
Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

IDP
Thesis
M.Sc.

Thesis
B.Sc.

Thesis
M.Sc.

High-speed
TCP Performance AnalysisFlowScope Framework
High level overview

Dumper

Filter A
Filter B
Filter C
...

Dumper

Filter A
Filter B
Filter C
...

AnalyzersAnalyzers

handlePacket()

Analyzers

NIC

dequeue()

QQ

Key Value

Src IPv4: 10.0.0.1 Bytes: 64

Src IPv4: 8.2.7.8 Bytes: 58226

... ...

Key Value

Src IPv4: 10.0.0.1 Bytes: 64

Src IPv4: 8.2.7.8 Bytes: 58226

... ...

Key Value

Src IPv4: 10.0.0.1 Total Bytes: 64

Src IPv4: 8.2.7.8 Total Bytes: 58226

... ...

peek()

RSS

Checker

Delete expired filtersCreate new filters
on detection

checkExpiry()

Dumpers

Filter A
Filter B
Filter C
...

Disk

Hash maps

User Module

Figure 1: FlowScope - Design Overview

M. Pudelko — FlowScope 4

Figure 1. New FlowScope architecture

exporter is typically implemented either directly on routers or
in specialized appliances that are either based on hardware
or software [7]. However, modern cloud networks aim to run
on softwarized network deployments on commodity hardware.
Several open source IPFIX implementations exist, most no-
tably the C/C++ library libfc [8] (last updated in 2014).
None of the open source software implementations is tuned
for performance and real-world deployments therefore built on
purpose-built appliances. Building an IPFIX exporter is one of
the usage scenarios for our framework. We include an example
(liveStatistician.lua) of a simple per-flow statistics
tool with similar semantics to IPFIX to showcase how to build
such a tool in a high-speed version with our platform.

Examples of analyzers featuring flow tracking are DPDK-
Stat [9] and FlowMon-DPDK [10]. Both are limited to hard-
coded flow identifications and cannot track more complex
protocols. FlowMon-DPDK’s design also prohibits bidirec-
tional tracking of flows, limiting the analyses that can be
performed. Further, they are limited to a low number of flows,
no evaluation is given for more than 200k parallel flows.
The limiting factor for both flexibility and performance is
the custom fixed-size hash table implementation relying on
partially offloading hash calculation to the NIC (which has no
concept of bidirectional flows or high-level protocols). The aim
of our implementation is to track several million concurrent
flows with arbitrary flow identifiers. Moreover, we also provide
support for dumping selected flows to disk.

Security researchers [11] and applications such as Bro [12]
also implement exhaustive flow tracking, however these have
a narrow focus and are typically built to only track and match
on header fields. Bro also leverages tracking of TCP sequence
numbers to assert whether flows have been observed in full,
or whether packets are missing. We extend this approach by
providing a generic and scriptable flow tracking that permits
arbitrary rules to match and track flows.

Other efforts in this area primarily focus on offline anal-

ysis of data streams, for example improved heavy hitter
analysis [13]. These analyses are not fast enough for real-
time analysis in bigger networks. These research efforts are
orthogonal to our framework. Another seemingly similar, but
very different scenario is load balancing flows. This is typically
implemented by hashing over a defined set of protocol fields
and distributing flows by hash. These techniques can be found
all over the protocol stack, from high-level load balancers to
low-level bonding of several network links via LACP [14] or
ECMP [15]. However, they cannot keep individual state per
flow, they merely use the hash to distribute traffic.

III. ARCHITECTURE

Besides the original QQ data structure [5], most parts
of FlowScope required major changes to achieve arbitrary
flow tracking. Figure 1 shows the updated architecture of
FlowScope as a high-level overview. Packets are received at
one or multiple NICs and are enqueued in one or multiple
QQ ring buffers. All packets are then analyzed in a separate
analyzer thread: the first step is to look up or create the
corresponding flow state in a hash map via a user-defined
flow key extraction function. The packet is then passed to a
user-defined function together with its flow state. This user-
defined function can decide whether the flow shall be dumped
to hard disk for persistent storage by informing the dumper
threads with filter functions. Concurrently, a checker thread
performs garbage collection on inactive flows based on a
configurable timeout. All customizable functions such as flow
state definition, the flow key extraction, and the analyzer code
are loaded from a user module.

Each of these functions runs in a separate thread, and each
step can be handled by multiple threads to allow for multi-core
scaling at all steps. We support multi-threaded reading from
both multiple and single input NICs by supporting the RSS
(receive side scaling) hardware feature.

Bandwidth of TCP flows is limited by some factor, at the chair of Network Ar-
chitectures and Services we developed a tool to figure out this limiting factor
in real-time for all flows. However, our prototype is currently not optimized for
performance.

Motivation

Port the current implementation to our high-speed analysis tool FlowScope a

Design a test setup in our 10 Gbit/s testbed to evaluate performance

Compare your tool with the current implementation
ahttps://github.com/emmericp/FlowScope

Your Task

Simon Bauer bauersi@net.in.tum.de
Paul Emmerich emmericp@net.in.tum.de
Benedikt Jaeger jaeger@net.in.tum.de

Contact

mailto:bauersi@net.in.tum.de
mailto:emmericp@net.in.tum.de
mailto:jaeger@net.in.tum.de

