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Abstract

MOVE 2 is a nanosatellite developed according to the Cubesat standard. The associated
restrictions of size and weight limit the performance of the utilized communications
hardware. This results in a low bandwidth radio link between ground station and satel-
lite. Conventional protocols cannot satisfy the demand for high bandwidth e�ciency.
A dedicated protocol that de�nes the data link layer of Cubesat radio links did not
exist prior to this work. In this bachelor’s thesis, the layer-2 network protocol Nano-
link is therefore presented. Major design goals of Nanolink were high reliability and
e�ciency. To accomplish these goals, a high degree of adaptation of the protocol to
the characteristics of the physical channel is required. An experiment was run using
FUNcube-1 telemetry data, in order to determine the downlink channel characteristics.
Building on the experimental data, a channel model comprising a Rician channel and
AWGN channel was created and used to select suitable error correction mechanisms
for Nanolink. The resulting hybrid ARQ scheme promises high protocol e�ciency and
reliability despite weak channel conditions. E�ciency is further increased by incorpo-
rating protocol control information into payload frames. Extension header structures
ensures that no signi�cant constant overhead is created by this method. The �exible
design of Nanolink allows simple integration and deployment on MOVE 2 and other
Cubesats.





IX

Zusammenfassung

MOVE 2 ist ein Nanosatellit, der nach dem Cubesat Standard entwickelt wird. Die damit
verbundenen Größen- und Gewichtsbeschränkungen limitieren die Leistungsfähigkeit
der eingesetzten Kommunikationshardware. Daraus resultiert eine sehr geringe Band-
breite der Funkverbindung zwischen Bodenstation und Satellit. Der Forderung von
hoher Bandbreitene�zienz können herkömmliche Netzwerkprotokolle nicht nachkom-
men. Ein dediziertes Protokoll, das die Sicherungsschicht der Funkverbindung mit
Cubesats de�niert, existierte vor dieser Arbeit nicht. In dieser Bachelorarbeit wird
daher das Schicht-2-Netzwerkprotokoll Nanolink präsentiert. Hohe Zuverlässigkeit und
E�zienz waren die Hauptentwicklungsziele von Nanolink. Um diese Ziele zu erreichen,
ist ein hoher Anpassungsgrad des Protokolls an den physikalischen Übertragungskanal
erforderlich. Mit Hilfe der Telemetriedaten von FUNcube-1 wurde ein Experiment
durchgeführt, um die Eigenschaften des Downlink-Kanals zu bestimmen. Aufbauend
auf den Daten des Experiments wurde ein Kanalmodell entwickelt, das aus einem Rice-
und AWGR Kanal besteht. Das Modell wurde genutzt um geeignete Mechanismen zur
Fehlerkorrektur für Nanolink auszuwählen. Das resultierende hybride ARQ Verfahren
verspricht hohe Protokolle�zienz und -zuverlässigkeit, trotz schlechter Kanalbedingun-
gen. Die E�zienz wird zusätzlich erhöht, indem die Steuerinformation des Protokolls in
Datenrahmen integriert wird. Extension Header-Strukturen stellen sicher, dass durch
diese Methode kein signi�kanter Overhead entsteht. Die �exible Konstruktion von
Nanolink erlaubt einfachen Einsatz und Integration in MOVE 2 und andere Cubesats.
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Chapter 1

Motivation

The Munich Orbital Veri�cation Experiment 2 (MOVE 2) is an educational and scienti�c
nanosatellite. It is being developed by students of the Scienti�c Workgroup for Rocketry
and Space�ight (WARR) in cooperation with the Institute of Astronautics (LRT) of the
Technische Universität München. MOVE 2 is a CubeSat, a satellite standard with the
goal of allowing inexpensive production and operation of satellites. The term CubeSat
originates from the cubical form of the basic one unit 10x10x10 cm satellite [9]. The
small size and low weight of CubeSats reduces launch and hardware expenses. This
allows students and universities to �nd simpler access and hands-on experience with
astronautics, and to deploy scienti�c experiments more quickly and with less cost.
Due to their smaller scale, CubeSats are even more restricted in terms of power supply
and thus, hardware performance, than larger satellites. This impacts on the available
resources for the communication systems. Low transmitter power renders high fre-
quency bands unattractive, due to the associated high free-space path losses. Therefore,
CubeSats utilize the VHF and UHF radio bands. Due to regulations of the channel
spacing, the frequency bandwidth available on these bands is limited, and constraints
the maximum achievable data rate. CubeSat transceivers have a typical data rate in the
range of 1200 to 9600 bit s−1. Together with the short and infrequent passes that come
with low earth orbits, this puts a considerable constraint on the amount of data that can
be transmitted to and from the satellite. A higher amount of data transmittable between
satellite and ground station enables more complex communication and commandeering
of the satellite. This in return means that more sophisticated experiments and missions
are possible. Utilizing the transmittable data volume as e�ciently as possible is therefore
a major concern.
The search for the optimal use of the given resources begins with the reduction of
overhead. Overhead are additional data that are required by the individual protocols
involved with the delivery. The overhead is generated by encapsulating data units
and adding address information as well as information required by services provided
by the individual protocols (e.g. error detection or fragmentation). The established
TCP/IP or UDP/IP protocol stacks are made to work in networks of a much larger
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scale than the simple ground station-satellite con�guration of CubeSats. The satellite
data link is a point-to-point connection which does not require large address spaces or
elaborate routing mechanisms. The overhead required for their operation is therefore
not justi�able for this case of application. Another problem is maximum link utilization.
For maximum link utilization, each node must send data continuously without any idle
time. Idle time results in a loss of valuable transmission time. TCP reacts to packet
losses by reducing throughput, which can have a crippling e�ect in radio links, where
transmission errors are more frequent than in tethered networks. An unacceptable
property, which renders the TCP useless for CubeSat missions. Nevertheless, reliability
is an absolute necessity for the data link, since the data link is the only possibility to
interact with the satellite. UDP does not o�er any reliability and is therefore unsuitable
as well.
The main focus of this thesis lies on the proverbially missing link between ground station
and satellite, the data link layer protocol. There is no protocol that accommodates the
requirements and restrictions of the MOVE 2 mission. For this reason, a new data link
layer protocol named Nanolink is presented in this thesis.
Chapter 2 gives a short overview of relevant technical details of the MOVE 2 mission
and the requirements for the protocol design. The data link layer is the �rst level of
abstraction after the physical layer. As such, it must be adjusted to the properties of the
physical link. Hence, an analysis of the characteristics and impairments of the radio
links is performed in chapter 3. Based on the �ndings, channel coding schemes are
selected in chapter 4 for the use in the MOVE 2 mission. Subsequently in chapter 5,
related protocols are discussed and evaluated for the use in the MOVE 2 protocol stack.
Chapter 6 illustrates the concept of the Nanolink protocol in detail. Chapter 7 provides
a brief evaluation of the performance of Nanolink. Chapter 8 covers future work on the
protocol. Finally, the thesis is concluded in chapter 9.
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Chapter 2

MOVE 2

This chapter gives more insight on the relevant aspects of the MOVE 2 mission. Section
2.1 illustrates technical details of MOVE 2. Section 2.2 discusses the requirements for
the protocol stack.

2.1 Technical Details

This section gives an overview of the technical details of the individual subsystems of
MOVE 2 that must be taken into consideration.

2.1.1 Com Systems

The baseline communications concept of MOVE 2 consists of a UHF uplink and VHF
downlink. The radio modules will operate on the frequency bands allocated for use by
amateur radio satellites. The frequency ranges are 435 MHz to 438 MHz and 145.8 MHz
to 146 MHz for UHF and VHF respectively. The frequency bands are divided into chan-
nels with a spacing of 12.5 kHz. The signals are commonly modulated with binary
phase-shift keying (BPSK) or a form of frequency-shift keying (AFSK, GMSK). Commer-
cial o�-the-shelf CubeSat transceivers provide a transmit power in the range of 22 to
34 dBm. The downlink data rates range between 1200, and 9600 bit s−1 and the uplink
data rate is typically restricted to 1200 bit s−1.

2.1.2 Command and Data handling

The Command and Data Handling (CDH) unit is the core of the satellite. It controls
the other subsystems and processes payload data. The CDH subsystem compiles status
information of all active components of MOVE 2 and relays this telemetry data to the
com systems. The prospective centerpiece of the CDH subsystem is a quad-core ARM
Cortex A5 microprocessor with JTAG support. JTAG is an interface for hardware testing
and debugging. It is projected to be used for in-orbit debugging of the CDH hardware
and �rmware upload. The operating system of the CDH system will be Linux.
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2.1.3 Orbit

The orbit of MOVE 2 is projected to be highly inclined and at a height of 600 to 800 km.
The frequency and duration of satellite passes depends on inclination and orbital height.
For a polar orbit with 90° inclination, the ground station in Munich will have line of
sight contact with the satellite for approximately seven minutes, three times a day.

2.2 Protocol Requirements

In addition to the requirement that the protocol stack be adjusted to the hardware and
orbit of MOVE 2 and compatible with the respective subsystems, there are functional
requirements for the protocol stack. An overview is presented in Table 2.1. Satisfying
requirements marked with ’must’ is mandatory. Requirements marked with ’should’
are optional, but desirable.

# Title Obligation

1 Reliability must
2 Bandwidth e�ciency must
3 TC & Data transfer must
4 Telemetry beacons must
5 Backup capability must
6 JTAG access should
7 High automation should

Table 2.1: Requirement overview

Reliability Reliability is the most important requirement for the protocol stack. The
protocols must provide a communication link despite possible disturbances or interrup-
tions of the physical link. The integrity of the transmitted data must be ensured, since
corrupt or incorrect data may result in incorrect processing or unde�ned behavior. In
addition, the protocols must be able to handle the periodical connection losses that are
inherent to LEO satellite links, without loss of data.

Bandwidth e�ciency Bandwidth e�ciency is the second most important requirement
for the protocol stack, for the previously discussed reasons.

TC & Data transfer The protocol stack must to provide the capability to send telecom-
mands to the satellite and to transfer data between CDH and ground station.

Telemetry beacons Telemetry and housekeeping data must be sent by Nanolink, if no
connection to the ground station is active. The telemetry must be decodable by ground
receivers, such as radio amateurs across the globe.
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Backup capability The protocol stack must also be able to work as backup for a poten-
tial secondary com system. This means that in case of a radio module malfunction, it
must be possible to redirect tra�c to another radio.

JTAG access Nanolink should provide for access to the CDH JTAG interface, so that
debugging of the satellite is possible after launch.

High automation Lastly, the protocol stack should provide a high degree of automation
so that human interaction is not required in the standard case.
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Chapter 3

Radio Link

This chapter covers the analysis of the UHF and VHF radio channels. Good knowledge
of the channel is crucial for deciding on appropriate error control mechanisms and other
protocol parameters such as the size of the sequence number space or frame length.
Section 3.1 gives an approximation of the signal delay. Section 3.2 brie�y discusses the
various sources of signal attenuation that in�uence the satellite radio link. In Section
3.3, measurements from a reference satellite will be analyzed using statistical methods.
Based on the data gained in the previous section, a channel model will be created and
evaluated in section 3.4.

3.1 Signal delay

One of the most important characteristics of communication links is the signal propa-
gation delay. The propagation delay limits the minimum interval between transmission
and reception of a request and response. This interval commonly referred to as round-
trip time (RTT).
The product of RTT and link data rate, known as bandwidth-delay product, plays an
important role in the choice of automatic repeat request (ARQ) methods. The bandwidth-
delay product denotes the amount of unacknowledged data on the link when working
at full capacity. This data needs to be retained by the sender until the acknowledgment
is received, thus requiring bu�ering space and an appropriate sequence number space.
Depending on the ARQ type, it may also be required to bu�er the data at the receiver
until all missing data are received. For small bandwidth-delay products these concerns
are far less severe.
The following is a brief approximation of the upper limit of the signal propagation delay
between satellite and ground station. The longest delays are experienced at the begin
and end of each pass, when the satellite is just above horizon and the elevation is 0°
and the distance to the satellite is maximal (see Figure 3.1). Atmospheric in�uences like
di�raction and refraction can be neglected due to their small impact on the results. For



8 Chapter 3. Radio Link

d SB

M

Figure 3.1: Distance of ground station (B) to satellite (S) at 0° elevation

a perfectly spherical earth, the distance to the satellite at 0° elevation is calculated with:

d =
√
(R + h)2 − R2 (3.1)

Where R is the radius of earth and h is the orbital height of the satellite. Since the
in�uences of the atmosphere are neglected, the signal can be assumed to travel with
the vacuum speed of light c0. The propagation delay is then calculated as follows:

tv =
d

c0
(3.2)

For a circular low earth orbit at 800 km, and an approximate radius of earth of 6367 km,
the propagation delay is:

tv =

√
(6367 km + 800 km)2 − 6367 km2

299 792 458 m s−1 = 10.979 ms ≈ 11 ms

For the maximum data rate of 9600 bit s−1, the maximum bandwidth-delay product is ap-
proximately 26 B. For frames with hundreds of bytes, this means that acknowledgments
can be received within the serialization time of the next frame. With respect to the
bandwidth-delay product, large sequence number spaces and bu�ers are not required.

3.2 Signal attenuation

Signal attenuation can cause reception errors or transmission losses. To select suitable
counter-measures it is necessary to know the sources of attenuation and their charac-
teristics. This section sums up the most important sources of signal deterioration due
to attenuation in UHF and VHF radio links based on the publications of Ippolito [22]
and the ITU [18–21].

3.2.1 Noise

Like all electrical signals, radio signals are subject to noise that causes reception errors,
depending on the so-called signal-to-noise ratio (SNR). The primary source of noise
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Figure 3.2: Components of the atmosphere impacting space communications [22]

is thermal noise of the receiver hardware, which is modeled as additive white noise
[18]. Secondary sources of noise are celestial bodies (sun and moon), earth and cosmic
background radiation [22]. The received noise is comparably strong for uplink channels
since the satellite’s antenna is made to receive signals from the ground and, ipso facto,
also receives a greater portion of earth’s noise.

3.2.2 Ionospheric e�ects

The carrier medium also in�uences wave propagation and signal strength. In the case
of satellite communications, this medium is the atmosphere of the Earth. Figure 3.2
illustrates which layers of the atmosphere a�ect radio transmissions. VHF/UHF signals
are impaired by the ionosphere, an atmospheric “region of ionized gas or plasma that
extends from about 15 km to a not very well de�ned upper limit of about 400 km to
2000 km about the earth’s surface” [22]. In the ionosphere, the level of ionization is
quanti�ed by the total electron content (TEC) or electrons per cubic meter. This property
�uctuates i.a. with sun activity, day time and time of year.

Scintillation Smaller, more rapid �uctuations in the TEC result in scintillation or fading
e�ects, perturbations that can a�ect the received signal phase, amplitude and refractive
index, leading to multipath signal propagation [18,32]. Even in weak cases, scintillations
may reduce the signal strength at the receiver by multiple decibels [20]. For the middle
latitudes of central Europe, ionospheric scintillation mostly a�ects VHF signals [20].
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Faraday Rotation Another problem is the rotation of the plane of polarization of a
radio wave by the ionosphere and the geomagnetic �eld, which is usually referred to as
Faraday rotation. This e�ect especially a�ects VHF communication, if a linear polarized
antenna is used at the receiver side [22] because the received signal strength diminishes
with increasing rotation angle up to the point where the two polarization planes are
perpendicular to each other and no reception is possible. The rotation depends on TEC
and carrier frequency and reaches its maximum during the day [18].

3.2.3 Other e�ects

Ground e�ects At low elevation angles, other critical e�ects occur. Obstructions of
the line of sight or in the local environment, such as tall buildings, mountains or trees,
scatter or di�ract the satellite signal. This can result in multipath wave propagation,
slow fading or signal cancellation [20–22]. Moreover, CubeSats use unregulated amateur
radio frequencies and interference with other radio signals is common. These problems
mainly a�ect the downlink channel and can be assumed to be irrelevant for the uplink.

Satellite rotation Satellites without attitude control systems may tumble uncontrollably.
For linear polarized signals, the plane of polarization is rotated with the satellite’s
antenna. As with Faraday rotation, this may result in reduced received signal strength.
Due to the rotation, the impairment manifests as periodically varying fades.

3.3 Empirical Analysis using FUNcube-1 data

Having discussed some of the most important potential sources of attenuation, it is
necessary to �nd out how the combination of these in�uences disturbs radio commu-
nication. Prior to this work, empirical data about the quality of a UHF/VHF satellite
radio links with the LRT antenna system, which will be used for MOVE 2, was not
available. Because one goal of this thesis is to �nd optimal parameters for MOVE 2’s
COM systems, it is crucial to adjust the systems using real world measurements.
For these reasons, an experiment was conducted to gain further knowledge about the
characteristics of the VHF satellite radio link. This section focuses on the description
and �ndings of the experiment.

3.3.1 Experiment Setup

The experimental setup comprises the FUNcube-1 CubeSat and the LRT ground control
antennas. The purpose of the experiment is to get empirical data about the quality
and properties of a RF link comparable to that of MOVE 2. This data is obtained
by receiving telemetry beacons from FUNcube-1, decoding them and extracting the
DecodeErrorCount and UTCTime values. The DecodeErrorCount value “represents the
number of bit errors detected and corrected by the software when decoding each frame
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of telemetry” [12] This quantity is henceforth referred to as bit errors per block (BEB).
The FUNcube Dashboard source code is not available at this point of time. It is unknown
how exactly this property is computed. In this context, it is assumed to be the count of
all bit errors of a received encoded telemetry frame.

Input

256 Bytes

RS Encoder

(160,128)

RS Encoder

(160,128)

320 bytes

(2560 bits)

Scrambler

Convolutional

Encoder

R = 1/2, k=7

Interleaver

65 x 80 bit

Output

5200 bits

Padding

3 bits

Sync Vector

65 bits

Flush

6 bits 2560 bits

5132 bits

Figure 3.3: FUNcube-1 FEC Encoding [28]

FUNcube-1 Details FUNcube-1/AO-73 is
a 1-unit CubeSat developed by AMSAT-
UK1. It currently orbits earth on a
600x685 km polar orbit with an incli-
nation of 97.8◦ [29]. The satellite’s
transceiver operates at 146 MHz downlink
and transmits BPSK modulated telemetry
beacons with a data rate of 1200 bits per
second. In sunlight the transceiver power
is 300 mW and 30 mW in eclipse. All
telemetry beacons from eclipsed passes
were disregarded in the further analy-
sis because in this case, the transceiver
power is not comparable to that of MOVE
2. Telemetry beacons are transmitted con-
tinuously in an interval of 5 seconds. The
beacons are encoded as illustrated in Fig-
ure 3.3. The FUNcube-1 uses the OSCAR-
40 FEC scheme [26, 28]. It is a serial con-
catenated code (see section 4.1.3) with an
outer Reed-Solomon code and an inner
convolutional code. The Reed-Solomon
code blocks have a length of 160 B and a
dimension of 128 B. The output is scram-
bled with a pseudo-random sequence to ensure a high frequency of bit transitions,
needed for demodulator synchronization. Subsequently, the bit sequence is fed into
a rate-1/2 convolutional encoder with constraint length 7. The shift register of the
encoder is cleared using 6 �ush bits. The resulting 5132 bits are then placed into a block
interleaver, together with a sync marker of 65 bits and 3 padding bits. The interleaver
protects the sync marker and convolutional code from burst errors by introducing tem-
poral diversity. This means that the interval between two consecutive bits of a original
sequence, is increased. This is done by reading the input row-by-row into a matrix of
65x80 bit and then reading from the matrix column-by-column. FUNcube-1 is a good
reference for the MOVE 2 radio link, as its orbit and transmitter parameters are close to
the prospected orbit of MOVE 2 and commercially available communication systems.

1http://www.funcube.org.uk

http://www.funcube.org.uk
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Figure 3.4: Error count of the �rst 300 samples

The LRT Ground Station The ground station antenna system consists of a steerable
rack holding two crossed Yagi antennas, located on the roof of the LRT building. The
crossed Yagi antenna con�guration mitigates the e�ects of polarization rotations. The
antenna system tracks the satellite on its trajectory once it rises above the horizon. The
antennas are connected to a computer through a FUNcube SDR Dongle, which was
used to decode the satellite signals.

3.3.2 Execution and data preparation

The test began on the 03.07.2014 and during this period, more than 2500 telemetry
samples were successfully received. Frames that could not be decoded correctly are
unfortunately not logged by the FUNcube decoder software and could therefore not be
included in the statistic. The impact of this is assumed to be small, due to the relatively
low frequency of frames with very high BEB. A more detailed discussion is given in the
following.
Subsequently, every sample was then enriched with the respective elevation and azimuth
angles of the satellite and sun, at the moment of reception.

3.3.3 Statistical Analysis

Because the LRT ground control antennas are surrounded by other antennas and build-
ings and the proximity to the Alps, more severe signal degradation is expected at low
angles of elevation, as mentioned in 3.2.3.
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3.3.3.1 Elevation dependent error distribution

In order to determine the impact of these additional attenuations, the data were separated
by elevation angle. The in�uence of ground e�ects have been reported to be insigni�cant
above 5◦ [21]. A test was performed to verify this claim and showed that the di�erences
are indeed small, however not insigni�cant (see Figure 3.5b). Therefore, in this thesis,
the upper bound of elevations angles considered “low” is de�ned to be at 10◦.
Figure 3.5a shows that at higher elevation angles, about 37% of the frames are completely
error-free. In contrast, only 15% of the frames received at low elevation angles are free of
error. Moreover, low elevation transmissions show a dramatic tendency to accumulate a
high number of errors: more than 30 percent of the frames have a BEB of 10−2 or worse.
On the other hand, the graph clearly shows that more than 90% of the frames received
at high angles and almost 80% at low elevation angles, could be received correctly if
the ability to correct 100 bit errors were added to the frame in form of a forward error
correction. Adding more redundancy yields only little bene�t, as the curve gradually
�attens out with increasing error count. This is an important information for �nding
an optimal forward error correction method.
As a consequence of the impact of low elevation attenuation, all data below 10° elevation
will be excluded from further tests. This reduces the sample size to 1615.

3.3.3.2 Transmission losses

During the experiment, a total of 25 passes was captured. The duration is measured to
be the time between the �rst correctly received frame and the last correctly received
frame within the window of a possible pass. By this de�nition, the average duration was
5 min 56 s. The cumulative duration of all passes was 2 h 28 min 22 s. With a serialization
time of 5 s per frame, we could therefore have received:

8902 s · 1 frame
5 s ≈ 1780 frames
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With respect to section 3.3.3.1, this indicates that 165 frames were lost in transmission.
There are many possible sources for this, which are not clearly discernible. Knowledge
of the source is however desirable because it might indicate �aws of the channel model
or software. Possible explanations are:

1. Bugs in the FUNcube Dashboard or FUNcube Dongle

2. Overstrained channel coding

3. Synchronization issues

4. No line of sight to the satellite

To test these hypotheses, the correlation between frequency of transmission losses and
other properties were analyzed using Matlab. For the correlation test, the respective
�nal frame before the transmission loss occurred, is used. Since samples with low error
count and low elevation angles are more common, the frequencies of the events were
normalized before the test.

Property p R

Elevation 0.0712 -0.4118
Azimuth 0.9543 0.0137
Daytime 0.6615, 0.2036
Error Count 0.1690 0.3200

Table 3.1: Test results. p expresses the signi�cance and R the strength of the relationship.
Negative values of R indicate a reciprocal relationship.

At a level of signi�cance of 0.05, no relationships were statistically signi�cant. However,
there is a strong but not signi�cant relationship between elevation and transmission
loss. In the light of the fact that there is virtually no correlation between azimuth and
frame losses, it is unlikely that the losses can be attributed to a certain LOS obstruction.
Overstrained channel coding was an unlikely explanation from the beginning, since
the frequency of frames with high BEB is very low. Less than 0.01% of the received
frames had more than 480 errors, therefore it is assumed unlikely that the loss of almost
10% of the transmitted frames can attributed to this source. The most likely cause are
frame synchronization errors. FUNcube telemetry frames are interleaved with their
sync pattern, which is extracted from the bit stream using a statistical approach. A
combination of unfavorable events such as symbol slips could shift the position of
the sync marker bits in the interleaver, resulting in a lost frame. Subsequently the
synchronizer may need a few frames to recover. Unfortunately, this explanation is
strictly notional and cannot be veri�ed.
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3.3.4 Conclusion

The data from FUNcube-1 has shown that the VHF downlink radio channel exhibits
a severe burst error characteristic. The severity and number of bursts was found to
increase signi�cantly with decreasing elevation angle. It was found that the ability to
correct more than 100 bit errors yields only little bene�t at this frame length, since it
would require considerable additional expenditures. Burst errors limit the frame length,
because the probability of experiencing multiple bursts increases with frame length.
Furthermore, the channel coding mechanism must be suitable for burst error channels.
Finally, it was found that unknown sources of error cause frame losses. The powerful
forward error correction of FUNcube-1 is not su�cient to guarantee the reception of
every frame. To ensure reliable delivery, retransmissions are necessary.
For a more detailed analysis, a larger sample set is required. In order to determine the
e�ects of seasonal variations, measurements at di�erent times of the year are necessary.

3.4 Channel models

Channel models are used to simulate real world conditions of a communication channel.
The channel model is required so that di�erent aspects of the protocol, especially
forward error correction schemes, can be tested. For this reason, the additive white
Gaussian noise channel and Rician fading channel are examined and used to create a
model in Matlab.

3.4.0.1 Additive White Gaussian Noise (AWGN)

Additive white Gaussian noise is a simple mathematical model for noisy channels. The
AWGN models white noise, meaning that the noise power is constant for all frequencies.
It is mainly applied to describe the thermal noise at the receiver end [2], but can also
model other sources of white noise. Let ni ∼ N (0,σ 2) be a normal distributed random
variable and xi a message symbol, then, due to the additivity of the noise, the received
message yi can be described as:

yi = xi + ni (3.3)

Therefore, the received symbol is normally distributed: yi ∼ N (xi ,σ
2). The in�uence

of the noise depends on the ratio between signal power P and noise power N0, where
the noise is expressed by the variance σ 2 = N0

2 [2]. For digital transmissions the signal
power is commonly normalized by the number of bits per symbol, denoted as Eb , to
simplify the calculations with di�erent modulations and symbol rates. The normalized
signal-to-noise ratio (SNR) is therefore referred to as Eb/N0 [30]:

Eb
N0
=

P

R · N0
(3.4)

where R denotes the bit rate.
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The ambiguity introduced by the noise produces errors when the signal is demodulated.
The relative frequency of errors in a noisy channel is referred to as bit error rate (BER).
The BER depends on received Eb/N0 and the number of bits per symbol (modulation
order). The bit error rate in an AWGN channel is approximated with (3.5) [2, 22]. Here,
erfc is the Gaussian error function.

BER =
1

ld(M )
· erfc*

,

√
ld(M )Eb

N0
· sin( π

M
)+
-

(3.5)

Channel capacity In noiseless channels, the maximum achievable bit rate depends on
the symbol rate and number of bits per symbol. The number of symbols that can be
sampled from a signal depends on the available bandwidth. The relation between these
factors is expressed by Heartley’s law:

Rmax = 2 · B · ld(M ) bit (3.6)

where:

Rmax : Maximum bit rate
B : Bandwidth
M : Modulation order

It follows that in this case, the maximum bit rate is only limited by bandwidth and
modulation order. For the sake of an example, assume a standard VHF transmitter,
sending BPSK modulated signals with a bandwidth of 4800 Hz. The maximum achievable
data rate of this con�guration is:

Rmax = 2 · 4800 Hz · ld(2) = 9600 bit s−1

However, in noisy channels, the maximum achievable bit rate is not the only �gure
of merit, but also the maximum bit rate at which reliable communication is possible.
Shannon and Hartley showed that for noisy channels, an upper bound for error free
communication, called channel capacity or Shannon limit, exists:

C = B · ld (1 + P

N0 · B
) bit s−1 (3.7)

This implies by increasing the bandwidth inde�nitely, the channel capacity approaches
a limit [30]:

lim
B→∞

C =
P

N0
ld(e ) bit s−1 (3.8)

To increase the channel capacity, it is therefore reasonable to maximize bandwidth
utilization by improving SNR and changing to a higher modulation order, so that more
bit per sample are transmitted. Proakis et al. note that the practical upper bound of the
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achievable bit rate is below the Shannon limit [30]:

R < C
(3.4)
= B · ld

(
1 + R

B
·
Eb
N0

)
bit s−1 (3.9)

For the sake of this example, we will assume a bandwidth of 4800 Hz, and a SNR of 15
dB. The maximum data rate is:

4800 Hz · ld (1 + 1015/10) ≈ 24 kbit s−1

3.4.0.2 Fading
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Figure 3.6: Illustration of multipath propagation due to di�raction

Constant noise is not the only source of signal attenuation in VHF/UHF channels.
Ionospheric scattering and refraction as well as re�ection, di�raction and scattering of
radio signals in proximity to the receiver are sources of multipath signal propagation.
The signal propagates through multiple paths of di�erent lengths from sender to receiver,
the delays along these paths vary. The resulting interference at the receiver causes
ampli�cation or cancellation of the received signal [24, 30]. If the relative delays along
the respective paths are small compared to the symbol period of the transmitted signal,
we speak of frequency �at fading or narrowband fading [14, 22]. As Ippolito notes,
satellite channels with small bandwidths and low data rates can be considered to be
purely narrowband [22]. FUNcube-1 and also MOVE 2 fall into this category.
The di�erent sources of fading also result in di�erent fading characteristics. Generally,
the distinction is made between fast fading and slow fading.

Slow Fading Ippolito [22] argues that slow fading or shadow fading is caused by
obstructions along the propagation path that do not block the signal entirely. Slow
fading may cause large scale signal degradation of 6 dB to 10 dB [22], with long in�uence
periods. A major problem with slow fading is that time diversity is not an e�ective
countermeasure.
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Fast Fading Fast fading is the result of multipath propagation and causes more rapid
and stronger �uctuations of the received signal power than shadow fading. Fast fades
can be reduced by introducing time diversity into the information stream using an
interleaver. Multipath fading in telecommunications with line of sight component is
generally modeled as Rician fading [24,30]. The Rician channel is a more general version
of the Rayleigh fading channel, which models fading without line of sight. The Rician
fading model is characterized by the Rice-factor K , which denotes the ratio between
the power of the line of sight and other path components of the signal. For links with
motion between sender and receiver, the Rician model allows for di�erent Doppler
shifts along the paths.

3.4.0.3 Matlab Model

The channel was modeled using Matlab (see Figure 3.7). The channel comprises a source
of AWGN and Rician fading. The pseudo-random number generator produces blocks
of 5200 bit to correspond with the length of FUNcube-1 frames. The blocks are BPSK
modulated, sent through the channel and demodulated. The resulting statistic, the
number of bit errors per block, is calculated by comparing received and sent blocks.

Figure 3.7: Simulink model of the channel

To test the parameters of the model, the cumulative distribution of the simulated BEB
samples is compared to the measured samples from FUNcube-1. Ideally, the quality
of the parameters should also be evaluated by the time between the individual bursts.
Unfortunately, the samples from FUNcube-1 do not allow such detailed considerations,
because the BEB counts only measure the cumulative number of errors but not their
individual location.
For the �at fading channel, a good �t was found with Eb/N0 = 14.7 dB, K = 3.7, a
maximum Doppler shift variation of 1.21 Hz along the scattered paths, a Doppler shift
of 3600 Hz on the direct path and a sampling rate of 1200 Hz. A Eb/N0 ratio of 14.7 dB
indicates a very high SNR (BER ≈ 10−14). Figure 3.8 shows the graphs of the CDF of the
simulated and measured samples. The �gure shows that the model yields results that
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correspond closely to the measurements. This implies that the main impairments are due
to the modeled sources. The maximum measurable number of errors per frame is capped
due to the capacity of the forward error correction. This is why the simulation yields
higher maximum BEB than the samples from FUNcube and also a possible explanation
for the discrepancy between measured and simulated samples for higher BEB values.
There is also a slight discrepancy for BEB values above about 20 and below about 100.
Since the model considers only constant AWGN and fades due to multipath propagation,
it is possible that this discrepancy stems from other sources.
The model represents a non-varying channel that corresponds to the average-case of
the FUNcube-1 passes. Situational or seasonal variations, as well as other sources of
impairments are not accounted for. For these reasons, the main knowledge gain of
the model is the awareness of the in�uences of fading on the downlink channel and
high receiver SNR. Also, the model can be used to conveniently simulate the downlink
channel for FEC testing.

0 100 200 300 400 500 600
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

x: Errors per frame

F
(X

)

Simulation

Measured

Figure 3.8: ECDF of simulated and measured samples

3.5 Conclusion

The signal propagation delay between ground and LEO satellites was found to be in the
range of milliseconds, resulting in a very low delay-bandwidth product. This implies
that only small sequence number spaces and bu�ers are required. Four sources of signal
attenuation can be distinguished: Noise, ionospheric scintillations and polarization
rotation, and receiver environment. Ionospheric e�ects and objects in the proximity
of the receiver may cause the downlink signal to arrive at the receiver along di�erent
paths, which can have adverse e�ects to the signal quality. The UHF uplink is mostly
subject to noise and Faraday rotation.
An experiment with the purpose to get empirical data about the VHF downlink was
performed. The downlink channel was found to have strong burst error characteristics
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while a major part of the frames were received without error. Also, we showed that the
burst characteristic increases for very low elevations. Approximately 9% of the frames
transmitted during the passes were lost. A correlation test was found to be inconclusive.
It was concluded that the use of forward error correction methods is not su�cient to
provide reliable communication.
The bit error rate of an AWGN channel is a function of the normalized signal-to-noise
ratio Eb/N0 . The theoretical limit to the maximum data rate at which reliable com-
munication can be attained, depends on the Eb/N0 ratio. In the subsequent discussion
of narrowband fading, the fast and slow fading e�ects were distinguished. It was con-
cluded that fast fading is mostly caused by multipath propagation which can be modeled
using a Rician channel. A Matlab model comprising an AWGN and Rician channel was
developed. The model was found to perform with reasonable accuracy for the average
case. The received Eb/N0 was found to be very high, which indicates good signal quality
apart from fading. We thus conclude that the good average-case accuracy is su�cient
for comparing forward-error correction schemes.
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Chapter 4

Channel Coding

The previous chapter discussed the various sources of transmission errors on the re-
spective channels. This chapter lays focus upon channel coding, a technique that strives
to render messages robust to erroneous transmission. Channel coding, or forward error
correction, works by adding additional redundancy to a message which can be used to
correct defective message parts. Section 4.1 presents an overview of the most commonly
used channel coding mechanisms used in satellite communication. Afterwards, the
performance and applicability of these codes for the use in MOVE 2 is evaluated in 4.2.1.

4.1 Error Correcting Codes

This section reviews error correcting codes that are most commonly used in astronautics.
First, convolutional codes will be illustrated. Afterwards, Reed-Solomon codes will be
elaborated. Subsequently, serial-concatenated codes and turbo codes will be covered.
Finally, low-density parity-check codes will be discussed.

4.1.1 Convolutional Codes

Convolutional codes are a family of linear error-correcting codes, invented by Peter
Elias in 1954 [10] with the goal to �nd a family of codes with good performance in
binary symmetric channels and AWGN channels [11, 14]. The following summarizes
the respective sections in the publications of Glavieux [14] and Bossert [3].
Unlike block codes, convolutional codes operate on a continuous sequence of input
data, with virtually no limitation on message length. To encode a message sequence
d , it is divided into blocks dk of length K . Subsequently, every block dk is fed into the
encoder f , a linear function that maps dk , along withm preliminary blocks, to a code
block ck [3]:

d = d0,d1,d2, ... → c = c0,c1,c2, ..., (4.1)

with ck = f (dk−m , ...,dk ) and dk ∈ GF (2)K ,ck ∈ GF (2)N (4.2)

N denotes the number of code blocks at the output of the encoder so that Rc = K/N is
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Figure 4.1: State diagram of a convolutional code with Rc = 1/2 andm = 2

the code rate. The dependency of ck on dk andm previous message blocks introduces a
memory e�ect in the encoder. The quantity ν =m + 1 is called constraint length, it rep-
resents the number of message blocks that a�ect a code block. Because the information
is more widespread, an increased constraint length generally results in a higher error
correcting capability.
Glavieux et al. note that “the operation of a convolution encoder may be represented
by a graph called a state transition diagram” [14]. Such a diagram is found in Figure 4.1
for a convolution encoder with Rc = 1/2 andm = 2. The state labels represent the state
of the memory and the transition labels the output code block. A dashed transition
indicates the input of a “1” into the encoder, a solid transition a “0” respectively.
The number of states of a certain encoder is 2Km , resulting in exponential growth of
encoder and decoding complexity with constraint length and message block length. K
adds no value to the error correcting capability, hence typical convolutional codes used
in a practical setting have K = 1 and ν = 7.
This in return, sets a limit to the code rate, so that Rc ∈ {1/N |N ∈ N}. A way to achieve
high code rates without increasing decoding complexity is puncturing or perforating
rate 1/N codes. Convolutional are perforated by deliberately “punching out” certain
code symbols from the encoder output.
As an example, let us return to an arbitrary rate 1/2 encoder, with two binary symbols
d1,d2 as input and four binary c1,c2,c3,c4 symbols as output. Removing one of the four
ck yields an encoder with K = 2 and N = 3, a rate 2/3 encoder. Glavieux et al. point out
that the downside of punctured codes is that the “performances of perforated codes are
generally a little lower than those of non-punctured codes of the same rate and of the
same constraint length” [14].
The coded sequence at the output of the encoder can also be interpreted as sequence
of traversed states of a �nite discrete-time Markov process [11]. The state sequence,
and thus the message symbols, can be obtained by traversing the Markov chain once
more. Because the convolution encoder begins in state 00 and not all states commu-
nicate with each other, some code symbol sequences are not possible, e.g. ’0010’ or



4.1. Error Correcting Codes 23

’000001’ for the encoder illustrated in Figure 4.1. Receiving an impossible sequence
is an indicator for a symbol error. This property is used by the Viterbi Algorithm, a
maximum likelihood decoder, to �nd the most likely state sequence of the encoder. If
the correcting capability is exceeded, the Viterbi algorithm produces burst errors [11].
For this reason, convolutional codes are often concatenated with Reed-Solomon codes
(see section 4.1.3).
To improve the performance of convolution codes in burst error channels, an interleaver
comes into consideration. Interleavers permute the code sequence so that burst errors
are dispersed into single bit errors which can be handled by the convolutional code. This
is an extremely e�ective method to reduce the BER and used in Turbocodes (see section
4.1.4). However, large interleavers increase decoding delays which must be taken into
account.

4.1.2 Reed-Solomon Codes

Reed-Solomon codes (RS codes) are a class of cyclic error correcting block codes with
a wide range of applications, from data storage to satellite communications. Forney et
al. argue that the popularity of RS codes stems from their “substantial error correction
power with relatively small redundancy” [11] in channels with low BER, and good burst
error correction performance.
Since there are multiple equal possibilities to encode a message with RS codes [3, 34],
the most common, the generator polynomial approach is discussed. A Reed-Solomon
polynomial code is de�ned over �nite �elds GF (q = pm ). In this approach, code or
message symbols are elements of the GF (q). Sequences of symbols are interpreted
as coe�cient vector of a polynomial. The code words c = (c0,c1, . . . ,cn−1) are the
coe�cients of the code polynomial c (x ):

c (x ) = (c0 + c1x + c2x
2 + · · · + cn−1x

n−1),ci ∈ GF (q) (4.3)

The degree of polynomials in GF (q) is limited to ≤ n = q − 1 because for every element
β ∈ GF (q): βn = 1. A set of code words C is de�ned by a polynomial д(x ), called
generator polynomial, of degree n − k . Every code polynomial in C must be a multiple
of the generator polynomial:

c (x ) =m(x ) · д(x ) (4.4)

The number of di�erent code words in C therefore is qk [34], which is why k is usually
referred to as dimension of the code, whereas n is its length.
Reed-Solomon codes may be systematic or non-systematic. To generate a systematic
codeword from a message m = (m0,m1, . . . ,mk − 1), the message symbols must be
part of c. To do so, the coe�cients of m are placed into coe�cients cn−k , ...,cn−1 of c.
Since c (x ) must satisfy (4.4), the remaining n − k coe�cients are the residuals of the
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polynomial division of c (x ) by д(x ) (4.5) [3]:

(cn−1x
n−1 + ... + cn−kx

n−k ) : д(x ) =m(x ) + r (x ) (4.5)
c (x ) = cn−1x

n−1 + ... + cn−kx
n−k − r (x ) (4.6)

According to Wicker et al. , “The generator polynomial for a t-error-correcting code must
have as roots 2t consecutive powers of α” [34], where α is the primitive root of the �nite
�eld.

д(x ) =
2t∏
j=1

(x − α j ) (4.7)

It follows that t-error-correcting generator polynomials have degrees from 2t to n − 1
or n −k . From this follows that the error correcting capability of a (n,k ) RS code is [34]:

2t = n − k ⇒ t =
⌊n − k

2

⌋
(4.8)

Reed-Solomon codes are maximum distance separable (MDS) [3, 34]. They have the
largest possible minimum distance d for codes of this length and dimension. The mini-
mum distance of a code is the minimum hamming distance of a code and an important
metric for the error-correcting capability of a code. For RS codes d = n − k + 1 [34]. In
an error free channel, they can reconstruct the message of after up to n − k erasures [3]
of the code word. RS codes are non-binary codes with symbol sizes greater than 1 bit.
RS codes are often chosen so that the length of the code words aligns with the lengths
of binary units, e.g. bytes. Codes over GF(256) are therefore frequently used and can
be interpreted as sequence of single byte values. Since RS codes operate on symbols
rather than single bits, single bit errors contribute as much to the faultiness of a symbol
as multiple bit errors. This is the reason why RS codes are good burst-error-correcting
codes but renders them also vulnerable to uncorrelated errors.
RS codewords are of �xed length, which might be inconvenient in certain practical set-
tings. Here, systematic codewords can excel, because they can be shortened. Codewords
are shortened by padding a message to full length, encoding the message and �nally,
removing the padding symbols from the codeword. This can be undone easily at the
receiver side and is a common way to produce codewords of arbitrary size.
Reed-Solomon codes are furthermore characterized by low encoding and decoding
complexity, as table 4.1 shows. However, with the Berlekamp-Massey algorithm, the
standard algebraic decoding algorithm for RS codes, the decoding complexity is in
O(d2) [11], rendering large block sizes and higher distances unattractive for practical
purposes. There is a some research on soft-decision decoding, although the “Holy
Grail” [34], soft-decision maximum-likelihood decoding, has yet to be found.
Reed-Solomon codes are cyclic, which means that cyclically left-shifted codewords are
also valid codewords [34]. Kaiser et al. [23], found that cyclic and quasi-cyclic codes
are therefore vulnerable to symbol slip, resulting in undetected decoding errors. Symbol
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slips are the result of temporary synchronization issues, causing symbol insertion or
deletion. As a consequence, a shifted codeword is presented to the decoder [23]. Kaiser
et al. report that randomizing a codeword by bitwise exclusive-ORing it with a pseudo-
random sequence represents an e�ective low-cost solution for the problem.

4.1.3 Serial Concatenated Codes

Outer encoder Inner encoder Inner decoderChannel Outer decoder

Figure 4.2: Schema of a serial concatenated code

The idea of concatenated codes is to combine multiple (complementary) codes to form
one superior code, while keeping the decoding complexity low. In fact, Forney showed
that with concatenated coding, it is possible to decrease the probability of errors expo-
nentially with polynomial complexity [11].
Serial concatenated codes consists of an outer and an inner code (see Figure 4.2). The
message is �rst encoded with the outer encoder and subsequently encoded with the
inner encoder. Decoding is performed vice versa. Usually, an interleaver is added to
spread possible burst errors as wide as possible. The interleaver itself can be seen as
code with Rc = 1 that maps the message symbols to a permutation [14]. A simple
interleaved convolution code may therefore be considered a concatenated code.
A common concatenated code comprises an inner convolutional code rate with Rc = 1/2
and ν = 7, an outer RS(255,223) code and a interleaver between the two codes. It was
used in Voyager 2 and remains popular in CubeSat projects. The performance of this
code can be seen in Figure 4.5.

4.1.4 Turbo Codes

Turbo codes are a class of parallel concatenated convolutional codes, �rst published
by Berrou et al. in 1993 [1]. Turbo codes provide signi�cant coding gain compared to
concatenated codes, with medium decoding complexity [11,14]. The structure of a turbo
code is illustrated in Figure 4.3. The encoder is comprised of two identical recursive
convolutional encoders with memory ν = 4 and a pseudorandom interleaver π . For a
message sequence u, the encoder outputs the same sequence, a parity sequence v(1) and
a second parity sequence v(2) of the randomly interleaved message u. Of both encoders,
the systematic information is omitted. Higher rate codes can be obtained by perforating
parity symbols or by increasing the symbol size of the convolutional encoders (see 4.1.1).
Although it is possible to concatenate more interleaved convolutional encoders in this
scheme, Glavieux argues that two encoders are su�cient if the permutation is chosen
wisely [14].
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Figure 4.3: Parallel concatenated rate-1/3 turbo encoder [11]

Glavieux argues, that the advantage of turbo codes comes from the two di�erent per-
mutations that help mitigate the vulnerability to burst errors. Because the constraint of
the parity symbols is spread across the block size of the interleaver, the probability of
burst errors is reduced [14].
Bossert reports, that the low constraint size of the convolutional encoders are the cause
of a sharp bend in the BER graph in the range of 10−4 and 10−8 [3], which is known as
“error �oor”, leading to reduced performance of the code (see Figure 4.4). Turbo codes
may be concatenated with Reed-Solomon codes to clean up the few remaining errors.

Figure 4.4: “Performance of a rate-1/2 turbo code with interleaver length N = 216,
compared to the NASA standard concatenated code and the relevant Shannon limits for
η = 1” [11]
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4.1.5 Low-Density Parity-Check Codes

Low-density parity-check codes (LDPC codes) were invented by Robert Gallager in
1962 [13]. LDPC codes are parity-check codes with the particular characteristic that
the parity-check matrix is sparse. Although Gallager’s publication showed the good
performance of LDPC codes in BSC, AWGN and Rayleigh channel, they remained unused
until 1995. This may be due to the impractical complexity of the decoding procedure:
Gallager reported that “(...) block lengths of about 500, an IBM 7090 computer requires
about 0.1 second per iteration to decode a block(...)” [13].
In their 1997 publication MacKay et al. [27] showed that LDPC codes can provide error
correcting capabilities similar to that of Turbo codes and can outperform the (7,1/2)
convolution codes despite a higher code rate.
MacKay et al. [27] approximated that brute-force decoding takes about 6Nt �oating
point multiplications per iteration. For the standard CCSDS (8176,7156) LDPC code [4],
this means decoding (30 iterations) requires about 47 million �oating point multipli-
cations per block. Since then, countless publications introduced di�erent decoding
methods, mostly based on the a posteriori probability decoding algorithm proposed by
Gallager [13], also known as sum-product algorithm. These decoders usually reduce
decoding complexity by using look-up tables.
As with Reed-Solomon codes, randomizing the codewords prior to transmission is rec-
ommended for quasi-cyclic LDPC codes to prevent synchronization issues and symbol
slips [7, 23].

4.2 Evaluation

In this section a few instances of the channel coding schemes discussed above are
compared by throughput in the noisy Rician channel. Afterwards their decoding com-
plexities are compared and the problem of additional delay due to non-alignment of
frames and codeblocks are addressed. Finally, the compliance of these codes with the
requirements of the MOVE 2 mission is assessed.

4.2.1 Performance

Here, the performance of the previously discussed channel codes in the channel of
section 3.4 is evaluated and compared. The codes are evaluated by throughput, the
product of correctly received codewords and code rate. The simulations are performed
using Matlab.
Reed-Solomon codes provide the best performance in terms of maximum throughput
when the channel noise level is rather low. Figure 4.5 reveals, that for high Eb/N0 (≥15
dB), the tested Reed-Solomon code allows higher throughput than any other code, but
leaves only small tolerance margins. This is problematic for transceivers with variable
bit rate, because it would require the code to provide robust performance over ranges



28 Chapter 4. Channel Coding

of multiple decibel. For example, if the receiver Eb/N0 is 16 dB at 1200 bit s−1, it would
drop to 7 dB at 9600 bit s−1. At this rate, a RS(160,152) code would decode approximately
50% of the received code blocks incorrectly and render communications impossible.
Figure 4.6 shows the performance of other Reed-Solomon codes. Although the matrices
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Figure 4.5: Throughput of di�erent FEC schemes

were generated randomly, is is visible that low-density parity-check codes can yield
very good error correction performance with wide ranges of code rates. The tested
LDPC codes are inferior to the Reed-Solomon code for high Eb/N0 but o�er the best
performance for medium to low Eb/N0 values. Especially the rate-2/3 LDPC code is
worth mentioning. It o�ers higher throughput than the rate-1/2 turbo code with less
or equal information loss. Turbo codes do not seem to perform very well in burst error
channels and cannot bene�t from the high Eb/N0 , possibly due to their error �oor. The
serial concatenated code performs worst.

4.2.2 Decoding Complexity and Delay

Another important selection criterion for codes is the computational power required to
use them at the required data rate. While encoding is, generally speaking, a simple task,
decoding can be very complex. Spacecraft hardware has very limited computing power,
due to electrical power and weight constraints, which is unfavorable for complex codes.
To attain a basic orientation of the decoding complexity of the individual codes, a test
was performed. Afterwards, the delays added by the use of block codes are discussed.
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4.2.2.1 Complexity

To compare the decoding complexity of each FEC scheme, the decoding of 512 kB in
total of random data from the Rician-AWGN channel, was simulated and timed. The test
was performed in Matlab on a computer with a Intel i7-2600K processor and a GeForce
GTX570. The results are displayed in table 4.1. Trials with GPU accelerated decoding
are marked with an asterisk(*).

Code Trials
∑
∆t

LDPC(3072,2048) 2000 68.9 s
LDPC(3072,2048)* 2000 11.5 s
Turbo(4,1/2) 1000 10.4 s
Turbo(4,1/2)* 1000 6.4 s
CC(7,1/2)RS(255,223) 2296 5.4 s
CC(7,1/2)RS(255,223)* 2296 3.3 s
RS(160,152) 3369 0.70 s
RS(168,152) 3369 0.76 s
RS(184,152) 3369 0.91 s

Table 4.1: Decoding time of codes

Evidently, LDPC decoding is the most costly procedure of all by a wide margin. However,
it must be noted that the LDPC decoder also bene�ts most from parallelized computation.
With GPU acceleration decoding of LDPC codes was reduced by a factor of 6, whereas
the decoding time of Turbo codes and the concatenated codes could only be reduced by
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38% and 42% respectively. This suggests good performance of LDPC codes on FPGAs
and may be improved even further with more e�cient algorithms.

4.2.2.2 Delay

Additionally to the delay due to decoding, coding causes an additional reception delay
depending on its block length and the channel bit rate. For convolutional codes, the
block length is the constraint length. The delay here is negligible, since the constraint
size rarely exceeds 10 bit. Block decoders on the other hand, need to receive the entire
block before decoding can take place. As a result, the message bits also arrive in blocks.
The interval between two waves is the serialization time of a code block. In this context,
it is also referred to as block delay to distinguish it from the frame deserialization time.
If frames are not aligned with code blocks, block delay has a high impact on the frame
deserialization time.
For a code block of length N and data rate r , the block delay is:

tb =
N

r
(4.9)

Neglecting decoding delay, the minimal and maximal frame serialization time is calcu-
lated as follows:

tf ,min = tb ·

⌈
NF

K

⌉
(4.10)

tf ,max = tf ,min + tb = tb ·

(⌈
NF

K

⌉
+ 1

)
(4.11)

where NF denotes the frame length and K is the dimension of the code block. The
consequences of this are best illustrated with an example: A frame of length NF = K + 2
may be spread across three code blocks instead of two. Alternatively frame of length
NF = K may be spread across two blocks instead of one.
For these reasons, the block length should also be chosen with respect to data rate and
maximum frame length. It is sensible to use block lengths smaller than the maximum
frame length, so that the delay remains manageable for smaller frames.

4.2.3 Assessment

The decision for the most suitable FEC scheme must be separated into up- and downlink
to account for the di�erent requirements and channel characteristics.
In the previous chapter, the uplink channel was found to be mostly a�ected by AWGN in
contrast to the strong fading of the downlink channel. The uplink FEC scheme therefore
needs not provide the capability to compensate for fades. Also, the FEC scheme is
not required to provide signi�cant coding gains as the received Eb/N0 can simply be
improved by increasing the ground station transmitter power. The limiting factors
of the uplink are the low data rate of 300 bit s−1 to 1200 bit s−1, and the low decoding
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power, which are imposed by the available hardware. The combination of low decoding
complexity, their MDS properties, and variable block length render Reed-Solomon codes
the best choice for the uplink.
The downlink requirements are quite di�erent. The low transmitter power must be
compensated for by the downlink FEC scheme, so that even low gain antennas of radio
amateurs on the ground can receive the satellite telemetry signals. Because of the
low data rates, it can be assumed that all commercially available PC systems provide
su�cient computation power to decode all of the aforementioned codes in real time. The
FEC code must be able to operate e�ciently despite possible fades. Additionally, the FEC
scheme must use as little bandwidth as possible to still meet the other requirements. As
discussed above, the rate-2/3 LDPC code performs considerably better than the NASA
serial concatenated code and the rate-1/2 Turbo code. Therefore LDPC codes are the
preferred choice for the downlink channel. Additionally, high-rate Reed-Solomon codes
can be used for situations where a higher data rate is required (e.g. downloading larger
amounts of data).

4.3 Conclusion

In this chapter, several forward-error correction schemes typical for the use in satel-
lite communications, were introduced and evaluated for the use on MOVE 2. In the
comparison with respect to maximum throughput in the noisy fading channel of the
previous chapter, high-rate Reed-Solomon codes emerged as most suitable for very high
Eb/N0 values. Rate-2/3 LDPC codes were found to perform best for high to medium
Eb/N0 values. The examination of the respective decoding complexity revealed, that
LDPC code decoding is most computationally intensive, while Reed-Solomon decoding
is fastest. Turbo decoding and the NASA concatenated code are of moderate complexity.
It was shown that LDPC decoding bene�ts from increased parallelization more than
any other code. When compared to convolutional codes, block codes were shown to
increase the frame deserialization time, especially when frames and codeblocks are not
aligned.
In the assessment, Reed-Solomon codes were found the be most suitable for use on the
uplink channel. LDPC codes were chosen for the downlink channel because of their
good performance for wide Eb/N0 ranges.
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Chapter 5

Related Work

This chapter illustrates three protocols with related areas of application, and that in�u-
enced the design of the Nanolink protocol. Section 5.1 discusses CSP, a simple protocol
stack for Cubesats. Section 5.2 gives an overview of the Proximity-1 protocol of CCSDS.
Afterwards, the Satellite Transport Protocol is brie�y introduced in section 5.3. The
chapter is concluded in section 5.4.

5.1 Gomspace Cubesat Space Protocol

The Cubesat Space Protocol (CSP) is a small network-layer protocol intended for use in
microcontrollers [15]. The protocol was developed by students of the Aalbord University
in 2008 and now is maintained by the company GomSpace. A user space implementation,
LibCSP1, is available under the GNU Lesser Public License (LGPL) for FreeRTOS and
POSIX compatible operating systems.
LibCSP provides support for I2C and CAN bus systems as well as KISS and loopback
interfaces. It is possible to add additional drivers. In the standard topology, CSP is
envisaged to be implemented on each satellite subsystem and the ground control server.
The subsystems can be addressed directly from other subsystems or from the ground.
The CSP protocol stack was designed to provide the similar services as the TCP/IP, or
UDP/IP protocol stack, but with reduced resource requirements. The CSP protocol stack
provides an end-to-end connectivity and routing. To do so, the protocol stack comprises
two transport-layer protocols. The �rst is a connectionless unreliable datagram protocol,
comparable to UDP. The second is RDP (RFC908 [33]), a reliable datagram protocol
designed as alternative to TCP for situations where less complexity and overhead are
required. RDP is connection-oriented and provides reliable delivery, �ow control. In-
order delivery is optional. Unlike TCP, RDP is packet-oriented. For security reasons,
LibCSP supports packet encryption and authentication using XTEA and SHA-1 based
HMAC.

1http://www.libcsp.org

http://www.libcsp.org
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CSP itself represents the network-layer part of the CSP protocol stack. It provides
routing capabilities for small �xed networks. The 32-Bit CSP header is an amalgamation
of transport and network routing headers. It mainly contains port and address infor-
mation of source and destination. CSP can address 32 di�erent hosts with 64 di�erent
ports each. Since the network is assumed to be static, CSP features no dynamic routing
functionality. However, mechanisms to alter the routing tables at runtime are available
in CSP. The CSP header does not contain a length �eld. A length �eld is only provided
by the RDP header.
The protocol is reported to be incorporated in the launched GOMX-1, GOMX-22 and
AAUSAT3 Cubesats.

5.2 CCSDS Proximity-1 Space Link Protocol

The Proximity-1 Space Link Protocol is a recommended standard (Blue Book) of the Con-
sultative Committee for Space Data Systems (CCSDS) [6, 8]. The proposed application
is bi-directional communication “among probes, landers, rovers, orbiting constellations,
and orbiting relays” [6]. Proximity-1 was designed to operate in low delay links with
distances up to 100,000 km. The name ’Proximity’ was chosen to express the di�erence
to deep-space protocols.
Proximity-1 is used in multiple Mars missions of NASA and ESA. It is used for the
communication of the NASA Mars Science Laboratory [8]. Proximity-1 handles com-
munication between the rover Curiosity and the orbiter. The orbiter relays data (e.g.
telemetry and telecommands) between Mars and Earth (see �gure 5.1).

Earth

Planet/Satellite

Return

Proximity-1 Link

Direct-to-Earth

Link

Figure 5.1: Proximity-1 Relay Telemetry Link [8]

Proximity links are point-to-point connections typically with asymmetric communica-
2GOMX-2 was destroyed when the launch vehicle exploded on October 28th, 2014
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tion resources. Connections are possible in either full duplex or half duplex modes. A
simplex transmission and receive mode is also available. The primary forward error
correction scheme for Proximity-1 are the (2048,1024) LDPC codes of the AR4JA family
(see reference [5]). Concatenated codes, Convolutional codes, and no encoding are also
possible. To allow for a �exible frame length, Proximity-1 frames are not aligned with
the codewords. Additionally to forward error correction, the protocol uses a go-back-n
ARQ scheme. The go-back-n mechanism is chosen over selective ARQ for the sake of
reduced complexity. Data sent over Proximity links are Space Packets, encapsulation
packets, and arbitrary data. A distinctive feature of Proximity-1 is its �exibility. It is
possible to change transceiver parameters such as frequency, data rate, modulation as
well as coding and duplex mode.

5.3 Satellite Transport Protocol

STP is a transport protocol for satellite networks, developed in 1997 by Henderson
and Katz [17]. STP is an adaption of SSCOP, an ATM based protocol. The protocol is
reported to work e�ciently in high bandwidth-delay or BER links. STP was shown to
perform at similar or higher e�ciency than TCP while requiring less backward channel
bandwidth [17].

Transmitter Receiver
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7
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9

STAT
0 through 4 

are acknowledged 

by STAT
X

POLL
Transmitter 

retransmits #7
7
10

Here, the transmitter does not 

resend #7 because it determines 

that the STAT predates possible 

reception of the retransmission

11

Time

USTAT (Receiver
detects loss of #7)

STAT (again requests
#7 to be retransmitted)

Figure 5.2: Example of SSCOP ARQ [17]

To reduce packet overhead, control infor-
mation and payload data are separated
into di�erent packets. For this reason,
there are four di�erent packet types in
STP, named “STAT(us)”, “USTAT”, “POLL”
and “SD”. The �rst three types are part
of the STP ARQ mechanism, SD pack-
ets contain payload. The ARQ scheme
STP and SSCOP is based on selective-
acknowledge (SACK) and negative ac-
knowledge (NACK) messages. The STAT
and POLL packets form the SACK unit.
POLL packets are sent periodically either
due to timeouts or number if a certain
number of packets was sent. A POLL
packet contains a timestamp and the sequence number of the next in-order packet.
Upon reception, the receiver answers with a STAT packet containing the POLL times-
tamp, the current receiver window value, the sequence number of the last received
in-order packet and the sequence numbers of all missing packets within the current
window. USTAT packets are negative acknowledge packets that complement the rather
costly SACK procedure with a more prompt and inexpensive retransmission request.
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5.4 Conclusion

The Cubesat Space Protocol is an interesting replacement for TCP/IP, and respectively
UDP/IP, for low data rate communication links, such as the radio link of MOVE 2. Its
POSIX compatibility and low memory usage render it an ideal candidate for the use in
the MOVE 2 on-board data handling systems. CSP can be used to for the end-to-end
delivery of data between applications running on the satellite’s CDH computer and
ground control. It can be used to route the tra�c of di�erent applications to di�erent
transceivers. This is helpful in case a second transceiver, or transmitter, is used. In
this case, payload data could be sent exclusively over the secondary radio device, while
all other tra�c is sent over the primary radio. If one of the radio devices becomes
inoperative, the tra�c can be rerouted to the other radio. Since Nanolink already o�ers
reliability and sequenced delivery, these features are not required from CSP.
Proximity-1 includes many features that are also required for MOVE 2. The connection-
based full-duplex transmission mode is ideal for the needs of MOVE 2. The ability to
change transceiver and protocol settings during �ight adds the ability to adapt to changes
in the environment. The expedited service is an interesting feature for expendable
data such as telemetry information. Also not aligning the protocol frames with the
codeblocks is a good abstraction for when di�erent sized frames or coding schemes
are needed. On the other hand, there are some downsides to Proximity-1 that render it
not a good choice for the MOVE 2 mission. The �rst is that the required combination
of connection-based modes and a simplex telemetry beacon mode is not provided for.
The �exibility of Proximity-1 adds overhead in form of frame header �elds that are not
required in this case. The biggest downside of Proximity-1 is its ARQ protocol. The go-
back-n mechanism is not optimal since valid but out of sequence frames are dismissed.
This problem increases with window size and frame error rate. Unfortunately, smaller
window sizes do not scale well with asymmetric data rates, and require more bandwidth
on the reverse channel [8].
STP is made for situations di�erent to those typically encountered with CubeSats. Long
delays or high bandwidths are both not found in the MOVE 2 mission. The associated
big sequence number spaces and port number ranges are not required for a link with
two nodes and low bandwidth-delay product. However, the ARQ mechanism of STP
is designed with asymmetric bandwidths and e�ciency in mind and also shown to
work well in high BER conditions. Except for the high bandwidth-delay products,
the requirements for the Nanolink ARQ mechanism are the same. It also must operate
e�ciently on asymmetric links with occasionally high error rates. It is therefore adapted
in Nanolink.
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Chapter 6

Concept

This chapter discusses the concept of the Nanolink Data Link Layer Protocol. Section
6.1 contains an overview of the architecture and capabilities of Nanolink. Subsequently,
a detailed description of the Nanolink Transfer Frame format and the Extension Header
format is found in section 6.2.1 and section 6.2.2 . Section 6.3 discusses the commu-
nications procedures of Nanolink. The chapter is concluded in section 6.4, where the
coding and synchronization of Nanolink is presented.

6.1 Overview of the Nanolink Protocol

This section o�ers an overview of application and features of the Nanolink protocol.
First, an introduction to Nanolink is provided. Subsequently, the application in the
MOVE 2 protocol stack and the core features of Nanolink are illustrated.

6.1.1 Introduction

The Nanolink protocol is a data link layer protocol designed to provide reliable and
e�cient communication with remote assets in low Earth orbit. The focus here is on
nanosatellites such as CubeSats.
The increasing capabilities of CubeSat hardware bring a higher demand for complex
mission and satellite design. This results in a need for more throughput on the inherently
slow radio links. The intent of Nanolink is to satisfy this demand while also retaining
the rich feature set that is expected of a modern radio link layer protocol.
Nanolink is intended to operate in low bandwidth-delay radio links with high asymmetry
and moderate to weak signal quality. Reliability and e�ciency are achieved by utilizing a
hybrid ARQ scheme that is designed to minimize the required reverse channel bandwidth
and to be robust to short connection losses. In consequence, higher code rates are
possible because the channel coding is not required to handle all errors. Additional losses
are handled by retransmissions. Thus, the code rate can be adjusted to achieve maximum
e�ciency in the average case. The associated higher code rate results in a higher upper
bound of the protocol e�ciency for best case conditions. Overall, hybrid ARQ can react
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to changes in the channel conditions more dynamically, since the overhead of redundant
transmission only occurs if necessary. For bursty, therefore quickly varying channel
conditions, like on the VHF downlink, this is ideal.
The satellite radio links are point-to-point connections with full duplex support. It is
assumed that the radio channel and respective frequencies are used exclusively by the
ground station and satellite. Therefore, the protocol features no special media access
control mechanisms for the physical layer.
Two di�erent types of data services are most commonly needed in CubeSat missions:

1. Satellite-to-ground telemetry broadcasting

2. Full duplex connection based point-to-point communication

Due to the periodical line of sight loss that comes with low earth orbits, bidirectional
communication in Nanolink is connection based. The connection-orientation is nec-
essary to handle the physical connection loss by transitioning to telemetry broadcast.
Connections are suspended at the end of each pass and resumed upon the next pass.
Nanolink provides both stream- and packet-oriented services. The streaming service is
intended for use with protocols other than CSP and to relay arbitrary user data. The
packet oriented service is intended for use with CSP. CSP packets do not provide infor-
mation about their individual length, which is why this information is transported to
the receiver by Nanolink.

6.1.2 Application

The prototypical application scenario of Nanolink is the employment and operation on
the MOVE 2 CubeSat. The protocol implementation will exists as separate hardware
within the COM subsystem.
Nanolink is the connector between the satellite subsystems and ground control. The
protocol manages the physical connection and provides a link for upper-layer protocols.
The reliable transfer o�ered by Nanolink enables the use of simple transport protocols
that do not need to implement their own reliable service or packet reordering. This
has the advantage that no additional handshakes and transfer of acknowledgments are
required. Since it is expected that multiple applications will run on the satellite, this
can increase the e�ciency of the protocol stack.
On the send side, the Nanolink interface must be supplied with either a byte-stream or
packets, the target address (PID, see 6.3.3), and information about the required quality
of service, depending on the PID. The choice whether a PID is packet or stream oriented
is implementation speci�c. On the receiving side, Nanolink delivers packets or a byte-
stream to the respective target address.
In the proposed MOVE 2 protocol stack (see Figure 6.1), Nanolink is complemented by
the CSP protocol suite. CSP provides communication services between the CDH and
ground control applications. Potential applications are telecommand (TC), telemetry
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(TM) retrieval, and �le transfer (e.g. experimental data). Its routing capabilities are
bene�cial if multiple COM systems (e.g. an additional downlink transmitter) are used.
To connect Nanolink with a CSP network, a CSP node on the Nanolink hardware is
required. The node fetches the CSP packets from the data bus and supplies them to the
Nanolink interface using a driver which must be written for this purpose.

Nanolink

UHF / VHF

CSP Other

TMTCData Debug
Firmware 

update

Figure 6.1: MOVE 2 Protocol Stack

The design of Nanolink enables accessing remote interfaces without requiring additional
encapsulation. In order to do so, Nanolink acts as transparent data relay between the
interface on the satellite and the ground control software. Since Nanolink provides
reliable transmission and fragmentation, no additional protocol logic is necessary. In
MOVE 2, the stream-oriented service can be used e.g. for debugging and �rmware
upload via JTAG (’Other’ in Figure 6.1).

6.1.3 Protocol Features

Transmission Modes Nanolink o�ers a simplex telemetry beacon mode and a con-
nection oriented mode. The beacon mode is the default modus operandi of Nanolink
and enables amateur radio operators to receive telemetry data when the satellite is not
passing over the LRT ground station. It also serves as satellite discovery mechanism,
which is used for connection establishment. The connection oriented mode provides
point to point data transfer services between ground station and satellite. This mode is
entered only by the initiative of the ground station. The connection is suspended once
the physical connection between satellite and ground control breaks and automatically
resumed once the satellite’s beacon signals are discovered.

Forward Error Correction To compensate for the frequent impairments on the radio
channel, Nanolink employs forward error correction. Since the channel characteristics
may change during the operation phase, it is possible to switch between forward error
correction schemes, codeword length and code rate. The forward error correction
system provides a logical communication channel with lower BER than the actual
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physical channel. The advantage of this concept is a loose coupling between frames
and codewords and the resulting variable frame lengths and codewords.

Quality of Service Nanolink o�ers two di�erent types of quality of service: A sequence
controlled service that o�ers reliable and in-order delivery and an unreliable service
without sequence control.
To ensure reliable transmission, Nanolink employs two di�erent ARQ types. The �rst is
negative acknowledge, which is used to stimulate prompt retransmission. The second
is combines selective negative acknowledge and cumulative acknowledge (see section
6.3.3.1).
The unreliable service is thought to be used in cases where reliability is of secondary
importance or ensured by other means.

Addressing Nanolink is implemented on separate hardware. This hardware is con-
nected with the other satellite subsystems via one or many data buses. These buses are
associated with a respective subsystem and can be addressed directly using the port
identi�er (PID). Additionally, this allows for direct transmission of debug or telemetry
data, without the need of further encapsulation. Prioritized tra�c based on the address
is possible.

Payload The payload data of Nanolink can either be a stream of data or packets. The
content of the stream or packet data is not evaluated by Nanolink at any point and
therefore ensures loose coupling of protocol logic. Nanolink can combine multiple
packets into a single frame and o�ers fragmentation for larger packets.

6.2 Structure

This section discusses the structure and contents of Nanolink protocol data units (PDU).
First, the format of Nanolink transfer frames is illustrated. Afterwards, the concept of
extension headers is presented and discussed.

6.2.1 Transfer Frame Format

Nanolink PDUs are frames of variable size. Payload and control data are incorporated
into a framing structure as illustrated in Figure 6.2. A frame starts with a 3 B header
containing information about the contents of the frame. The byte order of the contents
of a frame is big endian, 1 byte is exactly 8 bits in length. The frame header is followed
by the frame data �eld, containing optional additional header information and payload
data. The maximum length of the frame is 512 bytes, so that the total maximum data
�eld length is 509 bytes. Each frame is immediately followed by a CRC-16 checksum
that is calculated over the frame.
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Figure 6.2: Structure and Contents of a Transfer Frame

6.2.1.1 Transfer Frame Header Format

Transfer Frames begin with the Transfer Frame Header, a 3 Byte long data �eld com-
prised of the following �elds:

1. Frame Sequence Number, 8 Bits

2. Retransmit Flag, 1 Bit

3. Extended Header Flag, 1 Bit

4. Fragmentation Flag, 1 Bit

5. Length Field, 9 Bit

6. Port Identi�er (PID), 2 Bits

7. Reserved, 2 Bits

The structure of the frame header is illustrated in Figure 6.3. The purpose of the indi-
vidual �elds and �ags is discussed in the following.

Sequence Number The Frame Sequence Number is an 8 Bit unsigned integer. It is used
to identify individual Transfer Frames, and to detect transmission losses. Because of the
low bandwidth-delay product, a bigger sequence number space is not required. Another
reason for 8 Bit sequence numbers is the byte-alignment, which means that no padding
bits are required if sequence numbers are used elsewhere, e.g. in ARQ messages.

Retransmission Flag The Retransmission Flag indicates whether or not the frame is
sequence controlled and is to be retransmitted in case of transmission losses. If the
Retransmission Flag is set to ’0’, the sequence number is not checked and the frame
is not placed in the sent queue after transmission. This mode is used for telemetry
beacons, during connection establishment and expendable data.
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Figure 6.3: Transfer Frame Header

Extended Header Flag The Extended Header Flag indicates the presence of Extension
Header Packets in the Transfer Frame Data Field.

Fragmentation Flag The Fragmentation Flag is set if the Transmission Frame Data
Field holds data that is part of a larger fragmented packet.

Length Field The Length Field is a 9 Bit unsigned integer. Its value represents the
length of the uncoded Transfer Frame excluding the CRC. It is used to delimit the size
of the frame and to locate the CRC checksum.

Port Identi�er The Port Identi�er (PID) speci�es the destination of the frame payload
data. Possible destinations are: OBDH/CDH, Debug and Telemetry. If the frame does
contain telemetry data, the PID is to be set to Telemetry. If no payload data are present,
the PID �eld is ignored. The remaining PID is reserved for future use. Each transfer
frame must only contain payload data of exactly one destination or source.

6.2.1.2 Transfer Frame Data Field

The Transmission Frame Data �eld contains payload and extension header packets. Its
contents are byte aligned with a maximum of 509 bytes, to set the length of the uncoded
frame to a power of two.

6.2.1.3 Cyclic Redundancy Check

To minimize the probability of undetected errors, every Transfer Frame is followed
by a CRC-16 checksum. A 16 bit CRC was chosen because it is assumed to provide
su�cient error detection in the combination with the forward error correction. Frames
with invalid checksums are discarded.
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6.2.2 Extension Headers

The Extension Headers are a distinctive feature of the Nanolink Protocol. They are
optional protocol control elements that allow increased versatility and loose coupling
without introducing signi�cant constant overhead.
Because the protocol is designed with low bandwidth radio links in mind, an important
requirement is low protocol overhead. Not all headers are required in the standard cases
and therefore removed from the frame header, but not moved into an special frames,
as was done with Proximity-1 or STP. Control frames, although possibly small, also
need a complete frame header and syncword to detect the frame, and to distinguish
it from data frames. The minimum size of the frame header is one byte, due to byte
alignment, and therefore just as long as a minimum extension header. Due to the
additional syncword, this solution o�ers high overhead while adding no value for low
bandwidth-delay products.
Instead, the concepts of control frames and data frames are merged, so that only one
frame format exists within Nanolink. This may cause additional delay, since long frames
increase the delay for the receipt of control information. However, this is not a concern,
since the bandwidth-delay product is assumed to be very small. Additionally, higher
bandwidths/delays or channel asymmetries can be accommodated since it is possible to
send frames without payload, containing only control information.
Extension headers are designed to be daisy chained, so that multiple extension header
packets can be placed within one frame. The presence of a further extension header is
indicated by setting the NxtH �ag of the extension header.
The advantage of this method is that it allows a very high number of extension headers
inside a frame without the permanent overhead of a dedicated header counter �eld.
The byte alignment requires the header packets to be at least 8 bit in length. A 8 bit
ExtID �eld could distinguish 256 di�erent header types, an excessive amount, which
is not required. Repurposing 1 bit of the header byte brings therefore no considerable
limitations. However, this bit can be used as NxtH �ag for header chaining. Therefore,
only minimal overhead is introduced.
A header counter would add permanent overhead, even if no extension header is used.
Also, it would either limit the possible number of extension headers in a frame severely
if the reserved bits of the frame header were used, or would require an entire additional
byte. In any case, this solution is inferior to the chaining method.

6.2.2.1 Extension Header Format

The very basic extension header structure (see Figure 6.4b) comprises an identi�er �eld
and next header indicator. Depending on the purpose of the header, it may contain
additional header data of up to 256 bytes (see Figure 6.4a).
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Figure 6.4: Extension Header Formats

The Extension Header Packet (see �g. 6.4) comprises the following �elds:

Extension Header Identi�er The Extension Header Identi�er (ExtID) is the �rst �eld of
an Extension Header, spanning from bit 0 to 6. It indicates the purpose of the Extension
Header Packet and what parameters are to be expected. See Table 6.1 for a list of all
possible values. The length of this �eld is 7 bits so that the minimal header size is byte
aligned.

Next Header Flag Bit 7 contains the next header �ag. If this �ag is set to ’1’, this
Extension Header is followed by another Extension Header Packet.

Header Data The Header Data �eld is the last Extension Header �eld and contains the
parameter data. If the parameter size is variable, the �rst byte represents the length of
the parameters. This �eld is optional and must only be present if the ExtID speci�es so.

6.2.2.2 Extension Header Types

The ExtID �eld allows for 128 di�erent header types. The header types required for
basic protocol functionality are listed in Table 6.1 along with a short overview below.

NACK Negative Acknowledgment – The purpose of the NACK header is to immedi-
ately request retransmission when a frame was lost or incorrectly decoded.

STAT Status – The STAT header reports the current status of the receive bu�er. The
header data comprises the sequence number of the last correctly received frame, the
sequence number of the last correctly received in-order frame and the sequence numbers
of all missing frames within that range.

POLL Status Polling — Requests a STAT packet from the receiving node.
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Mnemonic Function Param Count

NACK Negative Acknowledgment 1
STAT Selective Acknowledgment N+2
POLL Request STAT 0
CC Close Connection 0
RST Reset Protocol 0
NMD No More Data 0
FRG Begin Fragmented Packet 2
MLT Multiple Packets in Frame N+1
CHC Change Forward Error Correction 1

Table 6.1: Extension Header Types

CC Connection Close — This header closes the connection once both participants
have no more data to send.

RST Protocol Reset — This header forces a complete reset of the protocol at the receiv-
ing side. It is intended as ultima ratio of ground control in the event of unrecoverable
errors. This header cannot be sent by the satellite, because all commandeering is done
by the ground station.

NMD No More Data — This header indicates that the sender’s send queue is empty.

FRG Begin Fragment — This header indicates the beginning of a fragmented packet.
The header data contains a two byte length �eld that represent the length of the un-
fragmented packet. See 6.3.3.5 for more a detailed description of the fragmentation
procedures.

MLT Multiple Packets — This header indicates that the Frame Data Field comprises
multiple packets that follow after the Extension Headers. The header data contains the
number of packets and the length of each individual packet. In this case, the maximum
length of a packet is restricted to 256 bytes.

CHC FEC change — This header urges the receiver to change its FEC scheme. See
6.3.2.3.

6.3 Communications Procedures

This section discusses the operation of Nanolink in detail. The section is structured
in three parts. First, the two di�erent transmission modes of Nanolink are explained.
Subsequently, the procedures for connection management are discussed. Finally, the
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procedures involved in the transmission of data and protocol control information are
presented.

6.3.1 Transmission Modes

To accommodate the di�erent requirements imposed on the protocol, the protocol
operations are divided into a simplex “beacon mode” and a full duplex connection based
transfer mode.

Beacon Mode The beacon mode is the default modus operandi of Nanolink. In this
mode, the satellite broadcasts a continuous stream of telemetry data to potential listeners
on earth. Its primary purpose is to enable reception of telemetry information by amateur
radio operators and other institutions, when the satellite is not passing over the ground
station. Thus, it is possible to keep track of the satellite status during periods between
contact with ground control. Telemetry beacons are normal Nanolink frames with
the PID set to ’Telemetry’, sent using the unreliable service. A secondary use of this
mode is satellite discovery and transceiver adjustment. The continuous transmission
allows easier adjustment of the Doppler shift and constant symbol lock until connection
establishment. In this mode, the ground station transceiver is idle and waits for signal
from the satellite.

Connection Mode The full duplex data transmission mode is the most important mode
of operation of Nanolink. In this mode, ground control can control the satellites systems
in real time, e.g. update the operating system, install new software, retrieve data or
debug the OBDH subsystem via JTAG. Satellite and ground station enter this mode after
completing connection establishment (see 6.3.2.1).

6.3.2 Connection Procedures

The following contains a description of the connection establishment and termina-
tion procedures. Afterwards the procedure for changing protocol parameters during
deployment is discussed.

6.3.2.1 Establishment and Resume

The connection establishment process is illustrated in Figure 6.5. Once the ground
receiver is synchronized with the satellite signal, the ground transmitter is turned
on. The transmitter then radiates an acquisition pattern, long enough for the satellite
receiver to synchronize with the signal (symbol lock). The acquisition pattern is followed
by a codeword containing a frame with a STAT header (STAT message), to synchronize
the ARQ queues. The following codewords contain an idle pattern until another STAT
message is sent or the connection is established. Connection establishment is �nished
when a STAT message is received.
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Once the satellite receiver is synchronized, the transmitter switches to connection mode
and transmits a STAT message. Once a STAT message is received, the satellite resumes
data service.

Telemetry Beacon
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STAT Message
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Figure 6.5: Connection establishment

To be more robust against fades and to detect the end of a connection, the process is
governed by a carrier loss timer. The carrier loss timer is started once the signal of the
other user is lost. The timer is stopped and reset if the signal is regained before timer
expiration. Once it expires, both parties return to their initial states and the connection
attempt is terminated.

6.3.2.2 Suspend and Termination

Connections are keep-alive by default. Both parties send idle patterns until the con-
nection is suspended due to carrier loss timeout or terminated by the CC command.
With a CC command, the ground station signals the satellite that there is no more data
to send and the satellite may disengage from the connection once all its data is sent
and acknowledged. The CC command is superseded by frames containing payload data.
Ground station and satellite may explicitly report that no more data is to be sent using
a NMD status header. Ground control may then decide to close the connection.

After the connection is terminated or suspended, the Nanolink instances default to
beacon mode.
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6.3.2.3 Mode switching

To enable the change of certain protocol parameters at runtime, Nanolink supports
mode switching. Mode switching is primarily intended for changing the forward-error
correction scheme. However, its use is not limited to this. The procedure was adapted
from Proximity-1 for the use in Nanolink. It is illustrated in Figure 6.6. The mode switch
is depicted to a�ect both up- and downlink transmitter-receiver pairs, however this
is not necessarily the case as a mode switch might only a�ect the uplink and not the
downlink. The process is explained using the example below.
At the beginning, satellite and ground are assumed to operate in connection mode.
Ground control transmits a mode switch request frame to the satellite containing the
new parameters (e.g. FEC method, code rate, etc.). The frame contains no payload data.
Afterwards the transmitter radiates the idle pattern. The satellite did not receive the
mode switch correctly and therefore continues operation without change. Upon carrier
or synchronization loss or the reception of a su�ciently long acquisition sequence, the
ground receiver applies the new parameters and performs the mode switch. After a
timeout, the ground transmitter interrupts the idle pattern and repeats the mode switch
request. Upon arrival at the satellite receiver, the new parameters are applied to both
receiver and transmitter. The satellite transmitter resumes operation by radiating the
acquisition pattern followed by codeblocks. The �rst frame in the �rst codeblock is a non-
sequence controlled frame containing a poll request. The ground receiver synchronizes
with the acquisition sequence and receives the valid poll frame. Subsequently, the
transmitter executes the mode switch. Afterwards, it resumes operation by radiating
the acquisition pattern followed by codeblocks. The �rst frame sent contains a STAT
message as response to the POLL.
The advantage of this method is its robustness to signal impairments or losses of the
physical connection e.g. due to LOS obstructions. Mode switches are persistent and
a�ect all following connections. The reason behind this is that mode switches are
intended to allow for changes in the mission requirements or adjustments to changes
in the environment. Thus, switching modes for every connection is not desirable.

6.3.3 Transmission Procedures

The following discusses the various procedures involved in the transmission of data.
First, the procedures of reliable and unreliable services are presented. Afterwards, rules
and procedures concerning ports and extension headers are discussed. Finally, the
fragmentation procedure is described.

6.3.3.1 Reliable Service

The Nanolink ARQ scheme is derived from STP [17] (see section 5.3). To reduce overhead
even further, control information is no longer represented by separate packets or frames
but by extension headers. The POLL/STAT mechanism is adapted to the needs of
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Figure 6.6: Exemplary mode switch procedure

Nanolink by removing the timestamp and window size information. They are not
necessary since Nanolink links comprise only two nodes with low delay. Furthermore,
the STAT message is adjusted and comprises the sequence number of the last correctly
received frame, the sequence number of the last correctly in-order received frame L(R),
and the sequence numbers of all missing frames within that range. The POLL message
assumes a more rudimentary function as its only purpose is requesting a STAT message
without carrying additional information. POLL messages may be issued to control the
size of the sent queue. The advantage of this modi�cation is that STAT messages can
now be sent independently from POLL messages, and be used to control the receiver
queue size. STAT messages are sent after a timer expires or the threshold for the size of
the receive bu�er is attained or the loss of a consecutive number of frames exceeding a
certain threshold is detected.
USTAT messages are renamed to NACK to re�ect their usage more appropriately. NACK
messages are sent once a single frame was missed or corrupted. Their purpose is to
trigger retransmissions with as little overhead and delay as possible. The detection
of missed frames is based on the sequence numbers of the last two correctly received
frames, for the sake of this example called S1 and S2. If S2 = S1 + 1 no miss is detected.
If S2 = S1+2, a single miss is detected and handled by issuing a NACK message if S1+1
has not been received previously. The case S2 ≥ S1 + 3 is handled by comparing the
sequence numbers in the interval with the receive bu�er and sending a STAT message
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if necessary. If S2 < S1 and S2 is the second lowest missing sequence number, a NACK
message for the lowest missing sequence number is issued. Else, the miss is handled by
STAT messages if appropriate.
Frames are discarded if one of the following cases applies:

1. S2 is not within the current sequence number space

2. S1 = S2

3. A frame with sequence number S2 is already in the receive bu�er

The sequence number space is delimited by L(R) and L(R) + 127 (mod 256), to account
for sequence number integer over�ow.
For the reliable service, each instance of Nanolink employs a receive bu�er, a send and
a sent queue.

• The receive bu�er holds all received frames that were correctly received but
could not be processed yet. Reasons for this can be out of order delivery or
fragmentation.

• The send FIFO queue contains payload data pending for transmission.

• The sent queue contains already sent but not acknowledged frames. The size of
the sent queue e�ectively limits the transmission window size.

6.3.3.2 Unreliable Service

The unreliable service is the alternative to ARQ controlled transmissions. It is primarily
thought for frames with expendable information such as control messages or telemetry
data. Secondary users are upper-layer protocols that implement their own ARQ and
packet reordering mechanisms.
Data sent via the unreliable service is removed from the send queue and not placed
in the sent queue. Unreliable frames have higher priority over reliable frames. The
reason for this is that real-time data expires quickly and swiftness is preferred over
reliability. The sequence number �eld of unreliable frames is not evaluated by protocol
logic. Received unreliable frames are processed immediately. Fragmentation is not
possible with this service.

6.3.3.3 Ports and Prioritization

Nanolink supports four virtual addresses, which are represented by the PID header
�eld. The ports are used to distinguish di�erent sources of tra�c and to associate them
with the appropriate destination. This is useful for when several separate or redundant
bus systems are used or when interfaces shall be accessed directly. A frame must not
contain data of di�erent sources since an unambiguous association of the individual
destination is not possible in this case. The outgoing data of di�erent ports are ordered
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by priority so that the most important data are sent �rst. The priority of the individual
ports is determined by the implementation.

6.3.3.4 Extension headers

Due to losses and retransmissions, frames may arrive out of order. Extension headers
containing state or control information are only valid for a short period of time and must
be processed immediately. Extension headers that are not a�liated with the payload
data must not be retransmitted.

6.3.3.5 Fragmentation

To circumvent the otherwise very limiting maximum payload length of 509 byte, Nano-
link supports payload fragmentation of contiguous data with up to 65535 byte length.
A frame with fragments in the payload data is identi�ed with the fragment �ag.
Concurrent fragmentation is only possible for di�erent PIDs. Like all other in-order
data, fragments are cleared from the receive queue and stored in a separate bu�er. This
is necessary, since the sequence number space is limited to 127 items and fragmenting
65536 bytes of data would �ll at least 129 frames.
The �rst frame of a fragment sequence contains a FRG extension header with informa-
tion about the length of the unfragmented packet as well as the �rst chunk of the packet.
The following frames contain no FRG header and contiguous chunks of the packet.
Fragmentation is complete once the received size of all chunks combined matches the
value indicated in the �rst frame.
To avoid blocking from large fragmented data, frames containing data from other ports
may be placed between the fragment frames.

6.4 Coding and Synchronization

This section focuses on the channel coding and synchronization methods. First, the
structure and purpose of the acquisition and idle patterns is explained. It follows an
overview of frame and codeblock synchronization mechanisms and their use in Nanolink.
Finally, the channel coding methods are reviewed.

6.4.1 Acquisition and Idle Pattern

At the beginning of a transmission (e.g. connection establishment), an acquisition
pattern is sent long enough for the receiver to synchronize with the signal. The pattern
is an alternating sequence of 0 and 1, to provide enough bit transitions.
If there is no data to send, codewords are padded with the acquisition pattern. In this
context, it is referred to as idle pattern.
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6.4.2 Synchronization

The data received from the physical layer are a stream of bits. In order to distinguish
the di�erent messages in the bitstream, it is required to determine their starting symbol
and length. The most common solution to the problem of �nding the starting symbol
is the attachment of a special symbol pattern, called sync marker, to the message. This
gives rise to two new problems:

1. The marker may appear in the message data

2. The marker may be corrupted due to transmission errors

A simple solution to the �rst problem is bit stu�ng. Unfortunately, this is ine�ec-
tual due to the problem 2. Transmission errors may corrupt the marker or result in
the marker pattern to appear in the message data. To remedy these problems, longer
marker patterns and more re�ned detection algorithms can be used. The increased
length of the pattern renders its occurrence in the message data is more unlikely, while
also helping the detection algorithm to be more robust against errors. Simple synchro-
nizers are based on state machines and require multiple sync markers to acquire and
lose synchronization [5]. More sophisticated synchronizers utilize maximum-likelihood
or argmax algorithms. These algorithms constantly scan a window of symbols for
sync markers and periodically report the most likely location of a valid marker [5].
A comparison of the performance of decision rules in the AWGN can be found in [5].
In 1992, Robertson [31] published a maximum likelihood decision method for better
frame synchronization in �at Rayleigh fading channels. For increased robustness, the
synchronization symbols are hereby interleaved with the data symbols. Kopansky et
al. showed [25] that the same performance can be acquired with periodically embedded
synchronization markers. Therefore, interleaving is not required for robust synchroniza-
tion in fading channels. Additionally, Kopansky et al. observed that the synchronizer
performance strongly depends on the utilized marker pattern.
Marker based synchronization is not the only option to �nd the beginning of messages.
Hamkins published a maximum-likelihood brute-force synchronization method for
LDPC codes, which does not require sync markers [16]. Within a window of input
symbols, the algorithm selects random locations in the bitstream and performs decoding
with the sequence for a number of iterations. For every location, a maximum-likelihood
metric is computed. The most likely location is then decoded with a higher number
of iterations. Correct decoding indicates that synchronization has been acquired. The
proposed method is compatible with standard attached synchronization markers. The
reduced performance for lower SNR is not a concern in the MOVE 2 mission, since
low SNR are not to be expected. No information about the performance of the method
in a fading channel is provided in the publication. Also, its complex computation and
incompatibility with Reed-Solomon codes render it unsuitable for the use on the satellite.
In order to keep to protocol complexity and asymmetry low, this method is not used in
Nanolink.



6.4. Coding and Synchronization 53

CSM Codeblock CSM Codeblock CSM Codeblock

ASM Frame CRC ASM Frame CRC IdleASM Frame CRC

CSM Codeblock

Figure 6.7: Nanolink coding and synchronization

Since the length of code words is known by the receiver, additional measures to retrieve
this information are moot. This does not pertain for frames, since they are variable in
size. Therefore, frame headers contain a length �eld, which indicates the length of each
frame excluding the CRC checksum. The maximum size of 512 bytes is a compromise
between the higher overhead of smaller frames and the increased delay and frame error
rate of longer frames.

6.4.2.1 Codeword synchronization

For codeword synchronization in high SNR pure AWGN channels, CCSDS report 32-Bit
synchronization markers to be su�cient for LDPC and Reed-Solomon codes.
Since Rician fading and modem output format (soft or hard output) also a�ect the
decision, a �nal speci�cation of the codeword synchronization markers for the downlink
channel is not possible at this time.

6.4.2.2 Frame Synchronization

Frames and Codewords are not aligned, thus additional markers for frames are required.
Therefore, frames are delimited with a 24-Bit attached synchronization marker (ASM).
The value of the marker is in hexadecimal notation: 0x4E4D45. The ASM length is
relatively short compared to that of the CSM. The rationale behind this is that the
decoder output can be assumed to be almost error-free and therefore a very rigorous
matching algorithm can be used to make up for the higher probability of occurrence of
the pattern.
Two frames may be separated by idle periods, where only the idle pattern is sent.
Therefore, the ASM cannot be used to delimit the size of a frame. This task is therefore
performed by the length �eld of the frame header.

6.4.3 Error control and detection

Two layers for error detection and control are used in Nanolink. The raw bitstream is
protected against errors by forward error correction, whereas the Transfer Frames are
secured from undetected errors using a CRC checksum. Similar to Proximity-1, di�erent
codeblock lengths and variable frame lengths are enabled by decoupling codeblocks
and frames, as illustrated in Figure 6.7.
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6.4.3.1 Reed-Solomon Code

The default codes for the uplink are systematic Reed-Solomon codes overGF (256), with
a symbol length of 8 bit. The codes are speci�ed by codeword length n and dimension k .
The codewords may be shortened arbitrarily. To be more robust against error bursts and
to enable larger block sizes, codeblocks comprise one or more interleaved codewords.
The number of codewords per block I is called interleaving depth. The process for

2
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RS Encoder #2

1 2 m

1 3
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1 3 m r

Message Codeblock

Figure 6.8: Illustration of the interleaving process for RS codes

I = 2 is illustrated in Figure 6.8. The m message bytes are fed into the two RS encoders
on a rotating basis. After encoding, the two symbol streams are merged so that the
symbols of the two encoders alternate. The message symbols are followed by the also
interleaved code symbols r . To shorten codes, the message is padded with v = I (255−n)
zero-symbols, which are then removed after encoding. For decoding the codeblock is
prepended with the v zero-symbols.
The interleaving depth must also be chosen with respect to the ratio of uplink and
downlink data rates and transmission window sizes.

6.4.3.2 Low-Density Parity-Check code

LDPC codes are the default coding scheme for Nanolink downlinks. They achieve a
signi�cant coding gain over Reed-Solomon codes, and are superior codes at low Eb/N0 .
The codes have to be chosen in combination with an appropriate decoder and with
consideration of uplink and downlink data rate. Moreover, memory restrictions may
render larger matrices impractical.

6.4.3.3 Code word randomization

Long runs of 0 or 1 symbols on the physical channel may cause synchronization errors
at the receiver side [4]. As previously discussed in sections 4.1.2 and 4.1.5, RS codes and
quasi-cyclic LDPC codes are vulnerable to codeword shifts caused by symbol slips. To
mitigate these problems CCSDS recommends the use of a pseudo-randomizer generated
by the polynomial h(x ) = x8 + x7 + x5 + x3 + x + 1 [4]. The schematic of the pseudo-
randomizer is depicted in Figure 6.9.
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Figure 6.9: CCSDS Pseudo-randomizer logic diagram [4]

6.5 Conclusion

In this chapter, the concept of the Nanolink protocol was illustrated. The protocol ful�lls
the requirement for reliable communication by employing robust forward error correc-
tion and automatic repeat request schemes. In addition, all aspects of the protocol are
designed with the physical link in mind. Therefore, protocol mechanics take connection
losses or heavy data corruption into account. The protocol is designed in a way that
the control �ow reaches well de�ned states despite the occurrence of protocol errors.
The protocol overhead was minimized by employing extension headers, which enable a
rich feature set while causing no overhead if not used. The ARQ mechanism is designed
to operate e�ciently despite high frame error rates, while also requiring minimum
bandwidth in perfect conditions.
Nanolink has a high level of automation and its operation requires no human interaction.
The only exception to this are mode switches which are intended adjust the protocol
operation to changing mission requirements during deployment.
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Chapter 7

Evaluation

In this chapter, the performance of Nanolink is evaluated. For this purpose, its e�ciency
is compared to comparison to Proximity-1 in section 7.1 and section 7.2. Section 7.3
determines the maximum bandwidth-delay product at which Nanolink can operate with
maximum throughput. The following evaluation is based on the assumption that the
radio links are working to capacity, since e�ciency is only a concern in this case. This
implies that both nodes exclusively transmit data frames of maximum size.

7.1 Perfect Transmission

This section evaluates the e�ciency of Nanolink and Proximity-1 in perfect transmission
conditions.
The maximum length of Proximity-1 data frames is 2048 B. The frame comprises a
header of 5 bytes and a data �eld with maximum 2043 byte. It is preceded by a ASM of
4 bytes and followed by a CRC of 4 bytes. This results in a frame overhead of 0.63%. In
contrast, Nanolink has a frame overhead of 1.5%, due to the smaller maximum frame
length. Proximity-1 control frames have a total length of 15 bytes, including CRC and
ASM. For the same task, Nanolink only requires 3 bytes for the STAT header. For
this example (Table 7.1), the downlink sent bu�er is assumed to be 8 KiB in size. For
Proximity-1, this results in a maximum window size of 4. The maximum window size for
Nanolink is 16, in this case. Assuming a downlink coderate of R = 2/3, and a downlink
data rate of 9600 bit s−1, the serialization time of 8 KiB is approximately 10 s. Thus, the
acknowledgment of the downlink can be assumed to require a data rate of 12 bit s−1 for
Proximity-1. This is equivalent to 1% of the uplink data rate of 1200 bit s−1. Nanolink
requires only 2.4 bit s−1 to acknowledge the transmission window.

7.2 Retransmission Overhead

The advantage of Nanolink over Proximity-1 lies in its fault tolerance. Assuming both
protocols to use the same code, Nanolink requires less codewords to encode a frame,
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since the frames are smaller. The following is based on the assumption that the trans-
mission is subject occasional burst errors (e.g. fades) that corrupt codewords. For the
sake of simplicity, it is assumed that the probability for codewords to be incorrectable
does not vary. A frame is erroneous if more than one codeword is incorrectable. The
probability of frame errors (FER) can thus be approximated with:

FER = 1 − (1 − pe )n (7.1)

Where pe is the probability of a codeword to be incorrectable, and n the number of
codewords per frame. In this context, is assumed that codewords do not contain data
of multiple frames. Table 7.2 illustrates the impact of pe = 0.01 for an exemplary trans-
mission of 100 maximum size Proximity-1 frames, or 402 Nanolink frames, respectively.
For the sake of this example, both protocols are assumed to use codes with dimension
K = 173 byte. Thus, for a Proximity-1 frame, 12 codewords are required. Nanolink
frames require 3 codewords. With (7.1), this results in a FER of 0.11 for Proximity-1,
and 0.29 for Nanolink frames.

Including the losses of retransmissions, 13 additional Frames have to be transmitted
with Proximity-1, and 12 with Nanolink. The overhead on the forward link is 12% for
Proximity-1 and 4.4% for Nanolink. These �gure include the overhead of retransmissions,
framing, ASM and CRC. The reverse link tra�c is increased by 195 B with Proximity-1.
It is assumed that Nanolink handles retransmissions entirely with NACK messages, thus
requires 24 B on the reverse link.

Table 7.3 shows the situation for pe = 0.02. Compared to pe = 0.01, the forward
overhead of Nanolink is increased by 2.9 percentage points, the reverse link tra�c is
increased by 108%. The overhead of Proximity-1 is increased by 10 percentage points
on the forward link, and by 115% on the reverse link.

7.3 Maximum Delay

This section approximates the maximum bandwidth-delay product at which Nanolink
can operate at 100% throughput. To ensure maximum throughput on the faster link, the
slower link must complete transmission of an acknowledgment before the faster link has
completed transmission of its window. Hence, the transmission window size is assumed
to be maximal (127 frames) on the faster link. For the slower link, the minimum frame
size at which user data can still be transported, is assumed. Including ASM, CRC and
STAT header, the frames on the slower link are thus 12 byte in length. The minimum
transmission unit size on the slower link LU , is thus assumed to be 20 byte, including a
CSM of 4 byte and FEC redundancy. The relation between window sizeW , faster link
transmission unit size LD , data rates RD (faster) and RU (slower), and propagation delay
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Protocol Proximity-1 Nanolink

Window Size 4 16
Forward Overhead 0.63% 1.5%
Reverse Tra�c 12 bit s−1 2.4 bit s−1

Table 7.1: Overhead of Proximity-1 and Nanolink for unimpaired transmission and
bu�er size 8 KiB

Protocol Proximity-1 Nanolink

Codewords per Frame 12 3
FER 0.11 0.029
Number of Frames 100 402
Retrans. Frames 13 12
Forward Overhead 12% 4.4%
Reverse Tra�c 195 B 24 B

Table 7.2: Overhead of Proximity-1 and Nanolink for pe = 1%

Protocol Proximity-1 Nanolink

Codewords per Frame 12 3
FER 0.22 0.059
Number of Frames 100 402
Retrans. Frames 28 25
Forward Overhead 22% 7.3%
Reverse Tra�c 420 B 50 B

Table 7.3: Overhead of Proximity-1 and Nanolink for pe = 2%
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∆t , can be roughly approximated with:

W · LD
RD

>
LU
RU
+ 2∆t (7.2)

The equation does not consider other delays, such as block delay or decoding and pro-
cessing delays, or transmission errors. For the sake of this example, LD is assumed to
be 780 bytes, which corresponds to a code rate of 2/3 and a CSM size of 4 byte. Fur-
thermore, it is assumed that the data rate ratio is 1:8. This results in a bandwidth-delay
product of 49 450 B. For a data rate of 9600 bit s−1 on the faster link, this corresponds
to a maximum propagation delay of 41.2 s or a distance of 1.24 × 1010 m between the
nodes, respectively. For a propagation delay of 11 ms, this corresponds to a maximum
data rate of 4.5 MB s−1.
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Chapter 8

Future Work

This thesis contains the concept of the Nanolink protocol. For the protocol, the next
step is to formulate a comprehensive and more explicit speci�cation. A reference
implementation based on the speci�cation must then be created, which can be used to
simulate the protocol behavior and verify the speci�cation.
For the use in MOVE 2, determining the transceiver hardware is most important. Fur-
thermore, the hardware on which Nanolink will operate must me chosen. The protocol
parameters must then be chosen to comply with these constraints. A detailed link
budget for the uplink channel is required for the selection of the default Reed-Solomon
code rate.
A focus of future research should lie on �nding optimal codeword synchronization
markers for fading channels. Also, more research on LDPC codes and corresponding
decoders for fading channels is needed. For this purpose, coding experts should be
consulted.
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Chapter 9

Conclusion

In the past, there was no dedicated protocol stack for Cubesats that allowed e�cient
and reliable communication. For this reason, the Nanolink data link layer protocol was
designed in this thesis.
One of the problems that had to be solved by the design of Nanolink was the combina-
tion of reliability and e�ciency. The uplink channel is mainly impaired by noise. An
experiment with the FUNcube-1 satellite revealed that the reliability of the downlink
channel is seriously degraded by frequent signal fading. To compensate for these im-
pairments, Nanolink messages are coded using Reed-Solomon or LDPC codes. Of a
selection of common channel codes, these codes proved to be most quali�ed for this
application.
Due to the occasional deep fades, relying solely on forward error correction was not a
viable solution. Especially since the low code rate that accompanies a high correction
capability would reduce the maximum achievable throughput, regardless of the chan-
nel’s condition. Therefore, forward error correction was complemented by ARQ. The
advantage of this is that higher code rates are possible because the additional losses are
handled by retransmissions. This in return means that there is a higher upper bound to
the possible throughput for better channel conditions. Overall, this hybrid solution can
react to varying channel conditions more dynamically than the individual techniques
and is therefore a very good choice for quickly varying fading channels, like the VHF
downlink.
The primary requirement for the ARQ mechanism was reliability, meaning that it must
ensure the receipt of all data. Since frequent retransmissions are part of the hybrid ARQ,
they have to be performed with minimum cost. For this reason, massive losses should
be recovered from without causing excessive overhead. Additionally, occasional frame
losses should be handled with minimum e�ort. Moreover the ARQ mechanism must
require only low bandwidth on the reverse channel, so that asymmetric communication
is no hindrance. Finally, the mechanism should meet all these requirements while using
minimal bandwidth in the case of perfect transmission.
The problem was solved in two steps: �rst, by adapting the ARQ mechanism from STP.
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It uses a combination of cumulative selective acknowledgment and negative acknowl-
edgment. This combination can handle single frame losses without much overhead
by sending negative acknowledgments. The cumulative selective acknowledgment is
perfect for acknowledging a larger span of received frames, with only few misses.
Secondly, the expenditure for acknowledgments and retransmission requests was re-
duced using a concept called extension headers. Extension headers is a �exible header
mechanism that allows to extend frame headers simply by attaching control information.
Using extension headers, a retransmission request requires only two bytes of space in a
frame.
E�ciency and reliability were not the only design criteria of Nanolink. The protocol
was designed for MOVE 2 and the development process and individual requirements of
the satellite mission are part of the consideration.
The telemetry status broadcast mode is one of the features that originated out of these
requirements. It enables reception of the satellite’s status all around the world, facilitates
satellite discovery and is used for connection establishment. The combination of full-
duplex data transfer and simplex broadcasting modes is a unique feature of Nanolink.
Nanolink is also �exible. The mode switch mechanism from Proximity-1 allows for re-
con�guration of the protocol even after deployment. This allows to adjust the satellite’s
COM systems to changes of mission requirements or environmental changes. This gives
satellite operators more options in case of malfunctions of the satellite subsystems. This
is possible because loose coupling is a core concept of Nanolink. As with Proximity-1,
framing and coding concepts are decoupled, which allows variable framing without
restricting the channel coding mechanisms. Thus, the choice of channel coding does
not interfere with the other parts of the protocol.
The stream-oriented service of Nanolink can transport data of arbitrary format, while
the packet oriented service accommodates for the Cubesat-speci�c protocol CSP, and
thereby generates only minimal dependencies and requirements for the rest of the satel-
lite. The extension header concept allows for a large number of additional protocol
functions. Hence, it is possible to implement additional features without altering the ba-
sic design and functionality of the protocol. This renders Nanolink extensible, scalable,
and ready for future developments.
Nanolink combines the advantages of STP and Proximity-1. The result is a specialized,
yet �exible protocol tailor-made for the needs of the MOVE 2 mission and Cubesats in
general. We hope that Nanolink can be of use not only for MOVE 2, but also for other
Cubesat teams who also wish for better communication with their satellite.
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