.8 Analysis of Queries

Even though we did not capture mDNS-SD queries, we had a look at them while testing
whether mDNS is enabled in a network.

There are queries for all instances of a certain service but we were also able to �nd
ones for speci�c instance names which were not answered because they did not exist.
These queries show service instances a client usually connects to (e.g. when in the
home network). This creates substantial privacy and security risks because not only
the service instance names of the devices which leave trusted networks are published
but also the ones from other networks and attackers can �nd entry points into a system
by collecting all queries and analyzing the services for weaknesses.

Unfortunately we cannot provide any deeper real world analysis on this due to time
constraints and the lack of support for query collection in the zeroconf library.

27

Chapter 7

Related Work

There are a lot of papers which analyze mDNS-SD and make proposals to improve
privacy.

Adding Privacy to Multicast DNS Service Discovery [30] suggests to add pairing of devices
to be able to see the service announcement. Unpaired services see encrypted _privacy
services which can only decrypted when paired. We found no instance of a „privacy“
service in the data we collected which could be due to the short timespan in which we
collected.

Chattering Laptops [31] suggests that the software should remember in which networks
they have been con�gured to run. This can be used to prevent service announcements
and discovery queries for example in open networks from the client side.

Device Names in the Wild [32], an analysis of the state of mDNS almost four years ago,
had a bigger focus on the naming of the devices. They found out that 59% of the devices
announced their �rst, last or full name which is similar to the result we found (65%).
The number of devices announcing the full name of their user decreased from 17.6% in
their research to the 10% we found.

29

Chapter 8

Conclusion

In this thesis we analyzed the current state of Multicast DNS Service Discovery (mDNS-
SD) and the implications on privacy and security in di�erent real world networks. To
achieve this we had a look at the speci�cations of mDNS and SD which revealed that
the naming of service instances, the hostname and additional data about the service
show potential to publish sensitive information about the user. Based on this knowledge
we developed a toolchain that allowed us to log service announcements, store them
on a centralized database server and monitor the data in a desktop application. This
toolchain is publicly available on Github [2] and was built to make it easy to replace
or extend parts for in future researches. We collected data from networks of di�erent
categories: Private or home networks for networks which only few people can access.
Semi-public networks which have a lot of users but are not open to the public (e.g
corporate networks) and public networks that can be accessed by everyone.

The �rst discovery we made was that 81% of the public networks we tested blocked
mDNS tra�c which shows a lot of network providers know mDNS. The reasons behind
the block might be di�erent: Some might do it for privacy reasons while others simply
want to reduce the tra�c which caused by multicast. After analyzing all instances we
found out that 65% of the hostnames contain either the full name (10%) or the �rst name
(55%).
With regard to an older study [32], the number of users sharing their full name dropped
by 7%, which could due to the fact that we focused more on di�erent networks then on
longer collection times or a change of the default naming scheme is currently ongoing.
Highly personal services like local chat services which share more than the name of the
user were not found.

30 Chapter 8. Conclusion

8.1 Discussion

Service Discovery was build to facilitate �nding and using services in the current
network. These services need to publish some data so the user is able to di�erentiate
between them and select the right one. Thus it makes sense for the services to use the
hostname because it is very likely that the user can map it to a real device.

The problem is that most of the devices use the real name of the user or parts of it.
This could be tackled by letting the user choose a name during the �rst setup with the
information that this name will be publicly visible. Implementing name selection would
solve two problems at once: It creates user awareness for a part of the data a device
shares and it can be expected to further reduce the number of user names in the device
because most of the people prefer custom device names instead of any parts of their
name or the model name [32].

8.2 Future Work

During the time of measurement mDNS-SD was dominated by Apple devices but Mi-
crosoft is currently developing mDNS-SD for Windows 10. Some time after the mDNS-
SD feature is released this analysis should be repeated to learn about the privacy impli-
cations the new service instances running on Windows hosts bring along.

When collecting the service instances in the future it would be interesting to see whether
even less devices use the full name of their owner.

Analysis of service instances over a longer timespan (e.g. one month) could be performed
to analyze whether they can reveal the habits of their users.

As pointed out in the last section of the real world analysis, we were not able to have
a deeper look at the queries due to technical and time constraints but found out that
they also show potential to have implications on privacy and security. When tackling
the topic the analyzer module from the mDNS-SD collection toolchain can be used and
extended to support this new feature.

31

Bibliography

[1] eMarketer, “Number of smartphone users worldwide from 2014 to 2020 (in
billions),” Jun. 2016. [Online]. Available: http://www.emarketer.com/Article/
Slowing-Growth-Ahead-Worldwide-Internet-Audience/1014045

[2] “mDNS-SD-Privacy-Analysis-Tools on Github.” [Online]. Available: https:
//github.com/mDNS-SD-Privacy-Analysis-Tools

[3] R. Droms, “Dynamic Host Con�guration Protocol,” RFC 2131 (Draft Standard),
Internet Engineering Task Force, Mar. 1997, updated by RFCs 3396, 4361, 5494.
[Online]. Available: http://www.ietf.org/rfc/rfc2131.txt

[4] P. Mockapetris, “Domain names - implementation and speci�cation,” RFC 1035
(Standard), Internet Engineering Task Force, Nov. 1987, updated by RFCs
1101, 1183, 1348, 1876, 1982, 1995, 1996, 2065, 2136, 2181, 2137, 2308, 2535,
2845, 3425, 3658, 4033, 4034, 4035, 4343, 5936, 5966. [Online]. Available:
http://www.ietf.org/rfc/rfc1035.txt

[5] N. W. G. in the Defense Advanced Research Projects Agency, I. A. Board,
and E. to End Services Task Force, “Protocol standard for a NetBIOS service
on a TCP/UDP transport: Detailed speci�cations,” RFC 1002 (Standard),
Internet Engineering Task Force, Mar. 1987. [Online]. Available: http:
//www.ietf.org/rfc/rfc1002.txt

[6] B. Aboba, D. Thaler, and L. Esibov, “Link-local Multicast Name Resolution
(LLMNR),” RFC 4795 (Informational), Internet Engineering Task Force, Jan. 2007.
[Online]. Available: http://www.ietf.org/rfc/rfc4795.txt

[7] V. Modi and D. Kemp, “Web Services Dynamic Discovery,” Jul. 2009. [Online].
Available: http://docs.oasis-open.org/ws-dd/discovery/1.1/os/wsdd-discovery-1.
1-spec-os.html

[8] Apple Inc., “Bonjour,” Aug. 2002. [Online]. Available: https://developer.apple.com/
bonjour/

http://www.emarketer.com/Article/Slowing-Growth-Ahead-Worldwide-Internet-Audience/1014045
http://www.emarketer.com/Article/Slowing-Growth-Ahead-Worldwide-Internet-Audience/1014045
https://github.com/mDNS-SD-Privacy-Analysis-Tools
https://github.com/mDNS-SD-Privacy-Analysis-Tools
http://www.ietf.org/rfc/rfc2131.txt
http://www.ietf.org/rfc/rfc1035.txt
http://www.ietf.org/rfc/rfc1002.txt
http://www.ietf.org/rfc/rfc1002.txt
http://www.ietf.org/rfc/rfc4795.txt
http://docs.oasis-open.org/ws-dd/discovery/1.1/os/wsdd-discovery-1.1-spec-os.html
http://docs.oasis-open.org/ws-dd/discovery/1.1/os/wsdd-discovery-1.1-spec-os.html
https://developer.apple.com/bonjour/
https://developer.apple.com/bonjour/

32 Bibliography

[9] S. Cheshire and M. Krochmal, “Multicast DNS,” RFC 6762 (Proposed Standard),
Internet Engineering Task Force, Feb. 2013. [Online]. Available: http://www.ietf.
org/rfc/rfc6762.txt

[10] S. Cheshire and M. Krochmal, “DNS-Based Service Discovery,” RFC 6763
(Proposed Standard), Internet Engineering Task Force, Feb. 2013. [Online].
Available: http://www.ietf.org/rfc/rfc6763.txt

[11] “Service Name and Transport Protocol Port Number Registry.” [On-
line]. Available: http://www.iana.org/assignments/service-names-port-numbers/
service-names-port-numbers.xml

[12] J. Klensin and M. Padlipsky, “Unicode Format for Network Interchange,” RFC
5198 (Proposed Standard), Internet Engineering Task Force, Mar. 2008. [Online].
Available: http://www.ietf.org/rfc/rfc5198.txt

[13] L. Poettering and T. Lloyd, “Avahi.” [Online]. Available: http://avahi.org/

[14] W. McBrine, “zeroconf library.” [Online]. Available: https://pypi.python.org/pypi/
zeroconf

[15] K. Reitz, “requests library.” [Online]. Available: http://docs.python-requests.org/

[16] Pivotal Software, “Spring Boot.” [Online]. Available: https://projects.spring.io/
spring-boot/

[17] “Java Persistence API.” [Online]. Available: http://www.oracle.com/technetwork/
java/javaee/tech/persistence-jsp-140049.html

[18] “Unirest.” [Online]. Available: http://unirest.io/java.html

[19] Oracle, “JavaFX.” [Online]. Available: http://docs.oracle.com/javafx/

[20] “ZeroConf Browser.” [Online]. Available: https://play.google.com/store/apps/
details?id=com.melloware.zeroconf

[21] “mDNSResponder.” [Online]. Available: https://opensource.apple.com/tarballs/
mDNSResponder/

[22] E. Fernandes, J. Jung, and A. Prakash, “Security Analysis of Emerging Smart Home
Applications,” in Proceedings of the 37th IEEE Symposium on Security and Privacy,
May 2016.

[23] C. Lévy-Bencheton, E. Darra, G. Tétu, G. Dufay, and M. Alattar, “Security
and Resilience of Smart Home Environments,” Dec. 2015. [Online]. Available:
https://www.enisa.europa.eu/publications/security-resilience-good-practices/

[24] Apple Inc., “Mobile Device Management protocol.” [Online]. Available: https:
//developer.apple.com/bonjour/

http://www.ietf.org/rfc/rfc6762.txt
http://www.ietf.org/rfc/rfc6762.txt
http://www.ietf.org/rfc/rfc6763.txt
http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xml
http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xml
http://www.ietf.org/rfc/rfc5198.txt
http://avahi.org/
https://pypi.python.org/pypi/zeroconf
https://pypi.python.org/pypi/zeroconf
http://docs.python-requests.org/
https://projects.spring.io/spring-boot/
https://projects.spring.io/spring-boot/
http://www.oracle.com/technetwork/java/javaee/tech/persistence-jsp-140049.html
http://www.oracle.com/technetwork/java/javaee/tech/persistence-jsp-140049.html
http://unirest.io/java.html
http://docs.oracle.com/javafx/
https://play.google.com/store/apps/details?id=com.melloware.zeroconf
https://play.google.com/store/apps/details?id=com.melloware.zeroconf
https://opensource.apple.com/tarballs/mDNSResponder/
https://opensource.apple.com/tarballs/mDNSResponder/
https://www.enisa.europa.eu/publications/security-resilience-good-practices/
https://developer.apple.com/bonjour/
https://developer.apple.com/bonjour/

Bibliography 33

[25] WiFi Nigel, “mobdev iTunes synchronization.” [Online]. Available: http:
//wi�nigel.blogspot.de/2013/01/apple-itunes-services.html

[26] NVIDIA, “NVIDIA Shield streaming.” [Online]. Available: http://shield.nvidia.
com/game-stream

[27] Apple Inc., “iTunes library home sharing.” [Online]. Available: https://support.
apple.com/en-us/HT202190

[28] R. Herriot, S. Butler, P. Moore, and R. Turner, “Internet Printing Protocol/1.0:
Encoding and Transport,” RFC 2565 (Experimental), Internet Engineering
Task Force, Apr. 1999, obsoleted by RFC 2910. [Online]. Available: http:
//www.ietf.org/rfc/rfc2565.txt

[29] “Android Documentation - mDNS-SD.” [Online]. Available: https://developer.
android.com/training/connect-devices-wirelessly/nsd.html

[30] D. Kaiser and M. Waldvogel, “Adding privacy to multicast dns service discovery,” in
2014 IEEE 13th International Conference on Trust, Security and Privacy in Computing
and Communications, Sept 2014, pp. 809–816.

[31] T. Aura, J. Lindqvist, M. Roe, and A. Mohammed, Chattering Laptops. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2008, pp. 167–186. [Online]. Available:
http://dx.doi.org/10.1007/978-3-540-70630-4_11

[32] B. Könings, C. Bachmaier, F. Schaub, and M. Weber, “Device names in the wild:
Investigating privacy risks of zero con�guration networking,” in 2013 IEEE 14th
International Conference on Mobile Data Management, vol. 2, June 2013, pp. 51–56.

http://wifinigel.blogspot.de/2013/01/apple-itunes-services.html
http://wifinigel.blogspot.de/2013/01/apple-itunes-services.html
http://shield.nvidia.com/game-stream
http://shield.nvidia.com/game-stream
https://support.apple.com/en-us/HT202190
https://support.apple.com/en-us/HT202190
http://www.ietf.org/rfc/rfc2565.txt
http://www.ietf.org/rfc/rfc2565.txt
https://developer.android.com/training/connect-devices-wirelessly/nsd.html
https://developer.android.com/training/connect-devices-wirelessly/nsd.html
http://dx.doi.org/10.1007/978-3-540-70630-4_11

	Introduction
	Goals of the Thesis
	Outcome
	Outline

	Multicast DNS and Service Discovery
	Zero-configuration Networking
	Multicast DNS
	DNS - Service Discovery
	Examples
	Querying for Instances
	Getting Instance Information

	Summary

	mDNS-SD Privacy Analysis
	mDNS-SD Analysis Toolchain
	Objective
	Requirements
	Structure
	Logger
	Database Server
	Analyzer

	Implementation
	Logger
	Database Server
	Analyzer

	Summary

	Ethical Discussion
	Data Economy
	Data Privacy
	Disclosure

	Real World mDNS-SD Analysis
	Methodology
	Categorization by the Accessibility of Networks
	Approach to Collection of Announcements
	Categorization by Data in Announcements
	Analysis of Operating Systems

	Data Collection
	Network Analysis

	Hostnames and Devices
	Services
	Apple Mobile Device Protocol (apple-mobdev2)
	Apple File Sharing (afpovertcp) and Server Message Block (smb)
	NVIDIA streaming service (nvstream)
	iTunes Home Sharing (home-sharing)

	Differences by Network Accessibility
	Private Networks
	Semi-Public Networks
	Public Networks

	Service Categories
	Personal
	Semi-Personal
	Non-Personal

	Analysis of Differences in Operating Systems
	Analysis of Queries

	Related Work
	Conclusion
	Discussion
	Future Work

	Bibliography

