
Technische Universität München
Department of Informatics

Bachelor’s Thesis in Informatics

Machine Learning-Based Adaptive
Anomaly Detection in Smart Spaces

Frano̧is-Xavier Aubet, B. Sc.

Technische Universität München
Department of Informatics

Bachelor’s Thesis in Informatics

Machine Learning-Based Adaptive Anomaly Detection in Smart
Spaces

Machine Learning Basierte Adaptive Anomlie Erkennung in
Smart Space

Author Frano̧is-Xavier Aubet, B. Sc.
Supervisor Prof. Dr.-Ing. Georg Carle
Advisor Dr. Marc-Oliver Pahl, Stefan Liebald,M. Sc.
Date April 9, 2018

Informatik VIII
Chair for Network Architectures and Services

I con�rm that this thesis is my own work and I have documented all sources and material
used.

Garching b. München, April 9, 2018

Signature

Abstract

The increase in computing power allowed the rise of the Internet of Things (IoT). Due
to the nature of IoT-service it is vital to secure them, as they can impact the privacy
and the safety of the user. In this work, we propose an approach to secure sites of
cooperating IoT-services, known as smart space. Our solution monitors continuously
service interactions, and learns online the normal behavior of services. Using the learnt
model of the normal behavior it can detect anomalous accesses and block them in real-
time. We use online machine learning to handle concept drift. However, the learned
model is human understandable to allow the user to understand the behavior of the
services. We show the performance of this approach, by evaluating it in regard to the
resource usage and the detection performance.

Zusammenfassung

Steigende Rechenkapazitäten ermöglichten das Entstehen des Internet of Things (IoT).
Die Grundzüge von IoT-Diensten machen eine Absicherung dieser unumgänglich, da
sie eine große Auswirkungen auf die Privatsphäre und die Sicherheit der Endbenutzer
haben können. In dieser Arbeit wird ein Ansatz zur Absicherung von IoT-Netzwerken
präsentiert. Die vorgestellte Lösung überwacht den Datenaustausch zwischen Diensten
kontinuierlich und lernt dabei deren reguläres Verhalten. Unter Einsatz des erlernten
Verhaltensmodells lassen sich ungewöhnliche Aktivitäten entdecken und in Echtzeit
blockieren. Die Benutzung von Online-Machine-Learning erlaubt dabei den Umgang
mit Concept Drift. Das erlernte Modell ist dabei verständlich für Menschen und erlaubt
dem Endbenutzer, das Verhalten der Dienste zu verstehen. Abschließend wird dieser
Ansatz durch Evaluierung der Ressourcennutzung und Erkennungsleistung bewertet.

I

Contents

1 Introduction 1
1.1 Background . 1
1.2 Methodology . 2
1.3 Outline . 3

2 Analysis 5
2.1 The Smart-space architecture . 5

2.1.1 Architecture . 6
2.1.2 The existing access control . 8
2.1.3 Challenges . 9
2.1.4 Example scenario . 10

2.2 Problem domain . 10
2.2.1 Detect anomalies . 10
2.2.2 Integrated in the DS2OS and scalable 12
2.2.3 Real-time . 12
2.2.4 Adapt to changes of the normal behavior 12
2.2.5 Human understandable model 13

2.3 Intrusion Detection Systems . 13
2.3.1 Traditional IDS . 13
2.3.2 Industrial Control Systems . 14

2.4 Anomaly Detection . 15
2.4.1 Types of anomalies . 15
2.4.2 Limitations of Anomaly Detection 17
2.4.3 Assess the detection . 18

2.5 Machine Learning . 19
2.5.1 Classical usage . 19
2.5.2 Online Machine Learning . 21

2.6 Clustering . 23
2.6.1 The basics . 23
2.6.2 Online clustering: CluStream algorithm 24

2.7 The Data . 25
2.7.1 Dataset . 25

II Contents

2.7.2 Feature selection . 26
2.7.3 Nature of the input data . 26

2.8 Characteristics of IoT site tra�c . 27
2.9 Network Flows . 28

2.9.1 De�nition . 28
2.9.2 De�nition of �ows in the DS2OS 28
2.9.3 Use cases . 28

2.10 Representation of graphs . 29
2.10.1 The di�erent data structures . 29
2.10.2 Comparison . 30

2.11 The Problem domain revisited . 30

3 Related work 33
3.1 Areas of related work . 33
3.2 Internet of Things . 34

3.2.1 IoT access control . 34
3.2.2 IoT tra�c behaviors . 35
3.2.3 Smart spaces anomaly detection in the behavior of the people . 35

3.3 Intrusion Detection Systems . 37
3.3.1 Anomaly-based IDS using �ows 37
3.3.2 Flow-whitelisting in SCADA 38

3.4 Periodicity Mining . 38
3.4.1 Spectral analysis . 39
3.4.2 Inter-arrival times . 41
3.4.3 Automata . 42
3.4.4 Comparison of the approaches 42

3.5 Conclusion . 43

4 Design 45
4.1 The architecture - Echidna and the Sphinxes 45

4.1.1 The Sphinx . 47
4.1.2 Echidna . 47

4.2 Feature Selection . 48
4.2.1 Selected features . 48
4.2.2 Type of operations . 50
4.2.3 Summary . 51

4.3 The Sphinx . 52
4.3.1 Naming . 52
4.3.2 Keeping track of observations 52
4.3.3 The Data-Structure of the �ow-list 52
4.3.4 The edge data-structure . 55

4.4 Echidna . 57

Contents III

4.4.1 Naming . 57
4.4.2 The Roles and requirements . 57
4.4.3 The place in the architecture 58
4.4.4 Antigone . 58
4.4.5 Visualization . 59

4.5 First approach: static white-list . 60
4.5.1 Flow white-listing . 60
4.5.2 Use the �ow-list as white-list 61
4.5.3 Learning the white-list . 62
4.5.4 Limitations . 63
4.5.5 Conclusion . 64

4.6 Communication Model . 65
4.6.1 Motivation and requirements 65
4.6.2 Concept . 65
4.6.3 Communication model . 66
4.6.4 Building communication models 67
4.6.5 Access normality of an access 68
4.6.6 User inter-action . 70
4.6.7 Conclusion . 70

4.7 Frequency anomaly detection . 71
4.7.1 Requirements . 71
4.7.2 Inter-arrival time . 72
4.7.3 Sliding window . 73
4.7.4 Mining periodicity . 74
4.7.5 Access normality of new timestamps 75
4.7.6 Conclusion . 76

5 Implementation 79
5.1 Connection to the VSL . 79
5.2 Connection between Sphinxes and Echidna 79
5.3 Hash-list . 80
5.4 Sliding window . 80

6 Evaluation 81
6.1 Datasets . 81

6.1.1 Datasets description . 81
6.1.2 Simulating a smart space . 82

6.2 System requirements . 83
6.2.1 Within one Sphinx . 83
6.2.2 Tra�c overhead . 83
6.2.3 Memory requirement . 84
6.2.4 Computational complexity . 84

IV Contents

6.2.5 Conclusion . 85
6.3 Periodicity mining . 85
6.4 Anomaly detection . 85
6.5 Demo . 87

7 Conclusion 89
7.1 Future work . 89

Bibliography 91

V

List of Figures

2.1 The structure of the DS2OS architecture. 6
2.2 The structure of the Knowledge Agent. (Figure taken from [1]) 8
2.3 The structure of the SCADA . 14
2.4 Example of anomaly detection. We can see normal regions in the data

as well as some outliers. (adapted with permission from [2]) 16
2.5 A typical usage of Machine Learning. 20
2.6 The problem of Concept Drift. 21
2.7 The example of a sliding window in a data stream. (adapted with per-

mission from [3]) . 22
2.8 An example of clustering. 23

3.1 The temporal relations. (adapted with permission from [4]) 36
3.2 The comparison of a periodic and an aperiodic signal in time and spectral

domains. (adapted with permission from [5]) 40
3.3 The di�erent modules of the frequency anomaly detection developed

in [6]. (adapted with permission from [6]) 41

4.1 The di�erent detection components in an example smart space. 46
4.2 The visualization of the connections in the smart space. 59
4.3 A visualization of the detection of periods using inter-arrival time. . . . 72
4.4 Decomposition of the outgoing accesses of a node into the communica-

tion relationships. 77

6.1 The latency added by the detection mechanism. 84
6.2 Comparison of the ROC curves with di�erent features. 86
6.3 Classi�cation errors over the day of capture. 86
6.4 The setup of the demo. [7] . 88

VII

List of Tables

2.1 The possible outcome of the comparison of the classi�cation of a data
instance with its true class. 18

2.2 A section of the labeled dataset used to train the model of �gure 2.5. . . 25
2.3 Comparison of the di�erent graph representations. [8] 30

3.1 Comparison of the di�erent related work. 44

4.1 List of the attributes de�ning a connection instance with their type. . . 51
4.2 Comparison of the computational complexity of �nding an edge using

the name of the vertices that it connects for a graph G = (V ,E). 54
4.3 An example communication model for a service type. 66
4.4 An example communication descriptor for a service. 67

6.1 Attack scenarios in the dataset to test the �nal approach, inspired by [9]. 82
6.2 The distribution of the services over the four sites. 83

1

Chapter 1

Introduction

1.1 Background

In the past years the computing power of small chips has increased many folds. This
allowed the rise of the Internet of Things (IoT). IoT-devices are a new kind of devices
able to connect to another and to run programs. These devices can cooperate to o�er a
wider range of features.

A smart-space is a place like a house or an airport where all or most of the electrical
devices are IoT-devices. They are linked via a common network through which they can
communicate with each other. These devices can be traditional house devices, like a light
or a thermostat, but also sensors to understand the environment or smart-door locks
for example. We could imagine a house where the central heating and the opening of
the windows are controlled by small computers that read the temperature from sensors
placed in each room. All the di�erent small computers controlling the windows, the
central heating or measuring the temperature need to communicate with each other to
take decisions. The programs running on these small computer are called services.

Securing the communications between the IoT devices is essential. These devices mea-
sure and gather a lot of information about the user life, thereby entering his privacy.
Moreover, the smart-devices are able to act on their environment, and for example an
attacker could unlock the door of peoples’ house. Which is a danger for the user safety.
Therefore, it is important to secure the access to IoT-devices for privacy as well as for
safety reasons.

The existing mechanisms used to provide access security are based on policies that
regulate which device is allowed to communicate with which other one. [10] However
these access policies are created by hand. This requires a lot of work from the system
administrator, and forbids to adapt the policies automatically. [11]

We propose an approach to detect anomalous communications between the di�erent

2 Chapter 1. Introduction

services of smart-spaces in an automated way. We could imagine a scenario where
an attacker takes control of the controller of the kitchen window and asks for the
temperature of all the rooms in the house even if the user does not want to share
this information. The module detects these connections and blocks them. The goal of
this module is to add a security layer that does not exist yet. This layer could detect
intrusions in the system or the failure of IoT-devices.

In this work we consider the following research question:

How can anomalous connections between the services of a smart-space be de-
tected the most accurately in the shortest time?

1.2 Methodology

At �rst we have a short look at the methodology followed throughout this work. In this
work we solve our problem using Machine Learning, to do so we follow a methodology
inspired by the CRISP-DM model. The CRISP-DM model was developed to provide
a process model for conducting a data mining project. [12] The project is divided in
six phases: business understanding, data understanding, data preparation, modeling,
evaluation, and deployment. [12] The connections between this phases are shown in
�gure 1.1. As we present in the outline, the di�erent parts of this work will follow this
methodology.

• business understanding: The goal is to understand the application domain, and
to use this knowledge to create a data mining problem de�nition and identify
requirements.

• data understanding: The initial data is collected and examined. Moreover the data
is described in order to be sure that it satis�es the requirements.

• data preparation: During this phase the collected data is used to create the dataset
that will be used to create the model.

• modeling: In this phase the modeling technique is selected, a model is created
and it is assessed.

• evaluation: The model is evaluated according to the requirements de�ned in the
business understanding phase. If the model does not �t the requirements the
process should begin again at the business understanding.

• deployment: Once the model is created it has to be deployed in a way that it can
be used.

1.3. Outline 3

Figure 1.1: Phases of the CRISP-DM model. (reused with permission from [13])

1.3 Outline

This thesis is structured as follows. In Chapter 2 we will go through the business
understanding phase and present the �elds that we will use in this work. In Chapter 3
we will review similar work from di�erent application domains. In Chapter 4 we will
�rst go through the data understanding phase, then we will have a design loop to test
di�erent models. This loop will contain the data preparation, modeling and evaluation
phases. In Chapter 5 we will see some points of the deployments. Then in Chapter
6 we will evaluate the �nal solution created. Finally in Chapter 7 will present some
concluding remarks and possible future work.

5

Chapter 2

Analysis

In this chapter we introduce our application domain, present our problem and explain
the di�erent �elds that are used to solve this problem. First we present the smart-
space architecture that we are using and the access control mechanism that it uses
in section 2.1. This leads to the description of the problem we tackle in this work in
section 2.2. Following the description of the problem, we present the di�erent �elds
and concepts that are used to in this work: Intrusion detection systems in section 2.3,
anomaly detection in section 2.4, machine learning in section 2.5, clustering in section
2.6 and �nally considerations about the data needed in section 2.7.

In the last sections we analyse the particularity of IoT tra�c in regard to anomaly
detection in section 2.8. Then we introduce network �ows 2.9 and graph representations
2.10.

At the end we sum up the requirements and introduce our research question.

2.1 The Smart-space architecture

We detect anomalies in the connections between the services of a smart-space system.
The smart-space architecture that we enhance with an anomaly detection module is
the Distributed Smart Space Orchestration (DS2OS) that has been developed by Marc-
Oliver Pahl since 2008. First we introduce the architecture of the system, then we have
a closer look at the existing system to regulate connections. This helps us to identify
the challenges that we face during the design. Finally we introduce an example scenario
that helps us illustrate explanations later during the analysis.

6 Chapter 2. Analysis

2.1.1 Architecture

Figure 2.1: The structure of the DS2OS architecture.

At �rst, we look at the global distributed organization of this system to have a broader
view than just the area in which we are developing our system. The global organization
of the DS2OS can be understood via a comparison with mobile-phones. Each site, place
where a smart-space is deployed, has a set of services comparable to applications on a

2.1. The Smart-space architecture 7

mobile-phone. Depending on the needs of the user, di�erent services can be deployed.
The deployment process of services in our smart space system is comparable to the
one of mobile applications. Developers can create services and then publish them on a
trusted store, the S2Store, which then distributes the services to the users who want to
have them. [14]

Our application domain is on the site level, therefore we present the architecture of
the DS2OS within a smart-space. The distributed computing nodes are connected via a
middelware, the Virtual State Layer (VSL). The expectation is that most of the devices
within a site are equipped with computing units capable of hosting services. Thereby,
each of these equipped devices is a node in the network. The VSL is a self-organizing
peer-to-peer system that acts as edge-based distributed operation system. Edge-base
is to be opposed to cloud based, it means that the computing happens on the nodes
and not on remote servers. The VSL has the particularity that the service logic and the
service state are separated, the VSL manages the service state and the services run the
logic. [15]

Figure 2.1 shows the structure of the DS2OS. There are two types of entities: humans,
represented by circles, and programs, represented by rectangles. The entities inside
other entities are part of them. The dark arrows represent the connections between the
entities. In the following subsections we present di�erent components of the VSL that
we need to consider for this work.

2.1.1.1 Site Local Service Manager

The Site Local Service Manager (SLSM) is a service that manages the other services
in the Smart Space Site. It is the component that communicates with the outside of
the Smart Space. The User controls the smart space via the SLSM using a smart phone
app or a web-interface. In addition the SLSM is connected to the S2Store where the
developers publish services. If the user commands it, the SLSM can download services
from the store. The user can con�gure new services via the SLSM. [15]

2.1.1.2 Knowledge Agent

The Knowledge Agent (KA) is responsible for the state of the services running on the
same SHE. The state is represented in the form of Context Nodes. In this way, each KA
has the values of a subset of all the Context Nodes of the Smart Space Site. However
each KA is aware of all the Context Nodes of the Site, the values of these nodes is
obtained by accessing the Context Nodes of the other KAs. Each Context Node has an
unique address. Listing 2.1 shows an example address.

8 Chapter 2. Analysis

/ kaName / serv iceName / var iab leName

Listing 2.1: An example Contect Node address

Figure 2.2 represents the organisation of an example KA. The Context Repository is the
tree containing all the Context Nodes on the local node. At the bottom of the diagram
the types of accesses are shown. A get access returns the value of the Context Node
at the given address. A set access sets the value of the addressed Context Node to the
value given in the call. [15]

Figure 2.2: The structure of the Knowledge Agent. (Figure taken from [1])

2.1.2 The existing access control

The DS2OS already uses a system of policies to regulate the access to the Context Nodes.
We �rst present it and then analyse its advantages and drawbacks.

The Knowledge Agent (KA) is the part that interest us, as it provides access to all
services’ data. The VSL information model is composed by a hierarchical structure of
Context Nodes containing di�erent attributes. The services have to belong to a certain
group to be allowed by the KA to access the information. An example VSL data model
can be seen in Listing 2.2. Each attribute of the WindowController service has di�erent
access policies. The state can be read by all the services and only the WindowController
has write access rights. The lastOpeninд can only be accessed by the WindowController.
Finally the openedWindowHouse can be read by any other service and can be written
by all the services of the group Controller . [14]

2.1. The Smart-space architecture 9

<WindowContro l ler >
< s t a t e type = " b a s i c / t e x t " r e a d e r = " ∗ " w r i t e r = " " / >

< l a s t O p e n i n g type = " b a s i c / number " r e a d e r = " " w r i t e r = " " / >

<openedWindowHouse type = " b a s i c / number " r e a d e r = " ∗ "
w r i t e r = " C o n t r o l l e r " / >

< / WindowContro l ler >

Listing 2.2: The example model of a service.

Thanks to this organization all the information exchanged between the services is
contained in the VSL KA overlay. Thereby the service cannot go around the access
policies within the trusted KA. Thanks to this system, security by design is introduced
[16]. Moreover, it is great for us because it allows to monitor all the connections between
the di�erent services of the house. [14]

The main disadvantage of this system is that the rules are static and all the connections
are treated alike. Services are treated in the same way whether they where connected
before or not. The second issue is that there is no global view of the di�erent connections
in the network. A service asking for all the information it can access at once would not
be detected. This is the reason why we want to enhance this system with an anomaly
detection module.

2.1.3 Challenges

Now that we have understood the way the smart-space architecture works we want to
identify the challenges that it implies.

As the DS2OS is scalable and allows any number of service to be managed [17], the
detection module should also allow this scalability. The �rst major challenge linked
with this architecture is to identify where the anomaly detection module should be placed.

The second challenge linked to IoT edge-based systems is that all the computation is
made within the smart space [17]. Therefore the anomaly detection algorithm has to
make minimal demands on system resources.

The last challenge linked with the use of the DS2OS is that no dataset is available and
that we have to create one to test the algorithm.

10 Chapter 2. Analysis

2.1.4 Example scenario

Throughout this analysis, we illustrate explanations with an example scenario of smart-
space. This is just for the purpose of explanation. We consider an o�ce with 10 rooms.
There is a central heating that is controlled by a service S0. The temperature of each
room is measured by a thermometer that publishes its measurements with a service S1,i
with i the number of the room. Finally, each room has a window that can be controlled
by a service S2,i . The normal behavior of the system is so that the central heating service
S0 accesses all the thermometer services at 5 am to choose a heating policy for the day.
Moreover, each window controlling service S2,a decides every 10 minutes if the window
should be opened or closed. In order to decide, it accesses the thermometer service S1,a
of its room and checks the heating scenario of S0. This example is used to illustrate
proprieties in the rest of the analysis.

2.2 Problem domain

In the previous section we present our application domain, the DS2OS. In this section
we analyse the problems we tackle in this thesis.

We go through the di�erent requirements. For each of them we discuss why it is needed
and name the concrete challenges and goals. We also present the current situation
regarding this requirement.

2.2.1 Detect anomalies

The goal of this work is to detect anomalies in the connection between services of
the smart-space architecture DS2OS. The detection of anomalies is made by de�ning
a normal behavior. In this �rst section of requirement we de�ne the characteristics of
this normal behavior to �nd out what is to be considered anomalous.

2.2.1.1 Service access monitoring

To detect anomalies in the connections between services, the normal behavior has to
be de�ned or learned [11]. To do so, our systems needs to monitor the accesses in the
smart-space, in order to know which connection exists in the set of all the connections
allowed by the existing set of rules.

Using this the system has to be able to detect anomalies, like abrupt changes in the
behavior of a service that could indicate that it is malicious [11]. It is also important to
monitor the type of access. If a service only reads the information contained in a node
and wants to perform a write access, it should also be considered as an anomaly.

2.2. Problem domain 11

This type of anomaly can be illustrated using our example scenario de�ned in 2.1.4.
In the normal behavior the window controller service S2,a of a room a only accesses
the thermometer service of the same room S2,a . A connection from this window con-
troller service to the temperature measurement from another room should be labeled
as anomalous.

This detection feature can be enhanced with other options. We will go through these
di�erent options.

2.2.1.2 Periodicity anomalies

An additional detection criteria that could be taken into account is the frequency with
which the connection occurs. If in normal behavior a service contacts another every 10
minutes, it should be considered anomalous that the frequency changes to one access
every 2 seconds. This type of anomaly detection can be useful to detect malfunction or
Denial of Service (DoS) attacks. [18]

We could even imagine that the anomaly detection module could warn if a connection
stops. Learning the frequency of a connection could help the module predict packets. If
packets are missing, an alarm could be raised.

2.2.1.3 Value anomalies

The second possible enhancement would be to detect anomalies in the values exchanged
in the communications [19]. We can illustrate this situation with our example scenario
from 2.1.4. For example, the response to a reading of a thermometer is of 20 °C. If then
the reading changes abruptly to −30 °C, it should be labeled as an anomaly. This could
be due to a sensor malfunctioning or another error. In any case, we want to be informed
of this abrupt change.

2.2.1.4 Access patterns

The last improvement feature could be the detection of the access patterns. The anomaly
detection module could learn the frequent access patterns, then label as anomalous group
of packets deviating from the learned patterns. For example if a service always reads
3 nodes one after the other and then writes in a fourth node, it could be labeled as
anomalous if the writing was done after the reading of only one of the three nodes was
performed.

12 Chapter 2. Analysis

2.2.2 Integrated in the DS2OS and scalable

The DS2OS is a scalable smart space architecture [17]. We want the designed detection
module to be placed in this architecture and still allow it to be scalable. Therefore,
the anomaly detection should be scalable. This means that it should be possible in a
smart-home with ten services as well as in a smart-airport with thousands of connected
devices.

2.2.3 Real-time

Anomaly detection can be used to detect attacks after they happened or to prevent them
from happening [20]. We want the anomaly detection to be possible in real-time. This
would allow the anomaly detection to work like a �rewall allowing only the packets
that are not anomalous. This is only possible, if the detection does not create latencies.
If it is nt possible to prevent attacks, we want the detection to run almost as fast as
possible. This requirement might result in a trade-o� between accuracy and speed of
the detection. This issue will be addressed in the choice of the algorithms.

2.2.4 Adapt to changes of the normal behavior

The anomaly detection has to learn the normal behavior and detect anomalies deviating
from this learned normal behavior [11]. However, every smart-space has a di�erent
normal behavior, a service accessing �ve hundred other services might be normal in
a smart-airport but is not possible in a smart-home that has less services. Therefore,
the anomaly detection should learn the normal behavior of the location in which it
is deployed to detect anomalies. It is not possible to create a de�nition of the normal
behavior before the deployment because it would not �t all the di�erent smart-spaces.
[21]

The second problem is that the normal behavior of one smart-space can change over
time [11]. Therefore the de�nition of the normal behavior used for the anomaly detection
has to adapt to these changes. These changes can be due to updates or the addition of
new services.

This is a hard requirement to meet. The goal is that the de�nition of the normal behavior
used for the anomaly detection continuously adapts to the changes of the actual normal
behavior.

2.3. Intrusion Detection Systems 13

2.2.5 Human understandable model

It is interesting for the system administrator to understand what is going on in the
smart space. Therefore we want to create a human understandable description of the
observations made. Moreover, we want to allows the understanding of the anomaly
detection to keep the system administrator in the loop. Therefore, we want the created
model to be human understandable. Some Machine Learning approaches act similarly to
black boxes that output if an access is anomalous or not, but do not allow to understand
why it was classi�ed this way [21]. Furthermore, we want to provide basic visualizations
of the model created to give the system administrator an insight in the connection
relationships of the smart space.

2.3 Intrusion Detection Systems

We �rst introduce Intrusion Detection Systems (IDS). IDS are security tools that are used
to detect intrusions either within networks or on a host. Our problem shares similar
challenges with them. First, we look at the di�erent types of IDS and then look at some
methods used in this domain. After, this we present an application domain of IDS.

2.3.1 Traditional IDS

There are two types of IDS: host-based and network-based IDS. Understanding the
di�erences between these systems helps us in the design to choose where to place the
anomaly detection module. A host-based IDS is placed on each host and analyses the
connections that the host has with other peers. A network-based IDS monitors the
tra�c of the whole network and detects anomalies not just for the hosts but also on
the network level. This type of IDS can detect network scans or Distributed Denial of
Service (DDoS) attacks that are invisible for a host-based system. Because a network
scan would be done by one host sending one scan packet to all the other hosts, each
host would just discard the packet. But they would need to view the whole network
to interpret these packets as a network scan. [22] We want our system to have the
advantages of a network-based system.

There are two detection methods used in IDS, on one side, misuse-based detection
and on the other side, anomaly detection. In misuse-based detection, a signature is
de�ned for each type of attack, that is to be detected. If the system calls or the network
packets monitored match the signature of one of the attack an alarm is rung. In anomaly
detection based IDS the normal behavior of the system is de�ned and actions that do
not �t in this de�ned normal behavior are labeled as anomalous. The advantage AD-
based IDS is that they can detect zero-day attacks, which a rule-based IDS would not
be able to detect because it has no signature for these attacks. On the other hand,

14 Chapter 2. Analysis

AD-based IDS have a high false alarm rate, because not every action lying outside of
the normal behavior is in reality an attack. [22] The IDS models are very often trained
using supervised learning. This is explained in section 2.5.

We present a anomaly-based IDS for Smart Spaces in this thesis. It uses schemes of both
network-based and host-based systems.

2.3.2 Industrial Control Systems

Industrial Control Systems (ICS) are systems that use sensors and actors to control pro-
cesses in di�erent industries, like: chemical processing, power generation, oil and gas
processing, water networks and telecommunications. They share the same type of net-
work as IoT network, since in IoT most of the devices are also controlled automatically,
therefore it is interesting to look at IDS in these systems.

Supervisory control and data acquisition (SCADA) system is one of the most used ICS. It
is designed to use network communications. We explain its organisation to understand
how ICS are built. Figure 2.3 shows the di�erent levels of the SCADA architecture. On
level 0 are all the sensor and actor �eld devices such as temperature sensors or control
valves. Then, level 1 contains the modules controlling the devices of level 0 and the
processors they run on. On this level, there are programmable logic controllers. On level
2 are the supervisory computers running the SCADA software to controls the modules
of level 1. This is the level that corresponds to the Services of the DS2OS architecture.
Level 3 controls the production. It is similar to the SHE running the NLSM and KAs to
control the Services in the DS2OS architecture. Finally, level 4 is used to schedule the
tasks of the system, in the same way as the SLSM in the DS2OS. [23]

Figure 2.3: The structure of the SCADA

2.4. Anomaly Detection 15

The tra�c of these systems is quite di�erent from the one of a conventional computer
network. The number of hosts is very stable, once the system is set up the number
of hosts should not change. Moreover, nodes do not change their connection partners
very often, the controller of a warehouse always communicates with all the devices in
it but not to the devices of other warehouses. Finally, the modules communicate with
each other at frequent intervals because they run control loops and are not used by
users. [24]

2.4 Anomaly Detection

We want our tool to perform Anomaly Detection, we present in this section the basics
of this �eld.

Anomaly Detection is used in many di�erent �elds, its purpose is to detect points or
patterns that do not conform to the expected behavior in data. It is interesting to �nd
these points since they can carry more information than the rest of the data, for example
a few anomalies in the brain scan of a patient could be the sign of a tumor. In our case,
we want to detect anomalies in the connections between the services. Similarly to the
brain scan, the normal connections in our network do not really interest us but the
anomalies could point out an intrusion in the network or the failure of a service. [2]
We introduce the di�erent types of anomalies 2.4.1, then we present some limitations
of anomaly detection 2.4.2, and �nally we explain how the detection of anomalies can
be assessed 2.4.3.

2.4.1 Types of anomalies

We state the di�erent types of anomalies that can occur and that we would like to detect.
It is essential to identify clearly each type of anomaly since di�erent detection methods
are needed for each of them. We use the example scenario of section 2.1.4 to illustrate
each type of anomaly.

2.4.1.1 Point Anomaly

First, there are the point anomalies. In case, one data point can be seen as anomalous in
comparison to the rest of the data, it is a point anomaly. This type of anomaly is the
most simple, as it is just the fact that one data point does not concord with the rest. [2]
We can see an example in �gure 2.4, points O1 and O2 are point anomalies.

The anomalies in the access of services de�ned in 2.2.1.1 are an example of point
anomalies. Each access that lies outside of the normal behavior is anomalous.

16 Chapter 2. Analysis

Figure 2.4: Example of anomaly detection. We can see normal regions in the data as
well as some outliers. (adapted with permission from [2])

2.4.1.2 Contextual Anomaly

A more complex type of anomaly is the Contextual Anomaly. If a data point is considered
as an anomaly in a speci�c context and only in this context, it is a contextual anomaly.
The context can be, for example, the date or the outside temperature. [2]

If the central heating system of our scenario were to access the temperature of the
thermometer services at 1 pm, it would be considered as a contextual anomaly. Even
if the central heating system can normally communicate with these services, in the
normal behavior it accesses to this information only at 5 am. Therefore, this situation
is not a point anomaly because it is considered anomalous only due to the context: it is
1 pm and not 5 am.

2.4.1.3 Collective Anomalies

This last type of anomaly considers data instances with respect to the whole dataset.
Data instances might not be anomalies by themselves, but the fact that they occur
together is an anomaly. [2]

To illustrate this, we can look at the connections from the window services to the central
heating. If the one window service begins to connect to the heating system every 5
seconds instead of every 10 minutes, it is a collective anomaly. The connection from one
window service to the heating system is not an anomaly but as the frequency changes

2.4. Anomaly Detection 17

dramatically, this set of connections is considered as a collective anomaly.

2.4.2 Limitations of Anomaly Detection

A simple approach to detect anomalies would be to de�ne a normal behavior and label as
an anomaly anything that deviates from this behavior. However, due to some factors the
problem is more complex than it could seem. First, the border of the normal behavior
might not be precise, a point lying very close to the border in the anomalous zone
could be normal. Moreover, noise can cause this crossing of the border. Then, the
normal behavior might change over time and the border would have to be set again.
Another problem is that an attacker could understand what lies in the normal behavior
zone and change the shape of its attacks. Finally, the lack of labeled data to verify and
train models is a big problem. For these reasons, this problem is not trivial and many
di�erent techniques of Anomaly Detection exist. [2] We want to evaluate how each of
these problems is relevant for this work.

2.4.2.1 No precise borders

The problem of setting a precise border between the normal and the anomalous behav-
iors is mostly found in continuous spaces. It does not a�ect the detection of anomalous
accesses between the services because the services have de�ned IDs. However, the de-
tection of contextual anomalies is based on the timestamp. In our example of contextual
anomaly, we could ask when it begins to be an anomaly: is it an anomaly if the heating
service asks for the temperature at 5:10 am? This is only 10 minutes after the normal
time. In this case, a threshold has to be set to de�ne the delimitation of the normal
behavior and the anomalous one. [2]

2.4.2.2 Noise in the data

It is an important issue in general in anomaly detection, as it is hard to tell noise from
anomalies apart. Our application case has the advantage that most of the data that
we collect does not su�er measurement imprecisions as it is a discrete environment.
However, we face this problem for the timestamp collection. [2]

2.4.2.3 Normal behavior might change

A major issue that has to be solved to perform anomaly detection is that the normal
behavior might change. [2]

18 Chapter 2. Analysis

A basic solution to our problem would be to create rules that de�ne what is normal or
not. Then everything that is not part of the de�ned normal behavior would be labeled
as anomalous. Like the rules that already exist in the DS2OS. However, the normal
behavior might change over time. For example the habits of the person living in a smart
house might change, or the number of services might increase.

If the normal behavior evolves but its de�nition is static, then at some point all the
normal connections would be labeled as anomalous, even if they should be considered
as normal. To address this issue, we want to use Machine Learning. There are di�erent
methods that could help us and we have a look at them in section 2.5.

2.4.3 Assess the detection

Once a detection method has been designed and implemented, it is important to be able
to assess its performance. Di�erent evaluation methods can be used.

First, anomaly detection can be seen as a classi�cation of the data instances in two
classes: the normal instances on one side and the anomalies on the other. Moreover,
there are the two true classes to which the data instances belong. This leads to the four
possible outcomes that can be seen in table 2.1. A perfect detection would have no FN
or FP data points.

Classi�ed as:
Is:

Anomalous Normal

Anomalous True Positive (TP) False Positive (FP)
Normal False Negative (FN) True Negative (TN)

Table 2.1: The possible outcome of the comparison of the classi�cation of a data instance
with its true class.

Using the frequency of these four possible outcomes, di�erent metrics can be used to
evaluate the detection [13]. First, the Accuracy: it corresponds to the ratio of correct
classi�cations over all the classi�cations:

Accuracy =
TP +TN

TP +TN + FP + FN

Then, the False Alarm Rate is the ratio of not correctly classi�ed items to the number
of items that should be classi�ed as negative:

FalseAlarmRate =
FP

TN + FP

The speci�city corresponds to the ratio of correctly classi�ed instances within all the

2.5. Machine Learning 19

instances classi�ed as negative. It is computed with:

Speci f icity =
TN

TN + FP
= 1 − FalseAlarmRate

Also called true negative rate.

Finally, the Sensitivity, that corresponds to the ratio of correct classi�cation of positive
out of all the items that should be positive, is represented by:

Sensitivity =
TP

TP + FN

Also called detection rate, recall or true positive rate. [13]

2.5 Machine Learning

Now that we understand the principles of anomaly detection, we present understand
Machine Learning (ML) to see how it can be used. Arthur Samuel that coined the term
"Machine Learning" in 1959 de�ned it as “�eld of study that gives computers the ability
to learn without being explicitly programmed.” [25]

We use machine learning to learn a model de�ning the normal behavior. This model is
used to detect abnormal behavior. There are two possible usages of machine learning
that can be used to learn this model, we begin to look at the classical one and then
understand the possibly more appropriate one.

2.5.1 Classical usage

First, we look at the basic principles of the classical usage of ML. As we have seen,
anomaly detection is the classi�cation of the data instances in two classes: normal
instances and anomalies. Therefore, we look at how classi�cation can be done with ML.
In �gure 2.5b, there is an example of two classes in a coordinate system. We, humans,
would assume that there is an underlying function that describes the limit between the
two classes. With the help of ML, this function can be approximated. Here we could
�nd its equation manually, however most of the time, ML is used in application domains
in which humans cannot �nd this underlying function. In such cases, ML is particularly
useful because there would be no means to perform a classi�cation without it.

We have a look at the characteristics of this use case.

There are clear de�ned phases to create the model in this application. First, the training
dataset is fed to a ML algorithm that extracts relevant informations to create a model.
This is the training phase. In the classi�cation example from �gure 2.5 the model learned

20 Chapter 2. Analysis

X

Y

(a) Labeled training dataset.

X

Y

(b) Learned function.

Figure 2.5: A typical usage of Machine Learning.

is the description of the classes divided by the function. Then, the created model is tested
on a dataset that was not used for training. This is a way to assess the performance of
the model. Finally the model is deployed and used. In the example, the model would
be used to classify new unlabeled data instances. Once the model is created, it is not
changed.

There are three di�erent types of algorithms used to �nd an approximation of the
underlying function. In the example from �gure 2.5, there was a labeled dataset from
which the model was learned, this is supervised learning. In this case, the ML algorithm
only creates a model that reproduces the characteristics of the dataset. Then, there is
unsupervised learning, there the ML algorithm extracts interesting characteristics, such
as patterns or structures, from the dataset. This can be done with an unlabeled dataset.
Finally, there is semi-supervised methods that can be used when a portion of the dataset
is labeled. [13]

However, this training approach has a major limitation: it assumes that the distribution
of the classes is static. This training approach cannot be used in applications where
the properties of the target variable, which the model is trying to predict, change over
time in unforeseen ways. This change is called: Concept Drift. Figure 2.6 illustrates
this situation. The model is created using the classes from �gure 2.5. Then the model is
deployed. However, after some time the distribution of the classes changes, this change
can be seen in �gure 2.6a. This results in a lot of false classi�cations that can be seen in
�gure 2.6b.

As mentioned in 2.2, the normal behavior of our smart-space changes over time. This
concept drift forbids us the use of classical ML; therefore, we have to use online Machine
Learning.

2.5. Machine Learning 21

X

Y

(a) Concept drift.

X

Y

(b) False classi�cations.

Figure 2.6: The problem of Concept Drift.

2.5.2 Online Machine Learning

In some applications, the data points arrive continuously and it is not possible to store
them all. Moreover, the model has to be updated if the underlying function generating
the data instances changes. In such cases, online Machine Learning has to be used.
In this section, we introduce the principle challenges of online ML and then see the
possible ways to address them.

2.5.2.1 The Challenges

Online learning algorithms are used on data streams. Therefore, they need to operate
under some unique constraints, we present them here.

The �rst challenge is the one-pass constraint. As data instances keep arriving, they
cannot all be saved. In the most extreme cases, each data point can only be processed
once. As most traditional ML algorithms need multiple pass on the dataset, speci�c
algorithms have to be designed to address this constraint. [21]

The second challenge of machine learning on data streams is concept drift. In data
streams, the underlying function generating data at a time step t could be a di�erent
function than the one that generates the data instances at time step t+1. The assumption
that turns this characteristic into a challenge is that concept drift is unpredictable, the
way the underlying function will change is not known. [21] In our system, the normal
behavior will change over time and the way it will change is unknown.

The speed of the concept drift is also unknown, it can be either sudden or gradual. A
sudden drift would correspond to a jump from generating function f to function д. This
would correspond to the launch of a new service in our smart-space architecture or

22 Chapter 2. Analysis

maybe the change from winter- to summertime. A gradual transition occurs when the
transition between f and д is smooth. This could for example be a gradual change in
the hour of a particular communication between two services. [3]

A further challenge is the stability-plasticity dilemma. The model that is used should be
updated using the data collected until time step t to classify the instances arriving at t+1.
The classi�er has to remain stable, while considering irrelevant events and be plastic
when there is a change in the important data. This is known as the stability-plasticity
dilemma. [3]

2.5.2.2 Reservoir Sampling

A frequently used method for ML algorithms on data streams is to use reservoir sampling,
also known as windowing.

The principle is to use a window in which the last incoming data points are saved. This
allows to have a small dataset containing current data instances. Almost any classical
ML algorithm can run on this small sample, as long as the algorithm can be run fast
enough. This method also has the advantage of providing a solution to concept drift
since only the most recent data points are used by the ML algorithm. [21]

Figure 2.7: The example of a sliding window in a data stream. (adapted with permission
from [3])

Figure 2.7 shows an example of a sliding window over a data stream. The black and
white boxes represent data instances. The blue arrow represents the sliding window.
The last 11 data instances are saved in the sliding window. When a new data instance
will arrive, the oldest one will be discarded to free space for the new one.

The choice of the window size is particularly di�cult. The choice results in a trade o�
due to the stability-plasticity dilemma. If the chosen size is too big, it might contain
stale data points that would hinder the creation of an accurate model. On the other
hand, if the window size is too small it might not contain enough data points to be of
statistical relevance. Some times, this choice is dictated by the ML algorithm used. The
computation time increases, when the number of points in the window increases.

2.6. Clustering 23

2.6 Clustering

Clustering algorithms are a subclass of ML algorithms. As we mainly use clustering
algorithms in this work, we present them in this section. This allows us to illustrate the
ML principles presented in the previous section.

2.6.1 The basics

Clustering algorithms are used to �nd aggregations of data points: clusters. Clustering
is most often done on unlabeled datasets to gain insight in the structure of the data.
Figure 2.8 shows an example data point distribution with the cluster that the algorithm
would extract.

X

Y

(a) The data points.
X

Y

(b) The created cluster.

Figure 2.8: An example of clustering.

There are several di�erent methods that can be used to determine what is de�ned as
a cluster. A common approach is to use the distance between the points, the points of
the clusters are closer to one another than to any other points. It is also possible to use
the density of the points in the di�erent regions: the density of points is higher within
clusters. [21]

2.6.1.1 K-means

K-means is a very commonly used clustering algorithm. It partitions the data points
into k clusters. Each observation belongs to the cluster with the nearest center. The
algorithm is composed of two steps: �rst the assignment step, then the update step. This
two steps are repeated one after the other until the convergence of the clustering. [21]

24 Chapter 2. Analysis

In the assignment, step every data point is assigned to the nearest cluster. The distance to
a cluster is computed using the center of the cluster. Frequently, the euclidean distance
is used. However, other metric can be more accurate depending on the dimensionality
of the data and the use case. [21]

In the update step the center of each cluster is updated. The new cluster value corre-
sponds to the mean of all the points belonging to this cluster. [21]

2.6.2 Online clustering: CluStream algorithm

As mentioned in the previous section, in this work we use online ML to adapt the
changes in the normal behavior. Therefore, we have a look at online clustering and
more particularly at the CluStream algorithm.

The CluStream was presented in [26] by Charu C. Aggarwal. It is developed to handle
concept drift in data streams. The main principle of this algorithm is the use of cluster
features to describe the clusters. This particular cluster representation allows to discard
the data points once they are handled.

The cluster features are modi�ed BIRCH clusters [27]. They are de�ned by:
(n,CF1t ,CF2t ,CF1x ,CF2x) with n the number of points in the cluster,CF1t the sum of
the timestamps, CF2t the sum of the square of the timestamps, and for each dimension,
CF1x the sum of the values in the cluster andCF2x the sum of the squares of the values.

This cluster representation allows to merge two clusters just by adding their respective
features. Moreover, for d-dimensional data points, it only requires to save (2 ∗ d + 3)
values independently of the number of points in the cluster. Whereas a list keeping
track of all the k points in the cluster would require k ∗ (d + 1) saved values: one value
for per dimension plus the timestamp for each data point.

During the online clustering, points that are within the maximal boundary of an existing
cluster are merged with it. A new cluster is created for points that lie outside themaximal
boundary of all existing clusters. The maximum boundary is de�ned by multiplying a
factor t with the RMS deviation of the cluster.

With the help of the CF1t and CF2t , the staleness of clusters can be computed and
clusters that are too stale can be deleted. The goal is to determine the average timestamp
of the last m data points. With the help of CF1t and CF2t , the mean µ and the variance
σ 2 of the timestamps can be obtained. It is then assumed that the timestamp follow, a
normal distribution. This normal disctibution can be build using µ and σ 2. This allows
to compute the average of the lastm data points.

2.7. The Data 25

2.7 The Data

In the previous sections, we presented how data can be used to perform anomaly
detection and how it can use machine learning but we did not look at the type of data
needed and the preparation of the dataset. In this section, we address all the issues
related to the data. First, we look at why data is needed and in which form. Then,
we present the di�erent types and natures of input data. Finally, we introduce feature
selection.

2.7.1 Dataset

A dataset is a data collection, a table containing data instances. Typically each line
contains the list of features describing one data instance. For the example classi�cation
we saw in the ML section, it would be a table containing for every data point an x and
an y value. [21]

There are two types of datasets, labeled and unlabeled ones. An unlabeled dataset
contains only the features describing the data instances. These datasets are used to
train unsupervised ML models. A labeled dataset additionally contains for each data
instance the information to which class it belongs. Table 2.2 shows an example of a
labeled dataset.

x y class
2 3 blue
1 2 blue
2 0.5 yellow
4 1 blue

2.5 2 yellow
...

...
...

Table 2.2: A section of the labeled dataset used to train the model of �gure 2.5.

To evaluate the classi�cation of a trained ML model a labeled data set is needed. The
model classi�es the data. Then classi�cation is confronted to the ground truth of the
labeled dataset with the techniques described in 2.4.3. The ground truth is the true
classi�cation of the data.

For ML on streaming, data things are di�erent. As the model evolves and detects at the
same time, only one labeled dataset is to be created. The detection runs on this model
and is evaluated at the same time.

26 Chapter 2. Analysis

2.7.2 Feature selection

In the previous examples, we always presented datasets with two features, an x and y
value. In reality, there are often more than two features. In IDS as in most ML usages,
the �rst step before creating a model is to identify which features should be used [21].
The anomaly detection algorithm monitors these features to detect anomalous behavior.
This is a well researched question for IDS for example in [28, 29]. In this section, we
present the process of feature selection.

It is the task of the designer of the system to select the relevant features. He has to use
his domain knowledge to decide which feature are relevant to ful�ll the goal of the ML
algorithm. [21]

However, in some cases an algorithm is used to detect the subset of features relevant
to the detection. There are di�erent algorithms to select features automatically, they
can use for example the entropy. If there is a very high number of features, it might
take more computational power to use them all. Furthermore, some features might be
highly correlated. In such cases algorithms can be used to detect which features are
the most relevant ones and which ones can be ignored. [21] These algorithms are very
useful when using a high number of feature with an unknown importance.

The problem we face is that in data streams, the importance of each feature can change
over time. In such cases, it might not be interesting to determine on one particular
dataset which features are relevant since the relevance of these features might be speci�c
to the dataset.

2.7.3 Nature of the input data

For every anomaly detection application, it is very important to determine the nature
of the input data because it conditions the choice of the anomaly detection technique.
Often the data points on which the detection is performed are composed by a set of
di�erent attributes. In the example of the ML section, the data points are a pair of two
numbers x and y. The nature of the attributes determines if a distance metric can be
used between the data points. With points on a coordinate system, it is easy to compute
the Cartesian distances between the points, but if the attributes are labels, it can be
harder. In this section, we present the di�erent types of input data and how they can be
transformed one into the other.

We identify two main types of data for our work: continuous and categorical. Features
are continuous if they are described by a continuous numeric value. The x and y values
of the previous dataset are continuous. This can also be for example the age of a person,
a temperature or a distance. Categorical features depict the belonging to a category.
The class label in the previous dataset is categorical. This can also be for example a ZIP

2.8. Characteristics of IoT site tra�c 27

code or a color. [21]

ML algorithms learn from mathematical constructs; therefore, the data instances for
learning have to be converted into numerical representations. It is important to �nd an
appropriate transformation. [21]

To convert categorical features in continuous, binarization should be used. If x di�erent
categories are used, a vector of x binary values is created. Each value corresponds to
one category. To represent a category, the binary value of this category is set to 1 and
the other values are set to 0. [21]

To convert continuous features in categorical, discretization should be used. [21]

2.8 Characteristics of IoT site tra�c

To detect accurately anomalies in the tra�c within a smart space, we need to identify the
particularities of this tra�c. In the previous sections, we presented the di�erent methods
that we are using. In this section, we propose characteristics of IoT site tra�c. Then,
we look at how these characteristics could allow to design a more accurate detection.

As discussed, many aspects of our system can be found in Intrusion Detection Systems.
Therefore, we could draw inspiration from these systems. However, the tra�c of con-
ventional networks and the one of IoT network seems to be di�erent. We analyze this
di�erences, since they allow to design a more accurate detection. [11]

Most of the IoT nodes are controlled by computer programs that act independently.
Most of them have a main-loop and perform a few preprogrammed connections every
time the loop is ran. This is not the case for all the IoT nodes since some of them
are controlled by a user. This characteristic is similar to SCADA systems where most
of the devices operate using main loops. Hence, we can draw inspiration from the
characteristics of SCADA service.

First, the number of devices in the network is very stable. New services should not be
added every other minute. Whereas, in traditional networks we can imagine that the
users come and go using mobile computers. [11]

In addition, this number of services should have very stable connection patterns. The
heating service should always access the thermometer service and one or two other
services. However, in normal P2P networks every host can access every other host. [11]

Finally, the frequency on each communication relationship can be periodic since on
access would be done every time the service runs its main loop. The service should
then wait for x seconds and run the main loop again. [24]

Through these three characteristics, IoT tra�c can be quite di�erent from the one in

28 Chapter 2. Analysis

conventional networks. The tra�c generated by people using computer is not periodic
since they do not follow a preprogrammed time schedule. Moreover, any host can access
any other host and need not to restrict themselves to a few other hosts.

2.9 Network Flows

We want to monitor connections between two particular end points, such connections
are known as network �ows. These are used for IDS, �rewalls or monitoring. In this
section we look at how they are de�ned and how we use them.

2.9.1 De�nition

There are many possible de�nitions for Network Flows. According to RFC3697, they
are a group of packets that share the same source IP address and destination IP address
be it unicast, anycast, or multicast. [30]

Cisco router monitor Network Flows with the feature NetFlow. There a �ow is de�ned
as a group of packets having the same: source and destination IP address, source and
destination port, layer 3 protocol, class of Service and router or switch interface. [31]

2.9.2 De�nition of �ows in the DS2OS

We use more high level features to describe the Flows. We do not want to look at IP
�ows in a network but at the way they can be used to describe connections between
services.

We de�ne �ows as follow:
De�nition 1. A Flow is a group of connections that originate from the same Service and
access the same Context Node.

Di�erent type of operations can be performed on one �ow. This is discussed in the
design chapter.

2.9.3 Use cases

It can be particularly useful to monitor the �ows in addition or instead of Deep Packet
Inspection (DPI) in an IDS. DPI is the process of examining the payload of the packet.
Flows can be used for example to detect network scans or distributed denial-of-service
attack (DDoS attack), because in these two cases there would be respectively a big
number very short �ows originating from one host to always di�erent destinations or

2.10. Representation of graphs 29

many �ows with a high throughput destined to the same host. The advantage of �ows
is that they require less computing power to analyse than using DPI.

Network �ows have been extensively used to detect the type of applications in a network.
For example HTTP tra�c can be recognized solely with the �ows descriptions. The
port number can be enough in this case. Di�erent methods have been used to detect
P2P, VoIP, DNS, FTP, email or games. [32]

2.10 Representation of graphs

It is a common approach to visualize and represent the connections between nodes
in a network in the form of a graph. The hosts in the network are represented by
the vertices of the graph and the �ows by the edges between them. Graphs can be
represented using di�erent data structures that have di�erent properties regarding the
complexity of retrieving particular information. Therefore, in this section we look at
the commonly used data structures for the representation of graphs. [8]

2.10.1 The di�erent data structures

2.10.1.1 Adjacency matrix

A graph can be represented as an adjacency matrix. It is a two-dimensional matrix
in which the entries represent edges between vertices. The rows represent the source
vertices of the graph and the columns the destination vertices. If there exist an edge
from a vertex a to a vertex b the entry at the crossing of the row that represents a
and the column that represents b will be equal to the cost of this edge. With this data
structure additional knowledge has to be stored outside of the matrix. [8]

2.10.1.2 Adjacency list

In an adjacency list, there is a list containing all the source vertices. Each entry in this
list contains a list of all the vertices that can be reached from this vertex. For the same
connection as before from a vertex a to a vertex b: there will be an entry in the list for
the vertex a and b will be in the list of this entry. With this data structure the additional
knowledge can be stored inside the entries. [8]

2.10.1.3 Incidence matrix

Graphs can also be saved as incidence matrix. This is a two-dimensional matrix, in
which columns represent the edges and rows the vertices. There is an entry at the

30 Chapter 2. Analysis

crossing position of a column and a row if the vertex of the row is incident to the edge
of this column. [8]

2.10.1.4 Hash table

A hash table is a data structure that can map keys to values. It is implemented in the
form of an array. A hash function is used on the key to compute an index into the array
where the corresponding value is to be saved. Such a data structure can be used to
save graphs. We can imagine the key to be the name of an edge and the value to be
information about the edge. The e�ciency of hash tables depends on their dimension
and load. However on average most operations on hash table have a complexity of
O(1). [8]

2.10.2 Comparison

These di�erent data structures can be compared in regard to the time complexity of
some basic operations.

Operations: Adjacency matrix Adjacency list Incidence matrix Hash table
Store graph O(|V |2) O(|V | + |E |) O(|E | ∗ |V |) O(X)

Add vertex O(|V |2) O(1) O(|E | ∗ |V |) O(1)
Add edge O(1) O(1) O(|E | ∗ |V |) O(1)

Remove vertex O(|V |2) O(|E |) O(|E | ∗ |V |) O(1)
Remove edge O(1) O(|V |) O(|E | ∗ |V |) O(1)
Find an edge O(1) O(|V |) O(|E |) O(1)

Table 2.3: Comparison of the di�erent graph representations. [8]

Table 2.3 compares the computational complexity of di�erent operations in each of the
presented data structures. A graph G = (V ,E) with V vertices and E edges is used.
The complexity presented for the hash table corresponds to the average case. The X

represents the dimension of the hash table.

2.11 The Problem domain revisited

We have understood the basis of network �ows and anomaly detection. Moreover we
have seen how online ML can be used to classify data instances of changing distribution.
Our research question follows from these observations:

2.11. The Problem domain revisited 31

How can anomalous connections between the services of a smart-space be de-
tected the most accurately in the shortest time?

We go through the requirements again with our research question in mind, this leads
us to a concept for the design of our anomaly detection module.

We want to concentrate �rst on the detection of anomalies in the service accesses (require-
ment: 2.2.1.1). The concept that we designed still allows the addition of the other AD
modules: periodicity AD, value AD and access patterns AD. This means that the �rst
goal is to detect new accesses between services. To do so we want to create a graph
representation of the network in which the vertices are the Services and the Context
Nodes. The edges would represent the existing connections, these accesses are allowed.
This way new connections can be detected very quickly.

The system should react to anomalies and learn the evolutions of the normal behavior
(requirement: 2.2.4). As new accesses are anomalies we want to inform the user and
possibly wait for his approval. The approval of the user would act as a supervision for
the learning. If the access is allowed by the user it is added as an edge of the graph.

The solution has to be fast and scalable (requirements: 2.2.2 and 2.2.3). The problem of
such graph is that it would need a lot of space to save it if there were many services
and connections. In addition the computing power to look for particular connection
would be high. Therefore we want to split the graph in subgraphs in order to keep
the detection scalable. Each KA would have the subgraph containing all the accesses
originating from the services it manages.

This simple but robust concept would handle the anomalous service access detection.
Moreover it would allow to add the other modules once it is designed.

33

Chapter 3

Related work

To create an overview of the state of the art in the di�erent research �elds linked with
our problem, we examine di�erent areas of related work. We begin with an explanation
of how the related work were found in section 3.1. Then we look at related work in the
area of Internet of Things in section 3.2, then in the �eld of Intrusion Detection System
in section 3.3, and �nally in periodicity mining in section 3.4. We will conclude with an
overview of the state of the art in section 3.5.

3.1 Areas of related work

We want to �nd existing works that address part of our research question and have
similar requirements. These work will be used to create an overview of the state of
the art in the �elds of our research question. The requirements and challenges that we
have in common with the other works are the one listed in sections 2.2 and 2.11 of the
Analysis.

Di�erent research �elds address parts of our research question and have similar require-
ments. All of them use anomaly detection. However they rarely want to detect the same
type of anomalies as we want.

In the Internet of Things, Anomaly Detection is used for di�erent tasks. It has been used
to detect misbehaving devices, to detect unauthorized connections, to detect anomalous
sensor values or to detect anomalous behavior of the people in the house. We review
methods and applications for each of these tasks. These works are similar to ours
because they share the same application domain as well as its constraints.

The second major �eld that shares some of our requirements is network-based anomaly-
based IDS. They also need to detect attacks in the form of anomalies. The normal
behavior of the network might not change over time but it can. We particularly look at
such IDS used in Industrial Control Systems. These systems also share the requirement

34 Chapter 3. Related work

that they have to monitor a distributed system of industrial installations. Furthermore
in contrary to most other IDS they know the high level protocols that are used and use
this knowledge to perform deep packet inspection. In our case we also want to use the
payload of the packet and not just look at the network packets and �ows.

Finally, as we want to perform frequency anomaly detection, we review the work that
make use of periodicity in network connections and in particular in network �ows.

3.2 Internet of Things

We want to perform anomaly detection by monitoring the tra�c within IoT sites, there-
fore we look at similar applications in IoT. We begin with a review of the current IoT
access control systems in use. After this we look at some applications using tra�c
monitoring. Finally we analyse how the anomaly detection in the behavior of people is
close to our work.

3.2.1 IoT access control

The existing connection management systems for IoT sites are presented here. These
systems are used to �lter unwanted accesses between devices. They ful�ll the same
purpose as the existing access control system of the DS2OS presented in section 2.1.2.

Neisse et al. [33] present a smart-space architecture using seckit [10] as access control
mechanism. They use hand written rules, however they present two particular functions:
a context manager and an enforcement of rules. The context manager allows to specify
the current context of the smart space and take this into account for the detection of
anomalies. They propose a rule enforcement method to modify the importance of rules,
however it does not allow to create completely new rules. Sarkar et al. [34] present an
other smart-space architecture using seckit without introducing further features.

To conclude, these systems are mainly similar to the connection management of the
DS2OS that is presented in section 2.1.2. Some of them present interesting extensions,
that allow a more �ne grained control. However they still use hand written rules that
have to be rewritten by the system administrator when the normal behavior changes.
Furthermore, they can be set to allow more than what the service requires. Having more
permissions than needed reduces the security, because anomalous behavior from these
services could be permitted. All in all, they are very di�erent from this work because
they do not consider the automatic adaptation to changes at all.

3.2. Internet of Things 35

3.2.2 IoT tra�c behaviors

Very recently machine learning and IDS approaches have been used to detect anomalous
tra�c communications on IoT sites.

Meidan et al. [35] present a technique to classify the type of IoT devices based on the
tra�c patterns. These authors also presented a detection of unauthorized IoT devices
based on their tra�c [36]. Our approach di�ers form theirs since we use the device
type to create a description of the service behavior and then detect single anomalous
connections.

Hafeez et al. [37] present a work very close to ours. They present an approach to detect
suspicious device-to-device communications in IoT-device-dominant edge networks.
They perform clustering on the tra�c patterns to detect anomalous behavior. However,
their approach di�ers from ours in some points, they do not use the periodicity of
the connections, they do not propose a human understandable model and they do not
address changes in the normal behavior of devices.

DeMarinis et al. [11] compare IoT tra�c to regular tra�c caused by a laptop. Their
initial �nding is that IoT tra�c may have some characteristics di�erent from other
network tra�c that would justify the use of white-list policies. As a result of their
analysis they highlight the need tor a new type of IoT security architecture and identify
its four most important features: it should adapt automatically to changes in the normal
communication behavior, the policies should be maintained by one or more independent
authorities rather than trusting a single party, it should consider resource limitations,
�nally it should facilitate the installation of new devices. Even if they do not propose an
approach to solve these problems, it is interesting to notice that our method provides a
solution to almost all of the problematics they identify.

3.2.3 Smart spaces anomaly detection in the behavior of the people

As we want to use machine learning based anomaly detection in smart-space, we also
look at how anomaly detection has been used in smart-spaces for other usages than
device to device connections. The main aspects that we want to look at are mainly
how these systems cope with the irregular aspects of the human behavior. The habits
changes of the smart-spaces inhabitants would result in changes in the connections
between the services. Therefore it is interesting for us to understand how a system can
adapt to these changes.

Di�erent smart-home experimenting prototypes have been developed like the MavHome
[38], the Aware Home [39] or the Gator Tech Smart Home [40]. In the MavHome project
a lot of work has been done regarding describing and learning the normal behavior of
the inhabitants of the house in order to detect anomalies. The developed method uses

36 Chapter 3. Related work

temporal relations to describe how the events or the actions of the user depend from
one another [4]. These relations are shown in �gure 3.1.

Figure 3.1: The temporal relations. (adapted with permission from [4])

The goal of the method is to use data mining to extract frequent relations and to predict
the behavior of the inhabitant. A hight level concept of activities is used to describe the
actions of the user. For example: the user is watching a movie. The di�erent activities
are collected and frequent relations are extracted. For example, the algorithm could
learn that the user very often makes popcorn before watching a movie. Then the learned
relations are used to predict the behavior of the user. If the predicted probability of an
action is very di�erent from the action happening the systems outputs an anomaly. For
example if the user has not made popcorn before watching a movie even though the
predicted probability was 0.97 it could be seen as anomalous. [4]

This approach is still used in most of the cases like in [41]. And even when it is not
directly used the anomaly detection of behaviors in smart-homes only focuses on the

3.3. Intrusion Detection Systems 37

hight level activity concept like in [42]. The problem is that this concept is actually quite
far away from the anomalies that we want to detect in our work. The focus is really
on the activity of the humans in the house. Moreover, apart from the consideration of
temporal relations it seems that traditional machine learning and data mining are used
for the anomaly detection. Therefore we cannot gain knowledge about the way the user
habits might change over time. For these reasons we cannot gain allot of knowledge
through these work.

3.3 Intrusion Detection Systems

We design a module that detects anomalies in the service accesses. As discussed in
section 2.9.2, these accesses are similar to �ows in IP-networks. Therefore we will
look at the di�erent type of anomaly detection methods in general and then at which
methods are used in ICS.

3.3.1 Anomaly-based IDS using �ows

Many di�erent intrusion detection systems have been designed using anomalous �ow
detection. Their main advantage is that they can run quicker than IDS using deep packet
inspection. We will have a look at some of these methods.

For example Arti�cial Neuron Networks (ANN) have been used by Jadidi , Muthukku-
marasamy, and Sithirasenan [43]. They created an Anomaly-based IDS that can run in
real-time. To do so they used a Multi-Layer Perceptron neural network with one hidden
layer. Moreover they use their network to identify the most relevant features of the
dataset. They achieved a very hight accuracy of 99.43%.

Winter, Hermann, and Zeilinger [44] propose an approach to detect anomalous �ows
with a One-Class Support Vector Machines. Traditionally AD-based IDS are trained
using the normal tra�c. On the contrary, here, they trained the one Class SVM with
the malicious network data. The advantage of this idea is that the detection su�ers of a
lower false-positive rate. However we may think that it cannot detect new attacks.

There are many more methods that have been used, sadly their application domain
is quite di�erent to ours. Therefore they fail many of our requirements. There main
problem is that they all use classical Machine Learning to �rst train the model and then
deploy it.

38 Chapter 3. Related work

3.3.2 Flow-whitelisting in SCADA

In Industrial Control Systems the tra�c is di�erent, therefore di�erent techniques have
been developed to perform better on this type of tra�c. The two main di�erences rele-
vant for the anomalous �ow detection are that the number of hosts and their connection
with each other are very stable.

To respond to this particular characteristics RRR Barbosa, Sadre and Pras [45] presented
the idea to whitelist the �ows that are allowed and to forbid the others. RRR Barbosa
has worked a lot on securing the connections in SCADA networks.

Their �rst approach is rather simple. First, in a learning phase the �ows are monitored
and added to the whitelist, then in the detection phase the created whitelist is used
to �lter the �ows. This approach is based on two assumptions, �rst that there is no
attacks during the learning phase otherwisebecause else it would be learned as part
of the normal tra�c. Then that all the normal �ows are present in the learning phase,
if they only appear afterwards they would be labeled as anomalous. This means that
this system does not address changes in the normal behavior. The whitelisted �ows are
saved in a matrix. Considerations are made about the duration of the learning phase,
but these are very dependent on the application network. A additional module is also
added to classify the types of anomaly in four classes. The drawback of this method is
the potentially high false alarm rate.

Di�erent improvements have been proposed for this method.

Leef and Addanki [46] applied this method to regular tra�c with the help of di�erent
machine learning algorithms: Decision Tree, Random Forest and Linear SVM. There
results are not as good as the ones of [45] because this approach is harder to use on
traditional tra�c.

Lemay, Rochon and Fernandez [47] designed a technique to transform this white list in
a black list in order to be able to use it with traditional rule-based IDS. This is helpful
but they did not make major improvements on the concept.

Kang, Kim, Na, and Jhang [48] improved the classi�cation of the type of attacks using
deep packet inspection.

These improvements allow a slightly better detection. However, they do not propose a
new concept, or solve the dependence to the two assumptions of the �rst method.

3.4 Periodicity Mining

We want to detect for each �ow if there is a frequency at which the packets are exchanged.
If this is the case packets that do not conform to this frequency should be labeled as

3.4. Periodicity Mining 39

anomalous. We want to access how anomalous each packet is with the help of an
anomaly value. The goal would be to attribute a con�dence value to the mined frequency.
Then if the packet is very di�erent from a frequency with a high con�dence value then
it is very anomalous.

To achieve this, periodicity mining is needed. In this section we will have a look at
the di�erent techniques of periodicity mining and how they have been used. There
are three main types of techniques: some are based on spectral analysis, others are
using the inter-arrival times of the packets and the last ones are based on automates. As
periodicity in tra�c is often caused by programs, it is used mostly in botnets detection
and in anomaly detection in ICS.

Botnets are a large number of compromised machines that follow the orders of a small
number of bot masters via a Command and Control channel (C&C). Due to the prepro-
grammed behavior of the bots the tra�c in the botnet is periodic. Therefore it can be
su�cient to detect if there is periodicity in the tra�c to detect a botnet. Thus, some
of the methods are used to detect if there is periodicity more than to �nd out which
periodicities there are. However in some cases it is trivial to obtain this additional
information.

On the contrary, in Industrial Control System the di�erent devices tend to send updates
or ask for information in predetermined intervals. Therefore the tra�c is very periodic.
The goal in such networks is to detect deviations from the normal periodic behavior
because these deviations can indicate anomalies or intrusions. This is also the way we
want to use periodicity mining.

3.4.1 Spectral analysis

The goal of this method is to use the tools of the spectral analysis to discover periodicity
in the data. An example is Fast Fourier Transform that can be used to �nd the di�erent
frequency components of the signal. Figure 3.2 shows how it can be used, it is easier to
assess the periodicity of the signals in the spectral domain. These methods often use
the number of packet arrivals of each �ow in each time intervals as the signal.

3.4.1.1 Detect periodicity

Barford, Kline, Plonka and Ron [49] were the �rst to propose such a method. They used
wavelets to transform a time series of the number of new �ows per time interval to
the spectral domain. They applied it to a moving window of �xed size. Then detected
anomalies by detecting new peaks in the spectral domain that are higher than a certain
threshold.

40 Chapter 3. Related work

Figure 3.2: The comparison of a periodic and an aperiodic signal in time and spectral
domains. (adapted with permission from [5])

AsSadhan and Moura [5] have created a sequence x[n] with the number of the packets
per 100 ms time interval. Then they have confronted two hypothesis: either the sequence
x[n] follows a Gaussian distribution, or it has a periodic component plus Gaussian noise.
To �nd the correct hypothesis they compare the highest pick in the spectral domain
with the other components to obtain a ratio. If the ratio is large enough it means that
there is a clear periodic component. They used a poisson distribution to model the x[n]
sequence.

3.4.1.2 Detect aperiodicity

Barbosa, Sadre, and Pras [6] present the �rst prove of concept of frequency anomaly
detection in the connections of SCADA. Figure 3.3 shows the di�erent modules of their
system. First comes the Tra�c Capture module, it collects the packet that use SCADA
protocols. Then the Flow Creation module, aggregates the packets in �ows. If the �ow
is new its normal behavior has to be learnt, this is the role of the Periodicity Learning
module. If the �ow is known the new packets are compared with the learned frequency
�ngerprint of the �ow. If the packet does not match the �ngerprint it is labeled as
anomalous. They have shown the feasibility of the approach but they did not automate
it.

3.4. Periodicity Mining 41

Figure 3.3: The di�erent modules of the frequency anomaly detection developed in [6].
(adapted with permission from [6])

Cheng, Kung and Tan [18] proposed a method to use spectral analysis to identify
malicious DoS attack tra�c. They use the number of packets per time slot to create the
signal. Then they transform it in the spectral domain to detect if there is periodicity
or not. The DoS tra�c is not periodic, whereas the normal TCP tra�c often has its
round-trip time as period. The advantage of their method is that is can di�erentiate
which packets are anomalous and which �t the TCP normal tra�c frequency. This
allows to discard only the unwanted packets.

3.4.2 Inter-arrival times

The idea is to use the value of time duration between two packets to detect if there is a
particular periodicity.

Hubballi and Goyal [50] present an approach using the standard deviation of the inter-
arrival durations for each �ow of a host. If the standard deviation is below a certain
threshold the �ow is considered to be anomalous. The limitation of this system is that
it is only able to detect frequencies of packets that have always the same time interval:
a frequency of one packet every ten minutes will be detected, but two packets with ten
seconds interval every ten minute will not be detected as a frequency.

Bilge et al. [51] created a model to detect botnets. They trained a random forest classi�er
to classify �ows as botnet commands or normal tra�c behavior. Therefore the focus is
to detect if there is a periodicity. Most of the features fed to the classi�er are created
using inter-arrival durations: the average standard deviation of the �ow, the average
standard deviation from the last 300 seconds plus the minimum, maximum and median
inter-arrival times.

42 Chapter 3. Related work

3.4.3 Automata

The last approach does not only consider the period between the arrival of two packets,
it also considers the order in which the packets arrive. Such systems use deep packet
inspection and have knowledge of the used communication protocol. This allows to
extract the type of operation performed with each packet. With domain knowledge,
an automaton is created that describes in which order the di�erent requests should
arrive and with which time interval. Any deviation from the behavior described by the
automaton is seen as anomalous.

Goldenberg and Wool [52] propose to model ICS tra�c using the Modbus protocol with
such an automaton. Their approach creates the automaton given a training set without
any anomalies. However their approach encounters di�culties when dealing with
cycles with multiple periods. Furthermore, their approach does not take into account
the duration between two packets into account.

Barbosa, Sadre, and Pras [53] propose an approach using message repetition and timing
information to automatically learn the periodic patterns of the tra�c. These learned
periodic patterns can then be used to detect the tra�c that does not �t in them. They
are able to learn periodicities on di�erent time scales, the di�erent periodicities of each
command in a �ow even if there are small timing variations. The learner module, that
extracts the sequences uses a system of candidate: when a sequence of periodic requests
is detected a candidate is created. Then each new request that �t in this period is added
to the candidate. Finally the di�erent candidates are confronted to one another. They
are evaluated using the duration from the �rst packet to the last and the number of
packets �tting their description.

This approach is promising even though it has some general limitations. It requires
the knowledge of the protocol, as well as a not too complex patterns, to avoid in over
complicated automates. The second limitation is that, as for now, these approaches
require normal tra�c to be trained and do not allow to learn the automaton online.

3.4.4 Comparison of the approaches

In conclusion, using inter-arrival times seams to be easier. But the existing approaches
have more di�culties to detect complex frequencies or frequent burst of packets. In
the case of frequent bursts of packets the average inter-arrival duration would be very
short because of the burst. Therefore it is easier to detect this kind of periodicity using
spectral analysis techniques. Spectral analysis techniques on their side su�er from
imprecise periods. [53] Automates can be useful and more robust than the others, with
a well known protocols and an application domain that does not su�er concept drift.

It is also important to mention that all these approaches focus on the periodicity within

3.5. Conclusion 43

�ows. This allows them to be scalable to bigger networks because hosts can implement
these methods, it does not have to be a network level monitoring.

3.5 Conclusion

To compare the di�erent related work we use table 3.1. It allows us to have an overview
of the sate of the art. We use di�erent categories to classify the papers we found. First,
one category for each type of anomaly we want to detect: �ow monitoring and frequency
AD. Then we want to know for which usage the di�erent methods were designed: IoT,
IoT access control, IDS, IDS for ICS. We do not look at the papers that we found for
anomaly detection in the behavior of people because they are quite di�erent to our
approach. Next we want to know if the detection did already run in real time and if the
detection can adapt to a changing normal behavior. Some detection methods were only
tested on datasets, this means that even if they could run in real time it is not presented.
We also want to know if the presented design addresses the issue of scalability and the
creation of the dataset used to access the detection.

The analysis of table 3.1 reveals that only about a third of the related work are taken
out of the area of IoT. Furthermore, very few related work handle concept drift. All the
related work that handle it, are used in frequency anomaly detection. There, the use of
a sliding window allows to handle concept drift more easily.

44 Chapter 3. Related work

Papers: Fl
ow

A
D

Fr
eq

ue
nc

y
A

D

Io
T

Io
T

ac
ce

ss
co

nt
ro

l

Co
nv

en
tio

na
lI

D
S

ID
S

fo
rI

CS

Ru
nn

ed
in

re
al

Ti
m

e

Ca
n

ha
nd

le
co

nc
ep

td
rif

t

A
dd

re
ss

sc
al

ab
ili

ty

A
dd

re
ss

th
e

da
ta

se
tc

re
at

io
n

Neisse et al. [33] 4 4 .. 4 ..
Sarkar et al. [34] 4 4 .. 4 ..
Pahl et al. [17] 4 4 .. 4 ..

Meidan et al. [35] 4 4

Meidan et al. [36] 4 4

Hafeez et al. [37] 4 4 4 4

DeMarinis et al. [11] 4
Jadidi et al. [43] 4 4 4

Winter et al. [44] 4 4
Barbosa et al. [45] 4 4 4 4

Leef et al. [46] 4 4 4

Lemay et al. [47] 4 4 4 4

Kang et al. [48] 4 4
Barford et al. [49] .. 4 4 4 ..
AsSadhan et al. [5] .. 4 4
Barbosa et al. [6] .. 4 4
Cheng et al. [18] .. 4 4 4 4 ..

Hubballi et al. [50] .. 4 4 4 4 ..
Bilge et al. [51] .. 4 4

Barbosa et al. [53] .. 4 4

Table 3.1: Comparison of the di�erent related work.

45

Chapter 4

Design

In this chapter we discuss the design of our anomaly detection system. First we present
the concept and the architecture of our approach in section 4.1. Then we explain our
feature selection process in section 4.2. We present the two principal components of
our architecture in sections 4.3 and 4.4. We show our �rst approach in section 4.5,
followed by our �nal approach in section 4.6. Finally, we present our approach to detect
frequency anomalies in section 4.7.

4.1 The architecture - Echidna and the Sphinxes

In this section we give an overview of the architecture. First, we remind the requirements
and then we present the di�erent modules used.

The system that we want to build should follow the requirements set in section 2.2.

• Detect anomalies in: service accesses and period (requirements: 2.2.1.1 and 2.2.1.2)
• Allow the addition of the optional modules. (requirement: 2.2.1)
• Allow the learned models to be visualised and understood by humans. (require-

ment: 2.2.5)
• Be integrated and scalable inside the distributed architecture of DS2OS (require-

ment: 2.2.2)
• Learn and adapt to the behavior of the network (requirement: 2.2.4)

To answer the �rst requirement, the detection of anomalies in the service accesses, we
want to monitor the connections between the services. A solution to do so could be a
service in the VSL middleware to which descriptions of the accesses between services
would be sent. This service would perform the detection on the collected connection
descriptions. The advantage of this method is that this module could monitor the whole
network. Anomalies on the network level like scans of the network could be detected.
But on the other hand this solution is not very scalable, if there are hundreds of services

46 Chapter 4. Design

exchanging thousands of connections per seconds the detection might be to much to
handle for one service.

Another possibility would be to implement an anomaly detection module in every KA.
This module could detect unexpected connections to the services it manages. This
would be a scalable solution since the number of KA rises with the number of services;
therefore the number of services monitored by the anomaly detection module would
never be higher than the capacities of the KA. However it would not have a view of the
whole network.

We propose a solution using a combination of both approaches. There is one anomaly
detection module on each KA called the Sphinx. In addition, we use one coordinator
module called Echidna. The Sphinxes of the whole smart space are coordinated by the
Echidna, this allows the detection to be both scalable and network-based. Figure 4.1
shows an example of this organization.

Figure 4.1: The di�erent detection components in an example smart space.

In the rest of this section we have a look at the two modules, their functions and their
places in the architecture. For each we argue why it is the best choice in regard to our
requirements.

4.1. The architecture - Echidna and the Sphinxes 47

4.1.1 The Sphinx

One instance of the Sphinx is present on each KA. Its role is to monitor service accesses
that are routed through this KA and to detect anomalies in them.

Monitoring and detecting anomalies on each KA allows to have a system that is scalable.
Independently of the number of services in the smart space, every KA only hosts as
much services as it can control. This means that the Sphinx always monitors a limited
number of services. Moreover this module can be directly implemented within the KA.
This speeds up the time needed to access the normality of a connection.

This design choice should not lead to major detection problems. The system is not
completely a network-based IDS, because only a subset of all the connections between
services are treated by each KA. The Sphinx acts as a network-based IDS for the subset
that it monitors and thereby is able to detect all the attacks that such a system could have
detected. The problem is that some attacks might need a view of the whole network to
be detected or analysed. This is why there is also the module Echidna presented in part
4.1.2.

In this organization each Sphinx monitors a subset of all the existing accesses. We have
to make sure that every access is monitored by a sphinx and that if possible no access is
proceeded by two Sphinxes, which would consume unnecessarily additional computing
resources. We decide that each Sphinx monitors only the accesses originating from
services hosted on the same KA as the Sphinx. This organization can be seen in �gure
4.1, where the color of each edge indicates the Sphinx that monitors it. Every service
has to be run on a KA and only one KA; therefore, each access is monitored by exactly
one Sphinx.

4.1.2 Echidna

The Sphinxes do not allow to have a view of the whole smart space, because they only
monitor the connections from there services. To overcome this problem we design
the module Echidna that coordinates the Sphinxes and centralize the information they
gather. Furthermore, Echidna provides the interaction point with the user. This module
is designed in section 4.4.

48 Chapter 4. Design

4.2 Feature Selection

Before the design of the di�erent modules, we discuss the features that are extracted
from the DS2OS connections. With this section we arrive at the data preparation phase
of our methodology (section 1.2). It is needed before going to the modeling phase. We
explained the purpose of this phase in section 2.7.2.

We need di�erent features than traditional IDS. In conventional IDS the features that are
used are often from the Network and Transport Layer of the OSI model, for example IP
address or port number. However in our case these features are quite useless because all
packets are exchanged on similar ports and many services can use the same IP address.
Therefore we use features of the application layer, we want to use the service ID instead
of the IP address. We use the features describing the service accesses in the DS2OS.

4.2.1 Selected features

To represent each connection we use a list of features that describes each of its aspects.
In this subsection we discuss the features which were chosen and why. Some features
are not present for every connection, when a feature does not exist for a connection the
�eld of this feature is �lled with ”none”.

4.2.1.1 Accessing service ID

Every service has a unique identi�er. The accessing service ID is the unique identi�er
of the service from which originates the access. This feature is similar to the source IP
address of an IP packet. This feature is needed to describe an access. Moreover, this
feature is present for the description of every connection.

4.2.1.2 Accessing service address

If a service is registered by a KA, it has an address in the knowledge organisation of the
VSL. This feature is the address of the service from which originates the connection. If
a service is not registered, this feature is ”none”. This feature can be useful to detect if
there is a KA on which more anomalies happen than on others.

4.2.1.3 Accessing service type

Each registered service has a model that describes the organisation of its knowledge
nodes. This is the type of the service. All the temperature sensor services of the Smart-
Space would have a similar type, for example "temperatureSensorSer vice". This feature
is useful to detect is a particular type of service in the whole Smart Space generates the
same type of updates. It also allows to compare the behavior of similar services. Once
again, the value is ”none” if the service is not registered.

4.2. Feature Selection 49

4.2.1.4 Accessed node address

This is the equivalent of the destination address of a connection. It is the other end of
the connection, the address of the knowledge node that is accessed. This is feature has
to be present for every connection as it de�nes one of the end points.

4.2.1.5 Accessed node type

Each knowledge node has a type, for example text , number , list or composed . We also
want to save this information.

4.2.1.6 Accessed service address

This is the address of the service to which the accessed knowledge node belongs. It is
useful to log it in order to detect which anomalies come from which service.

4.2.1.7 Accessed service type

As for the type of the type of the accessing service, it can be useful to log the type of
the accesses service.

4.2.1.8 Operation

There are di�erent type of accesses. If, for example, we want to label as anomalous the
fact that a service that was only reading a value begins to change it, then we need to
use this feature. The di�erent type of accesses are discussed in subsection 4.2.2.

4.2.1.9 Value

Be it a read access or a write access, a value is exchanged. A thermometer service would
write the temperature value its Context Node, and other services would read this value.
For the value anomaly detection as de�ned in 2.2.1.3 it is needed to monitor the value
exchanged to detect anomalies in comparison to the other values exchanged in this
�ow.

4.2.1.10 Timestamp

Each access is made at a certain point in time, this point is described by the timestamp.
This is a vital feature to perform periodicity anomaly detection. Moreover for value
anomaly detection it can be used to weight the values, it is normal to have a higher
di�erence after a longer time. The timestamps used are in Unix time.

4.2.1.11 Normality

As we want the dataset to be labeled, we add this feature to describe if the connection
is normal or not. However, this feature is not used once the system is deployed.

50 Chapter 4. Design

4.2.2 Type of operations

There are a number of di�erent operations that services can perform. For each of them
the information that are logged into the dataset are quite di�erent. In this subsection
we go through each of them and explain what they do and what information we extract
from it.

4.2.2.1 Read and write

These are the most simple operations, a service reads or write a new value in a Context
Node. All the features listed before are used.

4.2.2.2 Subscribe and un-subscribe

Services can subscribe to particular Context Node. Once subscribed, when the Context
Node is modi�ed, they receive a notify-callback. The subscription operations contain
no value . Apart from this, all the features are present. The accessing service in this
context is the service that is subscribing or un-subscribing to the accessed node.

4.2.2.3 Notify-callback

Once subscribed, if the Context Node changes, a notify-callback connection is issued.
There is no value in this packet either. The accessing service is the service that had
subscribed to the Context Node. The accessed node is the Context Node.

4.2.2.4 Register and un-register virtual node

Services can create virtual nodes, to do so they have to register them by issuing a register
virtual node operation. It can be unregistered with an un-register virtual node operation.
There is no value for these two operation either. The accessed node in this case is the
virtual node that is being registered or un-registered.

4.2.2.5 Register and un-register service

Services are to be registered in the VSL before they can be used. These operations are
done at the creation and the deletion of a service. There is no accessed node, nor value.
All the �elds are set to ”none” except the service id, its address and type if known, the
operation and the timestamp.

4.2.2.6 Subtree operations

Services can perform operations on whole subtrees, they can lock them and then either
commit the changes made or discard them. In this case the accessed node is the parent
node of the subtree on which the operation is performed.

4.2. Feature Selection 51

4.2.3 Summary

All in all, there four features that have to be used to describe each connection: ser viceID,
accessednodeaddress , operation and timestamp. The other features are present depen-
dent on the operation type. The list of all the features is shown in table 4.1

Feature name Type Example values
Accessing service ID Text service1

Accessing service address Text /kaName/service1
Accessing service type Categorical sensorService
Accessed node address Text /kaName/service2/temperature

Accessed node type Categorical number
Accessed service address Text /kaName/service2

Accessed service type Categorical sensorService
Operation Categorical read , write

Value 37.5, sunny, {beer , lettuce}
Timestamp Continuous 847690962,1513093731
Normality Categorical "normal","anomalous"

Table 4.1: List of the attributes de�ning a connection instance with their type.

As explained in section 2.7.2, there are feature selection algorithms that can be used to
select the features that should be used. However, in data streams, the relevance of the
features can change over time. Therefore, we use all the features available.

52 Chapter 4. Design

4.3 The Sphinx

The Sphinx is the module that is on present on each KA. Its role is to monitor the service
accesses that are routed through this KA and to detect anomalies in them. It means that
all the connections originating from the services run on the KA are monitored.

In this section we present the design of the Sphinx. First we explain its name, then we
explain how accesses are monitored and how their descriptions are saved.

4.3.1 Naming

As Phil Karlton said: "There are only two hard things in Computer Science: cache inval-
idation, naming things, and o�-by-one errors." We solve here the problem of "naming
things" for our module on each KA.

The mythological Sphinx was a beast send by Era to the city of Thebes. She asked a
riddle to all the passing voyagers and would allow them passage only if they answered
correctly. [54] In a similar way, we want our system to question the normality of all the
passing accesses; therefore we name it the Sphinx.

4.3.2 Keeping track of observations

The Sphinx monitors all the accesses originating from the services hosted on the same
KA. These accesses are seen as they occur. We want the sphinx to keep track of what
kind of access have been made prior the the one been monitored.

To keep track of the accesses observed, we summarize them in �ows. We use the
de�nition given in section 2.9.2: A �ow is a group of accesses that originates from the
same Service and access the same Context Node. Each edge in �gure 4.1 can be seen as
a �ow.

We describe each �ow with its characteristics in an edge data-structure, and we organize
all these �ow descriptions in a �ow-list. The �ow list is described in the next section
and the edge data-structure in the section after.

4.3.3 The Data-Structure of the �ow-list

The monitored �ows could be saved as a simple list but the time complexity needed to
�nd out if a �ow is allowed or not would be too high. Therefore we need to de�ne and
create the most appropriate data-structure to model the �ow-list. We look �rst at the
de�ning requirements in the following section. Then we consider the di�erent options
in section 4.3.3.2. Finally we present our solution in section 4.3.3.3.

4.3. The Sphinx 53

4.3.3.1 Requirements

In this section we review the requirements of the data-structure used to represent the
�ow list.

First, we want to use data-structures used to represent graphs. One of the advantages
of using �ows is that it is a human understandable approach. As �ows are actually
connection relationships between services of a same site. This means that they can be
represented as edges of a graph connecting the services. It would make the approach
more human understandable. Moreover data-structures that can be used to represent
graphs are well studied. For these reasons we want to represent our list in the form of a
graph.

Then, we have to analyse what kind of operation is done frequently to select data-
structures on the time complexity of these operations. The graph is only created once, at
the start of the system. Therefore the complexity of this operation is not very important.
If a new service is started or stopped, a vertex has to be added to or deleted from the
graph. This is not a very frequent operation. Therefore it is not the most important
complexity. If a new �ow is detected, an edge is to be added to the graph. This case
arises more often. However the operation that is needed the most frequently is to �nd
an edge. For each incoming access, the module looks for the corresponding edge. This is
an operation that happens by order of magnitude more often than the other in a normal
usage of the DS2OS. Therefore the computational complexity of �nding a given edge is
the factor of choice for the data-structure.

Finally, it would be helpful to be able to save the �ows using the edge data structure.
Moreover it would be great to have a class used to represent the vertices of the graph
and one for the edges of the graph. This organization would be very useful for the
additional modules.

4.3.3.2 The di�erent options

The di�erent data structure that are appropriate for this task are listed in section 2.10.

We have to �nd and prove the computational complexity of �nding an edge in the graph
for each data-structure. Even if the table 2.3 shows the computational complexity of
�nding an edge, it is not the cost that applies in our case. The table shows the complexity
of �nding an edge between two vertices 2 and 3 of a graph given that their storage
positions are known. This operation has a complexity of O(1) in an adjacency matrix
because only the value stored in the matrix at position (2,3) has to be read. For an
adjacency list if the storage position of the vertex 2 is known, but once at this position
the algorithm has to iterate through the list of adjacent vertex to �nd out if there is such
an edge. For a hash table only the hash of the two vertices has to be computed and then

54 Chapter 4. Design

the corresponding index in the table is read.

In our case the storage place is not known, therefore the complexity is di�erent. The
storage positions is known when the vertices of the graph are labeled with di�erent
integer. However in our case the vertices are named accordingly to the services that they
represent. In the case of the adjacency matrix it means that the vertex name would �rst
need to be mapped on the index of the corresponding row or column. This operation
has a complexity of O(n), where n is the number of elements in the list, because it
corresponds to �nding a given element in a list. [8] As we would have two lists of
vertices the complexity would be of O(2|V |) = O(|V |) for a graph G = (V ,E).

Contrarily to the adjacency matrix, the hash table can perform as good with the names of
the services as with number. Only the hash function is to be changed and this is enough
to have a working hash table with name for the vertices. Moreover, the computational
complexity of �nding an edge stays the same. [8]

Operations: Adjacency matrix Adjacency list Hash table
Find edge with name O(|V |) O(|V |) O(1)

Table 4.2: Comparison of the computational complexity of �nding an edge using the
name of the vertices that it connects for a graph G = (V ,E).

Using the previous discussions we can �ll the table 4.2. The best option seems to
be the hash table because �nding an edge in it has a computational complexity of
O(1). However the organization of an adjacency list would be helpful to ful�ll the �rst
requirement: the organization of the �ows as an adjacency list is easier to understand
for humans than a hash table.

4.3.3.3 The hash list

To conciliate the advantages of the two approaches we want to use a hash list as
presented in [55]. The idea is to use an adjacency list but with hash tables instead
of lists.

We use a �rst hash table that associates a the name of a service with the class instance
that describes it. This description then contains a second hash table that associates the
destination service of the �ow to the instance of the edge data-structure that describes
this �ow. This way, similarly to an adjacency list, each vertex has in its description the
other vertices to which it is connected.

However the complexity of �nding a particular edge is of O(1). First the corresponding
origin vertex has to be found, then the corresponding destination vertex. These both
operations require O(1), this means that �nding an edge require O(2) = O(1).

4.3. The Sphinx 55

We changed the implementation of the hash table to allow to iterate over all the elements
present in the table. When a new element is saved in the table, its key is also added in a
list containing all the keys of the elements in the table. This allows to iterate over all
the elements in the table if needed. However, this operation has the same complexity
as iterating over a list. Therefore it should only be used when speci�cally needed.

To conclude, the hash list data-structure and its implementation allows us to ful�ll all
the requirements de�ned in section 4.3.3.1.

4.3.4 The edge data-structure

The previous system allows us to create an instance of the edge data-structure for each
�ow that is observed. This data-structure is used to save all the information concerning
a particular �ow. In this section we review what these describing variables are. The
information contained in this data-structure is extracted from the connection packets
of the described �ow.

4.3.4.1 The de�ning variables

The two de�ning features are the origin and the end vertices of the edge. These cor-
respond to the service ID of the service from which the connection originates and the
accessesnodeaddress . These two features de�ne the source and the destination of the
operations.

In addition, a counter of the number of accesses observed on this �ow is saved. As well
as the �rst and last observed timestamps.

4.3.4.2 Additional variables

There are several additional features that can be useful for a more complete detection.
We present them here.

First the address of the two services playing a role in the connection can be useful. The
accessinдser viceaddress is the address of the source of the connection. As we have seen
in the creation of the dataset, this address might not exist if the service is not registered.
The accessedser viceaddress is the address of the service from which a knowledge node
is being accessed.

Then, the types of the two services can be saved. We have then the accessinдser vicetype
and theaccessedser vicetype , again, the �rst one might not exist. The type of the accessed
Context Node is also saved. It is also interesting to know if the accessed knowledge
node is a virtual node. This information is also saved in the edge data-structure.

56 Chapter 4. Design

4.3.4.3 The operations

If a service is allowed to read a particular node it is not necessarily allowed to change
its value. Therefore, the edge data-structure should also keep trace of the operations
performed in this �ow. As described in the sub-section 4.2.2, there are di�erent type of
operations that services can perform.

We will classify the operations in two types: on one side the operations that only read
the value of the node and on the other side the operations that modify the value of the
node. The �rst group is composed of the operations: read , subscribe , unsubscribe and
callback . The second group of operations is composed of the write operation, as well
as the reдister virtualnode and unreдister virtualnode operations.

The operations that have been monitored on a �ow are saved in a list in the edge
data-structure.

4.4. Echidna 57

4.4 Echidna

One instance of the Sphinx is deployed on each KA. This means that each Sphinx in
the smart space only monitors a subset of the services in the smart space and their
connections. As explained in section 4.1, we use an additional module, Echidna, to
coordinate the Sphinxes. This one module to rule them all is presented in this section.

We present all its roles and the problematic linked with them in subsection 4.4.2. Then
we consider its place in the architecture in subsection 4.4.3. Finally we address how it
handles user-interaction.

4.4.1 Naming

Again, we face the problem of "naming things".

Even if it was Era that send the sphinx to Thebes, Echidna is the mother of the Sphinx.
[56] As the mother of the Sphinx Echidna looks after her daughters and and coordinate
them, we choose to call this module Echidna. Plus, I found the name Era to be too short.

4.4.2 The Roles and requirements

The Echidna has di�erent roles that we de�ne here.

First, it provides a network-level anomaly detection. It means that it is able to detect
anomalies that can only be seen by looking at the whole smart space. This function is
presented in section 4.6.

Then, Echidna handles the communication with the user. This is done via the visualiza-
tion of the connections in the smart space and an Android Application used to handle
the user input needed that can be needed for di�erent detection methods.

Echidna also handles the communication with the store. If the detection should be
changed in some way, it is to be communicated to Echidna.

This hierarchical architecture allows the system to be scalable to any number of services
and, at the same time, to have the advantages of a network-based IDS.

The main requirement for this coordinator module is that it should not have to perform
tasks that consuming more computing ressource the more services there are in the
smart space. Echidna has to be scalable: it should be able to function no matter the
number of service in the smart space.

58 Chapter 4. Design

4.4.3 The place in the architecture

In this subsection be present the place of Echidna in the detection system and how it
interacts with the Sphinxes.

Echidna is started as a service in the DS2OS. There is only one Echidna module in each
smart space. Echidna looks for new Sphinxes in the smart space every two seconds and
starts a communication with every detected Sphinx.

All the detection state, shared in the whole smart space, are handled by Echidna. The
sensibility level used in the �rst approach 4.5.2.2, for example is set globally and sent to
the Sphinxes.

Echidna needs some of the information detected by the Sphinxes. It needs all the
edges and vertices created by each Sphinx, and the anomalies that they detect. The
communication happens through the VSL. The Sphinxes have knowledge nodes to
publish their state. Each Sphinx has a list of the services it monitors and a list of the
edges it monitors. These edges are only the edge originating in the monitored services.
This way each connection is monitored only by one Sphinx. The communication via
the VSL is explained more in detail in section 5.2.

4.4.4 Antigone

To allow user-interactions we designed a small android application. It is in direct
connection with Echidna. It is a basic interface that can be extended.

4.4.4.1 Naming

Antigone helped her dad, Oedipus, to travel once he became blind. [56] In a similar way,
this application allows the user to interact with the smart space even if he cannot see it.

4.4.4.2 Roles and design

Antigone has two roles, it noti�es the user when an anomaly is detected in the smart
space and it allows the user to give feedback to the detection.

When an anomaly is detected by a Sphinx, it is send to Echidna, that sends it to Antigone.
The user receives a noti�cation on his smart phone to show where the anomaly is located
and between which services. This way the user is kept in the loop and he can understand
what happens in the smart space.

4.4. Echidna 59

Then, the user can decide to con�rm that it is an anomaly or decide to allow this
behavior. This information is sent to Echidna, that sends it to the Sphinx that detected
the anomaly.

The way the user interaction is taken into account is described more in detail in the
sections 4.5 and 4.6.

4.4.5 Visualization

To allow an even better understanding of what is going on in the smart space, we propose
a visualization of the connections in the smart space. An example of this visualization
is shown in �gure 4.2.

Figure 4.2: The visualization of the connections in the smart space.

This is a �rst look at the system, the user can learn more when clicking on the edges.
Then more information about the �ow are displayed. When an anomaly is detected on
an edge, it is colored in red, to inform the user.

60 Chapter 4. Design

4.5 First approach: static white-list

We present in this section the �rst approach that we designed. It builds up on the
architecture we presented in the previous sections. The goal of this approach is to use a
�ow white-list to allow or forbid accesses. This approach has a lot of limitations and
is not the �nal approach we present, however it contain the basis on which we built
the �nal approach. We presented this approach with a poster at the Passive and Active
Measurement conference in Berlin the 26/03/2018 [57].

We argue in section 4.5.1 why a white-list should work and how we use it. Then, we
describe in section 4.5.3 how the white-list is created. Finally, we present the limitations
of this approach in section 4.5.4.

4.5.1 Flow white-listing

We want to create a model to detect anomalous connections. It has to be created by
learning and adapted over the time.

As discussed in section 2.8, the connections in a smart space are very stable. This can
be taken into account to design a model that is more accurate. This characteristic is
shared with ICS, as seen in section 2.3.2, therefore it make sense to look at what has
been developed to address this issue in ICS. Moreover, we reviewed di�erent approaches
for access monitoring in section 3.3.

We use a �ow-based approach to monitor accesses. Similarly to [45], we use �ow
white-listing . We represent the smart space network as a graph, where the services
are vertices that are connected by edge representing the allowed �ows. These �ows are
the white-listed ones. However, we will not consider IP �ows but connection �ows as
de�ned in section 2.9.2.

Flow white-listing has many advantages. First, list and graphs are well studied data-
structures, which allows us to have an optimal detection and training speed. Then,
this model allows a simple deterministic classi�cation as long as the model follows the
concept drift accurately. Finally, this model can be visualized quite easily.

The reason we can use this method is because the tra�c is very stable. However, new
services could be added or new connections could be normal, this would be the concept
drift in this application domain. The normal behavior can evolve over time and we need
to de�ne a way to address this by adapting the white-list, this is discussed in section
4.5.3.

4.5. First approach: static white-list 61

4.5.2 Use the �ow-list as white-list

The white-list is placed on the Sphinx in order to �lter the accesses that it monitors. The
Sphinx already has a list of all the �ow that it observes. Moreover, we prove in section
4.1.1 that all accesses in the smart space are monitored by one Sphinx that keeps track
of them in its �ow-lists. Therefore, we extend the observation �ow-list of the Sphinx
to be able to use it as a white-list. We add a boolean in the edge data-structure that
represents if the edge is allowed.

4.5.2.1 Di�erent de�nitions of anomalies

There are di�erent granularities of anomalies that can be identi�ed. If a whole �ow
is anomalous, then new accesses belonging to the �ow should also be considered as
anomalous. However if a �ow is allowed for read operations, we have to de�ne if write
accesses should also be allowed. Similarly, if a service is allowed to read one knowledge
node of an other service, if it should be allowed to read its other knowledge nodes.

The problem of these di�erent de�nitions is that we cannot choose only one and use it
everywhere. If we decide to the strictest possibility, if only read is allowed then write
is not allowed and if a service can read one knowledge node it is not allowed to read
other from the same service. However if in this particular smart space there were to be
a lot of such accesses that the user would consider as normal it would lead to a lot of
false positive. In the opposite case it would lead to a lot of false negative.

4.5.2.2 Sensibility of the detection

To solve this problem we introduce a global state of the system called sensibility level .
It is similar to the system proposed in [10]. Depending on the sensibility level particular
accesses are anomalous or not.

Sensibility levels:

• Level 0: no changes to the �ow description are allowed.
• Level 1: di�erent operations than the already seen ones are allowed.
• Level 2: a service is allowed to access knowledge nodes that belong to a service

from which they are already accessing other knowledge nodes.
• Level 3: level 1 and 2
• Level 4: level 3 and if a service has already a communication relationship with a

particular type of service it can access other services of the same type.
• Level 5: add a level with the rooms?
• Level 6: add periodicity here?

62 Chapter 4. Design

The list above presents the di�erent sensibility levels . Level 0 is the most strict one,
an access has to be exactly conform to the description of the �ow. For example if only
write operations are explicitly allowed, read operation are labeled anomalous. This is
not the case in level 1, were all type of operations are allowed as long as the �ow is
allowed.

Level 3 is distinct from level 2 because situations might require the policy of level 2
without the one of level 1.

Level 4 is the most permissive one, what is allowed in level 3 is also allowed here.
Moreover, if a service has already an allowed connection relationship to a service of
a particular type, it is allowed to access all the service of this type. For example if a
service has an allowed �ow to a service of type "light", it can access all the lights in the
smart space. It is very permissive, but might be needed in some situation.

4.5.3 Learning the white-list

In this section we present how the white-list is learned. The two questions that we
answer in this part are: how is the white-list learned? how is the white-list adapted to
changes in the Smart-Space?

4.5.3.1 In Related Work

The related work close to this module are described in section 3.3. The di�erent work
use a learning phase at the beginning of the system. All the �ows observed during this
phase are added to the white-list. After the end of the learning phase, any packet that
does not belong to any of the learned �ows is labeled as anomalous.

This method relies on two assumptions. First, it assumes that all the �ows monitored
during the learning phase are normal. Then, it assumes that all the normal �ows of the
system can be observed during the learning phase.

We cannot use the second assumption because new services can be added to the smart
space during the runtime. Therefore in this section, we use an assumption similar to the
�rst assumption: all the �ows monitored at the beginning of a new service are normal.

4.5.3.2 New services

At the start of each service there is a learning phase. We allow all the accesses that
happen during the learning phase. Moreover the �ow is added to the white-list.

We chose a learning phase of 20 seconds. This was arbitrarily chosen and we did not
look for the best solution because we did not try to optimize this approach but rather

4.5. First approach: static white-list 63

focus on the second one. We did not implement it, but we thought that the learning
phase could be prolonged if the service exhibited new activitiess.

The second particular case that needs to be handled are connections toward new services.
These connection can come from services that are not in their learning phase anymore
and be labeled as anomalous. For example if we have a heating service that reads all the
thermometer of the smart space, if we add a new thermometer, connections from the
heating service to the thermometer would be anomalous even if they should actually
be normal because it is one of the thermometer of the smart space Therefore we allow
connections towards new services as long as the originating service has already allowed
connections to service of the same type as the new service.

4.5.3.3 User input

We need the user to improve the learning method described in the previous section. The
services might change their behavior after the end of the learning phase. Then, new
connections would be labeled as anomalous. We want to inform the user that these new
connections happen and let him the choice to add them to the white-list or to de�nitely
forbid them.

4.5.4 Limitations

This approach is able to detect anomalous accesses, however it has a lot of limitations.
We review these limitation here.

This approach is based on the two same assumptions as the related work. First, it is
assumed that all the tra�c seen during the learning phase is normal. If this is not the
case, then anomalous tra�c would be added to the white-list. Then it assumes that
all normal tra�c is seen during the learning phase. If this is not the case, some of the
normal accesses will be labeled as anomalous.

To solve the second problem this approach uses user interaction. This is also a limitation
that we identify, the potential number of requests sent to the user is quite hight. An
overload of noti�cation might result in a user allowing everything.

Then, this approach is quite hard to extend to new anomaly criteria. Either an access
belongs to a �ow that is white-listed or not.

We could have solve some of these limitations with di�erent work-around. However
we solve them in our �nal approach, hence we did not spend time to optimize this one.

64 Chapter 4. Design

4.5.5 Conclusion

This �rst module allows to detect unwanted �ows in real time. This is useful to detect
changes in the behavior of services. This module still has two major problems that have
to be solved: there is a need for user interaction and the assumption is made that all
the connections at the beginning of a service are normal. (no new service detection)
Moreover, this module is included in the Sphinx. This means that there is one instance
of it on each KA. Therefor, each instance of the module only monitors a subset of the
connections in the smart space. To handle this problem, we want to have a module that
supervises all the sphinx instances, Echidna.

4.6. Communication Model 65

4.6 Communication Model

To limit the need for user interaction and the importance of the learning phase we
present a new approach based on a communication model that depicts the behavior of
each type of service. A particularity of the DS2OS is that we can extract the type of
the service that issues a connection. This means that we can compare the behavior of
the instances of this service. For example, we can compare the behavior of all the light
controllers in the smart space. This is what we achieve using the communication model
presented in this section.

We begin by reviewing the motivations and requirements for this approach in section
4.6.1. Then we present the concept in section 4.6.2. We show how the behavior of each
service is described in section 4.6.3 and how this description allows to create a high
level description of the behavior of each type of service in section 4.6.4. Finally, we
explain how the communication model is used to detect anomalous accesses.

4.6.1 Motivation and requirements

The motivations to design this new approach are driven from the limitations of the �rst
approach presented in section 4.5.4. We want to overcome these limitations.

This new approach follows the same requirement as described in the analysis. However
we want our approach to be able to handle concept drift without the need for user-
interaction. We also want to gain advantage of monitoring the whole site by combining
the �ndings of the di�erent services. We can perform a more accurate detection when
having a site-view.

4.6.2 Concept

To answer these requirements, we propose our �nal approach.

A communication descriptor is created for each service. It describes the current behavior
of this service. It is created by the Sphinx that monitors this service.

The communication descriptors of all the services of one type are merged to created a
communication model for this type of service. This merge happens on two levels, �rst
it is done on the site level i.e. a communication model describing the behavior of all the
light controller in the smart space is created by Echidna. After this it is done on a global
level i.e. the Echidna of each site sends the communication model it has created to the
store where they are merged. This allows to have a global view of how services behave.

Finally, in order to use the communication model to detect anomalous accesses, the
communication model of the store is sent to the Echidna of each site, that sends it to

66 Chapter 4. Design

the Sphinxes that host a service of the corresponding type.

This is done periodically in order to have always a current description of the behavior
of each type of service. The communication models are not discarded, they are updated
to keep track of how this service type behaved before.

4.6.3 Communication model

We create a communication model for each type of service. We describe in this section
how the communication model is represented.

We selected site independent features to describe the communication behavior as we
want to compare the behavior of the di�erent service instances.

Partner type "light" (.6) "radiator" (1) . . .
Number of partners 2.3 (.6) 3.9 (.99) . . .

Same location yes (.95) no (.91) . . .
Operation types "read" (.96) "read" (.38), "write" (.59) . . .

Data type "text" (.98) "number" (1) . . .
Approved by user "yes" (.98) "yes" (1) . . .

Periods . . . [. . .] [. . .] . . .

Table 4.3: An example communication model for a service type.

Table 4.3 gives an example communication model for a service type. The communication
model is presented in the form of a table with a column for each communication partner
type and a row for each feature describing this connection.

Most entries of tablee 4.3 are represented with the actual value and its probability.
However behind each table entry a cluster of values is stored. The Partner type gives
the type of the partner that is described in this column. The number of partners feature
give the number of communication relationships to di�erent instances of this type. For
example our described type, has in average around 4 communication relationships with
radiators. The same location gives if the partners are often located in the same room
or not. Operation type gives the operations that are performed on the partner. Data
type gives the type of the values exchanged. Then, Approved by user gives if the user
approved it or not. Finally Periods gives the know periodicities, this feature will be
discussed in section 4.7.5.

We use modi�ed BIRCH clusters [27] to save the values. BIRCH clusters are particularly
useful in data stream scenarios thanks to the additive proprity of their cluster features
and they require low storage for representing large amounts of data points. We use the
modi�ed BIRCH clusters of the CluStream algorithm that are presented in section 2.6.2.

4.6. Communication Model 67

In addition to this table we save a support value, it represents the number of di�erent
instances of this µS type that were monitored to create the communication model and
for how long they were observed.

An advantage of the communication model is that it can run with any subset of the
presented features. This allows our solution to be compatible with IoT sites that do not
provide all context information. It also allows to use additional features that would not
be available in the DS2OS. Furthermore, it is human understandable as each value is
described and it signi�cation is given.

4.6.4 Building communication models

Our approach to learn communication models is inspired by the CluStream algorithm
[26] that is presented in section 2.6.2.

A communication descriptor is created every minute for each running service. The
communication descriptor is build like the communication model. It is a communication
model describing only one instance; therefore, some clusters only contain one value.
Table 4.4 represents an example communication descriptor. The categorical attributes,
like the operation types, are transformed into vector using binarization [21].

Partner type "light" "radiator" . . .
Number of partners 2 4 . . .

Same location yes (.5) no (1) . . .
Operation types "read" (1) "read" (.4), "write" (.6) . . .

Data type "text" (.8) "number" (1) . . .
Approved by user "yes" (1) "yes" (.75) . . .

Periods . . . [. . .] [. . .] . . .

Table 4.4: An example communication descriptor for a service.

Every minute, Echidna merges the descriptors of each type of service to update the
communication model of this type of service. To update the communication model, for
each feature the clusters of the descriptors are merged with the one of the communica-
tion model. The additivity of BIRCH clusters allows to simply add the cluster features
of the di�erent clusters together [27]. As proposed in [26], all clusters that have their
centers within 3 ∗ standard_deviation are merged. All other clusters remain. Note that
clusters containing only one point have no standard deviation; therefore, for them, we
only consider the standard deviation of the other merge candidate.

The behavior of a µS can change over time. Thereby, clusters can become stale. To
notice such state, timestamps are helpful. However, to save storage space, we do not
save every single timestamp. Therefore we compute the staleness of the clusters as
described in section 2.6.2 and discard too stale clusters.

68 Chapter 4. Design

The same merge procedure is repeated on global level, in the store, the communication
models of the di�erent site are gathered and merged. Then they are sent back to the
sites. The advantage of this merge mechanism is that every two communication models
can be merged following the same low demanding procedure.

Updating the model every minute is an arbitrary choice. There is a trade of between
the tra�c overhead generated by too frequent updates and the detection disadvantage
that is implied by too seldom updates. We chose to update the communication model
every minute, and it prove to be e�cient in the evaluation.

4.6.5 Access normality of an access

Once the global communication model is distributed on all Sphinxes, it is used to detect
anomalous accesses. An anomaly value is computed for each access. It is composed of
three parts:

The Support of the Model (SoM) represents how much we can rely on the values saved in
a communication model. This depends on two factors, the number of service instances
that were monitored to create it and for how long. If only few service instances were
monitored or for a shot time we do not consider the values are relevant. We compute
the support of the model using:

SoM =
modelWeiдht

maxModelWeiдht

WheremodelWeiдht is the total number of descriptors that were merged over time to
build this model. As the model is updated every minute, the number of descriptors is
proportional to the number of service instances used and the monitoring duration. The
support is low at the creation of a new model. This represents the fact that in this case
we cannot draw meaningful conclusions yet.

We have to limit the growth of the support to enable updates to the model. Such
updates re�ect when service change their behavior. The limitation of the groth allows
to handle concept drift. At the same time the support has to be big enough to prevent
learning anomalous behavior as normal. This problem is known as the stability-plasticity
dilemma [3].

We propose a solution in the form of themaxModelWeiдht . This value represents the
maximum value that the modelWeiдht can take. The higher themaxModelWeiдht the
longer it takes to adapt to changed service behaviors. The lower this value, the quicker
anomalous behavior becomes part of the model. We use a maxModelWeiдht of 2000,
it is a good trade of and performed well on our training set. However, this value is a
parameter to be chosen depending on the preferences of the user.

4.6. Communication Model 69

Our hierarchical model update process brings the advantage that even if an attacker
manages to take control of all services of one type within one site, he will not be able to
in�uence the de�nition of the normal behavior contained in the global communication
model.

The Support of the Relationship (SoR) represents how relevant a communication rela-
tionship is compared to the model. A relationship that was in every descriptor used to
build a model is more relevant than another that was observed only a few times. In our
current approach we consider infrequent relationships as anomalous. We compute it
with:

SoR =
modelWeiдht

relationshipWeiдht

Where the relationshipWeiдht is the number of descriptors in which this relation-
ship was present. Here again, to allow updates, both values have a maximum of
maxModelWeiдht .

The Support of Access represents the di�erence between the current access and descrip-
tion of the communication relationship. It is computed for each feature identi�ed in
table 4.3, using the formula:

SoA =
dist (center ,newValue)

3 ∗ standard_deviation
∗
relationshipWeiдht

centerWeiдht

Where: center , standard_deviation and centerWeiдht are the center, the standard devi-
ation and the weight of the nearest BIRCH cluster in the communication model, and
newValue is the value of this feature for the access being evaluated. This value will be
near or equal to zero if the new access is conform the normal behavior according to this
feature due to the very small distance between the two values.

We combine these values to obtain the Anomaly Value as follows:

Anomaly_Value = SoM ∗max (SoR, SoA)

If an access is anomalous either the connection is itself anomalous, for example a light
service accessing the door lock, resulting in a high SoR; or the access is anomalous
within the connection, for example a light service writing the movement value of a
movement detection instead of reading it, resulting in one high SoA. Hence we take
the maximum out of these two values. In both cases, the value has to be weighted with
the SoM , as high anomaly values obtained by the comparison with a newly created
communication model might come from normal accesses.

70 Chapter 4. Design

4.6.6 User inter-action

In this approach too, we can use Antigone to perform user-interaction. The approach
itself does not require user-interaction to function or adapt to changes in the normal be-
havior. However, using user-interaction is a solution to the stability-plasticity dilemma,
it can be used to prevent the model from integrating unwanted behavior as normal
or accelerate the adoption of changes in the normal behavior. The user-interaction of
this approach has not yet be implemented and evaluated, but we present here how it is
designed.

We propose to notify the user when a new anomaly is seen but not wait for his answer
to output the anomaly value. If the user allows it, the feature Approved by user of this
communication relationship is changed to "yes".

Integrating this information to the communication model has many advantages. The
statistics of the approvals of other users can be shown to the user to help him to decide.
Moreover, if a new behavior has been approved by man other users in other smart
spaces, we can decide that this behavior is normal without requiring the approval of all
users.

4.6.7 Conclusion

To conclude, we compare the presented approach with our �rst approach. This new
approach uses a network-level and global view to improve the detection. This results in
many advantages.

In the �rst approach the learning relied on a learning phase. In this approach, there is a
similar mechanism brought by the SoM . However it is quite di�erent in the sense that
only at the start of the �rst instances of a service type, the relevance of the model is
low. When a new instance of a know service type is started, anomalous accesses can
directly be detected. Moreover this approach does not rely on the two assumption of
the �rst on because the model is updated during the runtime.

This approach does not require user-interaction to function. The approach can be
enhanced to use it but it is not needed. Whereas the �rst approach relied in user-
feedbacks to adapt.

Finally, this approach allows to add new feature to the detection very easily, which was
not possible with the �rst approach.

However, this approach is not yet perfect and still has one limitation. The value of
maxModelWeiдht has to be chosen depending on the preferences of the user and this
is not optimal.

4.7. Frequency anomaly detection 71

4.7 Frequency anomaly detection

In contrast to regular Internet tra�c IoT tra�c is more regular [11, 53]. Therefore we
include periodicity of communication as relevant part of our model. Similarly to [50,51],
we use inter arrival times of communication packets in our monitor. Having the type
of operation as part of our feature vector, we analyze inter-arrival per VSL operation.

This section addresses the detection of anomalies in the frequencies of �ows. To do
so we mine each �ow to �nd out if there are periodicities. If so it creates a de�nition
of each period with a con�dence value. Then each new access will be compared to
the learned periodicities. We use completely unsupervised learning, meaning that the
goal is to detect abrupt changes in the frequency of a �ow that could be the sign of a
malfunction, packet injection or a DoS attack.

We begin with the requirements in section 4.7.1. Then we argue why we use inter-
arrival times in section 4.7.2. We explain how we keep track of the past inter-arrival
times in section 4.7.3. The periodicity mining method is explained in section 4.7.4. The
integration in the communication model and the detection of anomalous frequencies is
addressed in section 4.7.5.

4.7.1 Requirements

We review here the di�erent requirements for this module.

First, it has to perform online detection and description of the periodicities in a �ow. As
the periodicities in a �ow can change over time, we want the detection to adapt to these
changes.

Small latencies are frequent in network communications, therefore the detection has to
be tolerant to imprecise periods.

The periodicity mining has to be able to detect any kind of periodicity. For example, if
three packets are send with three seconds interval every ten minutes, the �ow shows a
periodicity even it every packet is not send with the same period.

Moreover it should be able to use the mined periodicities for frequency anomaly detection.

The mining and the detection should not consume too much resources since there can be
many �ows monitored by each sphinx. Moreover it would be great if the mining could
run in the background and the detection still be done in real time.

72 Chapter 4. Design

4.7.2 Inter-arrival time

The analysis of the related work (section 3.4) shows that there are two main methods
used to detect periodicities within a �ow, using signal analysis methods like the Fast
Fourier Transform or using the inter-arrival time.

Barbosa, Sadre, and Pras [53] �rst tried to use the Fast Fourier Transform but conclude
that it has two major drawbacks. First, the detection is not very tolerant to small
latencies. Then, the signal is build using the number of packets, therefore informations
about the di�erent packets are lost. It is not possible to know if only read accesses are
periodic or if all operation types are periodic. Using this analysis and their experience
we decided to put the signal analysis methods on the side.

Our solution uses the inter-arrival time. On each �ow, we measure the time between
each packet and the packet before. We save a number of inter-arrival times in a sliding
window. We mine this window to detect if there are particular inter-arrival times that
happen often. This would mean that the �ow is periodic because packets arrive every x
seconds. Figure 4.3 shows how inter-arrival times are distributed for a periodic and for
a non periodic �ow. If this is the case, we create a de�nition of the mined frequencies
and use it on newly arriving packets. In �gure 4.3 two clear groups of inter-arrival times
can be distinguished in the periodic �ow, these are the periods that we look for in the
mining process.

0 5 10 15 20 25

time (s)

pa
ck

et
 a

rr
iv

al

Periodic traffic

0 10 20

inter-arrival duration (s)

0

0.5

1

1.5

2

2.5

pa
ck

et
 n

um
be

r

0 5 10 15 20 25

time (s)

pa
ck

et
 a

rr
iv

al

Non-periodic traffic

0 10 20

inter-arrival duration (s)

0

0.5

1

1.5

2

2.5

pa
ck

et
 n

um
be

r

Figure 4.3: A visualization of the detection of periods using inter-arrival time.

4.7. Frequency anomaly detection 73

4.7.3 Sliding window

The periodicity mining is done using the inter-arrival times between the packet of the
�ow. We cannot save all the inter-arrival times of all the previous packets because
this could require a theoretically unlimited amount of save space. Moreover very old
data might not be accurate any more. Therefore, we want to use a sliding window as
described in 2.5.2.

The two major challenges linked with it are, �rst the choice of the size of the sliding
window. And then the determination of the best data-structure for it.

4.7.3.1 Size

There are two possible criteria for the size of the sliding window. As all the timestamps
in the sliding window will be used for the periodicity mining, it is a very important task
to choose the size of the sliding window.

We can use the timestamps of all the packets that arrived in the last x minutes. This has
the advantage of being robust against frequency changes: if a new frequency arises it
has to last at least for the whole duration of the sliding window to be in the description.
However, the number of packet saved is very dependent on the frequency. If we have a
very high frequency we can have up to millions of packets in the sliding window which
would require a lot of memory and a lot more of computation to detect pattern in it.
On the other hand if the frequency is very low we might only have one packet in the
window which is not very helpful to detect patterns.

The other solution is to use the inter-arrival times of the last x packets. This solution
is not as frequency dependent as the one above. However, it is a�ected by DoS attack
�ooding: if a DoS attack is lunched on a �ow, as the frequency of the DoS packets is
very high, after a very short amount of time all the packets in the sliding window will
be packets created by the DoS attack which will lead to a false de�nition of the normal
frequency. But this problem can be solved as we explain in 4.7.5.

We use the second solution and save the last x inter-arrival times in the sliding window,
because the �rst solution is too frequency dependent. The last question that is to be
addresses is: how many inter-arrival times should be saved in the sliding window?

We choose to use the last 200 inter-arrival times. It seems to be good trade o� between
not too much memory consumption or data points to perform the mining and still
enough to detect relevant periodicity. It empirically proved to allow a good periodicity
mining and anomaly detection.

A value of storing the last 200 inter-arrival turned out to be a good compromise between
having enough history and being able to react fast.

74 Chapter 4. Design

4.7.3.2 Data-structure

Now that the size and the needs are de�ned we need to design the best data-structure
for this task. We use a ring bu�er with adjustable size.

We use a ring bu�er because it is the data-structure that corresponds to our need: we
save inter arrival times as they come in and discard the old ones that do not �t in the
time window anymore.

If we were to use the �rst option: the packets of the last x minutes, we would need a
ring bu�er that allows changes in its size. To address this we implement a custom list
as explained in the implementation section 5.4.

4.7.4 Mining periodicity

In this section we discuss the method that we use to extract the di�erent periodicities
present in the �ow. We use clustering methods to detect the group that can be seen in
�gure 4.3.

4.7.4.1 Challenges

We want the mining to be automated and to run in a fully unsupervised fashion. It is
not very hard because it is a quite basic clustering problem.

However there is one major challenge, we do not know the number of clusters in
advance and many clustering algorithms require this as input.

4.7.4.2 Clustering

To be able to determine the number of clusters, we use a density-based clustering
method. Our algorithm uses two type of clustering algorithms, �rst a density-based
algorithm and then k-means.

We discretize the inter-arrival times into a grid of p intervals of similar length. Each
interval contains the number of data points that fall into it.The �rst interval begins
at the minimum inter-arrival duration and the last ends at the maximum inter-arrival
duration. Once the discretization is done, we divide the number of data points in each
grid by the window size and multiply them by 100. This allows us to be able to compare
the densities independently of the window size.

Then, we use the density of the points within this grid to build clusters. A cluster is
built on each interval that contain at least as many points as the density threshold τ .

4.7. Frequency anomaly detection 75

If neighboring intervals in the grid have a density higher than τ they are identi�ed as
only one cluster. For each cluster a cluster center is placed within the intervals.

The di�cult part of this method is known to be the determination of p and τ [21], as
it determines which clusters are found. However, we can determine these parameters
using what we consider as periodic and what we do not consider as periodic. We use
a p of 100, as this allows to have a enough de�nition to detect di�erent clusters, but
normally does not regroup di�erent clusters. We use a τ = 5, this corresponds to a
cluster containing 1

6 of the point spread over 3 intervals. We consider such clusters to be
the limit of a periodic tra�c. The chosen values have empirically proven to be e�cient.

Once all the clusters are identi�ed, we run one iteration of k-means to center the cluster
center and get the support of each cluster.

Finally, the algorithm outputs a list of clusters. Here again, we use the CluStream cluster
representation.

The main advantage of this clustering method is that we can easily �nd out the number
of clusters. If the �ow is not periodic no cluster are found. Otherwise the centers of the
clusters correspond to the periods.

4.7.5 Access normality of new timestamps

Once the periodicities of a �ow are found, we want to use them to detect frequency
anomalies.

We enhance the communication descriptors and communication model with this new
feature. Resulting in an additional line in the table containing the list of the cluster
representation of the mined frequencies.

This allows us assess the normality of new accesses by also computing the anomaly
value of this new feature. The computation is done exactly in the same way as for
the other features, as described in section 4.6.5. In this case, the newValue is the new
inter arrival time. This way the frequency detection is directly included in the anomaly
detection, showing how easily the communication model can be enhanced with new
features. However, there is one type of attack that cannot always be detected using this
method: denial of service attacks.

4.7.5.1 Denial of Service detection

The approach presented is able to detect single anomalous accesses: point anomalies,
as described in section 2.4.1.

76 Chapter 4. Design

There is one attack scenario that remains hidden to the previous method: Denial of Ser-
vice (DoS) attacks on allowed relationships that have one period around zero. In a DoS
a high number of accesses happens with high frequency. If for such a communication
relationship a periodicity with a very low value has been learned, the single packets of
the DoS attack are seen as normal. This is a group anomaly, as described in section 2.4.1.

To detect such group anomalies we compare the list of periodicity clusters on the
descriptor with the one of the communication model to obtain an anomaly value:

Group_Anomaly_Value =
∑

clustera ∈model

dist (centera , centerb) ∗ (weiдhta + weiдhtb)

3 ∗ standard_deviationa

With clusterb the nearest cluster to clustera in the descriptor frequency list. In the case
of a DoS attack a cluster with a very high support will form around 1 or 0. This will
cause this Group_Anomaly_Value to be very high, even if there is also such a cluster
in the communication model. System inherently the �rst packets of an anomaly will
remain undetected. However, as the goal of a DoS attack is to overload the reciever
with more packets than it can handle, if only a few packets arrive at the receiver the
attack will not be successful.

4.7.6 Conclusion

The presented approach allows to split the tra�c of one service and split it in the
di�erent communication relationships. This allows to detect periodicities in a more
�ne grained way, as shown in �gure 4.4. Moreover, it can detect periodicities in when
monitoring all the out coming tra�c would not allow it. Other approaches, like the one
inspired from the signal analysis, could be investigated.

4.7. Frequency anomaly detection 77

-20 -15 -10 -5 0 5
time (s)

pa
ck

et
 a

rr
iv

al

Outgoing traffic from a washing machine service

Write to battery1
Read to battery1
Write to battery2
Read to battery2
Read to thermometer
Read to movement

-20 -10 0
time (s)

0

0.5

1

1.5

2

2.5

in
te

r-
ar

riv
al

 d
ur

at
io

n
(s

)

Battery read

-20 -10 0
time (s)

0

0.5

1

1.5

2

2.5

in
te

r-
ar

riv
al

 d
ur

at
io

n
(s

)

Battery write

-20 -10 0
time (s)

0

0.5

1

1.5

2

2.5

in
te

r-
ar

riv
al

 d
ur

at
io

n
(s

)

Thermometer write

-20 -10 0
time (s)

0

2

4

6

in
te

r-
ar

riv
al

 d
ur

at
io

n
(s

)

Movement write

-20 -10 0
time (s)

0

0.5

1

1.5

2

2.5

in
te

r-
ar

riv
al

 d
ur

at
io

n
(s

)

All the traffic

Figure 4.4: Decomposition of the outgoing accesses of a node into the communication
relationships.

79

Chapter 5

Implementation

In this chapter we review some particular points of the implementation.

5.1 Connection to the VSL

In this section we explain where the detection mechanism is linked to the VSL and why.

The implementation of the routing of accesses in the VSL uses a class on the KA called
RequestRouter in the package ka-wiring. All the accesses passing through a KA transit
through this class. We intercept the accesses here.

We create a class AccessLogger that is called each time an access transits through the
KA. Their is only one active instance of the AccessLogger on each KA. This class is
used to preprocess the accesses and create a de�nition of the access that is send to the
Sphinx in order to detect if the access is anomalous or not. The AccessLogger waits for
the output of the detection to allow the routing of the packet in the RequestRouter.

This architecture also allows us to use the exact same program of the Sphinx to test the
detection on datasets, as the description of the access given by the AccessLogger is the
one that is saved in datasets.

5.2 Connection between Sphinxes and Echidna

The connection between the Sphinx and the Echidna is made via the VSL.

The Sphinxes publish in the form of VSL context nodes all the information that Echidna
might need. This includes, a vertex list and an edge list that correspond to the internal
�ow-list of the Sphinx, as well as a descriptor list, that contains the descriptors of all
the service types monitored by the Sphinx.

80 Chapter 5. Implementation

Echidna also publishes in form of VSL context nodes all the information that the Sphinx
can need. In our �nal approach, Echidna publishes the list of all the communication
models present in the site.

Echidna looks for services of the type "sphinx" every two seconds. When it �nds one,
with which it is not yet connected, it reads its context nodes and subscribe to changes.
Then the Sphinx subscribes to changes of the context nodes of the Echidna. This way
the other side is always aware of changes, and the VSL handles the communication.

The advantage of this approach is that it can be easily extended by adding additional
context nodes if needed.

5.3 Hash-list

To implement the hash-list, we took the implementation of the hash table from the
java.util package.

We added an ArrayList containing the keys of all the entries currently saved in the hash
table. When an entry is added to the hash table, its key is added to the ArrayList; and,
when an entry is removed from the hash-table, its ke is removed from the list.

We enhanced the hash-table with an iterator allowing to iterate trough all entries of the
table using the ArrayList.

5.4 Sliding window

The sliding window is a ring bu�er with changeable size.

We took the implementation of the ArrayList from the java.util package and enhanced
it.

We added the variablesmaxWindowSize , corresponding to the size of the sliding win-
dow, and currentHead corresponding to the place of the newest element in the array
containing all the elements. Using them, we rewrote the method used to add new data
points. New data points are to be added at the position after the currentHead and if
currentHead corresponds to the last position in the array, it is saved at the �rst position
of the array.

When changing the size of the bu�er, there are two possibilities, either the window
size is being reduced and then only the most recent data points are to be kept; or the
window is being lengthened and the new empty space have to be the �rst to be used
for new data points. This is implemented in the "setWindowSize(int newSize)" method.

81

Chapter 6

Evaluation

We evaluate here the solution we propose. We begin by describing the datasets that
are used for the evaluation in section 6.1. Then we measure the required resources 6.2.
After this, we evaluate the periodicity mining and the anomaly detection in sections 6.3
and 6.4.

6.1 Datasets

For the evaluation we captured our own datasets since to the best of our knowledge there
is no public IoT network trace. We monitored connections between 8 di�erent types
of services: Light controllers, movement sensor, thermostat, solar battery, washing
machine, door lock and user smart phone. We captured the tra�c of four di�erent
simulated IoT sites over 24 hours.

6.1.1 Datasets description

We will discuss here why we want to create datasets and which ones.

As explained in section 2.7.1, we want to have labeled datasets that can be streamed in
order to run and assess the detection. The datasets will represent a set of connections
as they would be monitored by the detection system once it is deployed.

We create four datasets: two to optimize the parameters and then access the frequency
anomaly detection alone as well as two to optimize the parameters and then evaluate
the �nal approach.

The dataset purely for the frequency anomaly detection are the capture of only one �ow
on which there are two periodic cycles. We add two type of anomalies: random packets

82 Chapter 6. Evaluation

that do not conform the periodicities, these could be caused by injection attacks; and
DoS attacks.

The datasets for the �nal approach are more complex and contain many di�erent type of
attacks. These datasets were created by simulating four IoT-sites during 24h. We describe
more in detail the setup in section 6.1.2. We added a wide range of attack scenarios that
are shown in table 6.1. These attacks are inspired from the attack scenarios presented
in [9].

Type Number Feature Description
of packets used

Network 1559 type & A µS accesses a range of
scan number other µSs.

Spying 532 type & A µS reads values a few
operation other µSs.

Malicious 889 type & A µS tries to take
control operation control over another.

Malicious 805 operation A µS performs another
operation type operation as it should.
Denial of 5780 frequency A µS performs accesses
Service with a very high frequency.

Data types 342 data A µS writes
probing type anomalous data types.
Wrong 120 location A µS accesses a µS
set up in the wrong room.
Total 10027 Corresponds to 3%

of the dataset.

Table 6.1: Attack scenarios in the dataset to test the �nal approach, inspired by [9].

As we stand for the reproducibility of our research we published the two datasets online
at www.kaggle.com/francoisxa/ds2ostraffictraces. There, we also published the
exact description of the di�erent attacks, their start time, and their duration.

6.1.2 Simulating a smart space

To create the dataset we captured the tra�c of four simulated sites. Table 6.2 shows
which devices were deployed in which sites. In each room there was one light controller,
one movement sensor, and one thermometer.

To simulate the dynamic behavior of a smart space, un update of all the light sensors is
monitored at around 11 am. Moreover during the capture some devices were added.

www.kaggle.com/francoisxa/ds2ostraffictraces

6.2. System requirements 83

Site Rooms Washing Machine Battery Thermostat Smart door Smart phone
House 6 1 3 1 1 1

2 rooms �at 2 1 1 1 1 1
3 rooms �at 3 1 2 1 1 1

O�ce 10 0 0 1 2 1
Total 21 3 6 4 5 4

Table 6.2: The distribution of the services over the four sites.

6.2 System requirements

In this section we evaluate the speed, the scalability and the resource consumption of
our �nal approach.

Nota bene: our approach is implemented in Java; therefore we use the size of the
variables in Java. Ints require 4 bytes, booleans require 1 byte and longs as well as
doubles require 8 bytes.

6.2.1 Within one Sphinx

The anomaly value of each access is computed before it is allowed to be routed to its
destination; therefore the short duration of this computation is critical. We designed
the hash-list and the other mechanism to have an overall computation complexity of
O(1) and to scale well with the number of services.

Figure 6.1 shows the latency added by detection for di�erent number of services. As we
can see, the latency is quite low. The high number of outliers in the �gure are explained
by the very high number of measurements. We can see that the detection time does not
grow with the number of services.

6.2.2 Tra�c overhead

Our approach requires to send the descriptors to Echidna and the communication model
back to the Sphinxes. We measure this tra�c overhead and compare it with the overhead
that there would be if all the detection were to take place on Echidna.

Sending all the tra�c log to Echidna would require on average 169,3 bytes per access.
Whereas our approach only requires to send one descriptor to Echidna every minute and
receive a communication model. On our dataset the average descriptor size is 96 bytes.
The descriptor is of smaller size, but its other advantage is that the bandwidth needed
does not increase if the monitored tra�c increases. This solution allows a completely
scalable detection.

84 Chapter 6. Evaluation

10 20 30 40 50 60 70

Number of microservices

0

0.5

1

1.5

2

2.5

3

D
el

ay
 a

dd
ed

 b
y

th
e

de
te

ct
io

n
(m

s)

Figure 6.1: The latency added by the detection mechanism.

6.2.3 Memory requirement

The cluster representation we use here, allows to minimize the memory consumption
as well as the computation complexity of the clustering.

For d-dimensional data points the modi�ed BIRCH clusters we use, only require (2∗d+3)
saved values independently of the number of points in the cluster. Whereas a list keeping
track of all the k points in the cluster would require k ∗ (d + 1) saved values: one value
for per dimension plus the timestamp for each data point.

To illustrate the di�erence, we compare the memory needed for a cluster of 1000 data
points composed of two doubles. A normal cluster representation keeping track of all
the points would require 24000 bytes, whereas the modi�ed BIRCH clusters we use
require 52 bytes.

6.2.4 Computational complexity

The modi�ed BIRCH allow our approach to be e�cient also regarding storage CPU usage.
We compare the computational complexity of adding points in k-means clustering and
in our approach.

Adding a new point to the dataset of size n and dimensionality d requires to iterate

6.3. Periodicity mining 85

though the k existing clusters and then merge it to the corresponding cluster. The
complexity of the �rst operation is the same for k-means and our algorithm: O(k).
However updating the cluster position in k-means requires O(n ∗ d). Whereas it only
requires O(d) with BIRCH clusters. [21]

6.2.5 Conclusion

IoT often operates on computing nodes with limited resources, therefore detection
systems should require as little resources as possible even if it has to run in real-time.

The outcome of the previous sections shows that the e�ort we put into the limitation of
the resource usage allows our approach to be adapted to resource limited IoT-devices.

6.3 Periodicity mining

We �rst evaluate the detection of frequency anomaly detection alone.

In our dataset we obtain a detection rate of 93% and false positive rate of 0.3% for the
detection of single anomalous packets in the �ow.

With the DoS attacks in the dataset we achieve a detection rate of 95%, an accuracy of
97% and a false positive rate of 1%. This is due to the few packets that we do not achieve
to detect at the beginning of the DoS attack.

6.4 Anomaly detection

We evaluate in this section the anomaly detection of the �nal approach.

On the test dataset we achieve a detection accuracy of 99% and a false positive rate
of 0.2%. We obtain an overall detection rate of 96.3%. It has to be mentioned that we
start without learned communication models. Therefore some anomalous packets in
the beginning go undetected. The measured detection rate su�ers a bit from this test
situation. However in real world scenarios, the communication models can directly be
taken from the store, they will have been learned on other sites.

86 Chapter 6. Evaluation

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18

False Positive Rate

0

0.2

0.4

0.6

0.8

1

D
et

ec
tio

n
R

at
e

Normal behavior
Without value type
Without operation type
Without frequency

Figure 6.2: Comparison of the ROC curves with di�erent features.

Figure 6.2 shows the performance of the detection by comparing the detection rate and
the false positive rate at di�erent thresholds. The �gure also shows the in�uence of the
di�erent features on the detection. The performance of the detection is lower when
some features are ignored, however the system is still able to detect anomalies. This
shows the positive e�ect of our design of the communication model, it can be used with
di�erent features depending on the features available in the IoT environment.

Classification errors over time

DoS attack

service update

 DoS attack

 anomaly value too low

0 5 10 15 20

Time in hours

0

50

100

150

200

250

300

350

N
um

be
r

of
 c

la
ss

ifi
ca

tio
n

er
ro

rs

0

69800

139600

209400

279200

349000
T

ot
al

 n
um

be
r

of
 p

ac
ke

ts

False Positive
False Negative
Total number of packets

Figure 6.3: Classi�cation errors over the day of capture.

Figure 6.3 shows the classi�cation errors over the day of capture in our dataset. During

6.5. Demo 87

the capture of the dataset the light controller services were updated. Directly after
the update, the new accesses are labeled as anomalous which generate a peak of false
positives that can be seen at 11 hours. However the model was able to learn this new
normal behavior, which allowed a correct classi�cation again. This shows that the
de�nition of the normal behavior can be changed to include changes. This is the prove
that our approach handle concept drift.

The concern could be that the model would learn too easily and add anomalous behavior
to the de�nition of the normal behavior. However, we did not observe this. Moreover,
the anomalous behavior would need to the same on all the instances of all sites in order
to be added to the normal behavior.

The �rst burst of false negatives is due to the model that were not relevant enough at
the beginning of the day of capture. This would be di�erent with learnt models. To
prove this, this attack is present again at the end of the dataset. There, it is correctly
labeled as anomalous. Thereby we show that the model need to gather enough data
in oder to detect anomalies. However, once the model has gathered enough data, the
anomalies are detected.

The second and the third small bursts of false negatives correspond to few accesses that
are not detected correctly at the beginning of DoS attacks. However, these accesses
represent at most 1% of the attack. As discussed in section 4.7.5.1, this is due to the
fact that the communication relationships have one cluster around zero and need to
detect the group anomaly. However, there is one more DoS attack in the dataset, and it
is perfectly detected. This is because there is no such low cluster center.

In comparison [37] obtain an average accuracy of 98%, a detection rate of 96% and a
false positive rate of 6%. We obtain better accuracy and false positive rate. However, it
is hard to compare the performance of two detection that were not tested on the same
dataset. Sadly, they did not publish their dataset. So we could not test our algorithm on
it.

6.5 Demo

We present a demo of our approach at the IEEE/IFIP Network Operations and Manage-
ment Symposium conference in Taipei on the 24/04/2018. [7]

The demo is composed of a smart door lock, a washing machine and two batteries, as it
can be seen in �gure 6.4. We show how our approach allows to monitor the connections
in the smart space and to block malicious accesses from the washing machine to the
door lock.

We show two scenarios to illustrate the functioning of the system. In the �rst scenario,
a malicious update is done on the washing machine and it tries to open the door. When

88 Chapter 6. Evaluation

Raspberry Pi 3 Model B V1.2

Power

HDMI
Audio

U
SB

 2
x

U
SB

 2
x

ET
H

ER
N

ET

D
SI

 (D
IS

PL
AY

)

CSI (CA
M

ERA
)

GPIO

© Raspberry Pi 2015

µS

Raspberry Pi 3 Model B V1.2

Power

HDMI
Audio

U
SB 2x

U
SB 2x

ETH
ERN

ET

D
SI (D

ISPLAY
)

CS
I (

CA
M

ER
A

)

GPIO

© Raspberry Pi 2015

µS

Raspberry Pi 3 Model B V1.2

Power

HDMI
Audio

U
SB 2x

U
SB 2x

ETH
ERN

ET

D
SI (D

ISPLAY
)

CS
I (

CA
M

ER
A

)

GPIO

© Raspberry Pi 2015

µS

Allow access?

µS

µS

µS

µS µS

µS

myIoT

µS

µS

µS

µS

Service Communication Monitor
and Firewall
Microservice
Inter-Node Comm. Interface

Service Runtime Environment

Smart Doorlock

Communication Monitor

Smart Washing Machine
Smart Battery

User Device

Raspberry Pi 3 Model B V1.2

Power

HDMI
Audio

U
SB 2x

U
SB 2x

ETH
ERN

ET

D
SI (D

ISPLAY
)

CS
I (

CA
M

ER
A

)

GPIO

© Raspberry Pi 2015

Figure 6.4: The setup of the demo. [7]

the system is not working, the door is opened by the washing machine. However, when
the system is working, the access is blocked. Moreover, the user is noti�ed and the
corresponding connection is shown in red on the visualization of the connections in
the smart space.

In the second scenario, a battery is added to the network, allowing the washing machine
to run constantly. In this scenario, we show how the addition of new services is handled
by the system.

This demo presents the detection system, and shows how the user can be kept in the
loop.

89

Chapter 7

Conclusion

The goal of this work is to answer the question:

How can anomalous connections between the services of a smart-space be de-
tected the most accurately in the shortest time?

We answered this question by, �rst analyzing the particularities of IoT tra�c, then
using this particularities to design an adapted detection algorithm. We also analyzed
the characteristics required for a detection system in a smart space.

Using this analysis, we propose an approach that allows to detect anomalies with a very
low latency. It is quite accurate and can adapt to changes in the normal behavior of
the smart space, which is, as we have seen, a very relevant aspect of IoT environments.
Moreover it is scalable, which allows its deployment in any size of smart spaces. Finally,
this solution allows to keep the user in the loop by providing a human understandable
model of the connections.

7.1 Future work

However, there might be better solutions or approaches to detect anomalous connections
between the services of a smart-space. We give some ideas of future work that could
lead to better solutions.

First, the two additional modules that we mentioned in the analysis: value anomaly
detection and access patterns anomaly detection could be designed and implemented.
We did not have time to look towards these directions in this work, however, the current
approach allows easily the addition of such modules.

Then, even if the user interaction for the �nal approach is designed, it is yet to be tested
with real users. This might lead to a better design.

90 Chapter 7. Conclusion

Finally, we could think of an anomaly mining process on Echidna that would detect
frequent patterns in the anomalies occurring, like if there is a KA in which many
anomalies take place.

91

Bibliography

[1] S. Liebald, “Caching Content in Smart Spaces,” Master’s thesis, Technical University
of Munich, Germany, 2016.

[2] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A survey,” ACM
computing surveys (CSUR), vol. 41, no. 3, p. 15, 2009.

[3] T. R. Hoens, R. Polikar, and N. V. Chawla, “Learning from streaming data with
concept drift and imbalance: an overview,” Progress in Arti�cial Intelligence, vol. 1,
no. 1, pp. 89–101, 2012.

[4] V. Jakkula, D. J. Cook et al., “Anomaly detection using temporal data mining in a
smart home environment,” Methods of information in medicine, vol. 47, no. 1, pp.
70–75, 2008.

[5] B. AsSadhan and J. M. Moura, “An e�cient method to detect periodic behavior
in botnet tra�c by analyzing control plane tra�c,” Journal of advanced research,
vol. 5, no. 4, pp. 435–448, 2014.

[6] R. R. R. Barbosa, R. Sadre, and A. Pras, “Towards periodicity based anomaly detec-
tion in scada networks,” in Emerging Technologies & Factory Automation (ETFA),
2012 IEEE 17th Conference on. IEEE, 2012, pp. 1–4.

[7] M.-O. Pahl, F.-X. Aubet, and S. Liebald, “Graph-based iot microservice security,”
p. 2, 02 2018.

[8] T. H. Cormen, Introduction to algorithms. MIT press, 2009.

[9] E. Fernandes, J. Jung, and A. Prakash, “Security Analysis of Emerging Smart Home
Applications.” IEEE Symposium on Security and Privacy, 2016.

[10] R. Neisse, G. Steri, I. N. Fovino, and G. Baldini, “Seckit: a model-based security
toolkit for the internet of things,” Computers & Security, vol. 54, pp. 60–76, 2015.

[11] N. DeMarinis and R. Fonseca, “Toward Usable Network Tra�c Policies for IoT
Devices in Consumer Networks.” IoT S&P@CCS, 2017.

[12] C. Shearer, “The crisp-dm model: the new blueprint for data mining,” Journal of
data warehousing, vol. 5, no. 4, pp. 13–22, 2000.

92 Bibliography

[13] A. L. Buczak and E. Guven, “A survey of data mining and machine learning methods
for cyber security intrusion detection,” IEEE Communications Surveys & Tutorials,
vol. 18, no. 2, pp. 1153–1176, 2016.

[14] P. Marc-Oliver and D. Lorenzo, “Automatic security management for distributed
microservices on unattended iot nodes,” TBD.

[15] M.-O. Pahl, “Distributed Smart Space Orchestration,” Ph.D. dissertation, Technische
Universität München, München, Jun. 2014.

[16] A. Cavoukian, “Privacy by Design: Leadership, Methods, and Results.” European
Data Protection, pp. 175–202, 2013.

[17] M.-O. Pahl, G. Carle, and G. Klinker, “Distributed smart space orchestration,” in
Network Operations and Management Symposium (NOMS), 2016 IEEE/IFIP. IEEE,
2016, pp. 979–984.

[18] C.-M. Cheng, H. Kung, and K.-S. Tan, “Use of spectral analysis in defense against
dos attacks,” in Global Telecommunications Conference, 2002. GLOBECOM’02. IEEE,
vol. 3. IEEE, 2002, pp. 2143–2148.

[19] J. Ye, G. Stevenson, and S. Dobson, “Fault detection for binary sensors in smart
home environments,” in Pervasive Computing and Communications (PerCom), 2015
IEEE International Conference on. IEEE, 2015, pp. 20–28.

[20] K. Scarfone and P. Mell, “Guide to intrusion detection and prevention systems
(idps),” NIST special publication, vol. 800, no. 2007, p. 94, 2007.

[21] C. C. Aggarwal, Data mining: the textbook. Springer, 2015.

[22] P. Garcia-Teodoro, J. Diaz-Verdejo, G. Maciá-Fernández, and E. Vázquez, “Anomaly-
based network intrusion detection: Techniques, systems and challenges,” computers
& security, vol. 28, no. 1-2, pp. 18–28, 2009.

[23] S. A. Boyer, SCADA: supervisory control and data acquisition. International Society
of Automation, 2009.

[24] R. R. R. Barbosa, “Anomaly detection in scada systems-a network based approach,”
Ph.D. dissertation, Centre for Telematics and Information Technology, University
of Twente, 2014.

[25] R. Kohavi and F. Provost, “Glossary of terms,” Machine Learning, vol. 30, no. 2-3,
pp. 271–274, 1998.

[26] C. C. Aggarwal, S. Y. Philip, J. Han, and J. Wang, “-a framework for clustering
evolving data streams,” in Proceedings 2003 VLDB Conference. Elsevier, 2003, pp.
81–92.

Bibliography 93

[27] T. Zhang, R. Ramakrishnan, and M. Livny, “Birch: an e�cient data clustering
method for very large databases,” in ACM Sigmod Record, vol. 25, no. 2. ACM,
1996, pp. 103–114.

[28] M. Mantere, M. Sailio, and S. Noponen, “Network tra�c features for anomaly
detection in speci�c industrial control system network,” Future Internet, vol. 5,
no. 4, pp. 460–473, 2013.

[29] F. Amiri, M. R. Youse�, C. Lucas, A. Shakery, and N. Yazdani, “Mutual information-
based feature selection for intrusion detection systems,” Journal of Network and
Computer Applications, vol. 34, no. 4, pp. 1184–1199, 2011.

[30] J. Rajahalme, A. Conta, B. Carpenter, and S. Deering, “Ipv6 �ow label speci�cation,”
Internet Requests for Comments, RFC Editor, RFC 3697, March 2004.

[31] “Net�ow,” https://pliki.ip-sa.pl/wiki/Wiki.jsp?page=NetFlow.

[32] B. Li, J. Springer, G. Bebis, and M. H. Gunes, “A survey of network �ow applications,”
Journal of Network and Computer Applications, vol. 36, no. 2, pp. 567–581, 2013.

[33] R. Neisse, I. N. Fovino, G. Baldini, V. Stavroulaki, P. Vlacheas, and R. Gia�reda, “A
model-based security toolkit for the internet of things,” in Availability, Reliability
and Security (ARES), 2014 Ninth International Conference on. IEEE, 2014, pp. 78–87.

[34] C. Sarkar, A. U. N. SN, R. V. Prasad, A. Rahim, R. Neisse, and G. Baldini, “Diat:
A scalable distributed architecture for iot,” IEEE Internet of Things journal, vol. 2,
no. 3, pp. 230–239, 2015.

[35] Y. Meidan, M. Bohadana, A. Shabtai, J. D. Guarnizo, M. Ochoa, N. O. Tippenhauer,
and Y. Elovici, “Pro�liot: a machine learning approach for iot device identi�cation
based on network tra�c analysis,” in Proceedings of the Symposium on Applied
Computing. ACM, 2017, pp. 506–509.

[36] Y. Meidan, M. Bohadana, A. Shabtai, M. Ochoa, N. O. Tippenhauer, J. D. Guarnizo,
and Y. Elovici, “Detection of unauthorized iot devices using machine learning
techniques,” arXiv preprint arXiv:1709.04647, 2017.

[37] I. Hafeez, A. Y. Ding, M. Antikainen, and S. Tarkoma, “Toward secure edge
networks: Taming device-to-device (d2d) communication in iot,” arXiv preprint
arXiv:1712.05958, 2017.

[38] D. J. Cook, M. Youngblood, E. O. Heierman, K. Gopalratnam, S. Rao, A. Litvin, and
F. Khawaja, “Mavhome: An agent-based smart home,” in Pervasive Computing and
Communications, 2003.(PerCom 2003). Proceedings of the First IEEE International
Conference on. IEEE, 2003, pp. 521–524.

[39] C. Kidd, R. Orr, G. Abowd, C. Atkeson, I. Essa, B. MacIntyre, E. Mynatt, T. Starner,
and W. Newstetter, “The aware home: A living laboratory for ubiquitous comput-

https://pliki.ip-sa.pl/wiki/Wiki.jsp?page=NetFlow

94 Bibliography

ing research,” Cooperative buildings. Integrating information, organizations, and
architecture, pp. 191–198, 1999.

[40] S. Helal, W. Mann, H. El-Zabadani, J. King, Y. Kaddoura, and E. Jansen, “The gator
tech smart house: A programmable pervasive space,” Computer, vol. 38, no. 3, pp.
50–60, 2005.

[41] S. T. M. Bourobou and Y. Yoo, “User activity recognition in smart homes using
pattern clustering applied to temporal ann algorithm,” Sensors, vol. 15, no. 5, pp.
11 953–11 971, 2015.

[42] B. Das, D. J. Cook, N. C. Krishnan, and M. Schmitter-Edgecombe, “One-class
classi�cation-based real-time activity error detection in smart homes,” IEEE journal
of selected topics in signal processing, vol. 10, no. 5, pp. 914–923, 2016.

[43] M. Sheikhan and Z. Jadidi, “Flow-based anomaly detection in high-speed links
using modi�ed gsa-optimized neural network,” Neural Computing and Applications,
vol. 24, no. 3-4, pp. 599–611, 2014.

[44] P. Winter, E. Hermann, and M. Zeilinger, “Inductive intrusion detection in �ow-
based network data using one-class support vector machines,” in New Technologies,
Mobility and Security (NTMS), 2011 4th IFIP International Conference on. IEEE,
2011, pp. 1–5.

[45] R. R. R. Barbosa, R. Sadre, and A. Pras, “Flow whitelisting in scada networks,”
International journal of critical infrastructure protection, vol. 6, no. 3, pp. 150–158,
2013.

[46] M. Leef and R. Addanki, “Tra�c classi�cation for �ow whitelisting.”

[47] A. Lemay, J. Rochon, and J. M. Fernandez, “A practical �ow white list approach for
scada systems,” in Proceedings of the 4th International Symposium for ICS & SCADA
Cyber Security Research 2016. BCS Learning & Development Ltd., 2016, pp. 1–4.

[48] D. Kang, B. Kim, J. Na, and K. Jhang, “Whitelists based multiple �ltering techniques
in scada sensor networks,” Journal of Applied Mathematics, vol. 2014, 2014.

[49] P. Barford, J. Kline, D. Plonka, and A. Ron, “A signal analysis of network traf-
�c anomalies,” in Proceedings of the 2nd ACM SIGCOMM Workshop on Internet
measurment. ACM, 2002, pp. 71–82.

[50] N. Hubballi and D. Goyal, “Flowsummary: Summarizing network �ows for commu-
nication periodicity detection,” in International Conference on Pattern Recognition
and Machine Intelligence. Springer, 2013, pp. 695–700.

[51] L. Bilge, D. Balzarotti, W. Robertson, E. Kirda, and C. Kruegel, “Disclosure: detect-
ing botnet command and control servers through large-scale net�ow analysis,” in

Bibliography 95

Proceedings of the 28th Annual Computer Security Applications Conference. ACM,
2012, pp. 129–138.

[52] N. Goldenberg and A. Wool, “Accurate modeling of modbus/tcp for intrusion de-
tection in scada systems,” International Journal of Critical Infrastructure Protection,
vol. 6, no. 2, pp. 63–75, 2013.

[53] R. R. R. Barbosa, R. Sadre, and A. Pras, “Exploiting tra�c periodicity in industrial
control networks,” International journal of critical infrastructure protection, vol. 13,
pp. 52–62, 2016.

[54] L. Edmunds, The Sphinx in the Oedipus legend. Hain, 1981, no. 127.

[55] M. A. Kolosovskiy, “Data structure for representing a graph: combination of linked
list and hash table,” arXiv preprint arXiv:0908.3089, 2009.

[56] T. Hésiode, “Les travaux et les jours, le bouclier, texte établi et traduit par p,” Mazon,
Paris, Les Belles Lettres, p. 58, 1928.

[57] F.-X. Aubet, M.-O. Pahl, S. Liebald, and M. R. Norouzian, “Graph-based anomaly
detection for iot microservices,” p. 2, 03 2018.

	Introduction
	Background
	Methodology
	Outline

	Analysis
	The Smart-space architecture
	Architecture
	The existing access control
	Challenges
	Example scenario

	Problem domain
	Detect anomalies
	Integrated in the DS2OS and scalable
	Real-time
	Adapt to changes of the normal behavior
	Human understandable model

	Intrusion Detection Systems
	Traditional IDS
	Industrial Control Systems

	Anomaly Detection
	Types of anomalies
	Limitations of Anomaly Detection
	Assess the detection

	Machine Learning
	Classical usage
	Online Machine Learning

	Clustering
	The basics
	Online clustering: CluStream algorithm

	The Data
	Dataset
	Feature selection
	Nature of the input data

	Characteristics of IoT site traffic
	Network Flows
	Definition
	Definition of flows in the DS2OS
	Use cases

	Representation of graphs
	The different data structures
	Comparison

	The Problem domain revisited

	Related work
	Areas of related work
	Internet of Things
	IoT access control
	IoT traffic behaviors
	Smart spaces anomaly detection in the behavior of the people

	Intrusion Detection Systems
	Anomaly-based IDS using flows
	Flow-whitelisting in SCADA

	Periodicity Mining
	Spectral analysis
	Inter-arrival times
	Automata
	Comparison of the approaches

	Conclusion

	Design
	The architecture - Echidna and the Sphinxes
	The Sphinx
	Echidna

	Feature Selection
	Selected features
	Type of operations
	Summary

	The Sphinx
	Naming
	Keeping track of observations
	The Data-Structure of the flow-list
	The edge data-structure

	Echidna
	Naming
	The Roles and requirements
	The place in the architecture
	Antigone
	Visualization

	First approach: static white-list
	Flow white-listing
	Use the flow-list as white-list
	Learning the white-list
	Limitations
	Conclusion

	Communication Model
	Motivation and requirements
	Concept
	Communication model
	Building communication models
	Access normality of an access
	User inter-action
	Conclusion

	Frequency anomaly detection
	Requirements
	Inter-arrival time
	Sliding window
	Mining periodicity
	Access normality of new timestamps
	Conclusion

	Implementation
	Connection to the VSL
	Connection between Sphinxes and Echidna
	Hash-list
	Sliding window

	Evaluation
	Datasets
	Datasets description
	Simulating a smart space

	System requirements
	Within one Sphinx
	Traffic overhead
	Memory requirement
	Computational complexity
	Conclusion

	Periodicity mining
	Anomaly detection
	Demo

	Conclusion
	Future work

	Bibliography

