
Dissertation
Network Architectures
and Services
NET 2013-07-1

Analysis and Control of
Middleboxes in the Internet

Andreas Müller

Network Architectures and Services

Department of Computer Science

Technische Universität München

	

	

	

	

TECHNISCHE UNIVERSITÄT MÜNCHEN

Institut für Informatik

Lehrstuhl für Netzarchitekturen und Netzdienste

Analysis and Control of

Middleboxes in the Internet

Andreas Müller

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen Universität

München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr. Hans-Arno Jacobsen

Prüfer der Dissertation: 1. Univ.-Prof. Dr.-Ing. Georg Carle

2. Prof. Dr. Ernst W. Biersack

(Institut Eurécom, Sophia Antipolis, Frankreich)

Die Dissertation wurde am 18.12.2012 bei der Technischen Universität München ein-

gereicht und durch die Fakultät für Informatik am 26.04.2013 angenommen.

Cataloging-in-Publication Data
Andreas Müller
Analysis and Control of Middleboxes in the Internet
Dissertation, July 2013
Network Architectures and Services, Department of Computer Science
Technische Universität München

ISBN 3-937201-35-1
ISSN 1868-2634 (print)
ISSN 1868-2642 (electronic)
DOI 10.2313/NET-2013-07-1
Network Architectures and Services NET 2013-07-01
Series Editor: Georg Carle, Technische Universität München, Germany
c© 2013, Technische Universität München, Germany

ABSTRACT

With the growing size and complexity of the Internet several types of middleboxes have
been introduced to the network in order to solve a number of urgent problems. Net-
work Address Translation devices fight against the Internet address depletion problem,
caches and proxies help to efficiently distribute content and firewalls protect networks
from potential attackers. Unfortunately, middleboxes violate the end-to-end connectiv-
ity model of the Internet protocol suite and therefore introduce numerous problems for
services and applications. The contribution of this thesis is the study and development
of concepts and algorithms for understanding and improving the behavior of middle-
boxes, their traversal, as well as their application to problems that emerged with the
growing success of the Internet with a focus on unmanaged networks such as home and
small company networks.

The first part of this thesis designs and implements tools and algorithms to analyze
middlebox behavior. We introduce a processing model for describing functional char-
acteristics and create an information model to structure relevant middlebox behavior
parameters. As an experimental analysis, a public field test is conducted to evaluate
existing traversal techniques, understand middlebox behavior, to gain knowledge about
their deployment and to draw conclusions on how to improve middlebox traversal.

The second part of this thesis focuses on the traversal of middleboxes. Existing
middlebox traversal methods do not differentiate between different types of applica-
tions and therefore deliver suboptimal results in many situations. We claim that the
classification of applications into service provisioning categories helps to determine the
best matching middlebox traversal technique, not only dependent on the network topol-
ogy, but also considering user-defined requirements. This thesis presents a framework
that improves the communication of existing and future applications and services across
middlebox devices. The idea is to use previously acquired knowledge about middlebox
behavior and services for setting up new connections. Obtained results show that the
knowledge-based approach is not only more flexible and applicable, but due to the
decoupled connectivity checks, also significantly faster compared to the state of the
art. Based on the findings of our experimental analysis we show how to integrate and
adapt existing middlebox traversal techniques into the middlebox traversal framework.
Additionally, new middlebox traversal techniques are presented and evaluated.

In the third part of this thesis the applicability of middlebox services to unmanaged
networks is discussed. A secure service infrastructure is presented based upon a trust
model combining the power of centralized Certificate Authorities with the flexibility of
the Web of Trust and social networks. This security infrastructure fulfills the security
requirements of the middlebox traversal framework and provides secure identities for
users, services and hosts in a semi-automatic way. A middlebox service helps establish
and coordinate secure communications between different domains according to user-
defined access control policies. Three application examples for middleboxes show how
existing services can be improved and extended to solve open security, privacy and
connectivity issues.

KURZFASSUNG

Mit der zunehmenden Komplexität heutiger Netzwerke werden Funktionalitäten zur
Lösung aktueller Probleme häufig als Middlebox im Netzwerk implementiert. Net-
work Address Translation (NAT) hilft mit der limitierten Anzahl von IPv4 Adressen
umzugehen, Firewalls filtern ungewollten Verkehr und Proxies und Web-Caches sind für
die effiziente Verteilung von Inhalten unerlässlich. Da Middleboxen jedoch das initiale
Ende-zu-Ende Prinzip des Internets verletzen, führt deren Existenz zu einer Vielzahl
von Problemen mit existierenden Protokollen, Anwendungen und Diensten. In dieser
Arbeit wird das Verhalten von Middleboxen sowie deren Konsequenz für heutige Netz-
werke untersucht. Darauf aufbauend werden Methoden und Algorithmen entwickelt,
die eine verhaltensbasierte Traversierung von Middleboxen ermöglichen. Darüber hin-
aus werden aktuelle Sicherheits- und Privatheitsprobleme aufgezeigt und Middlebox-
basierte Lösungen dafür vorgestellt.

Im ersten Teil der Arbeit werden Methoden und Algorithmen entworfen, die in der
Lage sind, verschiedene Verhaltensweisen von Middleboxen zu analysieren. Anhand
zweier Modelle, einem Verarbeitungs- und einem Informationsmodell, wird das Ver-
halten in einem Feldtest anschließend experimentell untersucht. Die so gewonnenen
Ergebnisse helfen Schlussfolgerungen bezüglich der Traversierung von Middleboxen zu
ziehen, existierende Techniken dafür zu verbessern sowie neue Techniken zu entwerfen.

Im zweiten Teil der Arbeit wird ein wissensbasiertes Framework entwickelt, das
eine anforderungsgerechte, sichere und performante Middlebox-Traversierung für ver-
schiedene Anwendungsklassen ermöglicht. Existierende Traversierungsmethoden be-
trachten einige explizite Anforderung von Applikationen nicht, beispielsweise bezüglich
der Sicherheit, was zu ungewollten Seiteneffekten führen kann. In dieser Arbeit wer-
den Anwendungsklassen für Applikationen entworfen um Traversierungstechniken nicht
nur basierend auf der Netzwerktopologie, sondern auch basierend auf der eigentlichen
Anwendungskategorie auszuwählen. Kernpunkt des entwickelten Frameworks ist ein
wissensbasierter Ansatz, der das Verhalten von Middleboxen sowie zusätzliche Regeln
analysiert, geeignete Traversierungstechnik parameterisiert und damit nicht nur zu-
verlässiger, sondern auch performanter als der Stand der Technik ist.

Im dritten Teil der Arbeit werden neue Lösungskonzepte für die Anwendbarkeit
von Middlebox-basierten Diensten auf aktuelle Sicherheits- und Privatheitsprobleme
vorgestellt. Insbesondere in Netzwerken, die nicht professionell administriert sind, wie
beispielsweise Heimnetzwerke, können aktuelle Sicherheitsmechanismen aus Komplex-
itätsgründen oft nicht eingesetzt werden. Diese Arbeit entwickelt eine Sicherheitsinfras-
tuktur, die herkömmliche Zertifizierungsstellen (CAs) mit dem Ansatz des Web of Trust
verbindet und für unerfahrene Benutzer zugänglich macht. Abschließend wird anhand
von drei neuen Middlebox-Diensten exemplarisch gezeigt, wie sich aktuelle Sicherheits-
und Privatheitsprobleme mit Middlebox-basierten Diensten lösen lassen.

ACKNOWLEDGMENTS

This thesis would have not been possible without the support of many individuals:

First of all I would like to thank Prof. Dr.-Ing. Georg Carle for giving me the
opportunity to work on many interesting projects during the course of my studies and
for supervising this thesis. Thank you Prof. Dr. Ernst Biersack for being my second
supervisor and for the valuable feedback and Prof. Dr. Hans-Arno Jacobsen for the
organization of the examination.

Main parts of this work are part of the research project AutHoNe - Autonomic Home
Networking, funded by the Federal Ministry of Education and Research (BMBF). Their
financial support was an important foundation.

I would like to thank my colleagues at the chair for Network Architectures and
Services for creating a productive work environment and for many discussions on various
subjects. In particular I would like to thank my former colleague Dr. Andreas Klenk for
many discussions on NAT and Holger Kinkelin for his cooperation on the security part
and for sharing our office with me for the past 5 years. I also had the chance to work
with numerous good students and student assistants who contributed to this work.

Thank you Ralph Holz and Dr. Richard Edel for reading and correcting this thesis
and for giving valuable feedback on the English language and on the topic itself. A big
thanks to my friends who provided me a world outside of research, computer science
and work.

I am also very thankful to my parents who have always supported and believed
in me. Without their support throughout my life many opportunities would not have
been possible. Finally, I would like to thank my wife Rebecca, not only for constantly
reading and correcting this thesis, but especially for being there when I needed her (and
for her good cooking and baking). Without her, this thesis would not exist.

München, July 2013

Andreas Müller

Previously published parts of this thesis:

• A. Müller, G. Münz, and G. Carle. Collecting Router Information for Error
Diagnosis and Troubleshooting in Home Networks. In the workshop WISE, held
in conjunction with the IEEE Conference on Local Computer Networks 2011
(LCN), Bonn, Germany, October 2011.

• A. Müller, H. Kinkelin, S.K. Ghai, and G. Carle. A Secure Service Infrastructure
for Interconnecting Future Home Networks based on DPWS and XACML. In
HomeNets: ACM SIGCOMM Workshop on Home Networks, New Delhi, India,
September 2010.

• A. Müller, N. Evans, C. Grothoff, and S. Kamkar. Autonomous NAT Traversal.
In 10th IEEE International Conference on Peer-to-Peer Computing (IEEE P2P
2010), Delft, The Netherlands, August 2010.

• A. Müller, H. Kinkelin, S.K. Ghai, and G. Carle. An Assisted Device Registration
and Service Access System for future Home Networks. In IFIP Wireless Days
2009, Paris, France, December 2009.

• A. Müller, A. Klenk, and G. Carle. ANTS - A Framework for knowledge-based
NAT Traversal. In IEEE Globecom 2009 Next-Generation Networking and Inter-
net Symposium, Honolulu, Hawaii, USA, November 2009.

• A. Müller, A. Klenk, and G. Carle. Behavior and Classification of NAT devices
and implications for NAT Traversal. IEEE Network Special Issue on Implications
and Control of Middleboxes in the Internet, October 2008.

• A. Müller, A. Klenk, and G. Carle. On the Applicability of knowledge-based NAT
Traversal for future Home Networks. In Proceedings of IFIP Networking 2008,
Singapore, May 2008.

CONTENTS

Part I Introduction and Background 1

1. Introduction . 3

1.1 Thesis Objectives and Research Questions 4

1.1.1 Positioning and Goals . 4

1.2 Contributions and Document Structure 6

2. Background . 9

2.1 End-to-end Principle of the Internet . 9

2.2 Analysis of today’s Internet . 11

2.3 Middleboxes . 12

2.3.1 Introduction . 12

2.3.2 Categories and Properties . 13

2.3.3 Impact and Problems . 13

2.3.4 Assessment . 14

2.4 Operation of selected Middleboxes . 15

2.4.1 Network Address Translation . 15

2.4.2 Large Scale NAT . 16

2.4.3 Firewalls and ALGs . 19

Part II Analysis and Behavior of Middleboxes 21

3. Modeling and Classification of Middlebox Behavior 23

3.1 Introduction . 23

3.2 Modeling of Middlebox Behavior . 23

3.2.1 Related Work . 23

3.2.2 Notation and Processing Model 24

3.2.3 Modeling Network Address Translation 25

3.3 Classification of NAT Behavior . 26

3.3.1 NAT Behavior for Outgoing Packets 27

3.3.2 Incoming Packets . 30

3.3.3 NAT Classification . 30

3.3.4 Behavior of Large Scale NATs 32

3.4 Firewall Behavior . 33

3.4.1 Stateless Firewalls . 33

3.4.2 Stateful Firewalls . 34

3.5 Application Layer Middleboxes and Proxies 34

3.5.1 Tor and Polipo . 34

3.6 Summary and Key Findings . 35

xii Contents

4. Experimental Analysis of Middlebox Behavior 37

4.1 Introduction . 37

4.2 Information Model . 38

4.2.1 Stateful Element . 38

4.2.2 Filtering Element . 39

4.2.3 Translation Element . 40

4.2.4 Reference Example of a Middlebox Instance 40

4.3 Detailed Description of our Measurement Algorithms 41

4.3.1 Behavior Measurements . 43

4.3.2 Behavior-based Traversal Analysis 49

4.3.3 Additional Measurements . 50

4.3.4 Topology Measurements . 52

4.3.5 Active Monitoring of Middlebox Parameters 55

4.4 Experiments in the Lab and Verification of our Algorithms 56

4.4.1 Test Setup . 56

4.4.2 Virtualized Testbed and Topology Generator 56

4.5 Field Test . 58

4.5.1 Related Work . 59

4.5.2 Requirements and Contributions 59

4.5.3 Design and Implementation . 60

4.6 Results and Discussion . 64

4.6.1 Testset Description . 64

4.6.2 Binding and Filtering Behavior Results 67

4.6.3 Mapping Behavior Results . 72

4.6.4 Additional Behavior Results . 77

4.6.5 Behavior-based Traversal Results 80

4.6.6 Additional Results . 81

4.6.7 Topology Results . 82

4.6.8 Lessons Learned . 83

4.7 Summary and Key Findings . 85

Part III Traversal of Middleboxes 87

5. Middlebox Traversal and Service Provisioning 89

5.1 Introduction . 89

5.1.1 Middlebox Traversal Problem . 90

5.2 State of the Art in Middlebox Traversal 92

5.2.1 Explicit Solutions . 92

5.2.2 Behavior-based Solutions . 94

5.2.3 Additional Solutions . 98

5.2.4 Evaluation and Comparison . 99

5.3 Application-Centric Middlebox Traversal 101

5.3.1 Service Categories for Middlebox Traversal 101

5.3.2 Application of Existing Traversal Techniques 102

5.4 Summary and Key Findings . 104

Contents xiii

6. Knowledge-based Middlebox Traversal 105

6.1 Introduction . 105

6.2 Knowledge-based Middlebox Traversal 106

6.3 Reference Examples for a knowledge-based Framework 107

6.3.1 Unilateral Deployment . 107

6.3.2 Coordination of Traversal through Signaling 107

6.4 NOMADS: A new Middlebox Traversal Framework 110

6.4.1 Scenarios . 110

6.4.2 Architectural Overview . 112

6.4.3 Signaling Module: Request Response Protocol 113

6.4.4 Application Interfaces . 115

6.4.5 Integration and Adaption of Middlebox Traversal Techniques . . 116

6.4.6 Decision Module . 118

6.4.7 Implementation . 123

6.5 New Middlebox Traversal Techniques 123

6.5.1 Devices Profiles for Web Services IGD 123

6.5.2 Autonomous Middlebox Traversal 127

6.6 Evaluation and Discussion . 130

6.6.1 Adaption to Experimental Results 131

6.6.2 Applicability Evaluation . 132

6.6.3 Performance Evaluation . 133

6.7 Summary and Key Findings . 136

Part IV Security and Application of Middleboxes 137

7. A Secure Service Infrastructure for Unmanaged Networks 139

7.1 Introduction . 139

7.2 Survey of the State of the Art . 140

7.2.1 Identity Management for Unmanaged Networks 140

7.2.2 Trusted Third Party . 140

7.2.3 Web of Trust . 141

7.3 Architectural Overview and Components 141

7.3.1 Requirements and Contributions 142

7.3.2 Components . 143

7.4 Identity Management . 144

7.4.1 Identities . 144

7.4.2 Device Registration . 144

7.5 Trust Establishment . 146

7.5.1 Direct Pairing . 146

7.5.2 Remote Pairing using Social Networks 146

7.6 Authorization . 148

7.6.1 SSL/TLS interception for legacy Services 149

7.7 Implementation . 150

7.7.1 Hardware-based Security Extension 151

7.7.2 Integration . 151

7.8 Possible Attacks and Recommendations 152

7.9 Summary and Key Findings . 153

xiv Contents

8. New Middlebox Services . 155
8.1 Introduction . 155
8.2 A Middlebox for securing DPWS . 155

8.2.1 Technology Overview . 156
8.2.2 Scenarios and Contributions . 157
8.2.3 Approach . 157
8.2.4 DPWS service usage across Networks 158
8.2.5 Security Discussion . 161
8.2.6 Evaluation . 162
8.2.7 Summary . 163

8.3 PrivMid6: A Privacy Preserving Middlebox for IPv6 164
8.3.1 Related Work . 165
8.3.2 Scenarios . 166
8.3.3 Requirements . 166
8.3.4 Design of PrivMid6 . 167
8.3.5 Evaluation and Discussion . 169
8.3.6 Summary . 171

8.4 Virtual and Dynamic Infrastructures . 172
8.4.1 Application Areas . 172
8.4.2 Approach . 173
8.4.3 Virtualized Networks - P2PVPN 174
8.4.4 Resource Manager . 181
8.4.5 Summary . 183

8.5 Summary and Key Findings . 184

Part V Conclusions 185

9. Conclusion . 187
9.1 Contributions . 187
9.2 Future Work . 191

Appendix 193

A. DTD of the Middlebox Information Model 195

B. List of Middleboxes . 199
B.1 List of Recommended Home Routers . 199
B.2 List of Non-Recommended Home Routers 201

C. NOMADS Documentation . 203
C.1 NOMADS Decision Tree . 203
C.2 NOMADS Signaling Protocol . 204
C.3 NOMADS Socket API . 204

Bibliography . 207

Part I

INTRODUCTION AND BACKGROUND

1. INTRODUCTION

Within the last 20 years the Internet has developed from a small controllable computer
network for a limited group of people to a mass medium with more than 2.4 billion
participants worldwide [75]. This network is not only used for sending emails, reading
websites and sharing pictures, but also as a basis for many commercial applications with
a predicted worldwide revenue of almost $1trl. in 2013 [73]. This trend continues with
the availability of affordable mobile devices and data plans, social networks and business
models such as online music (iTunes), electronic books (Amazon) and on-demand video
streaming (Netflix). It is not hard to predict that online activities will continue to grow
with the availability of smart energy grids and smart meters, interconnected cars and
home appliances.

As the Internet was being designed and evolved, one of the most important design
decisions was the end-to-end principle. It states that application specific functions
“can completely and correctly be implemented only with the knowledge and help of
the application standing at the endpoints of the communication system” [136]. The
intermediate network itself is seen as an unreliable transportation medium holding
as little state as possible. When new functionality becomes available it should be
integrated into the end-systems and distributed among the participating hosts.

With the growing number of participants and the growing heterogeneity of hardware
and software, it has become almost impossible to establish new functionality on a large
scale by relying on the end-hosts to update to a new version of the operating system,
the application or the communication stack. Therefore, devices providing additional
functionality to the network and its users have been introduced and placed as interme-
diate nodes in the “middle” of communication paths: middleboxes. The most famous
examples for such devices are Network Address Translation (NAT) boxes, firewalls and
transparent proxies. Most of them were introduced for solving a specific problem, e.g.
the address depletion problem in case of NAT, and although they violated the initial
end-to-end paradigm, they have been accepted due to missing alternatives.

The violation of the end-to-end paradigm through middleboxes introduces numerous
problems to existing networks. Since middleboxes are generally transparent to end-
hosts, many applications don’t work the way they’re supposed to work. Hosts located
behind stateful middleboxes are not reachable from the outside and security policies
for firewalls are too static for complex application protocols using in-band signaling
and realm specific transport addresses [24]. Many solutions to such problems have
been developed [1, 48, 128, 130], but because of the lack of standardized middlebox
behavior many of them only deliver suboptimal results and do not consider application
and user-specific requirements.

Future scenarios such as home, car and building networks call for new functionalities
and again cause a number of challenges when connecting them to existing networks.
Many of these challenges, such as privacy, security, quality of service and rich content
distribution, can be solved by well-defined and well-understood middleboxes. The defi-
nition and acceptance of such new middlebox services can be seen as an important step
for middleboxes to become a valid design principle for future networks.

4 1. Introduction

1.1 Thesis Objectives and Research Questions

Middleboxes provide more and more functionality to today’s networks, while at the
same time creating a number of problems caused by the violation of the end-to-end
paradigm. The objective of this thesis is to develop concepts and algorithms to dis-
cover, analyze and cope with middleboxes in the Internet, to understand their impact
and to minimize their negative consequences. Our main claim is that only a solid un-
derstanding of the network, the topology, the existence and the behavior of middleboxes
allows to design algorithms and solutions for coping with the negative side-effects they
introduce. Thus, this thesis provides answers to the following questions:

Q1 Does a thorough and structured analysis of middlebox behavior help to under-
stand the implications for applications and services and to improve the success
rate of middlebox traversal techniques? (corresponding Chapters 3 and 4)

Q2 Can the knowledge about the behavior of involved middleboxes be used to apply
and parameterize middlebox techniques suitable for applications and the involved
infrastructure? (Chapters 5 and 6)

Q3 Can security mechanisms common in enterprise networks be applied to networks
that lack professional administration in order to secure middlebox traversal?
(Chapter 7)

Q4 Can well-designed and well-understood middlebox services be a valid design prin-
ciple for the Internet and can middlebox services be applied to open problems in
today’s networks? (Chapter 8)

1.1.1 Positioning and Goals

Middlebox research areas can be divided into two main categories: The first one investi-
gates how legacy protocols can work across existing middleboxes. Part of this problem
is the Discovery and Monitoring of Middleboxes to understand their existence
and impact before actually designing solutions for the Configuration, Control and
Traversal of Middleboxes. The second category examines how new protocols and
middleboxes can be designed in order to overcome the problems of today’s deploy-
ment. The Security and Application of Middleboxes is therefore an important
step towards an end-middle-end design principle for future Internet architectures.

Discovery and Monitoring of Middleboxes

Current research activities on middlebox discovery can be structured into two cate-
gories: The first one treats middleboxes as black boxes and assumes no direct control.
For example, STUN [130] allows discovering the public endpoint of a connection by
querying a STUN server, thus revealing parts of the mapping behavior of possible NATs
on the path. The second category defines new interfaces for middleboxes and speci-
fies protocols for controlling them. NSIS [64] and the “TCP Option for Transparent
Middlebox Discovery” [84] are two examples for this category.

The goal of Part II, Analysis and Behavior of Middleboxes, is to understand
middlebox behavior by an experimental analysis. Our approach considers and analyzes
relevant behavioral parameters as identified from related work and from our own obser-
vations. Based on these parameters, an information model is designed and algorithms
and concepts are developed to reveal specific behavior patterns. After an evaluation
in our lab, the algorithms are used to conduct a public field test to shed light on the
actual situation in today’s networks and to give recommendations on how to improve

1.1. Thesis Objectives and Research Questions 5

middlebox traversal. Part of this analysis is the design and implementation of an al-
gorithm for discovering cascaded middleboxes, as well as our Lightweight Information
Export tool LinEx, a data collection agent for actively monitoring middlebox behavior.

Configuration, Control and Traversal of Middleboxes

Once discovered, existing approaches aim to traverse middleboxes either directly (con-
trol-based traversal) or indirectly (behavior-based traversal). When assuming direct
control, middleboxes are no longer an obstacle, but provide generic interfaces for config-
uring them based on requirements for the connection. NUTSS [61], an end-middle-end
architecture, is an example for such an approach. Other research activities describe
a “path coupled signaling for NAT/FWs” (NSIS NSLP) [147] by extending the NSIS
protocol [64]. As an additional step towards controlling and configuring, [121] defines
“Managed Objects for Middlebox Communication” in order to control middleboxes in
a standardized way. Behavior-based traversal include approaches such as hole punching
[48] and ICE [128].

The goal of Part III, Traversal of Middleboxes is to design solutions for mid-
dlebox traversal. We argue that if we consider the combination of middlebox behavior,
the requirements for the application, as well as external policies, we will be able to
select the best matching traversal technique for a given situation. In some cases, and
if available, signaling via a third party can help to agree on a method and to nego-
tiate relevant behavior parameters that can be used as input for the actual traversal
technique. While our middlebox traversal framework is able to treat middleboxes on
the path as black boxes and traverses them based on their behavior, it also provides
interfaces for expressing access on a high-level. Furthermore, our DPWS [42] enabled
Internet Gateway Device allows the automatic and secure discovery and configuration
of middleboxes.

Security and Application of Middleboxes

To be compliant with authorization requirements of applications, security mechanisms
for controlling middleboxes and frameworks are needed. State of the art security mech-
anisms, such as Public-Key Infrastructures (PKI), are complex and hard to maintain,
especially for inexperienced users that can be found in unmanaged networks, e.g. home
and small company networks. Middleboxes as a valid design principle for a network ar-
chitecture has already been proposed in the state of the art. The explicit end-to-middle
authentication and authorization mechanisms in [70] use the cryptographic namespace
of the Host Identity Protocol (HIP) [98] in order to allow middleboxes to directly inter-
act with end-hosts. [111] presents an end-to-middle security approach for the Session
Initiation Protocol (SIP) [131]. With this approach a user agent is able to implement a
mixture of end-to-end and hop-by-hop security by disclosing information only to those
intermediate hosts that actually need it.

The goal of Part IV, Security and Application of Middleboxes, is to improve
the security of unmanaged networks and to design new middlebox services for solving
existing problems in today’s networks. We present a secure service infrastructure that
allows the management of secure identities in a user-friendly way and hides the com-
plexity of existing protocols and operations from its users. Additionally, it presents new
middlebox services for solving existing problems such as privacy concerns with IPv6,
interconnecting home networks in an automatic way and solutions for managing virtual
infrastructures.

6 1. Introduction

1.2 Contributions and Document Structure

The contribution of this thesis is the study and development of concepts and algorithms
for understanding the behavior of middleboxes, their traversal, as well as their applica-
tion to problems that emerge with the growing success of the Internet. Table 1.1 shows
the individual contributions and the methodology for their evaluation. It also links
to the corresponding research questions of section 1.1 and numbers the contributions.
This numbering is then used throughout the thesis and the individual contributions are
described in more detail at the end of each chapter when presenting the chapter’s key
findings.

C
h

a
p

te
r

Contribution S
o
ft

w
a
re

D
e
sc

ri
p

ti
o
n

M
o
d

e
l

E
m

u
la

ti
o
n

T
e
st

b
e
d

E
x
p

e
ri

m
e
n
ts

F
ie

ld
T

e
st

Part II Analysis and Behavior of Middleboxes (Q1)

3 (C3.1) Processing Model for Middleboxes •
4 (C4.1) Information Model for Middlebox Behavior •

(C4.2) Algorithms for behavioral Measurements • • •
(C4.3) Experimental Analysis of MB Behavior • •

Part III Traversal of Middleboxes (Q2)

5 (C5.1) Service Categories for Middlebox Traversal •
6 (C6.1) Knowledge-based Framework for MB Traversal • • •

(C6.2) New Middlebox Traversal Techniques • • •

Part IV Security and Application of Middleboxes (Q3+4)

7 (C7.1) Security Infrastructure for Unmanaged Networks • •
8 (C8.1)-(C8.3) Innovative Middlebox Services • •

Tab. 1.1: Contributions of this thesis

This thesis is structured into five parts: I) Introduction and Background, II) Anal-
ysis and Behavior of Middleboxes, III) Traversal of Middleboxes, IV) Security and
Application of Middleboxes and V) Conclusions. In the following we briefly explain the
individual contents of the parts and their chapters:

Part I gives an introduction and explains the most relevant technologies for the
understanding of this thesis. Chapter 2 introduces the initial idea of the end-to-end
paradigm of the Internet. We discuss today’s Internet topology and present reasons why
this paradigm is not completely true anymore. Middleboxes are introduced and typical
categories and properties for classifying them are presented. We focus on the impact
of middleboxes to existing protocols and applications and describe common problems
they have introduced. We then present the operation of the most relevant middleboxes
for this thesis, namely Network Address Translation (NAT), Large Scale NAT (LSN)
and firewalls.

1.2. Contributions and Document Structure 7

Part II analyzes middlebox behavior. The goal is to understand current middle-
box behavior and deployment in order to use this knowledge for coping with them.
In Chapter 3 a model for describing the packet processing of specific middleboxes is
presented (Contribution 3.1). Based on this model selected behavior issues according
to the state of the art are described. Chapter 4 then analyzes existing middlebox
behavior in detail. An information model containing relevant parameters is designed
(Contribution 4.1) and algorithms for testing these parameters are presented (Con-
tribution 4.2). The results of an extensive field test using these algorithms give an
insight on the deployment and behavior of middleboxes in today’s Internet and allow
us to give recommendations on how to improve existing traversal solutions and how to
design future ones (Contribution 4.3).

Part III designs solutions for middlebox traversal. Chapter 5 starts by describ-
ing the state of the art in middlebox traversal. We show why middlebox traversal
should also take higher-level requirements, such as accessibility permissions, into ac-
count for selecting appropriate techniques based on these requirements. Thus, service
categories for applications are defined and state of the art techniques are put in relation
to them (Contribution 5.1). Based on these service categories, Chapter 6 introduces
our knowledge-based approach for middlebox traversal (Contribution 6.1). The frame-
work NOMADS supports new and legacy applications that utilize our service categories,
it is more reliable and due to the decoupled knowledge gathering it also introduces less
latency than state of the art frameworks. We show how to integrate and improve ex-
isting traversal techniques by parametrizing them based on the actual behavior of all
involved middleboxes. Finally, two new middlebox traversal techniques are presented:
AutoMID (Autonomous Middlebox Traversal) allows hole punching [48] without the
support of a third party and DPWS-IGD implements a secure Internet Gateway De-
vice based on the Devices Profile of Web-Services (Contribution 6.2).

Part IV delivers concepts for the security and application of middleboxes. Chap-
ter 7 presents a security infrastructure for unmanaged networks (Contribution 7.1).
The goal is to assist inexperienced users when introducing security mechanisms to their
networks. Identity management, trust establishment, authorization and authentica-
tion solutions are discussed. Chapter 8 then presents individual middlebox services
targeting open problems of today’s networks. First, a proxy solution in combination
with an application layer firewall for securely interconnecting web-services is presented
(Contribution 8.1). Secondly, an approach for enabling privacy in IPv6 networks based
on middleboxes is developed (Contribution 8.2). The last section presents virtualized
infrastructures and proposes a combination of host and network virtualization to deploy
and maintain flexible and secure network configurations (Contribution 8.3).

Chapter 9 of Part V concludes this thesis by summarizing its contributions and
gives an outlook for future work.

8 1. Introduction

2. BACKGROUND

When the Internet appeared as a communication network back in the 1980’s, the growth
and expansion of the network we have today was hardly imaginable. However, with the
principle design of the Internet the architects of the network had already calculated that
it would only scale if the functionality of the network was reduced to the minimum to
overcome performance and cost issues. The so-called end-to-end argument states that
the network itself should only implement functions that support the basic transmission
of packets from A to B. Additional functionality, such as reliability, error recovery,
security and loss-detection should only be implemented at the end of the communication
path. The end-to-end principle is deemed to be the driving factor for today’s popularity
of the Internet since its basic design supports a manifold number of heterogeneous
applications, devices and users. However, the pure end-to-end argument is not true
anymore. Due to different restrictions and many competing players, it may sometimes
only be possible to implement new functionality in the middle of the network. Security
threats, economical decisions and deployment considerations are just a few reasons.
The introduction of middleboxes not only provides additional functionality, but due to
the violation of the end-to-end argument middleboxes also cause many problems that
have been discussed in the research community over the last few years.

This chapter gives an introduction to fundamental terminology and describes tech-
nologies that are important for the understanding of this thesis. It also helps put this
work into the context of the state of the art and emphasizes the importance of research
in this area. We first describe the idea of the initial end-to-end principle in section 2.1
and give background on how the end-to-end principle became one of the main reasons
for the success of today’s Internet. Afterwards, we analyze today’s Internet topology
and describe why the pure end-to-end argument is not true anymore. Section 2.3 then
introduces the concept and classification of middleboxes in general. We explain the
basic operation of common middleboxes in section 2.4 that are most important for this
thesis: Network Address Translation devices (NAT) and their successor Large Scale
NAT (LSN) for solving the IPv4 address depletion problem, as well as firewalls for
enforcing security policies.

2.1 End-to-end Principle of the Internet

Different to real networks, such as the postal network, computer networks send digital
copies of data chunks from A to B. If a chunk gets lost on its way, it can easily be
replaced and sent again. In networks that are dealing with real goods, e.g. packages or
letters, each intermediate node has to take special care of the part to be delivered since
it cannot be replaced. This fact was essential for the design principles of the Internet.

The authors of [136] called their principle the “end-to-end argument” and they
suggested that a function implemented at a lower-level of the system may either be re-
dundant (because it will be implemented on a higher-level as well) or extremely costly
for the value it provides. Additionally, they stated that certain functionality can only
be implemented correctly “with the knowledge and help of the application standing at

10 2. Background

the end points of the communication system.” As an example, a file transfer between
two hosts can only be reliable if both hosts actively check the integrity of the files
and notify the other end if an error is detected. If a reliability mechanism would be
implemented on a lower-level in the network as well, it would be redundant and may
cause performance issues. Another example is the implementation of security mecha-
nisms. Although intermediate nodes may be able to check the authenticity of messages,
the application of the receiver will still have to recheck it again. Thus, it would not
only introduce an enormous overhead by performing the same task multiple times, it
would also generate compatibility and upgrade problems: If the applications decide to
switch to a new version of the integrity check algorithm, this would only be possible
if all intermediate hosts also participate. The end-to-end principle became the funda-
mental basis of the Internet, which can be seen as “a packet switched communications
facility in which a number of distinguishable networks are connected together using
packet communications processors called gateways which implement a store and for-
ward packet forwarding algorithm” [26]. The Internet Engineering Task Force (IETF)
also released an informational document about the architecture of the Internet [15]
where they list a number of general design issues to be considered. Most of them
comply with the end-to-end principle and can only be fulfilled with it. Heterogeneity
of devices, underlying networks and software call for a modular approach. Trade-offs
between performance, cost and functionality were already cornerstones of the authors
motivation for postulating the end-to-end principle in [136]. [91] is not only looking at
the technical aspect of the end-to-end principle, the author states that the success of
today’s Internet is related to the end-to-end principle. The design decision allows the
easy introduction of new applications, services and users without being able to decide
which ones are good or bad. The rather “dumb” network cannot differentiate “between
a packet carrying Republican speech and a packet carrying Democratic speech”, thus
it is unable to discriminate certain users and eventually supports innovations through
network neutrality.

Internet

Network Layer

Data Link Layer

Physical Layer

Network Layer

Data Link Layer

Physical Layer

Application Layer

Transport Layer

Network Layer

Data Link Layer

Physical Layer

Application Layer

Transport Layer

Network Layer

Data Link Layer

Physical Layer

Cloud

NAT
Firewall

Web Proxy

Anonymizer

Load
Balancer

LSN

Media
Transcoder IDS

Traffic
Shaper

DPI
VPN

Fig. 2.1: The end-to-end design principle

Figure 2.1 depicts the end-to-end paradigm and shows how packets travel between
two hosts. The application on the left sends the message which finds its way through
the different layers. The only functionality of intermediate hosts, or routers, is to
forward the packet to the next hop according to their routing table. Intermediate
nodes therefore operate on the network layer and only the final destination passes the
packet up to the application layer. In this example the protocol on the transport layer,
e.g. TCP, would be responsible for a reliable data transmission. Thus, reliability is
clearly implemented in the end-hosts of the communication.

2.2. Analysis of today’s Internet 11

2.2 Analysis of today’s Internet

When taking a closer look at the end-to-end principle it becomes clear that the definition
is somehow vague and a connection can never be purely end-to-end. The file transfer
example as described above aims to send data from A to B in a reliable way. But
what happens between the user and the part where data chunks get fragmented and
sent to the network? Maybe there were problems when writing data to the disk or the
operating system lost packets due to other problems. What is actually the definition of
“end”? And what about email communication? Following the pure end-to-end principle
an email would be sent directly from host A to B, while implementing all email specific
functionality only on hosts A and B. In reality, email servers are used as intermediate
relays or proxies that take care of storing and distributing mails on behalf of their users.
However, this “violation” is only theoretical.

Cloud

NAT
Firewall

Web Proxy

Anonymizer

Load
Balancer

LSN

Media
Transcoder

IDS

Traffic
Shaper

DPI

VPN

Fig. 2.2: Deployment of middleboxes in today’s Internet

Figure 2.2 shows the current situation of today’s Internet. Instead of only hav-
ing intermediate nodes that take care of layer 3 routing, a large number of devices
have appeared that provide additional functionality on multiple layers. Routers may
only forward packets after performing a Deep Packet Inspection (DPI), firewall policies
regulate traffic flows according to their security policies and Load Balancers help to
distribute available resources equally.

AS5
AS4

AS3

AS2

AS1

Fig. 2.3: Example topology found in today’s Internet

But what are the reasons for the existence of these devices that clearly violate
the initial end-to-end argument that is seen as one of the most important success

12 2. Background

factors of today’s Internet? One reason is that the Internet has developed from a
flatly organized academic network into a clustered network as depicted in figure 2.3.
Instead of being one network, today’s Internet is a compilation of many autonomous
networks (AS), where each is under a different independent administrative control.
Commercial Internet Service Providers (ISP) run their networks as a business and
expect a profit from it [82]. The interconnection of these systems is therefore not
driven by performance or goodwill, but rather by peering contracts and mutual (legal)
agreements. Each administrator aims to protect his network and cares about all packets
that travel through it. Furthermore, some administrators even aim to block unwanted
traffic and assign different levels of quality of service to packets that do not comply
with their policy, leading to many debates and discussions about network neutrality
[29, 65, 156].

A second reason for introducing intermediate devices was the lack of security. In
the early days of the Internet security was completely neglected since only trusted hosts
participated in the rather small network. With the introduction of e-commerce, online
banking and the interconnection of company networks, security became an essential
requirement, often solved by introducing additional functionality, such as firewalls,
Intrusion Detection Systems (IDS) and Deep Packet Inspection (DPI), into the network.

Another initial argument for the end-to-end argument was the protection of inno-
vation. In the early days of the Internet, changes in the network were considered costly
and updating end-hosts was still reasonable. However, with the large number of users
we see today, this argument has turned around: Changes on the end-host systems are
considered almost impossible since many of them cannot or will not be updated by
their users. Introducing functionality to the network seems to be the only way of not
raising compatibility issues and reaching a quick deployment of new functionality.

Altogether, the clustering of the Internet, the independency of autonomous systems
and the change from a small academic network to a multi-billion dollar business were
primary success factors of today’s Internet. However, the introduction of additional
functionality to the network and the violation of the initial end-to-end principle also led
to suboptimal routes, additional delays and to a undefined behavior of many protocols.
For example, [66] studied 142 access networks in 24 different countries and measured
the impact of intermediate devices to TCP connections. Their tests revealed that many
of these connections were modified in an unordinary way, which is a strong indicator
for the existence of black boxes located in the middle of the network.

2.3 Middleboxes

The last sections mentioned some important reasons for establishing additional func-
tionality in the middle of a communication path rather than on the end-hosts. This
section gives an introduction to middleboxes. We first present an overview of middle-
box functionality and try to extract common properties in order to categorize them.
Afterwards, we discuss problems that the rise of middleboxes introduce and analyze the
impact on existing applications and protocols. Finally, we assess the presented facts.

2.3.1 Introduction

Middleboxes are defined as “intermediary devices performing functions other than the
normal, standard functions of an IP router on the datagram path between a source
host and destination host” [17]. Middleboxes operate on different layers, from the
network layer to the application layer, and may drop, insert, transform or modify

2.3. Middleboxes 13

packets traveling through it. Some implementations, such as data relays or web proxies,
are also capable of terminating IP packet flows and originating new ones according to
their policy. Thus, middleboxes are never the end of a communication session, but were
introduced to provide additional functionality to the network, such as caching, quality
of service, filtering and address translation.

2.3.2 Categories and Properties

RFC 3234, Middleboxes: Taxonomy and Issues [17], gives an overview about current
middleboxes in the Internet, their functionality and their impact on protocols and appli-
cations. The document defines eight facets of middleboxes related to their functionality,
deployment, processing and behavior. These properties are then used to describe and
categorize a large number of middleboxes that are known to exist. The following listing
presents a selection of these facets and table 2.1 gives an overview of existing mid-
dleboxes. We added four main reasons for their deployment and identified the most
important and most common middleboxes today.

1. The Layer of Operation describes on which layer of the ISO/OSI model the
middlebox operates. Some of them might only work up to the network layer
(simple firewall not considering ports), while others also consider the transport
layer (Network Address and Port Translation (NAPT)) or even the application
layer (Application Layer Gateway (ALG)).

2. Transparency of the middlebox: is the middlebox part of the protocol (Not-
Transparent) or is it completely transparent for it (Transparent).

3. What is the purpose of the middlebox: Functional (F) vs. Optimizing (O).
Functional means the middlebox is part of the application, which cannot work
without it, whereas optimizing means that the middlebox is just an addition to
the protocol trying to optimize it.

4. Does the middlebox only forward packets (Routing (R)) or does it actually
change them (Processing (P))?

5. Does the middlebox work in a Stateful (SF) or Stateless (SL) way? Stateful
means that the middlebox has to maintain an entry for packet flows and will
forward related packets according to this entry. If no entry exists, the packet
cannot be processed (e.g. incoming packet for NAT). The functionality of the
middlebox is then limited by the number of entries it can handle. With a stateless
implementation the middlebox is always able to decide about the processing based
on the packet itself.

2.3.3 Impact and Problems

Although middleboxes provide new functionality to networks, services and users, the
violation of the end-to-end argument has a huge impact on many protocols. One of the
first documents that described these problems was RFC 2775 [16]. Released in 2000,
the authors are worried about the transparency of the Internet and state that it is “im-
possible to estimate with any numerical reliability how widely the above inventions have
been deployed.” The term “above inventions” refers to middleboxes and the problem
they saw was the in-transparency they are causing: “Since many of them preserve the

14 2. Background

Reason for Example Properties according to listing above
Introduction Middlebox Layer Transp. Purp. Oper. State

IP Address NAT44 [140] 3+4 T F P SF
Depletion NAT44 with ALG 3-7 T F P SF

Address NPTv6 [159] 3 T F P SL
Independency

Security Firewall 3+4 T F R SF
Firewall (DPI) 3-7 T F R SF
Tunnel Endpoint 3-4 T F P SF
SOCKS [90] 4-7 NT F R SF
Anonymizer 3-7 T F P SL

Reliability Load Balancer 3-7 T F R SL or SF

Performance Caching 7 T or NT F+O P SL
Proxy 7 T or NT F+O P SL

Innovation Media Transcoder 7 T or NT F+O P SL or SF

Tab. 2.1: Existing middleboxes, the reason for introducing them as well as their properties

illusion of transparency while actually interfering with it, they are extremely difficult
to measure.”

[17] describes and analyzes the “current impact of middleboxes on the architecture of
the Internet and its applications.” The problem mentioned is that every new middlebox
that becomes available challenges older protocols that are not aware of it. One example
is the introduction of peer-to-peer networks that are popular for sharing files in a client-
to-client (peer-to-peer) manner. Today, the most prominent example using the peer-
to-peer paradigm is Voice over IP (VoIP). While signalization and authentication uses
a centralized server (e.g. a SIP proxy), the actual connection between the caller and
the callee is peer-to-peer. Especially stateful middleboxes, such as NATs and firewalls,
cause the protocol to fail because incoming packets towards a client will most likely
be blocked due to a missing state. State is usually only created for outgoing packets
in order to forward the reply to the initial initiator of the communication. Generally
speaking, the connection establishment will more and more be initiated from within
stub domains (the ISPs customers), making the existing problem even more severe.

Finally, although middleboxes help to deploy new functionality in many cases, they
may also block innovations in others. For example, the introduction of new transport
layer protocols, such as SCTP [144] and DCCP [85], is hard because existing mid-
dleboxes (e.g. consumer NATs) simply cannot translate the protocol as they don’t
implement it. In other cases poor implementations of protocol standards in middle-
boxes cause an unpredictable behavior in the protocol flow, which may lead to network
stack crashes or other unrecoverable errors.

2.3.4 Assessment

There are three main reasons for the high number of middleboxes that are deployed in
today’s networks: First, the advantages of deploying new functionality in the network

2.4. Operation of selected Middleboxes 15

without changing the end-hosts are stronger than the negative impact of middleboxes
for current protocols and applications. Additionally, some functionality, e.g. stateful
packet filtering, is only possible to implement at network borders instead of implement-
ing it end-to-end. Secondly, at the time when a specific middlebox was deployed (e.g.
NAT) no other solution solving the urgent problem that was the driving factor for the
deployment (e.g. address depletion) was available. Once an alternative became avail-
able (e.g. IPv6), it was already too late. This will most likely happen again and again
since innovations aiming for a quick deployment are hard to implement at end-hosts
only. Finally, one last reason was mentioned by Mark Handley: “Whatever you think
your problem is, plenty of box vendors will sell you a solution” [66]. Thus, there is no
way of not accepting middleboxes as an elementary part of today’s Internet.

2.4 Operation of selected Middleboxes

This section describes the basic operation of typical middleboxes, Network Address
Translation devices, firewalls and Application Layer Gateways that are widely deployed
in today’s network.

2.4.1 Network Address Translation

In 1991, RFC 1287 [27] was the first to mention the limited address space of IPv4:
“The Internet will run out of the 32-bit IP address space altogether, as the space
is currently subdivided and managed”. Although the introduction of Classless Inter-
Domain Routing (CIDR) [52, 53] enabled a more efficient allocation of IP addresses,
this was only a short term solution since the number of devices was still continuously
growing. [27] also proposed to “replace the 32 bit field with a field of the same size but
with different meaning. Instead of being globally unique, it would now be unique only
within some smaller region [...]. Gateways on the boundary would rewrite the address as
the packet crossed the boundary.” [157] first mentioned dividing the address space into
internal and external addresses, before [123] finally defined the private address space
as we know it today. [44] describes how to translate IP addresses at the border of so-
called stub domains (networks that do not handle transit traffic). The advantage of this
solution is that internal addresses can be reused in other private domains, thus solving
the address depletion problem. This technique became known as Network Address
Translation (NAT). More background on the historical introduction of NAT and the
reasons for the IETF for not standardizing it properly are well described in [167].

Internet

NAT

private IPv4 addresses

public IPv4 address

Local_SP Local_IP Public_SP

43123 192.168.1.2 20000
53087 192.168.1.5 20001

Fig. 2.4: Network address and port translation

16 2. Background

Today, we distinguish between two types of NAT. With basic NAT for IPv4 (NAT44)
as described in [44], only addresses are translated between two domains. The same is
true for the IPv6-to-IPv6 Network Prefix Translation [159], which in comparison to
NAT44 uses a checksum neutral mapping. An advanced version of NAT, Network
Address and Port Translation (NAPT) [140], uses port numbers as an additional mul-
tiplexer, which allows the assignment of only one public address to a private network,
while still allowing them to share it among a large number of devices. Today, most home
networks use a NAPT to connect their devices to the Internet. Therefore, the more
general term NAT will used in this thesis to cover both varieties, NATs and NAPTs.

In order to translate between a private and a public domain, the NAT device has
to maintain a state for all connections. For every new connection attempt (e.g. a TCP
SYN packet) coming from an internal host, the NAT creates a new entry in its mapping
table. In NAT terminology this entry is called a mapping or binding [142]. As depicted
in figure 2.4, the NAT stores the internal IP address and source port, as well as the
external source port in its table. Dependent on the implementation, the NAT may also
store the destination IP address and port to differentiate if incoming packets actually
belong to an existing connection. The NAT then replaces the local source port by the
external source port and the private source IP address by the public IP address of
the NAT. Additionally, the checksum of the layer 3 and layer 4 headers (for TCP and
UDP) have to be recalculated. For incoming packets the NAT looks up its mapping
table using the destination source port as a key and retranslates the destination port
and IP address to the private one.

NAT not only solves the address depletion problem, it also has two additional
advantages: First, NAT helps to hide the topology of the internal network, which can
be seen as a security plus. Second, the address independency of the internal network
allows changing the ISP without changing the network configuration of all hosts and
vice versa. On the other hand, NAT breaks the end-to-end argument of the Internet
and due to the stateful behavior, it causes many problems, which are further described
in section 5.1.1.

Part of the problem is that although published as early as 1994 [44], no common
approach for NAT has emerged. Current NAT implementations differ from model to
model, which leads to many compatibility issues. It is therefore essential to understand
the behavior of NAT in order to design solutions that cope with the disadvantages of
it. The details of NAT behavior are covered in part II.

2.4.2 Large Scale NAT

Although almost every consumer network (and also many enterprise networks) uses
NAT to connect to the Internet, the Internet Assigned Numbers Authority (IANA)
has run out of global IPv4 addresses. The transition to IPv6 is hard because a large
number of hosts in private networks still only support IPv4 and many consumer elec-
tronic devices, such as Internet radios, smart TVs and smartphones, will never receive
a firmware update supporting IPv6. Therefore, providing IPv6-only services to new
customers is not possible.

The second problem is that most content in the Internet is not yet reachable via
IPv6. In fact, according to the Comcast IPv6 adaption monitor1 only 3.06% of the
Alexa2 top one million websites was reachable via IPv6 from their monitoring clients
in May 2012. A second test in December 2012 revealed that according to Comcast’s

1 http://v6monitor.kangaroo.comcast.net:8180/monitor/
2 http://www.alexa.com

2.4. Operation of selected Middleboxes 17

AAAA and IPv6 connectivity statistics3 4.948% of the top 1M websites provide an
AAAA record. Although the number of IPv6 enabled websites is growing, the chal-
lenges for ISPs for the future can be summarized as follows:

• ISPs run out of IPv4 addresses and cannot provide public IPv4 addresses to all
of their customers.
• ISPs have to provide access to the IPv4 Internet to all of their customers (from

IPv4 and IPv6 hosts).
• ISPs have to support legacy IPv4-only devices in the customers network.
• ISPs have to be able to provide access to the IPv6 Internet, as well as to support

IPv6 devices in the future.

Large Scale NAT (LSN) (sometimes also Carrier Grade NAT (CGN)) is an approach
to shift NAT functionality from the customer to the ISP. The assumption is that many
customers don’t need more than a few thousand simultaneous connections, which means
they will not need a global IPv4 address and use up the full range of 216 ports for mul-
tiplexing. Some architectures tend to deploy address translation only at the provider,
while others are based on cascaded and multi-layered NATs. Altogether, LSN can be
seen as an interesting approach for solving the IPv4 depletion problem and may delay
the full transition to IPv6 for many more years. The following sections give an overview
of different protocols and possibilities how to deploy LSNs. The IETF RFC 6264 [78]
gives an incremental approach for combining these protocols to an incremental LSN.
Chapters 3 and 6 will then discuss and analyze the behavior of LSNs and the problems
they introduce (section 3.3.4) and show algorithms that allow discovering (section 4.3.4)
and traversing (section 6.4.5) them.

NAT444 and NAT464

The first and more or less obvious approach for saving IPv4 addresses is to introduce
multiple layers of NAT to the network. NAT444 means that instead of assigning public
IPv4 addresses to the customers NAT router (ISPs refer to the term Customer Premises
Equipment (CPE)), customers only receive a private IP address from the ISP. The
translation into a public address is then done by a NAT device located at the provider.
This scenario is shown in figure 2.5. The provider may have a large block of public IPv4
addresses (e.g. from the IANA-reserved range [160]), which is assigned to the public
interfaces of one or more LSNs.

NAT444 is the easiest way to support new customers. It’s immediately available
and there are no changes at the CPE required. Instead of translating between a private
and a public address, the CPEs translate between two private addresses using the same
algorithm as before. Besides general problems with LSN (e.g. some applications may
fail, see section 3.3.4), NAT444 has some major drawbacks: First, overlapping addresses
have to be avoided. This means customers have to make sure that they don’t use the
same private address space on the LAN and the WAN side of their NAT. Furthermore,
some CPEs filter private addresses on the WAN side, which means they cannot be
used in a NAT444 scenario. The firewall functionality of such devices simply block all
incoming packets carrying a private source address. To avoid these problems, it would
be possible to declare a range of public IP address as “ISP shared” and reuse these
addresses within the providers networks. However, this requires a lot of administrative
effort, which makes this solution unlikely to happen.

3 http://www.employees.org/˜dwing/aaaa-stats/

18 2. Background

ISP

...
IPv4

Internet

customers

CPE

CPE

LSN

LSN

private IPv4 addresses private IPv4 addresses public IPv4 addresses

or IPv6 addresses

Fig. 2.5: NAT444 and NAT464

As depicted in figure 2.5, NAT464 uses public IPv6 addresses between the CPE and
the LSN. The problem here is that the CPEs have to implement an address transla-
tion between IPv4 and IPv6 addresses. Thus, the ISPs would have to replace all their
deployed CPEs. The initial approach for translating between IPv4 and IPv6 was stan-
dardized as NAT-PT in [153] and because of “technical and operational difficulties”
obsoleted in [3]. The successor of NAT-PT, the Framework for IPv4/IPv6 Translation,
is standardized in [7].

Dual-Stack Lite (DS-Lite)

The initial idea for the transition from IPv4 to IPv6 was to assign two addresses to
each host: an IPv4 address and an IPv6 address operating as a Dual Stack. However,
since ISPs are running out of IPv4 addresses, Dual-Stack Lite (DS-Lite) only assigns
IPv6 addresses to customers. IPv6 devices may then use these addresses to directly
connect to the Internet. In order to also support IPv4 hosts, the CPE is also able to
assign private IPv4 addresses to its connected hosts. To be more precise, the private
IP addresses are coming from the ISP, while the CPE only chooses the subnet mask for
the private network. On outgoing packets, the CPE encapsulates the IPv4 packet into
an IPv6 packet and uses its IPv6 connection to send it to the ISP. The Address Family
Transition Router element (AFTR) [43] of the ISP decapsulates the packet, translates
the private IPv4 address into a public one and sends the packet to the public IPv4
Internet. DS-Lite was mainly pushed by Comcast and is now standardized in [43]. The
advantage of DS-Lite is that there is no need for translating network layer protocols and
it allows deploying IPv6 in the ISP network while still supporting IPv4 connectivity
and IPv4 customers. As IPv6 devices become available they can be directly connected
without the need for a tunnel.

NAT64 together with DNS64

Finally, ISPs have to provide access from IPv6 only devices to content that is only
accessible via IPv4. Whenever a hosts asks a DNS64 server [6] for an AAAA record
that does not exists, the DNS server checks if an A record (IPv4) exists for the domain.
If so, it constructs an AAAA record in a way that the first part of the returned IPv6
address points to a NAT64 device, while the second part embeds the IPv4 address of the
A record. The initial packet is then sent to the LSN, which extracts the IPv4 address
and translates the packet to an IPv4 source address. [8] defines the well-known prefix

2.4. Operation of selected Middleboxes 19

64:ff9b::/96 to be used for embedding addresses. Stateful NAT64 is standardized in
[5] and [7], DNS64 in [6]. Viagenie4 published an open source implementation called
Ecdysis5 integrating NAT64 and DNS64.

2.4.3 Firewalls and ALGs

In the early days of the Internet there were only a few users and security critical
attacks or fake messages were nothing to worry about. As the number of users and
hosts continued to grow security became a critical issue. Anonymous users from all
over the world, online businesses, financial transactions and e-commerce are just a few
examples for motivating network security. The easiest way for blocking unwanted traffic
is to install a filter on the edge of the network and require all packets to go through it.
Once a policy for a specific packet exists, it is either dropped or forwarded. Firewalls
normally work on layer 3 and 4, thus considering IP addresses and port numbers. For
some protocols Application Layer Firewalls or Application Layer Gateways (ALG) also
exist. Some of them also look into the payload of certain packets, which is referred to
as Deep Packet Inspection (DPI).

Stateless Packet Filters treat each packet individually, there is no relation be-
tween them. For every packet, incoming and outgoing, that aims to traverse the firewall,
the administrator has to define an explicit policy. Protocols using in-band signaling with
dynamic connections (e.g. FTP, SIP) will certainly fail since the firewall cannot know
that these packets actually belong to a valid session.

Internet Perimeter
Network

Internal
Network

Packet
Filter

Packet
Filter

Bastion
Host

Firewall

Fig. 2.6: Screened subnet firewall architecture

Today, most firewalls are implemented as Stateful Packet Filters and keep track
of the state of the protocol (e.g. the TCP state). Instead of adding rules for both
directions (host A is allowed to communicate with host B on port 80 and host B is
allowed to send packets from port 80 to host A) a stateful firewall only knows one rule:
host A is allowed to communicate with host B using http. Packets that are part of
the answer are detected as related to an established connection and are automatically
forwarded. Thus, host B can only send packets to host A if they are actually part of an
answer and only if host A actually established a connection. Thus, spoofing becomes
hard as the attacker has to guess the correct parameters of a packet (e.g. sequence
number) in order to traverse the firewall. For stateless protocols such as UDP, most
firewalls add their rules dynamically and a small timeout (e.g. 30-60 sec.) is assigned to
each connection. Once the timeout expires, the state is deleted. For TCP the timeout

4 http://www.viagenie.ca
5 http://ecdysis.viagenie.ca

20 2. Background

is much larger (10-30 min.), since a termination of a session can be easily detected by
tracking the TCP state (e.g. waiting for a FIN packet).

For protocols that use dynamic ports, for example SIP [131], SDP [67], RTSP [138]
and FTP [120], a firewall only operating on layer 3 and 4 would have to be configured to
allow a large port range, thus creating a potential security risk. Instead, an Application
Layer Gateway is able to look into the layer 4 payload and handle the application
layer protocol. The firewall is then able to dynamically open the correct port for this
application. An ALG for NAT is also able to replace IP addresses and port with a local
scope by the corresponding public ones, thus helping the protocol to seamlessly work
across NATs.

Figure 2.6 shows a typical firewall deployment in an enterprise network following
the screened subnet architecture. This architecture differentiates between two types of
hosts: regular clients and bastion hosts. Bastion hosts provide services to the network
and need to be reachable from the Internet. One example would be an SMTP server
that is responsible for the company’s mail infrastructure. In order to separate bastion
hosts and regular clients the screened subnet architecture consists of two networks: An
internal network for regular clients that do not provide any services to other hosts and
a perimeter network for bastion hosts. Packet filtering routers are located on the edge
of each network and only forward packets that are explicitly allowed by the company’s
policy. If the bastion host is compromised it is still isolated from the internal network
and an attacker is not able to sniff other packets or directly attack internal hosts.
However, if an attacker manages to compromise an internal client, a perimeter firewall
only helps prevent establishing connections towards the Internet. In this case a personal
firewall installed on each host may be an additional security benefit.

Part II

ANALYSIS AND BEHAVIOR OF MIDDLEBOXES

3. MODELING AND CLASSIFICATION OF MIDDLEBOX
BEHAVIOR

3.1 Introduction

Most protocols that exist today were designed with the end-to-end paradigm in mind.
Middleboxes in the Internet may violate this paradigm and therefore cause errors in the
original and intended packet flow. Firewalls that block certain ports and understand
only a limited number of protocols, load balancers that choose a path for packets in
an unforeseen manner and Network Address Translators that rewrite IP addresses and
port numbers make it hard to deploy new protocols and applications that still assume
direct connectivity from one end-host to another, e.g. Voice over IP and peer-to-peer
applications such as Bittorrent1.

In order to assess the impact of existing middleboxes, it is essential to understand
and describe their mode of operation. Thus, the goal of this chapter is to design a
processing model that allows describing the processing of packets for arbitrary middle-
boxes. Based on this model as described in section 3.2, section 3.3 gives a detailed
summary of middlebox behavior with a focus on Network Address Translators and
firewalls, as these devices have the most impact on all layers, from the network layer
up to the application layer.

3.2 Modeling of Middlebox Behavior

A middlebox operates in the “middle” of a communication session by modifying, filter-
ing or adding packets that are seen on its network interfaces according to middlebox
specific processing rules. The approach is quite generic: For example, a traditional
firewall has to decide whether a packet received on interface A should be forwarded to
interface B or if it should be discarded. A Network Address Translator receives packets
on its internal LAN-side interface, translates them and forwards them using its external
WAN-side interface. A Load Balancer receives a query and decides to which instance of
a server it should forward the requests. However, when closely looking at the middlebox
specific functionality, it is rather hard to precisely describe the processing functionality
of the individual implementations. This section introduces a notation for describing
the packet processing in middleboxes that is useful to describe, analyze and classify
middlebox behavior.

3.2.1 Related Work

Due to the complexity of today’s Internet topology, there has been much research on
modeling and formalizing network communications, architectures and also middleboxes
in particular. In [81] the authors present a model “to express precisely and abstractly
the concepts of naming and addressing and to specify a consistent set of control pat-
terns and operational primitives, from which a variety of communication services can

1 http://www.bittorrent.org/

24 3. Modeling and Classification of Middlebox Behavior

be composed”. Their model allows constructing general network architectures and also
includes basic middlebox functionality and operations. In fact, the existence of middle-
boxes and their undefined and multi-layered way of operation was part of the motivation
for this work. As a runtime environment the authors used the Click Modular Router
[86], which itself is a prominent example for modeling traffic flows.

As already described in section 2, RFC 3234 [17] gives a detailed overview of middle-
boxes that have emerged in different networks and describes their functionality. Other
related work on specific middlebox behavior is done by the BEHAVE working group
of the IETF2. There are a number of drafts [134] and RFCs [4, 59, 141] that group
and characterize different aspects and requirements of middlebox behavior and give an
overview of important fields to be considered.

A specific model describing a Unified Firewall Model is presented in [108]. The
authors list and combine firewall specific attributes and their model allows describing
the syntax and semantics of typical, but also complex firewall implementations.

An approach of modeling middleboxes in general was presented in [80]. With the
help of zones, input pre-conditions, processing rules, state databases, auxiliary traffic
and interest fields the model is able to describe the different phases of a middlebox when
processing packets. Middlebox specific functionality, such as the assignment strategy
for a new NAT mapping, is not considered. Additionally, the complexity of the model
specification is rather high. The model we use to describe the state of the art in
middlebox behavior has a strong focus on middlebox specific functionality and aims to
be less complex that the state of the art.

3.2.2 Notation and Processing Model

The processing model is based on the assumption that a middlebox forwards packets
from one domain (or zone) to another. More specifically, a middlebox receives packets
on zone A, processes them and sends them to zone B. As in Linux iptables, we use three
different processing stages to express this (see figure 3.1): Input (In), Processing (Proc.)
and Output (Out). The input stage receives packets and if the packet is destined for
the middlebox it triggers functions in the processing stage where middlebox specific
functionality is implemented. For example, once a firewall receives a packet it queries
its policy table and decides whether the packet should be accepted and forwarded or
if the packet should be discarded. After processing the packet it is sent to the output
stage (if allowed by the policy) and forwarded to the external zone.

Receive packet and call
processing function

Process packet according
to middlebox specific rules Send packet out

In Processing Out

Fig. 3.1: Processing stages of a middlebox

Each middlebox implements a generic function at the input stage that forwards all
received packets to the appropriate processing function. Middlebox specific processing
rules are then implemented in the processing stage, which may (dependent on the
policy) call the send function in the output stage. Our notation consists of variables
(e.g. p) that may be passed to functions (e.g. function(p)). If a function manipulates

2 http://www.ietf.org

3.2. Modeling of Middlebox Behavior 25

variable p we state: p := function(parameter). The following table lists the packet flow
through the individual stages and the main functions for our model. In the following
section we then focus on the middlebox specific functionality as implemented in the
processing stage.

In if packet arrived(p) then
Proc(interface, p)

end if

Proc implements MB specific rules in function Proc(interface, p)
which may call a function in the output path

Out send(p, interface)

3.2.3 Modeling Network Address Translation

Network Address Translation devices are probably the most common middleboxes today
and are installed in almost every consumer network. The following example shows how
a basic Network Address Translation (NAT) device can be modeled. For the sake
of clarity, we use two different listings, one for outgoing (algorithm 3.1) and one for
incoming packets (algorithm 3.2). Outgoing packets arrive on the internal interface
(thus Proc(internal, p) has to be implemented). The NAT looks up its state table
to determine if the packet belongs to an existing connection. If so, it retrieves the
appropriate entries for this connection from the state database (the external port and
IP address) and translates the relevant header fields (e.g. source IP address, source port
and checksums). If no entry exists, the NAT has to allocate a new external mapping,
store it to the database and modify the packet accordingly. The following listing shows
the individual steps of a NAT for outgoing packets using our processing model.

1 if found (pub := get state(p)) then
2 p := translate packet(p, pub); . translate packet immediately
3 else
4 pub := allocate new mapping(p); . a new external mapping is needed
5 store state(p); . remember new mapping
6 p := translate packet(p, pub); . translate packet

7 end if
8 send(p, external); . call send function in output stage

Alg. 3.1: Proc(internal, p) for NAT outgoing packets

The individual processing steps for the function Proc(internal, p) are as follows:

1. The NAT mapping table is queried (get state) with the packet p as a key to
check if the packet belongs to an existing connection. It expects the external
public mapping pub in return (line 1).

2. If the connection is already known to the NAT mapping table the packet is trans-
lated according to NAT specific rules implemented in the translate packet func-
tion (line 2).

26 3. Modeling and Classification of Middlebox Behavior

3. If the connection is not known to the NAT (line 3) a new external public mapping
(pub) is allocated following a strategy that is described later in this chapter. Here
we simplify this step by using the allocate new mapping function that expects
the packet p as a parameter and returns the public mapping pub (line 4).

4. The NAT stores the new state to its state table and translates the packet (as
before) (lines 5+6).

5. Finally, the NAT calls the send function in the outgoing stage and passes packet
p and the external interface external to it (line 8).

For incoming packets (p arrives at the external interface, thus Proc(external, p)
has to be implemented) the NAT is only able to forward packets if they belong to an
existing connection. Algorithm 3.2 shows the processing steps for incoming packets.

1 if found (priv := get state(p)) then
2 p := translate packet(p, priv); . translate packet immediately
3 send(p, internal); . call send function in output stage

4 else
5 drop packet(p); . drop packet
6 end if

Alg. 3.2: Proc(external, p) for NAT incoming packets

The individual processing steps for the function Proc(external, p) are as follows:

1. The NAT mapping table is queried (get state) with the packet p as a key to check
if the packet belongs to an existing connection. It expects the internal mapping
with the private addresses priv in return (line 1).

2. If the connection is known to the NAT mapping table the packet is translated
according to NAT specific rules implemented in the translate packet function
(line 2).

3. After the translation the NAT calls the send function in the outgoing stage and
passes packet p and the internal interface internal to it (line 3).

4. If the connection is not known to the NAT (line 4) it drops the packet (line 5).

3.3 Classification of NAT Behavior

Although standardized at the very beginning [44], current NAT implementations not
only differ from vendor to vendor, but also from model to model and sometimes even
from firmware to firmware. As a result, an application might work across a particu-
lar NAT, while it fails with a different model or version. Therefore, it is essential to
understand and classify existing NAT implementations to design algorithms and appli-
cations that have a high chance of working with a large number of existing NATs. In
the last few years, a lot of research on classifying NAT behavior has been done. The
following sections present the state of the art in NAT behavior following the terms and
definitions of [133] and [4]. Additional protocol specific behavior requirements have
been described in [59] (for TCP), [4] (for UDP) and [141] (for ICMP). Table 3.1 gives
an overview about relevant behavior categories and their properties. The meaning of
the properties are then described in the next sections.

3.3. Classification of NAT Behavior 27

Category Sub Category NAT Property

Binding Port Binding Port Preservation
Port Multiplexing
No Port Preservation

NAT Binding Endpoint Independent
Address (Port) Dependent
Connection Dependent

Filtering Independent
Address Restricted
Address and Port Restricted

Tab. 3.1: Overview of relevant NAT behavior categories

3.3.1 NAT Behavior for Outgoing Packets

For outgoing packets that do not belong to an existing connection (meaning no state
exists in the mapping table), the NAT has to allocate a new mapping, store it to the
state table and finally translate the mapping according to the NATs policy. There are a
number of options for allocating a new state, which then have an impact on the storing
and translating parameters.

Allocate Mapping

As shown in listing 3.1 at line number 4 the NAT calls the allocate new mapping
function for every packet that it has not yet seen. The main goal of the allocation
process is to create a mapping that uniquely identifies the current connection. Possible
multiplexers are the source port of the external zone, the IP address of the external
zone (if multiple exist), or a combination of fields such as the source and the destination
port together with the layer 4 protocol. The allocation function can be divided into
port binding and NAT binding.

A port binding behavior of Port Preservation means that the NAT will try to keep
the source port and only translate the source IP address. The following listing shows
how port preservation can be expressed using our general middlebox notation. The
relevant changes to the example of section 3.2.3 are highlighted.

1 if found (pub := get state(p)) then
2 p.sIP := pub.IP ; . translate IP address only
3 else
4 pub := allocate new mapping(p);
5 store state(p);
6 p.sIP := pub.IP ; . translate IP address only

7 end if
8 send(p, external);

Alg. 3.3: Proc(internal, p) for NAT using Port Preservation

28 3. Modeling and Classification of Middlebox Behavior

If simple port preservation is not possible, because the mapping would not be unique
anymore, the extension Port Multiplexing may be used in order to still preserve the port.
Here, multiplexing is achieved by also considering the destination address of the packet.
Incoming packets can now carry the same destination port and are distinguished by
the complete 5 tuple. In this case the NAT is able to assign the same external source
port and external source IP address multiple times. The NAT may also follow the
strategy of not preserving any source ports. Here, we distinguish between a No Port
Preservation strategy that uses a defined algorithm for assigning external ports and a
strategy that simply uses more or less random external ports. While in the first case
the predictability of external ports only depends on the algorithm, in the latter case
port prediction is almost impossible.

NAT Binding deals with the dependency and reuse of mappings. Endpoint Indepen-
dent Binding means that the assigned external mapping is only dependent on the source
of the connection (port and IP address). As long as a host establishes a connection
from the same source IP address and port, the mapping does not change independent
of the destination. With an Address (Port) Dependent Binding the assignment is de-
pendent on the internal and the external transport address (combination of IP address
and port according to [130]). As long as consecutive connections from the same source
to the same destination are established, the mapping does not change. As soon as a
different destination is involved, the NAT changes the external multiplexing. An End-
point Dependent Binding, or connection dependent binding, assigns a new port to every
connection. Some implementations increase the new port number by a specific (and
well predictable) delta, but others assign random port numbers to new mappings.

1 case port preservation
2 pub.sP := p.sP ; . keep source port

3 case no port preservation (alg)
4 pub.sP := lastPort+X; . use algorithm for new port

5 case no port preservation (random)
6 pub.sP := random(portrange); . random port

7 case endpoint independent
8 pub.sP := alg(p.sP, p.sIP); . use source as input

9 case connection dependent
10 pub.sP := alg(p.dP, p.dIP); . use destination as input

11 end case

Alg. 3.4: Implementation of allocate new mapping(p) dependent on the NAT type

The listing above shows the implementation of the allocation function for different
behaviors. One example of a no port preservation algorithm is to increase the last
allocated port by a fixed value X. A random strategy would call a randomize function
that picks a new port from the list of available ports. An endpoint independent binding
uses an algorithm that only considers the packets source port and IP address, whereas
a connection dependent mapping considers the destination of the packet.

3.3. Classification of NAT Behavior 29

Store and Update Mappings

The number of fields that have to be stored in the internal mapping table depends
on the port allocation algorithm and on the filtering behavior (see below). For the
simplest form of NAT it is sufficient to store the source IP address and port of the
internal client, as well as the external port of the NAT. To manage existing mappings
the NAT also assigns a timer to every connection. The timer is reset for every packet
traveling through the NAT. If it expires the mapping is removed. For many protocols
there are multiple timers. For example, UDP manages a single UDP packet timer, as
well as a “UDP stream timeout” that is allocated after multiple packets belonging to
the same connection (a stream) travel through the NAT. For TCP, every TCP-state
(e.g. SYN-sent, established, ...) maintains its own timer, while it is recommended to
set the value of the established state to approximately two hours [59].

Translating Packets: Masquerading

The main operation of a NAT device is to translate realm-specific addresses between
two networks. The translate packet function specifies which fields are translated. For
a pure address translation device, such as traditional NAT [44] or NPTv6 (NAT Prefix
Translation) [159], only the network layer is affected. The NAT replaces the source
IP address and adjusts the checksums. In case of NPTv6, the translation is done in
a checksum neutral way. In case of NAT the checksum of the layer 4 packet has to
be recalculated as well since the IP source and destination addresses are part of TCPs
pseudo header [119]. For a NAPT device that is not preserving ports the source IP
address, source port and checksum have to be replaced. For NATs operating up to
layer 7 for specific protocols, the translate packet function also replaces the payload
of the application layer protocol e.g. for SIP. Finally, some NATs also decrement the
time to live (TTL) field of the IP header.

1 case Network Address Translation Device
2 p.sIP := pub.IP ; . replace source IP address
3 p := adjust checksums(p); . Layer 3 and 4 checksums

4 case Network Prefix Translation
5 p.sIP := pub.IP ; . Checksum neutral translation

6 case NAPT with port preservation
7 p.sIP := pub.IP ;
8 p := adjust checksums(p);

9 case NAPT no port preservation
10 p.sIP := pub.IP ;
11 p.sP := pub.Port; . replace source port
12 p := adjust checksums(p);

13 case NAPT with SIP ALG
14 p.sIP := pub.IP ;
15 p.sP := pub.Port;
16 p := adjust checksums(p);
17 p := translate SIP (p); . Application Layer Gateway

18 end case

Alg. 3.5: Implementation of translate packet(p, pub) dependent on the NAT type

30 3. Modeling and Classification of Middlebox Behavior

3.3.2 Incoming Packets

Once a mapping exists, the NAT has to decide if an incoming packet actually belongs
to an existing connection or if it only matches parts of the state by accident. Endpoint
Filtering therefore describes how existing mappings can be used by external hosts and
how NAT handles incoming connection attempts. Independent Filtering allows inbound
connections without considering the source of the packet. As long as it matches an ex-
isting state the packet is forwarded to the appropriate internal client. With Address
Restricted Filtering the NAT only forwards packets coming from the same host (match-
ing IP address) the initial packet was sent to. Address and Port Restricted Filtering
also compares the source port of the inbound packet. According to our middlebox
notation, the three categories can be described as follows:

1 case independent filtering
2 if p.dP == state.pubPort then
3 return state.private mapping;
4 end if

5 case address restricted filtering
6 if p.dP == state.pubPort AND p.sIP == state.dIP then
7 return state.private mapping;
8 end if

9 case address and port restricted filtering
10 if p.dP == state.pubPort AND p.sIP == state.dIP AND p.sP ==

state.dP then
11 return state.private mapping;
12 end if

13 end case

Alg. 3.6: Implementation of get state(p) dependent on the NAT type

3.3.3 NAT Classification

With the basic NAT behavior aspects described above, we will now discuss a catego-
rization used in the state of the art and depicted in figure 3.2.

Full Cone NAT

A Full Cone NAT uses an endpoint independent binding strategy, which means that
the same external endpoint (ext according to figure 3.2) is assigned to two consecutive
connections from the same source transport address (int) independent from the destina-
tion transport address (dest1 and dest3). Additionally, a Full Cone NAT implements
an independent filtering strategy, thus any external host is allowed to send packets
from arbitrary ports (destX) to the established mapping. Since the NAT only needs
to maintain three main entries (plus a few more such as a timer) for each connection,
Full Cone NATs are inexpensive to build and widely used.

Address Restricted Cone NAT

Like a Full Cone NAT, an Address Restricted Cone NAT also uses an endpoint inde-
pendent binding. However, address restricted filtering is used as the filtering strategy.

3.3. Classification of NAT Behavior 31

MB

int

Full Cone
Indep. Binding

Indep. Filtering

ext

dest1

dest2

dest3

dest4
MB

int

Address Restricted Cone
Indep. Binding

Addr. Restricted Filtering

ext

dest1

dest2

dest3

dest4

filtered
endpoint

create state

 forwarded

MB

int

Port Address Restricted Cone
Indep. Binding

Port and Addr. Restricted Filtering

ext

dest1

dest2

dest3

dest4
MB

Symmetric
Connection Dependent Binding

Port and Addr. Restricted Filtering

ext1

dest1

dest2

dest3

dest4

ext2int

Fig. 3.2: Network Address Translation classification

This means the NAT has to maintain an additional entry for each connection, allowing
it to consider the source address when filtering incoming packets. Thus, only packets
coming from the same host the initial packet has been sent to (dest1 and dest2) can use
the existing mapping. As a result, an internal host cannot be reached from arbitrary
hosts in the Internet, which can be seen as a security plus.

Port Address Restricted Cone NAT

Again, endpoint independent binding is used for a Port Address Restricted Cone NAT.
In addition to the destination address used by an Address Restricted Cone NAT, a
Port Address Restricted Cone NAT also remembers the destination port of the outgoing
connection. Now the external host B can only use the mapping from the port the initial
packet was sent to (dest1). This extends the security consideration of the Address
Restricted Cone NAT since the NAT acts like a stateful firewall and only forwards
packets that are related to the ones that were sent by the internal host.

Symmetric NAT

Other than the three categories described above, a Symmetric NAT uses a connection
dependent binding that assigns an external mappings dependent on the destination
(ext1 for dest1 and ext2 for dest3). Dependent on the actual implementation, the
inability to predict external ports with Symmetric NAT may lead to massive prob-
lems regarding the communication across NAT (NAT Traversal) since for every new
connection, independent of the source or destination transport address, a new random
mapping is assigned. Symmetric NATs usually behave like Port Address Restricted
NATs when it comes to filtering.

32 3. Modeling and Classification of Middlebox Behavior

3.3.4 Behavior of Large Scale NATs

The last sections described NAT behavior in general. When looking at Large Scale
NATs, there are many additional behavioral issues that have to be considered. The
first challenge is due to the fact that a LSN serves more than one customer. In a home
network NAT shares an IP address among a number of trustworthy clients all having
“equal rights”. For example, it is not assumed that a client may behave evil and run a
Denial of Service attack by randomly sending out TCP-SYN packets and thus creating
too much state in the NAT. If a client does so, it is assumed that it doesn’t matter
that other clients are also affected. The same is true for legal issues. If a client behind
NAT behaves illegally it is sufficient to identify the owner of the home network based
on the public IP address. With a LSN this is not true anymore, since many homes will
share the same public IP address. Thus, the operators of a LSN have to implement a
logging mechanism to uniquely identify their customers. This of course uses up extra
resources and further legal (privacy) issues may arise.

Another challenge is the possible impact of LSNs for customers. Since the LSN may
have more than one public IP address, it is not clear when and how public IP addresses
should be used when creating a new mapping in the LSN. Thus, some protocols may
fail in such a scenario, e.g. when using different IP addresses for packets that logically
belong to the same connection (layer 7 signaling). Furthermore, many Internet forums
and message boards rely on IP addresses when blacklisting users (e.g. after a number
of unsuccessful logins). Since public IP addresses will be shared among a number of
customers, blacklisting with LSN is not possible anymore. Finally, providing services on
hosts behind a LSN will be very hard for customers since they have no control over the
NAT and are not able to enable port forwarding entries allowing to statically forward
ports to private hosts.

The BEHAVE working group of the IETF standardized common requirements for
LSNs in [114]. Besides general requirements addressing NAT behavior for UDP [4],
TCP[59], ICMP [141] and the general problems that arise when sharing IP addresses
[49], the behavioral requirements for LSNs are as follows.

Requirement 1 (R1) A Large Scale NAT can be seen as a shared resource and the
available number of ports should be fairly shared by all customers. The NAT mapping
table has to be kept as small as possible by assigning adequate timeouts for bindings.
The limitation should be configurable by privileged users and should be adapted to
the hardware of the LSN. One approach could be that the first packet of a customer
instantly reserves a bin of ports, which also reduces the logging effort (see R2).

R2 R1 stated that short timeouts help to save resources. However, if a TCP timeout
expires the port cannot be assigned to a new customer within a certain amount of time.
It is recommended to wait at least 120 seconds, which is the Maximum Segment Lifetime
in TCP [119]. This also depends on the filtering strategy the LSN implements. For
address and port restricted filtering the port can be reused immediately.

R3 Since multiple customers may share the same external IP address, the NAT
should store the following combination for uniquely identifying its customers: cus-
tomerID; public IP address; timestamp.

R4 A LSN should use a paired address pooling [4], meaning that the external IP
address always depends on the internal one. Protocols that use in-band signaling, such
as SIP and FTP, establish multiple connections within one session. If the external IP
addresses of these connections differ it is most likely that the protocol will fail.

3.4. Firewall Behavior 33

R5 It is recommended that a LSN should implement an endpoint independent
filtering strategy. This not only saves resources (see R1) by requiring less state in
the NAT table, but also makes sure to have as little impact as possible on existing
behavior-based NAT Traversal techniques such as hole punching [48].

R6 If R5 is fulfilled, most traversal methods will still work. However, for some
scenarios, e.g. providing a service behind a NAT, it is necessary to directly forward
certain ports to a specific destination. In the case of a LSN this is only possible if
the customer is allowed to control at least a few ports of the LSN. However, this also
implies a configuration protocol and raises security related questions.

3.4 Firewall Behavior

Section 2.4.3 already introduced stateless and stateful firewall behavior. The most
important difference is that a stateless implementation simply looks up the firewall
policy for every incoming packet and is not able to detect and handle related packets.
Stateful firewalls maintain a table and keep track of established connections based on the
state of the protocol. In this section we show how this behavior can be modeled using
our notation. For both listings (algorithm 3.7 for stateless firewalls and algorithm 3.8
for stateful firewalls) we assume that the firewall is deployed between two networks and
aims at protecting the internal network green from attacks coming from the external
network red.

3.4.1 Stateless Firewalls

1 if allowed (policy := get policy(p)) then
2 send(p, green); . forward packet to internal network
3 else
4 drop packet(p); . drop packet
5 log incident(p); . logging entry

6 end if

Alg. 3.7: Proc(red, p) for a stateless firewall

The individual processing steps for the function Proc(external, p) are as follows:

1. The firewall receives packet p and looks up its policy database.
2. If the packet is allowed it is forwarded to the internal network (line 2).
3. If the policy states that the packet is not allowed it is dropped (line 4) and a

logging entry is generated (line 5).

34 3. Modeling and Classification of Middlebox Behavior

3.4.2 Stateful Firewalls

Algorithm 3.8 lists the notation for a stateful firewall that allows incoming packets for
a specific port:

1 if state related (state := get state(p)) then
2 send(p, green); . forward packet to internal network
3 else
4 if allowed (policy := get policy(p)) then
5 allocate new state(p); . allocate new state for this connection
6 send(p, green); . forward packet to internal network

7 else
8 drop packet(p); . drop packet
9 log incident(p); . logging entry

10 end if

11 end if

Alg. 3.8: Proc(red, p) for a stateful firewall

1. The firewall receives packet p and checks if it belongs to an already existing (or
“related”) connection (line 1). If so, it is directly forwarded to the internal (green)
network (line 2).

2. If the packet does not belong to an existing connection the firewall queries the
policy database (line 3).

3. If the packet is allowed a new state entry is created (line 5) and the packet is
forwarded to the internal network (line 6).

4. If the packet is not allowed it is dropped (line 8) and a logging entry is generated
(line 9).

3.5 Application Layer Middleboxes and Proxies

Numerous middleboxes exist that operate above the transport layer and most of them
act as a proxy providing application specific functionality. HTTP proxies cache infor-
mation, filter advertisements and allow regulating the access to webpages. A SSL proxy
can be used to intercept a secure connection in order to inspect the payload of these
packets. The use of proxies can be configured by the client by explicitly entering the
proxies address.

In any case a proxy will terminate the initial connection, process the packets ac-
cording to its functionality and most likely establish a new connection to the original
destination. In case of a caching HTTP proxy, the client could also be served directly
from the cache without actually querying the destination. Therefore, modeling proxies
is somehow straightforward. Packets are received, application specific processing rules
are applied and a new connection is established. The following section serves as an
example and shows the model of a Tor proxy.

3.5.1 Tor and Polipo

Tor3 is a network for anonymizing TCP traffic. It protects its users by directing packets
through multiple Tor servers and by onion routing [37]. To connect legacy applications

3 https://www.torproject.org/

3.6. Summary and Key Findings 35

to Tor, a proxy operating between the transport and application layer is used. The Tor
software packet comes with Polipo4, a web-proxy supporting the SOCKS protocol [90].
Existing applications configure Polipo as a web-proxy and Polipo forwards their traffic
to the Tor network via SOCKS.

1 if cached (state := get state(p)) then
2 send(cached answer, proxy interface); . serve request from cache
3 else
4 send(p, tor interface); . forward request to Tor
5 end if

Alg. 3.9: Proc(proxy interface, p) for the polipo proxy

1. A legacy application sends a packet p to the Polipo proxy which may serve the
request from its cache (line 2).

2. If the request cannot be served from the cache the p is forwarded to the Tor
application for further processing (line 4).

3.6 Summary and Key Findings

This chapter described middlebox behavior and introduced a processing model that
allows describing the operation of arbitrary middleboxes. Based on this model we gave
an insight into the behavior of Network Address Translation, firewalls and application
specific proxies. The processing chain of the model is very generic and allows specify-
ing arbitrary events in order to model individual processing steps of middleboxes. The
granularity of the steps can be freely chosen dependent on the required level of detail.
The processing model is the first step for answering the question if a thorough and
structured analysis of middlebox behavior helps to improve the success rate of middle-
box traversal techniques (Q1 according to section 1.1), which will be further examined
in the following chapter.

Key Findings of this chapter
(and contributions according to section 1.2):

• NAT, Large Scale NAT and firewalls are the most prominent examples
of middleboxes violating the end-to-end argument.

• Middlebox behavior and especially NAT behavior is not standardized.

• In the state of the art there have been many efforts to characterize
NAT behavior, but the impact of these classifications remains unclear.

C3.1 Our processing model helps to describe middlebox packet processing
using arbitrary operations in order to understand the purpose and the
operation of a specific middlebox.

4 http://www.pps.univ-paris-diderot.fr/∼jch/software/polipo/

36 3. Modeling and Classification of Middlebox Behavior

4. EXPERIMENTAL ANALYSIS OF MIDDLEBOX BEHAVIOR

4.1 Introduction

Dependent on the behavior and the purpose of introduction, a middlebox may have a
significant impact on the quality of service, available bandwidth, latency or security of
a connection between two endpoints. Moreover, if the middlebox implements firewall or
NAT functionality it may even prevent a connection from being established. Unfortu-
nately, middlebox behavior is not standardized and many vendors find different ways of
implementing practically the same functionality. Some of them follow the specifications
for standard protocols like TCP, others only implement the most important parts of it
(e.g. ignoring the complete state diagram of TCP), leading to suboptimal behavior in
many cases.

The goal of this chapter is to understand the behavior of middlebox implementa-
tions that are located on the edge of the network by experimentally measuring and
analyzing them. Examples for such middleboxes are Large Scale NATs and proxies lo-
cated at ISPs and Customer Premises Equipment (CPEs) such as home routers located
in private networks. Most of these devices implement a non-standardized combina-
tion of NAT and firewall and only allow incoming packets as a response to outgoing
packets. We argue that detecting and understanding middlebox behavior will help to
find optimal ways for dealing with them. For example, instead of applying a traversal
method using trial and error (Skype), our goal is to apply a customized version of a
traversal algorithm that minimizes negative side-effects (e.g. breaking the end-to-end
connectivity) of middleboxes.

After getting familiar with general measurement methods and tools in our lab, a
public field test was conducted over a long period of time (approx. 4 years) to cover a
large number of real middleboxes. During this period the measurement methodology
has been adapted a few times to react to the most current findings. Today, the test com-
pletely runs in a web browser making it compatible with all major operating systems.
The developed algorithms for measuring middlebox behavior also act as cornerstones
for a new middlebox traversal framework that will be presented in chapter 6.

The following sections describe our experimental analysis in detail. First, section
4.2 presents an information model that is used throughout this thesis to refer to specific
behavioral issues and to explain all further algorithms and results. Section 4.3 then
introduces the individual algorithms for measuring middlebox behavior. Most of them
are designed with the assumption of only having a very simple client that is only capable
of sending basic UDP and TCP packets and does not require superuser privileges. The
complete logic is therefore transferred to the server part that is running in the public
Internet. After thoroughly analyzing a specific middlebox, an instance of the informa-
tion model can be created that represents the middlebox and explains its behavior in
detail. Section 4.4 presents a virtual testbed that dynamically creates an environment
for emulating certain middlebox behaviors. Section 4.5 then focuses on related work,
the design of the field test and on selected implementation issues. Finally, the results
and the lessons learned are presented in section 4.6.

38 4. Experimental Analysis of Middlebox Behavior

4.2 Information Model

In the last chapter a processing model was developed to express packet flows and
individual processing steps of middleboxes. This section introduces an information
model for describing behavioral characteristics and properties of middleboxes that are
important for designing our measurement algorithms and for gaining knowledge about
different implementations. The modeling was done in XML Schema [149] and the
complete schema is listed in Appendix A. The model as presented in this section only
contains its main elements. The individual fields and their possible values are then
described in more detail when presenting our measurement algorithms.

dd 1d1ddddddd1dddd

ddddddddddddd

sdddddddsddd

eeeeeeeeeeee

dddddeddddddddesdd

eeeeeeeeeee

dddddeddddddddesdd

2eeee2eeeeeee2

dddddeddddddddesdd

444442e44eeee44

dddddeddddddddesdd

e2ee4eeeeeeeeee

dddddeddddddddesdd

2eeee2eeeeeee

dddddeddddddddesdd

eee4eeeeeee

dddddeddddddddesdd

42eeemeemeee2meem

dddddedddddd1

eeeeeeeeeeeeee

dddddeddddddddesdd

42eeemeemeee24eeee

dddddeddddddddesdd

e2ee4eeeeee2eee44eeee

dddddeddddddddesdd

444442e44eeee46

dddddeddddddddesdd

eeeee2e4eee2eemeeeee

dddddeddddddddesdd

eeeeeeeme2eeee

dddddeddddddddesdd

sdddddddddddddd

ee44eeeex

dsdddeddddddddesdd
1111

eeeee2e4eee2eeme ddd

dsdddededdeddeedddd1dddesdd

42eeemeemeee24 ddd

dsddded1dddddddedsdddesdd

eeeeeeee ddd

dsdddededddd1ddesdd

2eeee2eee ddd

dsdddededdddddd1esdd

e2ee4eeeeeenee4nee4eeemeeeee ddd

dsdddededdddddddddesdd

Fig. 4.1: Middlebox Information Model: Root elements

Figure 4.1 shows the root elements of our model. Each middlebox has a number of
elements that may or may not be present (depicted by the cardinality of each element).
There may be multiple network interfaces, each one carrying a specific name (e.g. eth0)
(here we follow our definition from above and state that a middlebox has at least two
network interfaces) and it may operate on different protocol layers. The middlebox
may be stateful and it may filter and translate/modify packets on different layers.
The following sections present the Stateful, Filtering and Translation and Modification
elements in more detail. For the NetworkInterface and ProtocolLayers elements, please
refer to Appendix A as these elements are rather straightforward.

4.2.1 Stateful Element

The stateful element is depicted in figure 4.2. Stateful middleboxes maintain a state
table for storing and retrieving packet related information. For example, a NAT device
stores the mapping between private and public addresses in its state table for retrans-
lating incoming packets. The size of the state table is represented by an integer value
(TableSize) and the TableStrategy field describes the behavior of a middlebox in case
of a full table. In figure 4.2 the table strategy is represented by a TableStrategyEnum
and is initialized with possible values for our thesis in the corresponding sections. Each
protocol may maintain its own state table and the policy for each protocol may be
different.

Each state in the state table has a certain expiration time. If no packet is seen
for this amount of time, the entry is deleted. There may be multiple StateTimer
entries for a stateful middlebox, each one representing a different timeout value. For
example, a NAT device will have two timeout entries for the protocol UDP (UDP

4.2. Information Model 39

dd 2d2ddddddd2dddd

ee44eemmx

dsdddeddddddddesdd
1111

eeeeeeee ddd

dsdddededddd2ddesdd
1111

eeeeeeemee dddd

dsdddededdddeddddesdd
1111

eemeeeeee dddd

dsdddeddddd2dd

eemeeee4eeeee dddd

dsdddededdddeddddd2sdddd

eeeeeeeme4 ddd

dsdddededdddeddddesdd
1111

eeme4 dddd

dsdddededdddeddddddd

eeeee dddd

dsdddeddddddd

eeeeeyemm4e4meeme ddd

dsdddededddd2dd2ddddsdddd

mmeeeee4meeme ddd

dsdddedededddd2ddddsdddd

edsdd 2dddddddedsdddddd

4ddddddddddedsdd

ddddeddeedsdd

eddeddeedsdd

eddddddddedsdd

2ddddddd ddddd2

meeee4eee ddd

dsdddededdddddd2esdd

edsdd 2dddddddedsdddddd

4ddddddddddedsdd

ddddeddeedsdd

eddeddeedsdd

eddddddddedsdd

2ddddddd ddddd2

e4ee4eeeemenee4nem4eeemeeeme ddd

dsdddededdddddddddesdd

edsdd 2dddddddedsdddddd

4ddddddddddedsdd

ddddeddeedsdd

eddeddeedsdd

eddddddddedsdd

2ddddddd ddddd2

ee44eemmxeeee 4e4eee

Fig. 4.2: Middlebox Information Model: Stateful element

timeout and stream timeout), as well as a number of timeouts for TCP (as shown in
the following sections). The StateRemovePolicy field holds a description of policies that
regulate when a state is removed. For example, some middleboxes remove the TCP
state immediately after seeing a TCP-RST packet traveling from the internal network
to the external one, thus the policy would be: “Remove State on TCP-RST out”. The
NoStatePolicy describes the reaction of a middlebox to packets that do not match an
existing state, e.g. an incoming TCP-SYN could be silently dropped or answered with
a TCP-RST.

dd 1d1ddddddd1dddd

ddddddddddddd

sdddddddsddd

eeeeeeeeeeee

dddddeddddddddesdd

eeeeeeeeeee

dddddeddddddddesdd

444444e44eeee44

dddddeddddddddesdd

eeeeeee4eem4eemmmeem

dddddedddddd1

mmeeeee4meememeem

dddddedddddd1

e4ee4eeeemeeeee

dddddeddddddddesdd

eeme4mememeem

dddddedddddd1

m4emee4eeemeem

dddddedddddd1

eeeeeeee4meememeem

dddddedddddd1

meeee4eeeeeeemeem

dddddedddddd1

meeee4eeeeeee

dddddeddddddddesdd

4mmeeeemeem

dddddedddddd1

mee4eeeeeee

dddddeddddddddesdd

meeee4eee44memmmeme4e4meem

dddddedddddd1

44memmmemeee4meem

dddddedddddd1

eemeeee4eeeeemeem

dddddedddddd1

eeeeeeemeeeeee

dddddeddddddddesdd

44memmmemeee44eeee

dddddeddddddddesdd

4m4emee4eeemeem

dddddedddddd1

e4ee4eeeememeee44eeee

dddddeddddddddesdd

444444e44eeee46

dddddeddddddddesdd

meeem4e4eee4eemeeeee

dddddeddddddddesdd

eeeeeeeme4eeee

dddddeddddddddesdd

sdddddddddddddd

ee44eemmx

dsdddeddddddddesdd
1111

meeem4e4eee4eeme ddd�

dsdddededdeddeedddd1dddesdd

eddeddeedddd1dddeddd ddddd1

44memmmemeee44 ddd�

dsddded1dddddddedsdddesdd

eeeeeeee ddd�

dsdddededddd1ddesdd

meeee4eee ddd�

dsdddededdddddd1esdd
1111

eeeeedme4e4 dddd

dsdddededdddddd1esdddddd

44memmmedme4e4 dddd

dsdddededdddddd11dddddddmdddddddd

4meemedme4e4 ddd�

dsdddedddddd1

edsdd 1dddddddedsdddddd

rddddddddddedsdd

ddddeddeedsdd

eddeddeedsdd

eddddddddedsdd

1ddddddd ddddd1

e4ee4eeeemenee4nem4eeemeeeme ddd�

dsdddededdddddddddesdd
1111

eeeeeee dddd

dsdddeddddddd1esdd
1111

4eem4eemm dddd

dsdddeddddddd1rd1dddddddddd

mee4eee dddd

dsdddedmddddd1esdd
1111

4m4emee4eee dddd

dsddded1dddmddddd1dddd

m4emee4eee dddd

dsdddederemddddd1dddd

4444e444mmeeee dddd

dsddded1ddddd1dddd

meee44 ddd�

dsdddedddddd1

edsdd 1dddddddedsdddddd

rddddddddddedsdd

ddddeddeedsdd

eddeddeedsdd

eddddddddedsdd

1ddddddd ddddd1

ee44eemmxeeee 4e4eee

Fig. 4.3: Middlebox Information Model: Filtering element

4.2.2 Filtering Element

The filtering element as depicted in figure 4.3 describes the filtering of packets at the
middlebox. The protocol that is affected, as well as the protocol layer is modeled as
an attribute. On each layer and for each protocol multiple filtering mechanisms will
apply. Filtering can be done based on certain fields of the state table (State-based) or
simply based on a specific policy that is represented by a string value. For example,
a NAT or firewall may as its default behavior filter incoming packets based on the
address and port (thus address and port restricted). However, a user-specific policy
could have been defined to drop all incoming UDP packets to port 5060. Additionally,
middleboxes may filter specific content on the application layer which would also be
reflected in the Policy-based field. Protocol-based filtering describes how the middlebox
handles (unusual or unspecified) packet sequences of a certain protocol. For example,
in TCP an incoming SYN packet (without any ACKs) as an answer to a previously

40 4. Experimental Analysis of Middlebox Behavior

outgoing SYN packet is not a valid packet sequence. Some middleboxes might not filter
this sequence, others do.

dd 1d1ddddddd1dddd

ddddddddddddd

sdddddddsddd

eeeeeeeeeeee

dddddeddddddddesdd

eeeeeeeeeee

dddddeddddddddesdd

444444e44eeee44

dddddeddddddddesdd

eeeeeee4eem4eemmmeem

dddddedddddd1

mmeeeee4meememeem

dddddedddddd1

e4ee4eeeemeeeee

dddddeddddddddesdd

eeme4mememeem

dddddedddddd1

m4emee4eeemeem

dddddedddddd1

eeeeeeee4meememeem

dddddedddddd1

meeee4eeeeeeemeem

dddddedddddd1

meeee4eeeeeee

dddddeddddddddesdd

4mmeeeemeem

dddddedddddd1

mee4eeeeeee

dddddeddddddddesdd

meeee4eee44memmmeme4e4meem

dddddedddddd1

44memmmemeee4meem

dddddedddddd1

eemeeee4eeeeemeem

dddddedddddd1

eeeeeeemeeeeee

dddddeddddddddesdd

44memmmemeee44eeee

dddddeddddddddesdd

4m4emee4eeemeem

dddddedddddd1

e4ee4eeeememeee44eeee

dddddeddddddddesdd

444444e44eeee46

dddddeddddddddesdd

meeem4e4eee4eemeeeee

dddddeddddddddesdd

eeeeeeeme4eeee

dddddeddddddddesdd

sdddddddddddddd

ee44eemmx

dsdddeddddddddesdd
1111

meeem4e4eee4eeme ddd�

dsdddededdeddeedddd1dddesdd

eddeddeedddd1dddeddd ddddd1

44memmmemeee44 ddd�

dsddded1dddddddedsdddesdd

eeeeeeee ddd�

dsdddededddd1ddesdd

meeee4eee ddd�

dsdddededdddddd1esdd
1111

eeeeedme4e4 dddd

dsdddededdddddd1esdddddd

44memmmedme4e4 dddd

dsdddededdddddd11dddddddmdddddddd

4meemedme4e4 ddd�

dsdddedddddd1

edsdd 1dddddddedsdddddd

rddddddddddedsdd

ddddeddeedsdd

eddeddeedsdd

eddddddddedsdd

1ddddddd ddddd1

e4ee4eeeemenee4nem4eeemeeeme ddd�

dsdddededdddddddddesdd
1111

eeeeeee dddd

dsdddeddddddd1esdd
1111

4eem4eemm dddd

dsdddeddddddd1rd1dddddddddd

mee4eee dddd

dsdddedmddddd1esdd
1111

4m4emee4eee dddd

dsddded1dddmddddd1dddd

m4emee4eee dddd

dsdddederemddddd1dddd

4444e444mmeeee dddd

dsddded1ddddd1dddd

meee44 ddd�

dsdddedddddd1

edsdd 1dddddddedsdddddd

rddddddddddedsdd

ddddeddeedsdd

eddeddeedsdd

eddddddddedsdd

1ddddddd ddddd1

ee44eemmxeeee 4e4eee

Fig. 4.4: Middlebox Information Model: Translation element

4.2.3 Translation Element

The translation and modification element as shown in figure 4.4 represents how packets
are translated or modified along the way. General modifications (e.g. of the payload
in case of an ALG) can be represented by using the Fields field. In case of address
translation the Binding and Mapping fields allow specifying the translation operation
in more detail. Binding is further divided into PortBinding and NATBinding and the
mapping algorithm describes the way a middlebox assigns external addresses to new
connections.

4.2.4 Reference Example of a Middlebox Instance

The following listing shows an example of a middlebox instance implementing Network
Address Translation. Two network interfaces configured with IPv4 addresses are avail-
able and the middlebox implements a stateful filtering and translation behavior. Please
note that the example was kept short for the sake of simplicity. A real instance would
also include additional fields for the IP and TCP protocol (including additional timers),
as well as a more detailed network configuration.

<?xml version = "1.0" encoding = "utf-8"?>

<n:Middlebox xmlns:n="http://example.org/MiddleboxSchema" xmlns:xsi="http://www.w3.org

/2001/XMLSchema-instance" xsi:schemaLocation="http://example.org/MiddleboxSchema"

MiddleboxType="referenceNAT">

<NetworkInterface NetworkInterfaceName="lan">

<ipv4>

<IPAddress>192.168.1.1</IPAddress>

...

</ipv4>

</NetworkInterface>

<NetworkInterface NetworkInterfaceName="wan">

...

</NetworkInterface>

...

<Stateful Layer="TransportLayer" Protocol="UDP">

<StateTable>

<TableSize>8000</TableSize>

4.3. Detailed Description of our Measurement Algorithms 41

<TableStrategy>Block</TableStrategy>

</StateTable>

...

<StateTimer>

<Timer>UDP</Timer>

<value>30</value>

</StateTimer>

...

</Stateful>

<Filtering Layer="TransportLayer" Protocol="UDP">

<State_based>Address and Port Restricted</State_based>

</Filtering>

<Translation_and_Modification Layer="TransportLayer" Protocol="UDP">

<Mapping>

<Algorithm>Increment</Algorithm>

</Mapping>

<Binding>

<PortBinding>PortPreservation</PortBinding>

<NATBinding>EndpointIndependent</NATBinding>

</Binding>

</Translation_and_Modification>

</n:Middlebox>

List. 4.1: Reference example of a middlebox implementing NAT

4.3 Detailed Description of our Measurement Algorithms

This section develops algorithms with the goal of analyzing different parts of the infor-
mation model. All of them work in a way that the middlebox to be tested is located
between a test client and a test server that exchange a number of packets (according
to the algorithms). The individual algorithms can be split into four categories as listed
below (table 4.1).

Sec. Test Information Model

Behavior Analysis

4.3.1 Binding Analysis Translation and Modification:Binding

This tests aims to determine the binding strategy of a translating middlebox.

Mapping Analysis Translation and Modification:Mapping

Detects the mapping strategy for new ports.

Filtering Analysis Filtering:State-based

Determines the filtering strategy (which inbound packets are allowed).

Timeout Analysis Stateful:StateTimer

Examines timeouts for different protocols.

ICMP Analysis Filtering:Protocol-based

How the middlebox handles ICMP messages.

42 4. Experimental Analysis of Middlebox Behavior

Mapping Table Analysis Stateful:StateTable

Size and strategy analysis of the mapping state table.

Traversal Analysis

4.3.2 UDP Hole Punching high Stateful:Policy

Triggers an ICMP port unreachable after an outgoing UDP HP packet.

UDP Hole Punching low Stateful:Policy

Triggers an ICMP TTL exceeded after an outgoing UDP HP packet.

UDP Hole Punching silent Stateful:Policy

Triggers no packet after an outgoing UDP HP packet.

TCP Hole Punching high Stateful:Policy

Triggers a TCP-RST packet after an outgoing TCP-SYN.

TCP Hole Punching low Stateful:Policy

Triggers an ICMP TTL exceeded after an outgoing TCP-SYN.

TCP Hole Punching silent Stateful:Policy

Triggers no packet after an outgoing TCP-SYN.

Additional Measurements

4.3.3 Universal Plug and Play ProtocolLayers:7:UPnP

Gathers as much information as possible about the middlebox.

SIP ALG ProtocolLayers:7:SIP

Tests if the middlebox implements a SIP ALG.

FTP ALG ProtocolLayers:7:FTP

Tests for a FTP ALG and if it can be (mis)used for traversal.

Image Proxy Translation and Modification:7:JPEG

Tests if the middlebox modifies JPEG images in the payload.

SCTP Support ProtocolLayers:4:SCTP

Determines if the middlebox supports the SCTP protocol.

IPv6 Analysis ProtocolLayers:3:IPv6

Examines if the middlebox supports IPv6.

Topology Measurements

4.3.4 Topology Detection Stateful:StateTimer

Detects deployed middleboxes and their properties along the path.

Tab. 4.1: Overview of the individual experiments

4.3. Detailed Description of our Measurement Algorithms 43

4.3.1 Behavior Measurements

The first measurement category tests the behavior of middleboxes according to our
information model. Since many middlebox vendors implement the same functionality
in a different way, our goal is to categorize different behaviors to understand side effects
of incorrect implementations and to design middlebox traversal methods that support
as many implementations as possible.

dddddddddddddddddd4ddd 2d2ddddddd2dddd

ee44eemmx

dsdddeddddddddesdd
1111 eeeeeeee ddd

dsdddededddd2ddesdd
1111

eeeeeeemee dddd

dsdddededdddeddddesdd
1111

eemeeeeee dddd

dsdddeddddd2dd

eemeeee4eeeee dddd

dsdddededdddeddddd2sdddd

eeeeeeeme4 ddd

dsdddededdddeddddesdd
1111

eeme4 dddd

dsdddededdddeddddddd

eeeee dddd

dsdddeddddddd

eeeeeyemm4e4meeme ddd

dsdddededddd2dd2ddddsdddd

mmeeeee4meeme ddd

dsdddedededddd2ddddsdddd

edsdd 2dddddddedsdddddd

4ddddddddddedsdd

ddddeddeedsdd

eddeddeedsdd

eddddddddedsdd

2ddddddd ddddd2

meeee4eee ddd

dsdddededdddddd2esdd

edsdd 2dddddddedsdddddd

4ddddddddddedsdd

ddddeddeedsdd

eddeddeedsdd

eddddddddedsdd

2ddddddd ddddd2

e4ee4eeeemenee4nem4eeemeeeme ddd

dsdddededdddddddddesdd
1111

eeeeeee dddd

dsdddeddddddd2esdd

mee4eee dddd

dsdddededdddd2esdd
1111

4m4emee4eee dddd

dsddded2dddeddddd2dddd

ed2ddd2ddd

2ddd2ddddddddddd

m4emee4eee dddd

dsdddede4eeddddd2dddd

tdddddddddddddddddd

ddddddddedddddddddd

4444e444mmeeee dddd

dsddded2ddddd2dddd

2ddddd

dddddddd

meee44 ddd

dsdddedddddd2

edsdd 2dddddddedsdddddd

4ddddddddddedsdd

ddddeddeedsdd

eddeddeedsdd

eddddddddedsdd

2ddddddd ddddd2

ee44eemmxeeee 4e4eee

Fig. 4.5: Middlebox Information Model: Binding element

Binding Measurements

Our first experiment analyzes the binding behavior of a translating middlebox. As pre-
sented in section 3.3, binding describes the strategy a middlebox uses to assign a public
transport address to a new connection. According to the information model, this ex-
periment analyzes the PortBinding and NATBinding part of the Translation and Mod-
ification element for the protocols UDP and TCP as depicted in figure 4.5.

1 sourcePort = randomPort();
2 sendUDP/TCPpacket to TestServer1 from sourcePort;
3 TransportAddress1 = receiveFromServer();
4 sendUDP/TCPpacket to TestServer2 from sourcePort;
5 TransportAddress2 = receiveFromServer();
6 compare (TransportAddress1, TransportAddress2, localAddress);

Alg. 4.1: Binding pseudo-code as seen by the client

Algorithm 4.1 shows the individual steps of the binding measurement algorithm.
The client sends two packets from the same local source address and port to different
external servers. The server then returns the public transport address within this con-
nection. By comparing its original source address with an external one the client knows
if it is behind a middlebox that manipulates transport addresses (NAT functionality).
This works for IPv4 NAT, but in an IPv6 NAT environment, the client side IP address
might already be a public one. Furthermore, the client is able to see if the NAT pre-
serves ports (see section 3.3). The possible results by comparing the external mappings
are the following:

44 4. Experimental Analysis of Middlebox Behavior

dd 1d1ddddddd1dddd

ddddddddddddd

sdddddddsddd

eeeeeeeeeeee

dddddededdddddesdd

eeeeeeeeeee

dddddededdddddesdd

2eeee2eeeeeee2

dddddededdddddesdd

444442e44eeee44

dddddededdddddesdd

eeeeeee4eem2eemmmeem

dddddedddddd1

e2ee4eeeemeeeee

dddddededdddddesdd

eeme2mememeem

dddddedddddd1

m4emee4eeemeem

dddddedddddd1

2eeee2eeeeeeemeem

dddddedddddd1

2eeee2eeeeeee

dddddededdddddesdd

4mmeeeemeem

dddddedddddd1

mee4eeeeeee

dddddededdddddesdd

42memmmemeee2meem

dddddedddddd1

eemeeee2eeeeemeem

dddddedddddd1

eeeeeeemeeeeee

dddddededdddddesdd

42memmmemeee24eeee

dddddededdddddesdd

4m2emee4eeemeem

dddddedddddd1

e2ee4eeeeme2eee44eeee

dddddededdddddesdd

444442e44eeee46

dddddededdddddesdd

meeem2e4eee2eemeeeee

dddddededdddddesdd

eeeeeeeme2eeee

dddddededdddddesdd

sdddddddddddddd

ee44eemmx

dsdddededdddddesdd
1111

meeem2e4eee2eeme ddd

dsdddededdeddeedddd1dedesdd
1111

ee44 dddd

dsdddede14ddddddesdddd
1111

444442e44 dddd

dsdddedddddd1

meeme4e dddd

dsdddedddddd1

tmmmeee dddd

dsdddedddddd1

ddndddddd ddddd1 dddd

ee46 ddd

dsdddede14ddddddesddd6
1111

444442e44 dddd

dsdddedddddd1

42eeex dddd

dsdddedddddd1

42e4ememxeee4eme dddd

dsdddedddddddd

tmmmeee dddd

dsdddedddddd1

ddndddddd ddddd1 ddd6

eddeddeedddd1dededdd ddddd1

42memmmemeee24 ddd

dsddded1ddddeddedsdddesdd
1111

meee2 dddd

dsddded1ddddeddedsdddddd

4ddddedddddedsdd

ddddeddeedsdd

eddeddeedsdd

eddddddddedsdd

42memmme dddd

dsdddedddddd1

eeeeeeee ddd

dsdddededddd1ddesdd
1111

eeeeeeemee dddd

dsdddededdddeddddesdd
1111

eemeeeeee dddd

dsdddeddddd1dd

eemeeee2eeeee dddd

dsdddededdddeddddd1sdddd

kddee

rdddd

tddddeddddd

eeeeeeeme2 ddd

dsdddededdddeddddesdd
1111

eeme2 dddd

dsdddededdddeddddddd

rdddd

ed1dddddddddddd

ed1dNee

ed1deNe

Pd1

Pd1eddddd

4eeee dddd

dsdddeddddddd

4meeme ddd

dsdddedddddd1

edsdd 1ddddeddedsdddddd

4ddddedddddedsdd

ddddeddeedsdd

eddeddeedsdd

eddddddddedsdd

1ddddedd ddddd1

2eeee2eee ddd

dsdddedNddddddd1esdd
1111

eeeeedme4e4 dddd

dsdddedNddddddd1esdddddd

4dddddddtdddddeddd

4dddddddddd1ddddtdddddeddd

edddddddddd

rdddd

e2ee4eeeemedee4dem4eeemeeeme ddd

dsdddededdddddddddesdd
1111

eeeeeee dddd

dsdddeddddddd1esdd
1111

4eem2eemm dddd

dsdddeddddddd14d1dddddddddd

ddddd

ededddddd

rdddd

tddddd

ee44eemmxeeee 4e2eee

Fig. 4.6: Mapping element

dd 2d2ddddddd2dddd

ee44eemmx

dsdddeddddddddesdd
1111

eeeeeeee ddd�

dsdddededddd2ddesdd
1111

eeeeeeemee dddd

dsdddededdddeddddesdd
1111

eemeeeeee dddd

dsdddeddddd2dd

eemeeee4eeeee dddd

dsdddededdddeddddd2sdddd

eeeeeeeme4 ddd�

dsdddededdddeddddesdd
1111

eeme4 dddd

dsdddededdddeddddddd

eeeee dddd

dsdddeddddddd

eeeeeyemm4e4meeme ddd�

dsdddededddd2dd2ddddsdddd

mmeeeee4meeme ddd�

dsdddedededddd2ddddsdddd

edsdd 2dddddddedsdddddd

4ddddddddddedsdd

ddddeddeedsdd

eddeddeedsdd

eddddddddedsdd

2ddddddd ddddd2

meeee4eee ddd�

dsdddededdddddd2esdd
1111

eeeeedme4e4 dddd

dsdddededdddddd2esdddddd

4ddddddddddddddddd

4dddddddddd2dddddddddddddd

edddddddddd

rdddd

44memmmedme4e4 dddd

dsdddededdddddd22dddddddmdddddddd

dddddddddsdddd

dddddddtdddddddd

dddddddtddddddddnddddddddddsddd

dddddddtddddddddndeeedddddddddddd

rdddd

et2ddeedddd

et2deneddddndet2deneddd

eeeddddddddddddd

nd2ddddndeeedddddddddddd

4meemedme4e4 ddd�

dsdddedddddd2

edsdd 2dddddddedsdddddd

4ddddddddddedsdd

ddddeddeedsdd

eddeddeedsdd

eddddddddedsdd

2ddddddd ddddd2

e4ee4eeeemenee4nem4eeemeeeme ddd�

dsdddededdddddddddesdd
1111

eeeeeee dddd

dsdddeddddddd2esdd

mee4eee dddd

dsdddedmddddd2esdd
1111

4m4emee4eee dddd

dsddded2dddmddddd2dddd

ed2ddd2ddd

2ddd2ddddddddddd

m4emee4eee dddd

dsdddede4emddddd2dddd

tdddddddddddddddddd

ddddddddedddddddddd

4444e444mmeeee dddd

dsddded2ddddd2dddd

2ddddd

nddddddd

meee44 ddd�

dsdddedddddd2

edsdd 2dddddddedsdddddd

4ddddddddddedsdd

ddddeddeedsdd

eddeddeedsdd

eddddddddedsdd

2ddddddd ddddd2

ee44eemmxeeee 4e4eee

Fig. 4.7: Filtering element

IP addresses and ports are the same: If both external IP addresses are the same
the middlebox is either only using one external IP address or it applies a paired ad-
dress pooling behavior (see section 3.3.4). Since both external source ports match, the
binding behavior can be considered as endpoint independent. We expect that many
standard home routers that share a single IP address among a small number of devices
fall into this category. As long as the external mapping is only dependent on the source
port, this category allows querying public mappings by contacting an external server
such as STUN.

IP addresses are different, but ports match: In the second case the external
source ports match, but the IP addresses are different. In this scenario the deployed
middlebox uses multiple global IP addresses. Most likely this would be a middlebox
at the ISP implementing load-balancing and violating the recommendation of a paired
address pooling behavior.

IP addresses match, ports are different: If the external IP addresses of both out-
going connections match but the ports are different we are dealing with a connection
dependent binding strategy. This means, the external endpoint is not only dependent
on the source, but also on the destination. In this case port prediction is rather difficult
and depends on the port allocation algorithm of the middlebox. We expect this behav-
ior to be seen at a few home routers and in many larger implementations following the
symmetric NAT approach.

IP addresses and ports are different: This case is a combination of the last two
cases. The IP addresses as well as the external source ports of the mapping are dif-
ferent. This means the middlebox implements a connection dependent mapping and
it uses load-balancing or some other mechanism violating the paired address pooling
behavior.

Mapping and State-based Filtering Measurements

The goal of the conducted mapping tests is to find out how a translating middle-
box allocates resources for outgoing connections. This may help to find allocation
patterns (Translation and Modification:Mapping:Algorithm) that allow predicting ex-
ternal endpoints. More specifically, with NAT we are interested in the allocation of
IP addresses and ports to new mappings, referring to the Mapping part of the Trans-
lation and Modification element as shown in figure 4.6. Additionally, by running the
STUN [130] algorithm, we will also learn about the filtering behavior which is mapped
to the Filtering:State-based element as depicted in figure 4.7.

4.3. Detailed Description of our Measurement Algorithms 45

1 choose arbitrary starting source port;
2 while number of tests not reached do
3 sendUDPpacket to TestServer;
4 clients public TransportAddress = receiveFromServer();
5 rememberMapping;
6 sourcePort++;

7 end while
8 storeMappings();
9 runSTUN();

Alg. 4.2: Mapping and filtering pseudo-code for UDP as seen by the client

The pseudo-code of the mapping test for UDP is depicted in algorithm 4.2. For TCP
a new connection is established for every source port. The whole test is repeated a few
times using different starting source ports to gather as much information as possible.
After collecting the data a port prediction algorithm tries to find a logical schema how
the NAT allocates public mappings. More details on port prediction can be found in
section 5.2.2. As a result, the client gets a paired list of combinations of internal and
external mappings. By comparing these mappings the results are as follows:

IP addresses and ports are the same: If the internal and external IP address
and the ports match there is no translating middlebox involved. In combination with
the traversal tests it should be tested if there’s a stateful firewall involved.

IP addresses are different, but ports match: In the second case the internal
and external source ports all match, but the IP addresses are different. We expect this
to be a very common scenario, e.g. a home router, where the middlebox only uses one
external IP address. Since all ports match the middlebox either tries to preserve ports
or, in case of IPv6 NAT, the middlebox only operates on the network layer. This can be
checked by comparing the checksums of the internal and external packet, since NAT66
[159] uses a checksum neutral mapping.

IP addresses match, ports are different: In this scenario the middlebox only
translates the source ports, but not the IP addresses. Here we assume that the source
IP address is already coming from the public range in order to make sure no NAT
device is involved. We don’t expect to discover this scenario in our test since stateful
NATs have the purpose of translating at least IP addresses and firewalls do not change
port numbers.

IP addresses and ports are different: We expect this behavior to be very common
for home routers that do not preserve source ports on outgoing mappings. One rea-
son for not preserving ports is that the external port is not available anymore. Thus,
we have to check multiple port ranges. In order to design a working port prediction
algorithm we aim to carefully look at the actual assignment strategy. Some of the mid-
dleboxes may start at a pre-defined external source port and increment external ports
by a fixed delta, while others may choose a random external port. Please refer to the in-
formation model for a complete list: Translation and Modification:Mapping:Algorithm.

In addition to the described steps the test also queries a STUN server [133] to ver-
ify the results. STUN is helpful to determine the state-based filtering strategy of the

46 4. Experimental Analysis of Middlebox Behavior

middlebox (see section 3.3.2 and Filtering:State-based) to find out which external clients
are allowed to access the mapping. This becomes important when considering different
service categories for middlebox traversal as described in section 5.3.

Mapping Timeouts

Since a stateful middlebox only has limited resources, it needs to carefully manage the
number of entries that are held in its mapping table. More specifically, the middlebox
needs to delete the mapping of connections that have been terminated or idle for a
certain amount of time. Furthermore, dropping idle connections after a certain amount
of time also helps to be less vulnerable to Denial of Service Attacks.

dd 1d1ddddddd1dddd

ddddddddddddd

sdddddddsddd

eeeeeeeeeeee

dddddededdddddesdd

eeeeeeeeeee

dddddededdddddesdd

2eeee2eeeeeee2

dddddededdddddesdd

444442e44eeee44

dddddededdddddesdd

eeeeeee4eem2eemmmeem

dddddedddddd1

e2ee4eeeemeeeee

dddddededdddddesdd

eeme2mememeem

dddddedddddd1

m4emee4eeemeem

dddddedddddd1

2eeee2eeeeeeemeem

dddddedddddd1

2eeee2eeeeeee

dddddededdddddesdd

4mmeeeemeem

dddddedddddd1

mee4eeeeeee

dddddededdddddesdd

42memmmemeee2meem

dddddedddddd1

eemeeee2eeeeemeem

dddddedddddd1

eeeeeeemeeeeee

dddddededdddddesdd

42memmmemeee24eeee

dddddededdddddesdd

4m2emee4eeemeem

dddddedddddd1

e2ee4eeeeme2eee44eeee

dddddededdddddesdd

444442e44eeee46

dddddededdddddesdd

meeem2e4eee2eemeeeee

dddddededdddddesdd

eeeeeeeme2eeee

dddddededdddddesdd

sdddddddddddddd

ee44eemmx

dsdddededdddddesdd
1111

meeem2e4eee2eeme ddd

dsdddededdeddeedddd1dedesdd
1111

ee44 dddd

dsdddede14ddddddesddd4
1111

444442e44 dddd

dsdddedddddd1

meeme4e dddd

dsdddedddddd1

tmmmeee dddd

dsdddedddddd1

ddndddddd ddddd1 ddd4

ee46 ddd

dsdddede14ddddddesddd6
1111

444442e44 dddd

dsdddedddddd1

42eeex dddd

dsdddedddddd1

42e4ememxeee4eme dddd

dsdddedddddddd

tmmmeee dddd

dsdddedddddd1

ddndddddd ddddd1 ddd6

eddeddeedddd1dededdd ddddd1

42memmmemeee24 ddd

dsddded1ddddeddedsdddesdd
1111

meee2 dddd

dsddded1ddddeddedsdddddd

4ddddedddddedsdd

ddddeddeedsdd

eddeddeedsdd

eddddddddedsdd

42memmme dddd

dsdddedddddd1

eeeeeeee ddd

dsdddededddd1ddesdd
1111

eeeeeeemee dddd

dsdddededdddeddddesdd
1111

eemeeeeee dddd

dsdddeddddd1dd

eemeeee2eeeee dddd

dsdddededdddeddddd1sdddd

kddee

rdddd

tddddeddddd

eeeeeeeme2 ddd

dsdddededdddeddddesdd
1111

eeme2 dddd

dsdddededdddeddddddd

rdddd

ed1dddddddddddd

ed1dNee

ed1deNe

Pd1

Pd1eddddd

4eeee dddd

dsdddeddddddd

4meeme ddd

dsdddedddddd1

edsdd 1ddddeddedsdddddd

4ddddedddddedsdd

ddddeddeedsdd

eddeddeedsdd

eddddddddedsdd

1ddddedd ddddd1

2eeee2eee ddd

dsdddedNddddddd1esdd

edsdd 1ddddeddedsdddddd

4ddddedddddedsdd

ddddeddeedsdd

eddeddeedsdd

eddddddddedsdd

1ddddedd ddddd1

e2ee4eeeemenee4nem4eeemeeeme ddd

dsdddededdddddddddesdd

edsdd 1ddddeddedsdddddd

4ddddedddddedsdd

ddddeddeedsdd

eddeddeedsdd

eddddddddedsdd

1ddddedd ddddd1

ee44eemmxeeee 4e2eee

Fig. 4.8: Timeout analysis: State timer of the Information Model

Managing mapping entries is done by assigning timers to every outgoing connection
(see figure 4.8). If the timer expires, the mapping is deleted. If a new packet is seen
on the connection, the timer is reset. For stateful protocols such as TCP, middleboxes
usually assign timeouts for established connections that are longer than the ones for
UDP. In [60] the authors measured the timeouts for different phases of a TCP connection
(SYN-sent, established, timed-wait and closed) and concluded that “applications should
not rely on idle connections being held open for more than a few minutes”.

For UDP the situation is slightly different since it is a connectionless protocol. The
middlebox assigns a timer to each entry and drops the mapping once the timer expires.
In order to keep a UDP mapping open, the client behind the middlebox will have to
refresh the connection by sending another UDP packet to the same destination. Deter-
mining a reasonable refresh interval is one goal of our UDP timeout test. Especially for
mobile clients the refresh interval should not be too short in order to save bandwidth,
as well as to reduce possible battery drain. Additionally, many middleboxes have a
multi-leveled way of handling UDP timeouts. The more the packets are being sent over
the same connection, the larger the timeout. This timeout is also referred to as the
UDP stream timeout.

The timeout test considers UDP timeouts, as well as TCP timeouts. However, since
testing all TCP timeouts may take up to several hours, we only test for timeouts in the
established state with a threshold of five minutes. The reason for this is that only in
the established state the timeout is relevant for actual protocols. For example, when
registering for a service such as SIP via TCP, the client is waiting for messages coming
from the server. The TCP connection is already fully established, but the arrival time
of incoming messages is not predictable and it may take several hours until the server
actually sends data to the client.

4.3. Detailed Description of our Measurement Algorithms 47

For the UDP tests our tester creates several mappings in the middlebox by sending
out single UDP packets with increasing source ports. Within the payload of the UDP
packet the client specifies the timeout to be tested (e.g. 10 seconds). The server part
receives the packets, waits for the defined period of time and sends a UDP packet back
to the client. If the client receives the answer it assumes that the mapping is still alive.
The test has to be repeated multiple times since UDP packets may get lost on their
way to the server. Sending multiple UDP packets at the same time to make sure at
least one of them reaches the server doesn’t work since the client would run into the
UDP stream timeout. This is tested separately by using different ports.

ICMP messages

The Internet Control Message Protocol (ICMP) [118] is used to inform hosts about
possible errors, such as expired TTLs and unreachable destinations. A middlebox
has to implement the ICMP protocol in order to translate and forward these packets
between the realms. Furthermore, if the middlebox changes addresses on the network
or transport layer, it also has to take care of the payload of certain ICMP messages.
This is because many messages such as ICMP TTL expired, which is sent by the hop
where the time to live field of an IP packet expires, include the original IP packet and
parts of the TCP/UDP packet in their payload [118]. The hop sending the expired
packet only sees the public transport address of the IP packet, whereas the host that
originally sent the packet expects to see the private one. Therefore, the middlebox
needs to translate transport addresses on outgoing ICMP packets, as well as transport
addresses on incoming packets.

dd 1d1ddddddd1dddd

ddddddddddddd

sdddddddsddd

eeeeeeeeeeee

dddddeddddddddesdd

eeeeeeeeeee

dddddeddddddddesdd

444444e44eeee44

dddddeddddddddesdd

eeeeeee4eem4eemmmeem

dddddedddddd1

mmeeeee4meememeem

dddddedddddd1

e4ee4eeeemeeeee

dddddeddddddddesdd

eeme4mememeem

dddddedddddd1

m4emee4eeemeem

dddddedddddd1

eeeeeeee4meememeem

dddddedddddd1

meeee4eeeeeeemeem

dddddedddddd1

meeee4eeeeeee

dddddeddddddddesdd

4mmeeeemeem

dddddedddddd1

mee4eeeeeee

dddddeddddddddesdd

meeee4eee44memmmeme4e4meem

dddddedddddd1

44memmmemeee4meem

dddddedddddd1

eemeeee4eeeeemeem

dddddedddddd1

eeeeeeemeeeeee

dddddeddddddddesdd

44memmmemeee44eeee

dddddeddddddddesdd

4m4emee4eeemeem

dddddedddddd1

e4ee4eeeememeee44eeee

dddddeddddddddesdd

444444e44eeee46

dddddeddddddddesdd

meeem4e4eee4eemeeeee

dddddeddddddddesdd

eeeeeeeme4eeee

dddddeddddddddesdd

sdddddddddddddd

ee44eemmx

dsdddeddddddddesdd
1111

meeem4e4eee4eeme ddd�

dsdddededdeddeedddd1dddesdd

eddeddeedddd1dddeddd ddddd1

44memmmemeee44 ddd�

dsddded1dddddddedsdddesdd

eeeeeeee ddd�

dsdddededddd1ddesdd

edsdd 1dddddddedsdddddd

rddddddddddedsdd

ddddeddeedsdd

eddeddeedsdd

eddddddddedsdd

1ddddddd ddddd1

meeee4eee ddd�

dsdddededdddddd1esdd
1111

44memmmedme4e4 dddd

dsdddededdddddd11dddddddmdddddddd

dddddtdddsdddd

dddddtdtdddddddd

dddddtdtddddddddnddddddtdddsddd

dddddtdtddddddddndeeedddddddddddd

rdddd

et1dteedddd

et1deneddddndet1deneddd

eeeddddddddddddd

nd1ddddndeeedddddddddddd

edsdd 1dddddddedsdddddd

rddddddddddedsdd

ddddeddeedsdd

eddeddeedsdd

eddddddddedsdd

1ddddddd ddddd1

e4ee4eeeemenee4nem4eeemeeeme ddd�

dsdddededdddddddddesdd

edsdd 1dddddddedsdddddd

rddddddddddedsdd

ddddeddeedsdd

eddeddeedsdd

eddddddddedsdd

1ddddddd ddddd1

ee44eemmxeeee 4e4eee

Fig. 4.9: Filtering analysis: Protocol-based filtering

Our test also checks how middleboxes handle ICMP packets. In addition to regular
traffic (outgoing UDP triggers incoming ICMP TTL expired), we also test for packet
sequences that are normally not seen (e.g outgoing ICMP without related incoming
packet). Furthermore, we also test if the payload of the ICMP packets is relevant for
any forwarding decision or if it is possible to manipulate it. This is useful for sending
signaling messages via ICMP and can be used by our autonomous middlebox traversal
algorithm as presented in section 6.5.2. We distinguish between two types of tests,
incoming and outgoing, as follows:

The goal of the incoming tests is to check whether the middlebox handles incoming
ICMP packets that are sent as a response to outgoing packets. It also checks if the
payload of the packets is translated correctly. For all combinations we check if it is
allowed to manipulate the payload of the incoming packet, e.g. add a few bytes at the
end or replace certain fields of the embedded headers.

48 4. Experimental Analysis of Middlebox Behavior

• Echo Request out, TTL exceeded in checks if the middlebox allows an incoming
ICMP TTL exceeded as a response to an outgoing echo request that established
a state in the middlebox.
• UDP out, TTL exceeded in checks for a valid packet sequence.
• Echo request out, echo reply in simply checks if an internal host is allowed to ping

an external one.

The goal of the outgoing tests is to check if the middlebox allows sending out ICMP
packets without having a state for them. Again we also check for different payloads.

• TTL exceeded out checks if the middlebox allows ICMP TTL exceeded packets
without having received any related UDP packets.
• Echo request out checks if the middlebox allows outgoing ICMP echo requests.
• Echo reply out checks if it is possible to send an echo reply without receiving any

requests.

State Table Analyzer

Stateful middleboxes need to allocate resources for every entry in the mapping table.
Therefore, the number of simultaneous connections is limited. This is in particular
true for resource restricted devices such as home routers that usually only come with a
few megabytes of RAM. The state table analyzer tests tries to approach the maximum
number of simultaneous connections that a middlebox is able to handle. Additionally,

dd 1d1ddddddd1dddd

ddddddddddddd

sdddddddsddd

eeeeeeeeeeee

dddddededdddddesdd

eeeeeeeeeee

dddddededdddddesdd

2eeee2eeeeeee2

dddddededdddddesdd

444442e44eeee44

dddddededdddddesdd

eeeeeee4eem2eemmmeem

dddddedddddd1

e2ee4eeeemeeeee

dddddededdddddesdd

eeme2mememeem

dddddedddddd1

m4emee4eeemeem

dddddedddddd1

2eeee2eeeeeeemeem

dddddedddddd1

2eeee2eeeeeee

dddddededdddddesdd

4mmeeeemeem

dddddedddddd1

mee4eeeeeee

dddddededdddddesdd

2eeee2eee42memmmeme4e4meem

dddddedddddd1

42memmmemeee2meem

dddddedddddd1

eemeeee2eeeeemeem

dddddedddddd1

eeeeeeemeeeeee

dddddededdddddesdd

42memmmemeee24eeee

dddddededdddddesdd

4m2emee4eeemeem

dddddedddddd1

e2ee4eeeeme2eee44eeee

dddddededdddddesdd

444442e44eeee46

dddddededdddddesdd

meeem2e4eee2eemeeeee

dddddededdddddesdd

eeeeeeeme2eeee

dddddededdddddesdd

sdddddddddddddd

ee44eemmx

dsdddededdddddesdd
1111

meeem2e4eee2eeme ddd

dsdddededdeddeedddd1dedesdd

eddeddeedddd1dededdd ddddd1

42memmmemeee24 ddd

dsddded1ddddeddedsdddesdd

eeeeeeee ddd

dsdddededddd1ddesdd
1111

eeeeeeemee dddd

dsdddededdddeddddesdd
1111

eemeeeeee dddd

dsdddeddddd1dd

eemeeee2eeeee dddd

dsdddededdddeddddd1sdddd

kddee

rdddd

tddddeddddd

edsdd 1ddddeddedsdddddd

rddddedddddedsdd

ddddeddeedsdd

eddeddeedsdd

eddddddddedsdd

1ddddedd ddddd1

2eeee2eee ddd

dsdddededdddddd1esdd

e2ee4eeeemenee4nem4eeemeeeme ddd

dsdddededdddddddddesdd

edsdd 1ddddeddedsdddddd

rddddedddddedsdd

ddddeddeedsdd

eddeddeedsdd

eddddddddedsdd

1ddddedd ddddd1

ee44eemmxeeee 4e2eee

Fig. 4.10: State table element of the Information Model

it tests the strategy the middlebox uses for replacing existing entries. For example, if
the mapping table is full, does the middlebox still allow additional connections? This
could be for example done by overwriting existing ones using a strategy such as FIFO
(first in first out) or LRU (least recently used). The problem with this test is the large
number of connections that have to be established at the same time, which requires a
careful management of processes and sockets when implementing it. Additionally, once
a new connection is established the old ones have to be tested if they are still alive.
As a result we can determine the maximum number of connections the middlebox
supports (StateTable:TableSize), as well as the behavior when approaching this limit:
StateTable:TableStrategy, both according to figure 4.10. The algorithm for analyzing
the state table is as follows:

4.3. Detailed Description of our Measurement Algorithms 49

1 while 1 do
2 if newConnectionSuccessful then
3 checkAllOldConnections;
4 if oldWorking then
5 continue;
6 else
7 replacementStrategy;
8 break;

9 end if

10 else
11 if oldWorking then
12 reachedLimit;
13 break;

14 else
15 reached limit with errors;
16 break;

17 end if

18 end if

19 end while

Alg. 4.3: NAT mapping table pseudo-code

4.3.2 Behavior-based Traversal Analysis

There are numerous approaches for middlebox traversal (that will in detail be described
in the following chapter), but only behavior-based techniques are independent from an
active support of the middlebox. The most common behavior-based approach is hole
punching. With hole punching a peer behind a middlebox first sends a packet towards
the other peer, thus establishing a mapping in the middlebox (or punching a hole, thus
the name). The other peer then tries to send a reply packet that matches the so-created
state. The success rate depends on the implementation of the middlebox, more specifi-
cally if the middlebox allows certain incoming packets as a response to outgoing ones, if
the middlebox filters certain packets in general and if the middlebox removes a state if
it sees specific packets. Thus, our traversal analysis focuses on the Stateful:Policy (both
StateRemovePolicy and NoStatePolicy) and on the Filtering:Protocol-based elements of
the information model.

dd 2d2ddddddd2dddd

ee44eemmx

dsdddeddddddddesdd
1111

eeeeeeee ddd�

dsdddededddd2ddesdd
1111

eeeeeyemm4e4meeme ddd�

dsdddededddd2dd2ddddsdddd

rdddd

en2deneddddndend2deeedddddddddddd

en2deneddddnden2dneeddd

nd2ddddndddddddddddddddddddd

nd2ddddndend2deeedddddddddddd

mmeeeee4meeme ddd�

dsdddedededddd2ddddsdddd

rdddd

en2denedddnden2dneedddd

nd2dddndddddddddddddddddddddd

edsdd 2dddddddedsdddddd

4ddddddddddedsdd

ddddeddeedsdd

eddeddeedsdd

eddddddddedsdd

2ddddddd ddddd2

meeee4eee ddd�

dsdddededdddddd2esdd
1111

eeeeedme4e4 dddd

dsdddededdddddd2esdddddd

4dddddddnddddddddd

4dddddddddd2ddddnddddddddd

edddddddddd

rdddd

44memmmedme4e4 dddd

dsdddededdddddd22dddddddmdddddddd

dddddndddsdddd

dddddndtdddddddd

dddddndtddddddddnddddddndddsddd

dddddndtddddddddndeeedddddddddddd

rdddd

en2dneedddd

en2deneddddnden2deneddd

eeeddddddddddddd

nd2ddddndeeedddddddddddd

4meemedme4e4 ddd�

dsdddedddddd2

edsdd 2dddddddedsdddddd

4ddddddddddedsdd

ddddeddeedsdd

eddeddeedsdd

eddddddddedsdd

2ddddddd ddddd2

e4ee4eeeemenee4nem4eeemeeeme ddd�

dsdddededdddddddddesdd
1111

eeeeeee dddd

dsdddeddddddd2esdd
1111

4eem4eemm dddd

dsdddeddddddd24d2dddddddddd

dddddd2dddd

edddddddddd

2dddddddddddd

mee4eee dddd

dsdddedmddddd2esdd
1111

4m4emee4eee dddd

dsddded2dddmddddd2dddd

ed2ddd2ddd

2ddd2ddddddddddd

m4emee4eee dddd

dsdddede4emddddd2dddd

ndddddddddddddddddd

ddddddddedddddddddd

4444e444mmeeee dddd

dsddded2ddddd2dddd

2ddddd

nddddddd

meee44 ddd�

dsdddedddddd2

edsdd 2dddddddedsdddddd

4ddddddddddedsdd

ddddeddeedsdd

eddeddeedsdd

eddddddddedsdd

2ddddddd ddddd2

ee44eemmxeeee 4e4eee
Fig. 4.11: Policy-based state maintenance

50 4. Experimental Analysis of Middlebox Behavior

Client

Client

MB

MB

Router

Router

Server

Server

UDP Hole Punching High

UDP Hole Punching packet

ICMP port unreachable

UDP response?

UDP Hole Punching Low

UDP Hole Punching packet

ICMP TTL exceeded

UDP response?

UDP Hole Punching Silent

UDP Hole Punching packet

UDP response?

Fig. 4.12: UDP traversal

Client

Client

MB

MB

Router

Router

Server

Server

TCP Hole Punching High

TCP SYN Hole Punching packet

TCP RST packet

TCP response?

TCP Hole Punching Low

TCP SYN Hole Punching packet

ICMP TTL exceeded

TCP response?

TCP Hole Punching Silent

TCP SYN Hole Punching packet

TCP response?

Fig. 4.13: TCP traversal

Figure 4.12 shows our approach for UDP hole punching. In the first experiment,
UDP Hole Punching High, the test server replies with an ICMP port unreachable packet
before testing for the actual UDP traversal. With UDP Hole Punching Low, the TTL
of the initial UDP packet expires at an intermediate router, which sends back an ICMP
TTL exceeded packet. The test server then tries to send the matching UDP packet in
order to reach the client. Finally, UDP Hole Punching Silent tests if UDP traversal is
possible by predicting the external port of the mapping.

[60] proposes STUNT, a technique that requires the NAT to forward an incoming
TCP-SYN packet as a response to an outgoing one. Figure 4.13 shows three variants
of this approach. With TCP Hole Punching Silent we test for the general capability
of accepting a SYN-in-SYN-out sequence, which corresponds to the Filtering:Protocol-
based field of our model. With TCP Hole Punching High the server sends a TCP-RST
packet as a response to the initial TCP-SYN and checks if the state still exists or if
a stateful policy exists (Stateful:StateRemovePolicy). TCP Hole Punching Low sets
the TTL value of the initial IP packet carrying the TCP-SYN to a lower value, thus
generating an ICMP TTL exceeded packet sent by an intermediate router.

4.3.3 Additional Measurements

Middleboxes may implement numerous additional features and may support a large
number of protocols on the application layer. This section focuses on the measurement
of protocols and features that are promising to be widespread.

4.3. Detailed Description of our Measurement Algorithms 51

UPnP

The Universal Plug and Play (UPnP) protocol suite1 allows querying UPnP capable
devices by sending multicast messages to a local network. If a middlebox implements
UPnP it responds with useful information such as the model and the public IP address.
ProtocolLayers:7:UPnP describes UPnP specific fields and we are especially interested
in the following ones:

• UPnPManufacturer: returns the manufacturer of the middlebox
• UPnPModel: returns the exact model, e.g. DI-504
• UPnPFriendlyName: returns the friendly name, e.g. “myHomeRouter”
• UPnPExternalIPaddress: lists the current external IP address
• UPnPlasterror: returns the code of the last error (implementation specific)
• UPnPuptime: returns the uptime of the middlebox

Application Layer Gateways

Some middleboxes implementing translation mechanisms also operate on the applica-
tion layer for some protocols. The Session Initiation Protocol (SIP) [131] together with
the Session Description Protocol (SDP) [67] is mainly used for Voice over IP and causes
problems with middleboxes since it embeds domain specific IP addresses and ports in
its payload. Many middlebox thus implement an Application Layer Gateway (ALG)
that understands the protocol and translates the addresses according to the realm. The
same is true for the File Transfer Protocol (FTP) [120]. In active mode, the client sig-
nalizes the server an IP address and port where it awaits the actual data connection.
If the addresses are private, a connection will not be possible. A FTP ALG translates
private addresses to public ones and takes care of establishing a mapping in the state
table of the middlebox. Our experiments test for both of these ALGs and the results
are listed in the ProtocolLayer:7:FTP and ProtocolLayer:7:SIP fields.

Furthermore, we also try to misuse the FTP ALG for traversal: A fake FTP client
sends out a packet carrying the PORT command of an actual FTP packet and specifies
an IP address and port where our test service is waiting for incoming packets. If
the ALG actually establishes a mapping for this address, an external peer is able to
connect to it using an arbitrary TCP connection. This behavior is documented in the
Translation and Modification:7:FTP field.

Image Proxy

This experiment tests for a proxy that manipulates JPEG images by resizing them.
Mobile operators often deploy such proxies to reduce traffic within their networks. We
download multiple images of different sizes via HTTP and check for modifications.

Additional Protocols

Newly developed protocols are usually not understood by most middleboxes, which
hinders their deployment. The Stream Control Transmission Protocol (SCTP) [146] is
an alternative transport layer protocol that most middleboxes are not aware of. Due to
the extended checksum in the SCTP header and due to its multi-homed approach, the
translation of SCTP is not as straightforward as the translation of TCP and UDP [145].
We test for the ability of middleboxes to translate the SCTP protocol by establishing an

1 http://upnp.org/sdcps-and-certification/standards/

52 4. Experimental Analysis of Middlebox Behavior

association towards the Internet. Additionally, we try to establish an IPv6 connection
to get more information about the deployment of IPv6, as well as the support of IPv6
at different middleboxes. All results are reflected in the corresponding ProtocolLayers
element of the information model.

4.3.4 Topology Measurements

The goal of our topology measurements is to detect stateful middleboxes along the path
between two peers. In our scenario a test server located in the public Internet acts as
a reference point that arbitrary clients use to reveal their network topology towards
the server. Additionally, we gather as much information as possible from intermediate
hops, such as their individual timeouts.

There are already a few approaches to middlebox detection in the state of the art.
First, the STUN protocol [133] allows a peer to retrieve its IP address and port as seen
by a STUN server that is usually deployed in the public Internet. Thus, the topology is
hidden and only the addresses of the outermost middlebox are detected. However, if a
STUN server would be deployed in every intermediate network, it would be possible to
reveal the complete topology by querying one after another. STUN’s control extension
[132] defines an interface for middleboxes allowing to query them directly. The same is
true for the NSIS Signaling Layer Protocol [147] and the Port Control Protocol (PCP)
[162]. However, if intermediate hops don’t implement the extension, it is not possible
to detect the topology.

A naive approach to detect stateful middleboxes without requiring active support
is to send out UDP messages with different TTLs. As soon as the packets expire,
intermediate routers send ICMP TTL exceeded packets including the headers of the
initial UDP packet. By comparing the IP addresses a client would be able to detect
translating middleboxes. However, today’s middleboxes also retranslate the headers in
the ICMP payload, which makes this approach useless.

Approach

Our approach as initially developed in [163] and depicted in figure 4.14 conducts mul-
tiple measurements from the test server towards the client. In order to reach the client
from the public Internet, the first step is to establish a mapping in all intermediate
nodes. Thus, a client starts the measurements by sending packets to the test server.
Once the server has received these packets, it counts the number of hops between the
server and the client by conducting a traceroute2 measurement. To get reliable results
a stable path (paths may vary due to load-balancing) is required. Thus, the number
of hops between the client and the server should be as low as possible. This can be
reached by geographically distributing multiple test servers in the public Internet.

Once the server has detected the initial topology the client successively removes
each mapping starting from the one closest to it. After removing a mapping the server
repeats the traceroute to the same destination and compares the number of hops with
the initial result. In figure 4.14 the mapping of MB1 is removed first and the following
traceroute from the server to the client is blocked by the middlebox since no state exists
anymore. Thus, the result of the traceroute reveals one hop less than the initial hop
count, which is used by the server as an indicator that there is a stateful middlebox at
hop 1. In the second step the client directs Router1 to remove its mapping. Since it
is no stateful middlebox the following traceroute still reaches MB1 with the same hop

2 http://linux.die.net/man/8/traceroute

4.3. Detailed Description of our Measurement Algorithms 53

Client

Client

MB1

MB1

Router1

Router1

MB2

MB2

Router2

Router2

Server

Server

establish all mappings

traceroute to count hops

remove mapping

traceroute to count hops
blocked by MB1

remove mapping

traceroute to count hops
blocked by MB1

remove mapping

traceroute to count hops
blocked by MB2

remove mapping

traceroute to count hops
blocked by MB2

Fig. 4.14: Illustration of the topology detection approach

count as before. Thus, hop 2 does not implement stateful filtering. The pseudo-code
of our algorithm is shown in the following listing.

1 establish mapping in all middleboxes along the path;
2 start from n=1, increment n by 1 for each run and
3 repeat
4 remove mapping of all hops from 1 to n as seen by the client;
5 count number of hops from server to client;

6 until n reaches number of hops;

Alg. 4.4: Middlebox topology detection algorithm

The server keeps track of all traceroute measurements and stores the number of
hops that were successfully traversed for each timeout value. For each such combina-
tion, the server also knows the value of the client’s current counter (variable n in the
above pseudo-code) representing the hop for which the client just removed the mapping.
As a result, the server is able to assemble a table and derive the number of stateful
middleboxes from it. A complete result table together with a real topology is shown in
section 4.6.7 when presenting our topology results.

Remove Mapping

Our algorithm requires the capability of a client to remove a mapping in an inter-
mediate node. Without a protocol that actively controls middleboxes this is not a
trivial task. However, when looking at the Stateful element of our information model,
there are two possibilities to remove an established state: First, a Stateful:StateTimer

54 4. Experimental Analysis of Middlebox Behavior

is assigned to each mapping and once it expires, the mapping is deleted. Second, a
Stateful:StateRemovePolicy might exist that removes a mapping based on a sequence
of packets.

In case of TCP, a client would establish a connection to the test server, thus creating
a mapping in each intermediate node. As long as the connection is in the established
state, the mappings are kept in the middleboxes (assuming the TCP-established timer
is large enough). As soon as a middlebox sees a TCP-RST packet it might (according
to its Stateful:StateRemovePolicy) remove the mapping immediately. However, if the
client simply terminates the existing connection, the TCP-RST packet is sent to the
test server via all intermediate nodes, which remove their mappings. Thus, in order
to remove the mappings step by step, the initial connection has to be kept open and
a TCP-RST packet has to be sent in a way that it only reaches a specific hop. This
can be done by setting the TTL value of the IP packet to an appropriate value. The
disadvantage of this approach is that sending plain TCP-RST packets with a specific
TTL requires RAW sockets and therefore superuser privileges.

For UDP no such RST packet exists. Thus, waiting for a timeout is the only
possibility to remove a mapping from a stateful middlebox. The following listing shows
our algorithm for UDP:

1 foreach hop from 1 to n do do
2 establish mapping: send UDP packet from client to server;
3 server waits for UDP Timeout and sends keep-alive packets with

TTL = #Hops− n;
4 traceroute from server to client;

5 end foreach

Alg. 4.5: Middlebox topology detection algorithm for UDP

In order to make sure only the timeout of the innermost middlebox (the one to be
tested) expires, the server has to send keep-alive packets to all the other hops. This
can be done by setting the TTL value of the corresponding IP packet in a way that the
keep-alive packet expires right before it reaches the middlebox to be tested. Since the
timeout value is not known beforehand and may vary from middlebox to middlebox, a
large number of tests using different timeout values should be run in parallel.

Additional Results

The topology measurement not only reveals information about stateful middleboxes on
the path, it also delivers additional results. First, when using the UDP approach the
timeouts of the individual hops are not known in advance, resulting in many parallel
tests with increasing timeout values. When running sufficiently enough such tests,
timeouts of each hop on the path (Stateful:StateTimer) can be detected. Second, port
allocation patterns of the outermost middlebox can be detected by monitoring the
source IP addresses and ports of packets coming from the client. Third, by comparing
hop counts, the stability of a path can be examined. Finally, it can be measured if
providers block outgoing ICMP messages, which is a real problem for getting accurate
results. The following listing gives an overview of additional results that can be gathered
by the algorithm:

• By running parallel tests with increasing timeouts, Stateful:StateTimer can be
detected for each hop.

4.3. Detailed Description of our Measurement Algorithms 55

• By monitoring source addresses of incoming packets, binding and port allocation
patterns can be detected: Translation and Modification:Binding.
• By comparing hop counts, the path stability can be monitored. Unstable hop

counts are strong indicators for load-balancing.
• By comparing TCP and UDP results, filtered ICMP TTL exceeded packets can

be detected: Filtering:Protocol-based.

4.3.5 Active Monitoring of Middlebox Parameters

All approaches that we have described so far are based on measurements that don’t
require cooperation of the middlebox. With our Lightweight Information Export tool
LinEx [106] we developed a tool in the context of home networking that can also
be used for actively collecting and exporting status information from the middlebox
to a collection agent. LinEx runs on embedded Linux routers and is able to export
information from system configuration files, values read from the proc-filesystem, and
the output of command-line tools. The export can be either done by tools such as scp3

or email, or it can continuously export information via the IP Flow Information Export
(IPFIX) Protocol [25].

In the following we describe which network information can be typically found in
the proc-filesystem, in configuration and status files and in the output of command-line
tools of an OpenWRT4 enabled middlebox.

proc-Filesystem

The virtual Linux processing filesystem (/proc) holds process information generated by
the kernel, such as state parameters related to the entire system (e.g. memory infor-
mation in /proc/meminfo), to specific devices (/proc/devices), or to running processes
(/proc/PID). All entries can be easily extracted using standard file operations (e.g.
fopen or the command-line tool cat). Low-level information about network interfaces
can be found in /proc/net and /proc/sys/net although it is usually more convenient to
execute the command ifconfig which provides a summary of the relevant information.
The connection tracking (conntrack) function of the netfilter kernel module tracks TCP
connections and other IP packet flows traversing the router. A list of currently active
connections and flows can be obtained from /proc/net/nf conntrack. Middlebox specific
information such as timeout values (e.g. nf conntrack udp timeout) and the maximum
mapping table size nf conntrack max can be found at /proc/sys/net/netfilter.

Configuration and Status Files

Just like on Linux PCs, configuration files are usually located in the /etc directory
while files with status information can be found in /var. The availability depends on
the installed services and applications. The name and location of a specific file may
vary between different router firmwares.

On OpenWRT, configuration files are located in the /etc/config/ directory. As
an example, the DHCP configuration is stored in /etc/config/dhcp. This file contains
the interfaces for which DHCP is enabled. The list of active DHCP leases in the file
/var/dhcp.leases gives an overview on currently connected devices, including their IP
and MAC addresses. Interface and routing parameters are stored in /etc/config/net-
work, firewall settings are located in /etc/config/firewall.

3 http://linux.die.net/man/1/scp
4 http://www.openwrt.org

56 4. Experimental Analysis of Middlebox Behavior

Output of Command-line Tools

Some volatile information, such as interface statistics and the list of connected WLAN
clients, cannot be obtained from a file, but requires the execution of a command-line
tool. Appropriate tools are ifconfig, but iptables -l is also useful for determining the
current firewall configuration.

4.4 Experiments in the Lab and Verification of our Algorithms

4.4.1 Test Setup

To validate our algorithms we set up a testbed that consists of a test server, a test
client and an arbitrary number of middleboxes. The interfaces of the middleboxes are
configured using increasing IP addresses and by changing the default gateway the client
decides which middlebox to test. This setup is depicted in figure 4.15.

Test Client

Test
Server

.

.

.

NAT1

NAT N

Fig. 4.15: Simplified testbed for our home routers

We bought a number of home routers, introduced them into our testbed and ran
our algorithms to test their behavior. In this case the routers are treated as black boxes
since their behavior is not known, documented or standardized. Thus, most behavioral
algorithms cannot not be verified in this setup since the correct result of a test is not
known beforehand. If an algorithm returns an output we can only assume that the
middlebox behaves in a certain way, but the outcome of the algorithm could also be
due to a wrong implementation.

4.4.2 Virtualized Testbed and Topology Generator

To actually verify the results of our algorithm we need to know the exact behavior of a
middlebox before testing it. Since the behavior of existing middleboxes is not known,
our goal is to emulate certain behavior aspects for middleboxes using legacy Linux
machines. In section 4.3.5 we already explained how our tool LinEx is able to extract
information by querying e.g. the /proc filesystem. It is not only possible to retrieve this
information, but also to set new values to modify the behavior. For example, the file
nf conntrack udp timeout holds the UDP timeout value that can be set to an arbitrary
new value by issuing the command: echo “newValue” >nf conntrack udp timeout.

To describe a complete instance of a middlebox and its desired behavior we use
our information model. It covers all relevant parameters and an instance of the model
can be created by using an XML description as shown in listing 4.1. To also deploy a
given topology we implemented a virtualized testbed as depicted in figure 4.16. The
privileged domain 0 is used for managing virtual machines and networks. Here, three

4.4. Experiments in the Lab and Verification of our Algorithms 57

Hardware

Domain 0: Management

Virtual System

pethMgmnt

Management
interface

DomU: Router

eth0

DomU: NAT

eth0

Hypervisor

vif3

vif6

DomU: NAT

pethClient pethServer

eth2vif2

eth0vif0

eth1vif1

eth1vif4

eth2vif5

eth2vif8

eth1vif7

XML

XML

XML

NAT

route

NAT

XM
L

XM
L

De
sc

rip
tio

n
of

 a

M
od

el
 In

st
an

ce

Fig. 4.16: Architecture of our virtualized topology generator

physical interfaces are used: pethMgmnt for management purposes (such as providing
the configuration file), pethClient to connect the test client and pethServer to connect
the test server. The test client and server could also be run inside a virtual instance,
but for the sake of simplicity, our example assigns physical interfaces to them.

A sample configuration skeleton that is used to describe a middlebox topology is
shown in listing 4.2. The machine configuration may come from a pre-defined template,
but we choose to directly pass the XEN5 configuration file to it. This configuration is
then taken by the management interface and passed to XEN in order to create the
new machine. The middlebox specific part following our information model is passed
to the virtual machine image, which runs a parser that understands our model. The
individual parts are extracted and the desired behavior is set up. Table 4.2 gives an
overview of how it is possible to transfer an instance of the middlebox model into an
actual Linux configuration.

<MachineDescription>

<VM name="NAT1">

... (XEN machine configuration)

</VM>

</MachineDescription>

<MiddleboxDescription>

<n:Middlebox xmlns:n="http://example.org/MiddleboxSchema" ...>

... (description following our information model)

<n:Middlebox/>

</MiddleboxDescription>

<VirtualNetworkDescription>

... (Bridging between virtual and real network)

</VirtualNetworkDescription>

List. 4.2: Configuration skeleton for the topology generator

5 http://www.xen.org

58 4. Experimental Analysis of Middlebox Behavior

Information Model Linux Configuration

NetworkInterface Element

ipv4:IPAddress ifconfig command
file: /etc/network/interfaces

ipv6:PrivacyExtension add net.ipv6.conf.eth0.use tempaddr = 2
to /etc/sysctl.conf

ProtocolLayers Element

Protocol:IP route command

Stateful Element

StateTable:TableSize /proc/sys/net/nf conntrack/nf conntrack max

StateTimer:UDP nf conntrack udp timeout

StateTimer:UDPStream nf conntrack udp timeout stream

StateTimer:TCP-Established nf conntrack tcp timeout established

Filtering Element

State-based:Independent iptables -t nat -A PREROUTING -j DNAT ...

Policy-based iptables myPolicy -j Drop or Accept

Protocol-based iptables myProtocol -j Drop or Accept

Translation and Modification Element

Binding:NATBinding:EnpIndep. iptables -t nat -A POSTROUTING -j SNAT ...

Binding:NATBinding:ConDep. iptables -A POSTROUTING -t nat ... –random

Tab. 4.2: Examples for transfering our model instance to an actual configuration

4.5 Field Test

With the algorithms designed above (section 4.3) and the ability to set up pre-defined
middleboxes and topologies in order to evaluate them (section 4.4), we now have all
components for the analysis of middleboxes in the Internet. To cover as many different
middleboxes as possible, we chose to conduct a public field test where we ask volunteers
to participate and run the tests on their computers evaluating their middleboxes. The
gathered results not only help us to understand middlebox behavior, but also to design
algorithms for coping with them. This section presents the field test in detail. We first
cover related work in section 4.5.1. Section 4.5.2 then presents our requirements and
lists our contributions. Section 4.5.3 focuses on selected details of the implementation
and the deployment. Finally, the results are presented in 4.6.

4.5. Field Test 59

4.5.1 Related Work

Similar field tests covering network and middlebox behavior have been done in the
past. In [48] a UDP hole punching algorithm is evaluated using a small number of
devices in the wild. TCP middlebox behavior is tested in [60]. TCP traversal is harder
than UDP and its success is dependent on the behavior of the middlebox. The authors
therefore look at different behavioral issues, such as error handling and unusual packet
sequences. Based on these results they present an algorithm that works for them with
89% of their tested middleboxes. [68] looks at home gateway characteristics such as
TCP/UDP timeouts, DNS handling and ICMP messages. [76] tests basic UDP behavior
like STUN classifications [133], port mapping and filtering.

The German Federal Office for Information Security (BSI) conducted a study cov-
ering 36 routers about the support of DNSSec in home routers [35] and found out
that only 25% of their tested devices fully support DNSSEC [161]. [30] implements a
NAT-check-functionality method in their existing P2P network and studies UDP char-
acteristics of NATs and firewalls within their network. The tests covers UDP timeouts,
as well as STUN results of 3500 unique peers. Within their P2P network, almost 90%
of the peers are behind a stateful middlebox. But all these studies have one thing in
common, that they only test a very small number of devices or the conducted tests and
algorithms only cover a few issues. A test with a large result set covering behavior,
traversal, as well as the detection of cascaded middleboxes has never been conducted.

Netalyzr [87] is an example of a large scale field test, which was designed as a
useful tool for analyzing the current network connection, e.g. in case of a network
problem. The web-based test covers many networking aspects such as latency, band-
width, HTTP proxying, caching and also a basic NAT detection test. In their paper
they refer to 130,000 measurements from 99,000 public IP addresses. The goal of the
HomeNetProfiler [33] is to gather networking information of home routers to eventu-
ally improve the usability of home networks. The authors use the UPnP protocol for
querying the home router and to collect middlebox related data such as the external
IP address, access link capacity, buffer sizes, as well as the packet loss. In combination
with Netalyzr the authors collected a large number of data from 120,000 homes and
found many problems related to broken UPnP implementations. NetPiculet [158] was
designed to test firewall and NAT policies, such as timeouts, filtering and mappings in
mobile networks. This was realized using a smartphone application and the test was
run in a large number of cellular provider networks. As a result the authors discuss
the impact of their findings for mobile devices, e.g. battery draining due to a denial of
service attack.

4.5.2 Requirements and Contributions

The usability of the field test for potential volunteers is essential for getting a large
number of test results. A perfect solution would run on all major platforms without
requiring the user to install any additional software. However, a trade-off between
usability and functionality has to be found. Many algorithms and tests call for superuser
privileges, which might prevent many users from running it. Additionally, an instant
feedback and benefit must be provided to the user to draw their attention. Table 4.3
presents our requirements and shows the contributions that help satisfy them. The
following section 4.6 then presents the results and findings of our measurements in
detail.

60 4. Experimental Analysis of Middlebox Behavior

Requirement Contribution

User Requirements

R1 Usability Web-based Approach

The test must be easy to use, should not require additional software, and it should
be platform independent. Thus, a web-based approach was chosen.

R2 Instant Feedback Pretesting and Parallelization

The test should give an instant feedback and inform the user about his test result.
We run all time critical tests in parallel and introduce optimization techniques for
the topology test.

R3 User Privileges Logic on Server Side

To avoid the need for RAW sockets and root privileges, the logic is completely
implemented on the server side.

R4 Security and Privacy Encrypted Storage

To prevent the stealing of sensible data, all results are encrypted on the server side
and results are only shown in an aggregated way.

Test Provider Requirements

R5 Scalability Distributed Backend

The server side must be able to handle a large amount of clients. Multiple instances
and DNS load-balancing help to distribute the load and guarantee path-stability.

R6 Update Management Web-based Approach

New tests and updates should be easily integrateable.

Tab. 4.3: Requirements and contributions for our field test

4.5.3 Design and Implementation

The website http://nattest.net.in.tum.de hosts our software, provides information about
the conducted tests and presents an overview of the results in an anonymized way.
During the last years, four different versions of the test software were implemented
(as described in the next section, only two resultsets are considered in this thesis).
All implementations follow the approach as depicted in figure 4.17: Visitors of the
website download the software, run the tests with one of our test servers, report their
results back to a database server and receive an aggregated result of their testrun in
return. Calculate result dependent on the logic means that either the client or the server
implements the logic for deciding about the results of the test. For example, the result
of the hole punching test can only be determined by the client, while the result of the
topology test is calculated by the server. If results are gathered on the client side they
have to be committed to the test server as the final step of a testrun.

4.5. Field Test 61

















































Fig. 4.17: Sequence diagram of our field test software

The first instance of a field test was developed as part of the authors diploma thesis
[99] and was used to evaluate 79 NAT devices in Germany. The implementation was
based on Linux and had to be compiled after downloading by potential participants
before running it. It did not need superuser privileges. This approach was chosen due
to the limited time available and due to the relatively easy implementation. However,
many potential users could not be reached. In order to get more results, a Windows
version was developed afterwards and first results were published in [103] and [104].
The approach of maintaining two individual implementations was not feasible and led
to a complete redesign of the test. The results of these first implementations are not
considered in this thesis.

A natural evolution of these clients was based on libpcap6 and designed in a way to
run on Windows and Linux. This was achieved by only using a text-based user interface
and by putting platform dependent code into ifdef directives. For the Windows version
a precompiled binary file together with libpcap was put into one zip-file that had to
be downloaded. The libpcap-based test required superuser privileges to run tests that
are based on RAW sockets, such as those for testing protocol-based filtering behavior.
This was a major hindrance for many potential participants since they did not only
have to grant administrator rights to the test software, but also disable the internal
Windows firewall since it was blocking outgoing RAW packets. Parts of the results
of the libpcap-based test were published in [100] and [105]. With the introduction of
Windows 7, many tests failed due to the increased default security level and we had to
redesign our tests again.

6 http://sourceforge.net/projects/libpcap/

62 4. Experimental Analysis of Middlebox Behavior

Web-based Implementation

A screenshot of the most current (and final) version of our field test is shown in figure
4.18. The tool NATAnalyzer is part of the measurement initiative measr.net of the
Chair for Network Architectures and Services at the Technical University of Munich,
Germany.

Fig. 4.18: Screenshot of the web-based NATAnalyzer

The test suite is implemented as a JAVA applet and runs on many common plat-
forms. As the most important ones we have successfully tested our software with the
operating systems Windows XP/Vista/7, different versions of MacOS 10 and Ubun-
tu/Debian Linux with all common browsers such as Google Chrome, Firefox, Internet
Explorer, Safari and Opera. The frontend is implemented in HTML5 and makes an
extensive use of Javascript and especially the jquery7 library for asynchronous AJAX
requests. The backend is implemented in Python8 and uses the library Scapy9 for sniff-
ing and manipulating packets. Due to the restriction of JAVA applets that neither allow
sending RAW packets nor setting the TTL of IP packets, all tests had to be designed
to require as little resources and permissions on the client side as possible. Therefore,
for certain tests we had to implement more logic and complexity as necessary when
assuming that superuser permissions are available. For example, our hole punching al-
gorithms require to set the TTL field of the IP protocol, but since this is only possible
as a superuser, we designed the tests in a way that the server simulates the expiration
of certain packets, e.g. by dropping packets or by answering packets with pre-defined
packets from a second IP address (e.g. drop initial UDP packet and answer with ICMP
TTL exceeded from a different IP address).

Figure 4.19 shows the steps of a single testrun using the web-based implementation.
First, the participant visits the website, and executes the JAVA applet (the test client)
in the browser (step 1+2). The JAVA applet then chooses a nearby test server based
on the current IP address (test servers are currently located in Munich, Germany and

7 http://jquery.com/
8 http://www.python.org/
9 http://www.secdev.org/projects/scapy/

4.5. Field Test 63

NATAnalyzer backend 1
Munich, Germany

NATAnalyzer backend N
Los Angeles, CA, USA

. . .

http://nattest.net.in.tum.de

http://nattest.net.in.tum.de resulttestrun

(1
) (2) (3) (4)

Fig. 4.19: Web-based approach

Los Angeles, CA, USA) and runs the tests (step 3). During a testrun we ask the
participant to provide information about the home router that is tested, about the
Internet Service Provider and about the connection to the Internet. Although these
fields are totally optional, many participants provide at least parts of the information
(see next section). Once the test is done the client commits the results to our database
and an aggregated result is immediately shown to the participant. These results also
contain useful information about possibilities to tweak the router settings if some results
are an indicator for poor performance with some popular applications. For example,
if the timeout of the middlebox is shorter than the average, we suggest to send more
keep-alive packets and provide settings for common VoIP/SIP applications. The results
are committed to a MYSQL database that is not directly accessible from the Internet.

Android-based Implementation

Parts of the NATAnalyzer software are currently being integrated into the MeasrDroid
Android framework developed at the Chair for Network Architectures and Services
at the Technical University of Munich. The goal of MeasrDroid is to utilize Android
smartphones to collect location-based information about network related parameters.
The individual parameters can be divided into passive measurements (e.g. getting the
location from the Android phone) and active measurements, such as round trip times
and eventually middlebox behavior.

While NATAnalyzer mainly measures fixed line connections, MeasrDroid targets
mobile networks and middleboxes located at the ISP. By default, MeasrDroid executes
its manyfold tests every 15 minutes and therefore forbids to run time consuming algo-
rithms. Thus, we integrated our binding and mapping behavior tests to gather infor-
mation about port allocation algorithms of provider-based LSNs and to verify findings
of [158]. Additionally, the topology analysis algorithms were integrated. Since the al-
gorithms were already available as JAVA code, porting it to a MeasrDroid module was
achieved with only minor changes. The public release of the MeasrDroid framework
(via the Google Play Store10) is planned for 2013 and its results will help to shed more
light on the behavior and impact of Large Scale NATs in mobile environments. In this
thesis we only mention preliminary results if applicable.

10 https://play.google.com

64 4. Experimental Analysis of Middlebox Behavior

4.6 Results and Discussion

The following sections present the results of the conducted field test. We start in section
4.6.1 by describing our two testsets. We present general findings such as the distribution
of the test results and explain biases that are inevitable when requiring user participa-
tion. Section 4.6.2 then starts by classifying our testsets using the STUN algorithm.
Afterwards, we compare the results to our binding measurements and give an estima-
tion to which extent today’s middlebox traversal algorithms are supposed to function.
When looking at connection dependent binding strategies, we identified clear patterns
that can be used to develop new algorithms in order to also traverse many more middle-
boxes compared to the state of the art. Section 4.6.3 then analyzes mapping behavior
and presents new categories for describing the Translation and Modification:Mapping
element in detail. Additional behavior results, such as the ICMP, timeout and map-
ping table analysis are presented in section 4.6.4. Section 4.6.5 presents success rates
for different behavior-based middlebox traversal mechanisms. The results support our
arguments that parameterizing traversal algorithms according to the behavior of the
participated middleboxes help to significantly increase their success rates. UPnP, SCTP
and ALG results are presented in section 4.6.6. After presenting our topology results
in section 4.6.7, we conclude with the lessons learned in section 4.6.8.

4.6.1 Testset Description

The conducted field test consists of many individual experiments as listed in table 4.1.
Some of them have been defined at the beginning of our research, others were added
later on or were modified and adapted to the most current findings. Additionally,
the individual implementations of the field tests (see above) produced disjoint result
sets. Figure 4.20 shows which of our algorithms were considered for which testset. As
mentioned above, our results focus on the web-based and libcap-based implementation
and preliminary results of the Android-based implementation are only mentioned if
applicable.

Table 4.4 shows the number of individual tests for each testset. Testset 1 (libpcap-
based) contains 2,651 valid entries from 2,232 unique IP addresses, whereas testset 2
(web-based) contains 1,717 valid tests from 1,690 unique IP addresses. The reason for
having multiple tests for the same IP address is not only due to dynamic IP addresses
that are reassigned to different customers after a specific amount of time (this did hap-
pen more often than expected), but also because many volunteers tested the same box
with different parameters within a short period of time. We observed two different user
behaviors: The first group runs the test multiple times without changing anything in
order to verify their results. The second group runs the test once and changes some pa-
rameters for additional runs. For example, after the first test a participant may enable
UPnP or set up a static port-forwarding entry to validate his settings. Surprisingly,
many subsequent tests from the same IP address show a different behavior, because the
participant changed the firmware of the model (e.g. Tomato vs. OpenWRT) to find
out which one behaves “better”. In one particular case we identified four results all
coming from the same public IP address (assigned to a business in Hongkong) and same
local interface within a short period of time (five hours). The results however show four
different models (three found by UPnP and one that was specified manually). Obvious
duplicates (same behavior, e.g. UPnP model, internal IP address and local network in-
terface from the same IP address within a short period of time) were manually removed
from testset 2 in order to not distort our results. However, we also double-checked our

4.6. Results and Discussion 65

Port
Binding

Filtering:State

Stateful:Policy

STUN tests

UPnP

Time-based
Mapping

Android

Testset 1: libpcap Testset 2: web-based

NAT Binding

Topology
Analysis

SIP ALG
Filtering:Protocol-based
-- ICMP Analysis

Stateful:StateTable
-- Mapping Table

Image Proxy

SCTP handling

Stateful:StateTimer
-- Protocol timeouts

Transl. and Modi.:Mapping
-- Allocation and Algorithm

SIP and FTP ALG

IPv6 Measurements

(results: future work)

Fig. 4.20: Our three testsets and their individual tests

findings by querying the whole testset and the percentages differed marginally, while all
finding remain the same. In addition to the fact that the number of middlebox vendors
is limited, we are convinced that our result set (although it contains biases as described
below) is large and varied enough to actually make a rather general statement about
the behavior of middleboxes, especially the ones that are located on the edge of the
Internet.

Identified Biases

The main problem of a field test relying on the participation of volunteers is that it is
not possible to influence the test group in a way to get a representative result set. Thus,
all of our testsets contain certain biases. The most obvious one is referred to as a “geek-
bias” (following the terminology of [87]) and since our test targets rather technical users
this is inevitable. For example, compared to common published marked shares11 we
found the number of Linux and Apple users to be much higher: Linux: 3.24% in our
test vs. 1% market share and Apple: 16.05% in our test vs. 7%. Additionally, 48.35%
of all participants of testset 1 and 2 specified their firmware and even 66.07% specified
the model of their home router. An average user may be able to identify the model, but
in order to find the exact firmware it is necessary to log into the website of the router
and extract the information, something an inexperienced average user is not capable of.
Finally, almost 15% of the 290 latests measurements of testset 2 were able to establish
an IPv6 connection.

Another identified bias is based on the location of the participants. For testset 1
26.71% of all data sets are from Germany and 16.94% from the US. For testset 2 the
top 3 countries are the same with a distribution of 23.13% for Germany, 20.65% for
the US and 7.87% for the UK. A typical peak that also created a bias can be seen
a few hours and days after asking students during a related lecture at the Technical

11 http://www.netmarketshare.com/

66 4. Experimental Analysis of Middlebox Behavior

Testset 1 (libpcap) Testset 2 (web-based)

Valid Tests

2,651 1,717

Unique IP Addresses

2,323 1,690

ISPs

624 (> 10 sessions: 51) 522 (32)

Top 8 ISPs

Deutsche Telekom 9.8% Deutsche Telekom 7.03%
Chunghwa Telecom 3.3% Comcast Cable 3.81%
Comcast Cable 2.8% Arcor AG 2.86%
Arcor AG 2.7% Virgin Media 2.78%
Alice DSL 2.2% Kabel Deutschland 2.68%
Virgin Media 1.8% M-net GmbH 2.2%
Road Runner 1.5% Cox Communic. 1.51%
freenet 1.5% British Telecom 1.49%

Countries

89 (> 10 sessions: 26) 77 (29)

Top 5 countries

Germany 26.7% Germany 23.13%
United States 16.9% United States 20.65%
United Kingdom 5.5% United Kingdom 7.87%
Taiwan 3.7% Netherlands 3.96%
Canada 3.6% Korea 2.9%

Top 5 Middlebox Vendors
as provided by the users, UPnP findings in brackets

Linksys 14.59% Netgear 8.9% (14.89%)
D-Link 10.98% Linksys 8.9% (9.43%)
Netgear 8.34% D-Link 6.71% (10.66%)
AVM Fritzbox 6.79% AVM Fritzbox 6.62% (17.2%)
T-Com 4.75 Zyxel 3.87% (2.67%)

Tab. 4.4: Testsets for the libpcap-based (1) and the web-based implementation (2)

4.6. Results and Discussion 67

Fig. 4.21: Geographical distribution of testset 1 and 213

University of Munich to run the test. In fact, according to the IPInfoDB12 database,
10.05% of testset 1 and 4.02% of testset 2 is coming from Munich, Germany. Additional
announcements were made in some english speaking portals, which explains the high
number of users from the US, the UK and Canada. The geographical distribution is
depicted in figure 4.21.

4.6.2 Binding and Filtering Behavior Results

Translating middleboxes implement a binding strategy that describes which external
mappings are allocated for an internal one. More precisely, we are interested in NAT
Binding and Port Binding behavior that is part of the Translation and Modification
element. We first start with categorizing our results using the STUN protocol, since
this is a common way of classifying stateful translating middleboxes and it reveals state-
based filtering behavior as described in the Filtering element of our information model.
Afterwards, we look at the results of our algorithms and draw conclusions regarding
the applicability of our results for the traversal of middleboxes.

Classification according to STUN

The first version of the STUN protocol as defined in [133] introduced four different
implementations that can be used to classify middlebox behavior: Full Cone, Address
Restricted Cone, Port Address Restricted Cone and Symmetric (see section 3.3.3 for
more details). For both testsets we ran the STUN algorithm (used libraries: Vovidi-
aStun14 for testset 1 and JSTUN15 for testset 2) and extracted the STUN types for
all test entries. The results are depicted in figure 4.22. A Port Address Restricted
Cone NAT (PAR) was discovered in 72% of all results of testset 1 and 57% of testset 2,

12 http://ipinfodb.com/
13 Figure: c©OpenStreetMap contributors: http://www.openstreetmap.org/copyright
14 http://sourceforge.net/projects/stun/
15 http://jstun.javawi.de/

68 4. Experimental Analysis of Middlebox Behavior

 0.01

 0.1

 1

Testset1 Testset2 Aggregated

Pr
op

ab
ilit

y

PAR
FullCone
AddrRes.

Sym.
SymFW
noNAT

Fig. 4.22: STUN classification

 0

 0.2

 0.4

 0.6

 0.8

 1

Other FC-FC
FC-AR
FCSY

PAR-No
PAR-SYMFW

PAR-SY PAR-AR PAR-FC PAR-PAR

Cu
m

ul
at

ive
 P

ro
ba

bi
lity

 fo
r g

ive
n

ST
UN

 T
yp

es

Fig. 4.23: STUN constellation

leading to an aggregated result of 66%, which is two thirds of all tested middleboxes.
Full Cone NATs were found in 10% (aggregated) and Address Restricted Cones also in
10%. Only 3% of our tests do not implement address translation and provide an open
access to the Internet. The number for Symmetric NATs differs dramatically between
testset 1 (2%) and 2 (19%), leading to an aggregate of 8%. The reason for this large
difference is hard to assess. Of course it could be due to a different testset, but since
most general conditions such as the distribution (number of ISPs, number of countries)
and size are similar, it could also be due to the different STUN libraries. However,
besides Symmetric NATs and Port Address Restricted Cones the other results only
differ slightly. It seems like some of the Port Address Restricted NATs were classified
as Symmetric ones for testset 2 and vice versa. Since the difference between the two
types is the binding strategy, the issue will be further investigated when looking at the
binding behavior in more detail.

Today, the success rate for establishing a session between two peers both behind
a filtering and translating middlebox mainly depends on the behavior of the service’s
middlebox. If the service is not able to predict external ports, a connection will most
likely fail. The rather high number of Symmetric NATs indicates that a connection will
fail in approx. 8% (19% for our second testset). We argue that for many applications
it would be possible for the “client” and “server” to switch roles and to establish the
session in the other direction. Thus, the probability derived from the aggregate of
testset 1 and 2 for a certain constellation for two arbitrary peers in the Internet is
depicted in figure 4.23. In almost 90% of all constellations a Port Address Restricted
Cone NAT is involved. In 43.8% both peers implement this behavior. In less than 1%
both endpoints implement a symmetric behavior. This means that many applications,
if designed properly, would be able to communicate across middleboxes utilizing legacy
traversal mechanisms such as hole punching in a more parametrized and more structured
manner. This is our goal for chapter 6.

NAT and Port Binding

Port Binding for testset 1 was measured using the STUN libraries internal functionality
for comparing external ports. As a result, 79.89% of all middleboxes preserve their
ports. This rather high number is confirmed by testset 2, where 71.45% for UDP and
70.28% for TCP implement port preservation.

For testset 2, we then extracted the percentages for the STUN categories (see table

4.6. Results and Discussion 69

4.5) and observed some interesting findings: While Restricted Cone NATs (AR and
PAR) preserve their ports for outgoing UDP as well as TCP packets in more than 86%,
the number for Full Cone NATs (53.57% for UDP and TCP) and Symmetric NATs
(17.48% for UDP and 17.83% for TCP) are much lower. The numbers for Symmetric
NATs are as expected, but the reason for the Full Cone NAT behavior is unclear. A
possible explanation could be that due to the fact that Full Cone NATs implement a
rather unrestrictive filtering behavior (all packets are forwarded independent of their
source addresses), vendors might want to introduce some obfuscation by not preserving
port numbers. Additionally, since the state table of Full Cone NATs does not contain
the destination IP address and port (independent filtering), port preservation can only
take place if the port is not in use by another client. While NATs implementing a
restricted filtering strategy are able to multiplex based on a combination of the source
port and the destination (and are therefore able to allocate the same source port to
different connections), for Full Cone NATs the external source port is the only unique
identifier for incoming packets.

All Full Cone AR PAR Symmetric

Port Binding

Port Preservation UDP: 71.45% 53.57% 86.9% 88.25% 17.48%
TCP: 70.28% 53.57% 86.9% 87.79% 17.83%

No Preservation UDP: 28.55% 46.43% 13.1% 11.75% 82.52%
TCP: 29.72% 46.43% 13.1% 12.21% 82.17%

NAT Binding

Endpoint Indep. UDP: 78.45% 78.06% 94.05% 99.77% 3.85%
TCP: 75.25% 65.82% 89.29% 96.77% 9.79%
both: 72.34%

Conn. Dependent UDP: 21.55% 21.94% 5.95% 0.23% 96.15%
TCP: 24.75% 34.18% 10.71% 3.23% 90.21%
both: 27.66%

Tab. 4.5: Detailed binding behavior results of testset 2

We then measured the NAT binding behavior of testset 2. According to our informa-
tion model, Translation and Modification:Binding:NATBinding may have two values:
Connection Dependent and Endpoint Independent. As shown in table 4.5 independent
binding was observed in 78.45% for UDP and 75.25% for TCP, which indicates that
our observed numbers for Symmetric NATs are correct. If the middlebox implements a
connection dependent binding for UDP it almost always also implements a connection
dependent binding for TCP. Only 9.2% of all tested middleboxes implement a different
binding behavior for TCP and UDP. The results show that port prediction using the
STUN algorithm works with more than three quarters of all middleboxes without any
additional effort.

However, in order to verify our results we extracted the binding behavior for all
four middlebox categories. Since the categories are defined by their binding (and fil-
tering) behavior, we didn’t expect any surprises. For Symmetric NATs the connection
dependent rate was expected to be 100%, while the other categories were supposed to

70 4. Experimental Analysis of Middlebox Behavior

implement an independent binding strategy. However, the results show that this is only
true for Restricted Cone NATs (94.05% for AR and 99.77% for PAR). For Full Cone
NATs 21.94% use a connection dependent binding and 3.85% of the Symmetric NATs
(according to the STUN results) implement an independent binding strategy. When
looking at the detailed results we didn’t find any clusters, specific models or connec-
tions. A reason for the difference between the STUN result and the binding test could
be cross-traffic, which we are neither able to identify nor to influence.

Although the STUN classification was only done for UDP, we are still interested
in the results for TCP. The percentages are similar than those for UDP except for
Symmetric NATs, where a much higher number implement an endpoint independent
binding for TCP (3.85% vs. 9.79%). Altogether, 1.94% of all middleboxes that were
identified as Symmetric NATs implement an independent binding strategy for UDP
and for TCP. These findings encourage us to mainly rely on our endpoint independency
tests instead of the STUN results and affirm the general assumption that the STUN
classification does not cover all middlebox categories: it was removed from the most
current STUN RFC with the following explanation: “Classic STUN’s algorithm [...]
was found to be faulty, as many NATs did not fit cleanly into the types defined there.”
[130].

Behavior Constellation
for two MBs A and B

different behavior
for A and B

same behavior
for A and B

both endpoint
independent

both connection
dependent

A: connection dependent

B: endpoint independent and
independent filtering

and vice versa

A: connection dependent

B: endpoint independent and
address restricted filtering

and vice versa

A: connection dependent

B: endpoint independent and
port address restricted filtering

and vice versa

UDP: 61.5%
TCP: 56.6%

UDP: 4.7%
TCP: 6.1%

UDP: 4.6%
TCP: 4.3%

UDP: 2.3%
TCP: 2.5%

UDP: 26.9%
TCP: 30.5%

Fig. 4.24: Behavior probability for two arbitrary hosts of our testset 2

With this knowledge we are able to calculate correct probabilities for constellations
of two arbitrary hosts of testset 2 that both implement endpoint independent binding,
which is a prerequisite for state of the art behavior-based middlebox traversal. The
results as depicted in figure 4.24 show the reason for today’s rather poor success rate
for middlebox traversal between two arbitrary hosts, both behind NAT, in the Internet:
In the state of the art only 61.5% (56.6% for TCP) of the constellations provide the
essential prerequisites that allow behavior-based traversal.

We then calculated the numbers for the constellations where only one host imple-
ments a connection dependent binding strategy. For the other host implementing an
endpoint independent strategy we also focused on the filtering behavior. The results
were calculated using our binding results (instead of STUN’s results) for determining
endpoint independent and connection dependent binding types and the STUN algo-
rithm for the filtering results (only those that implement an independent binding strat-
egy according to our test). For port address restricted filtering STUN types PAR, SYM
and SYMFW were considered. We argue that if the constellation and the behavior is
known, some of the constellations can even be traversed without requiring port predic-

4.6. Results and Discussion 71

 0

 0.2

 0.4

 0.6

 0.8

 1

-60000 -40000 -20000 0 20000 40000 60000

PR
[x

 <
 P

or
tD

iff
]

Port Difference between first and second query

Fig. 4.25: UDP NAT binding

 0

 0.2

 0.4

 0.6

 0.8

 1

-4 -2 0 2 4 6 8 10

PR
[x

 <
 P

or
tD

iff
]

Port Difference between first and second query

Fig. 4.26: UDP NAT binding details

tion, dependent on the filtering behavior. All we have to make sure is that the host
that does the hole punching (the “service”) is the one that implements endpoint inde-
pendent binding. If not, we propose to “swap roles” and turn around the connection
establishment. For example, a connection dependent binding strategy on the requester
side and an endpoint independent together with an independent filtering strategy on
the service side means that once the hole is created all packets will be forwarded. The
requester is therefore not required to predict any external port. In case of address
restricted filtering, the requester only has to predict its external IP address, but not its
port since the service only filters based on the IP address. For port address restricted
filtering, this approach does not work. However, if it would be possible to predict a port
range instead of a concrete port, the effort for creating a connection would decrease
dramatically.

Finding 1: Today, only 61.5% (56.6% for TCP) of all middlebox constellations imple-
ment an endpoint dependent binding strategy, a prerequisite for state of the art behavior-
based traversal. When also considering filtering behavior and by choosing roles carefully,
it is possible to increase this number to 68.4% for UDP and 63.4% for TCP.

In order to further improve these numbers, we will now take a closer look at the
connection dependent binding implementations with the goal of identifying binding
patterns. When comparing external bindings that were returned by our test server (for
possible results see section 4.3.1), in less than 1% (of the connection dependent middle-
boxes) not only the external port, but also the IP address differs, thus implementing a
non-pooling address behavior. For one such result coming from an IP address of Global
Village Telecom serving a customer in Sao Paulo, Brazil, we were able to query the ex-
ternal IP address of the first hop middlebox via UPnP, which turned out to be private.
This is a strong indicator that the mentioned provider deploys LSN in its network.

We then calculated the differences of the allocated external ports for all connec-
tion dependent mappings. For example, if the first connection returns the mapping
131.159.14.1:20000 and the second connection returns 131.159.14.1:20001, the differ-
ence is 1. If the second port is smaller than the first one, it counts as a negative differ-
ence. The results were grouped and figure 4.25 shows the CDF of the port differences
for UDP and figure 4.27 for TCP. The left hand side shows that negative differences
are observed for approximately 20% of our results and more than half of them are in
the −20000 : 0 range. However, a significant cluster cannot be seen. A huge peak can
be observed at around 0 and due to the scale it is hard to interpret. The more detailed

72 4. Experimental Analysis of Middlebox Behavior

 0

 0.2

 0.4

 0.6

 0.8

 1

-60000 -40000 -20000 0 20000 40000 60000

PR
[x

 <
 P

or
tD

iff
]

Port Difference between first and second query

Fig. 4.27: TCP NAT binding

 0

 0.2

 0.4

 0.6

 0.8

 1

-5 0 5 10 15

PR
[x

 <
 P

or
tD

iff
]

Port Difference between first and second query

Fig. 4.28: TCP NAT binding details

figures 4.26 and 4.28 focus on a smaller range and reveal that a port difference of 1 can
be observed with 27% of all connection dependent bindings. Other popular differences
are 2 (8%), 3 (16.5%) and 4 (2.2%), covering 53.7% of all connection dependent binding
middleboxes. A similar behavior is true for TCP, with popular differences of 2 (13.6%),
3 (10.1%), 4 (5.9%) and 5 (2.1%). A difference of 1 was only seen in 3.7%. The re-
maining question is which middleboxes will actually behave the same way for multiple
queries and also when changing the source or destination addresses. More precisely,
how stable is the port difference when changing parameters? Will the middlebox use
the same port difference again and again or will it change it from time to time? Our
results show that if the port difference is located in the [0, 10] interval, the difference
remains the same for all mappings independent on the source or destination. For other
results the difference of the second mapping is not always related to the first one and
therefore not predictable. However, if the middlebox implements port preservation,
which is true for 20.54% (7.29% TCP) of all connection dependent bindings, it is not
necessary to predict the external port because it won’t change. When subtracting the
number of middleboxes that already allow port prediction based on the binding strat-
egy, an additional 2.7% (2.1% for TCP) of all connection dependent bindings preserve
their mapping.

Finding 2: Even if the middlebox implements a connection dependent binding strategy,
in approx. 57% (44% for TCP) it is still possible to predict the external binding by
analyzing binding patterns. When also considering connection dependent bindings that
implement port preservation these numbers increase to 60% for UDP and 46% for TCP.

4.6.3 Mapping Behavior Results

Port Mapping, also belonging to the Translation and Modification element, describes
how external resources (transport layer ports in case of NAPT) are allocated to new
mappings. When comparing the internal combination of an IP address and port with
the external one we get four possible options as described in section 4.3.1: either the
addresses and ports are different, only the address or the port is different or both
parameters are the same. In case of a connection dependent binding strategy that
does not allow querying an external service (e.g. STUN) for the external mapping, it
may still be possible to predict mappings by analyzing port mapping strategies. For
example, if a middlebox continuously increases the external mapping independent of
the source address, n tests can be conducted to predict the n+ 1 mapping.

4.6. Results and Discussion 73

 0.001

 0.01

 0.1

 1

UDP TCP

Pr
op

ab
ilit

y

Equal
Addr.Diff.
Ports.Diff.
Both-Diff.

Fig. 4.29: Distribution of the mapping behavior

Figure 4.29 shows the distribution of the mapping behavior for UDP and TCP for
testset 2. The reason for using a logarithmic y-axis is that the result set contains 2
middleboxes (0.0012% for UDP and 0.0018% for TCP), which actually use the same
internal and external IP address, but different ports. This rather unusual mapping
behavior is worth a closer look: we identified the first one as a result coming from a
fixed-line provided by Portugal Telecom and implementing a Full Cone NAT according
to STUN. However, according to our binding tests, a connection dependent binding
with a port delta of three for UDP and four for TCP, independent on the source port,
was found. Unfortunately, we could not determine the actual model or type of the
middlebox, since neither UPnP nor the user himself did find or specify any information.
The second result using different external ports but the same external IP address came
from a DSL connection provided by GO16 in Malta. STUN detected a Symmetric NAT
and we also identified a connection dependent binding. The middlebox uses a fixed
delta for allocating outgoing ports: three for UDP and four for TCP. Again, it was not
possible to identify the model of the middlebox due to missing information that could
have been provided by the participant.

In the next step we analyzed 33 individual mappings for each middlebox to under-
stand the distribution in case the IP address and port number differ. We calculated
the differences of all 33 external source ports (the number of gaps) and clustered them.
For example, a middlebox that allocates the first starting port and continuously in-
creases the external port by a fixed delta would carry a port mapping gap number
of 1. If the number of gaps is 2 this could mean the following: either the continuos
strategy is interrupted by one outlier (e.g. fixed delta of 1, but once a delta of 2),
or the middlebox might implement a pattern using exactly two gaps (e.g. 3-4-3-4 or
3-3-4-3-3-4). Finally, a port mapping gap number of 2 may also mean that a middle-
box uses a fixed delta dependent on the internal ports (e.g. 20,000(int):40,000(ext);
20,001:40,001; 30,000:50,000; 30,001:50,001; 40,000:60,000; 40,001:60,001). Figure 4.30
shows the cumulated probabilities for each port mapping gap number.

16 http://www.go.com.mt/

74 4. Experimental Analysis of Middlebox Behavior

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30

PR
[x

 <
 N

um
be

r o
f G

ap
s

]

Number of port mapping gaps

UDP
TCP

Fig. 4.30: CDF of the mapping behavior for middleboxes not preserving ports

Port Mapping Gap Number of 1: For UDP, 19.18% of all non-port preserving
middleboxes utilize only one gap. This relatively large number of middleboxes con-
tinuously increases or decreases the external port by a fixed number independent of
the internal source port. We call this category fixed-delta independent and show
an example on the left hand side of figure 4.31 with a fixed delta of 3. When looking
at the utilized deltas we only found three different ones: 88.3% (of the 19.18%) uti-
lize a fixed delta of 3, 8.51% use a fixed delta of 1 and 3.19% use a fixed delta of 6.
For TCP 14.2% only use one port mapping gap number. We again identified three dif-
ferent deltas: 95.8% use a fixed delta of 3, 2.8% a delta of 1 and finally 1.4% a delta of 8.

Port Mapping Gap Number of 2: 17.96% of all UDP non-port preserving mid-
dleboxes utilize a port mapping gap number of 2. When looking at the individual
numbers we found that for 48.86% the reason for having a port mapping number of 2
(instead of 1) is one outlier. For example, instead of continuously increasing the exter-
nal port by 1, it is increased by 2 for one arbitrary mapping. This outlier could be due
to cross-traffic or be intended by the implementation, which is not possible to verify
with our result set. However, this observation allows us to define our second category:
error-prone mapping. 36.36% showed more than one outlier, but all of them were
within the same port mapping gap number (e.g. always delta of 1, but twice a delta
of 3). The number of outliers was still rather low, between 2 and 5, which still allows
identifying a fixed delta. A port mapping gap number of 2 allows us to define further
categories: 9.08% use the same delta as long as the internal port numbers are increased
by the same delta. Once the internal port numbers jump (e.g. from 20,010 to 30,000),
the external ones jump as well. Since our testrun implements two internal jumps, a
port mapping gap number of 2 means that the external jumps carry the same delta.
We call this third category fixed-delta dependent, since a fixed delta is dependent
on the internal port numbers. The fourth category pattern-based was also discovered
when analyzing a port mapping gap number of 2. In 5.7% a pattern such as (3, 3, 4)
was identified.

4.6. Results and Discussion 75

Port Mapping Gap Number of 3: A port mapping gap number of 3 was discovered
for 6.73% of our non-preserving middleboxes. For 45.45% a fixed-delta dependent
was found, whereas the port mapping gaps on the edges (when the internal ports jump)
differ. 26.7% jump to an unmotivated new value (e.g. by -90 for the first time and by
162 the second time), but for 73.3% the following two values were discovered: 9,990 and
-22,778. The 9,990 is exactly the difference of the internal port and thus the middlebox
also jumps by this value for the external one as above. However, since the port number
field is only 16bits (65,536 port numbers) the middlebox has to wrap around and adjust
the starting port number if the new port is greater than 65,536. Thus, whenever the
middlebox reaches the end of the port range, it jumps back by 22,778 and continues
with the initial algorithm. Most likely, the numbers above carrying a port mapping
gap number of 2 also implement the same behavior. 48.48% carrying a port mapping
gap number of 3 implement an error-prone mapping and for 6.07% a pattern-based
strategy was found.

Port Mapping Gap Number of 4: For the 2.85% that carry a port mapping gap
number of 4 all of them implement an error-prone strategy.

Port Mapping Gap Number of 5: 42.86% of the middleboxes implementing a
port mapping gap number of 5 (1.63% of all non-port preserving results) implement a
pattern-based mapping strategy. The pattern (1, -3 , 1, -3, 1, -3, 1, 13) JUMP (1, -3
, 1, -3, 1, -3, 1, 13) was observed twice and the middlebox was identified via UPnP as
D-Link DAP-1360.

Port Mapping Gap Number > 5: For these port mapping gap numbers we could
not identify any patterns. All of our results can be classified as error-prone and with
an increasing port mapping gap number the mapping tends to randomize.

 30180

 30190

 30200

 30210

 30220

 30230

 30240

 30250

 30260

 30270

 30280

 30290

20000 20010 30000 300010 40000 40010

Ex
te

rn
al

 s
ou

rc
e

po
rt

of
 th

e
U

D
P

pa
ck

et

Internal source port of the UDP packet

41586
41596

54354
54364

64354
64364

20000 20010 30000 300010 40000 40010

Ex
te

rn
al

 s
ou

rc
e

po
rt

of
 th

e
U

D
P

pa
ck

et

Internal source port of the UDP packet

Fig. 4.31: Mapping schemas fixed-delta independent (l) and fixed-delta dependent (r)

By calculating and analyzing port mapping gap numbers we were able to identify
three categories describing port mapping strategies: fixed-delta, pattern-based and
error-prone. Each of the categories can be further divided into independent and
dependent, describing the dependency of the internal port. Table 4.6 shows the cat-
egories together with the necessary parameters for describing them. The parameters
can be used as an input for the Translation and Modification:Mapping element of our
information model in order to precisely specify mapping behavior.

76 4. Experimental Analysis of Middlebox Behavior

 55400

 55420

 55440

 55460

 55480

 55500

 55520

 55540

20000 20010 30000 300010 40000 40010

Ex
te

rn
al

 s
ou

rc
e

po
rt

of
 th

e
U

D
P

pa
ck

et

Internal source port of the UDP packet

 37000

 38000

 39000

 40000

 41000

 42000

 43000

 44000

 45000

20000 20010 30000 300010 40000 40010

Ex
te

rn
al

 s
ou

rc
e

po
rt

of
 th

e
U

D
P

pa
ck

et

Internal source port of the UDP packet

Fig. 4.32: Mapping schemas pattern-based dependent (l) and error-prone (r)

The first category, fixed-delta, is depicted in figure 4.31. An external starting port
(sPort according to the parameters in table 4.6) is allocated for the first internal port
and is continuously increased by a fixed value ∆. On the left hand side of figure 4.31, ∆
is only dependent on the time, but independent of the internal source port. This means,
although there are two internal jumps from 20,010 to 30,000 and from 30,010 to 40,000
the external source port is still continuously growing by the same value. However, since
port numbers are limited to 16bit a wrap-around has to be done once the external port
approaches this limit. The wrap-around port can be specified using wPort. The right
hand side of figure 4.31 depicts an example for a fixed-delta strategy that is dependent
on the internal source port. ∆ remains constant for all intervals, but as soon as the
internal source port jumps, the external one jumps as well. We use a set of ports
{sPorts} for specifying the starting ports for each interval. Port prediction with fixed-
delta mappings is rather straightforward. ∆ can be discovered by a few consecutive
test runs and once the initial sPort is known for the first test mapping, the successor
can be calculated by sPort+ ∆.

Category Description Parameters

Fixed-
Delta

I continuos growth of ∆,
ext. port is time dependent

∆, sPort, wPort

D cont. growth of ∆, ext.
port is dep. on internal one

∆, {sPorts}, wPort

Pattern-
based

I iterative time dependent
pattern

{∆1, ...,∆n}, sPort, wPort

D iterative pattern within
a fixed interval

{∆1, ...,∆n}, {sPorts}, wPort

Error-
Prone

I fixed-delta with outliers
or more or less random

∆, sPort, σ, [Emin, Emax], wPort

D within a fixed interval ∆, {sPorts}, σ, [Emin, Emax], wPort

Tab. 4.6: Identified mapping categories

4.6. Results and Discussion 77

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 0 50 100 150 200 250 300 350 400 450 500

St
ar

tin
g

Po
rt

fo
r e

ac
h

te
st

se
t f

or
 in

te
rn

al
 p

or
t 2

00
00

Number of Testset

UDP
TCP

 0

 10000

 20000

 30000

 40000

 50000

 60000

 0 20 40 60 80 100

St
ar

tin
g

Po
rt

Number of Testset

Fig. 4.33: Starting ports for the internal port 20,000. All non-preserving results are depicted
on the left, the category fixed-delta on the right

The second category, pattern-based mapping, is depicted on the left hand side of
figure 4.32. An iterative pattern with a defined period can be described as a sequence
of deltas (∆1, ...,∆n) dependent on the starting port sPort. Again we differentiate
between an independent and dependent mapping and need to take care of the 16bit
port number limit by defining a wrap-around port. Detecting patterns is not trivial
since the period of the patterns differ. If too little testruns are conducted, the pattern
may not be completely identifiable.

Finally, the last category as depicted on the right hand side of figure 4.32 is called
error-prone and can also be divided into independent and dependent mapping. The
blue resultset shows a fixed-delta with some outliers independent on the source port.
The green resultset however, shows a more or less unstructured and random mapping
strategy. By calculating the standard deviation of all the values and by specifying the
minimum and maximum it is possible to narrow down the predicted port.

We finally looked at the starting ports of each testrun that were assigned for our
internal source port 20,000. Figure 4.33 shows the distribution for all testsets that
use a non-preserving port mapping strategy on the left and the distribution for non-
preserving mappings that also use a fixed-delta strategy on the right (for UDP). In
general no cluster can be identified, but the starting ports for fixed-delta mappings are
most likely within the 50,000 range. Additionally, none of the fixed-delta mappings use
well-known ports as their external ports.

Finding 3: By analyzing port mapping patterns it is possible to predict an external
mapping independent of the implemented binding strategy. Our identified categories
allow predicting external mappings, either directly or by providing an interval and a
probability for the error.

4.6.4 Additional Behavior Results

Additional behavior measurements cover the Stateful (StateTimer and StateTable) and
the Filtering:Protocol-based element of our information model.

Timeout Results

Initially our goal was to determine mapping timeouts for UDP and for TCP in the
established state as described in section 4.3.1. In order to keep the duration of the
test as short as possible our intention was to only test for TCP timeouts smaller than

78 4. Experimental Analysis of Middlebox Behavior

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60

PR
[x

 <
 T

im
eo

ut
]

UDP timeout in seconds

 0

 0.2

 0.4

 0.6

 0.8

 1

 50 100 150 200 250 300

PR
[x

 <
 T

im
eo

ut
]

UDP timeout in seconds

Fig. 4.34: CDF of the UDP timeout measurements

5 minutes. However, this didn’t give us enough results to actually make a statement
about TCP timers. Experiments in the lab have confirmed results of [68] and [60] and
therefore TCP timeouts were not considered any further.

When focussing on UDP timeouts we conducted two measurements. The first one
with a cut-off time at 60 seconds was included in a regular testrun to minimize the
waiting time for the participant. A second UDP timer test was part of our topology
measurements as described in section 4.3.4. Figure 4.34 shows the results as a CDF.
For testset 2 (on the left) less than 3.5% implement a UDP timeout smaller than 20
seconds. A very popular timeout is 30 seconds and was found in more than 20% of our
testset 2 and more than 25% of the topology test results (the diagram shows the last
successful test, thus x = 29). 12% implement a timeout between 40 and 50 seconds and
more than 50% a timeout greater than 60 seconds. The cut-off value for the topology
tester was 300 seconds. Our results comply with the results of [68] where a mean value
of 160 seconds was measured.

Mapping Table Results

When trying to find the table size and strategy belonging to the Stateful:StateTable
element, the test client has to establish the maximum number of connections a stateful
middlebox is able to handle at the same time. The first problem occurred because of the
operating systems limitation of 1024 sockets per process, which means an implementa-
tion has to fork many processes and maintain them. This is not possible without using
the JAVA Native Interface and therefore not applicable to a web-based measurement.

We included the algorithm in the linux-based version of testset 1, but after a few
tests we received complaints from participants about crashing their router when ap-
proaching the limit. In fact, some routers actually stop working when the maximum
number of mapping entries is reached and the only way of getting them to work again
is to do a hard reset. A second problem was on the server side. When serving multiple
clients at the same time, scalability issues were discovered. Therefore, we decided not
to include the mapping table algorithms in our field test. However, measurements in
the lab showed that the size of the mapping table has been raised on new devices lately.
While older versions of OpenWRT set the /proc/sys/net/ipv4/netfilter value to 8192,
the most current version already sets it to 16384. Other common (older) devices such as
the D-Link DI-524 set it to 4096, while our Netgear RP614v4 router is able to maintain
approx. 6000 entries. All of the tested devices block new connections when reaching the
maximum number of connections and don’t override existing ones. Finally, the default
value for iptables in most Linux distributions (e.g. Ubuntu and Debian) is 65536.

4.6. Results and Discussion 79

However, the number of available entries is still important when considering today’s
applications. For example, a single session with Google’s Map service17 established
approx. 30 to 50 TCP connections simultaneously. Thus, when sharing a home router
among an average size family the number of maximum connections may still be enough,
but for a provider that wants to deploy Large Scale NAT serving hundreds of customers,
the maximum number needs to be adjusted accordingly.

ICMP Results

ICMP messages are sent as a response to transport layer packets to signalize errors
in the communication path. In order to map between the ICMP message and the
corresponding transport layer packet the ICMP message carries parts of the network
and transport layer header in its payload. We are interested in how ICMP packets
are actually handled by middleboxes and if it is possible to modify the payload in
order to embed additional information (as used for our autonomous middlebox traversal
algorithm as published in [100] and described in section 6.5.2). Table 4.7 shows the
results of our measurements.

Packet Sequence Payload Success Rate

Outgoing Measurements

ICMP TTL exceeded out original 6.02%
modified 5.87%

ICMP echo request out original 92.58%
modified 89.01%

ICMP echo reply out original 8.03%
modified 6.82%

Packet Sequences

UDP out, ICMP TTL exceeded in original 78.21%

UDP out, ICMP TTL exceeded in modified 65.1%

echo request out, echo reply in original 91.98%

echo request out, echo reply in modified 84.81%

echo request out, TTL exceeded in modified 48.3%

Tab. 4.7: Protocol-based filtering of ICMP packets of a subset of testset 1

For outgoing tests, we were looking for those ICMP packets that can be sent to the
external network without requiring them to be part of any other communication. An
ICMP echo request message was allowed in 92.58% (89.01% for modified packets) since
this message is used to initiate a “connection” according to the protocol. When trying
to send out ICMP TTL exceeded messages we were only successful in 6.02% (5.87%
modified). This is because such messages are normally only sent as a response to a
transport layer packet and not as a packet initiating a “connection”. The same is true

17 http://maps.google.com

80 4. Experimental Analysis of Middlebox Behavior

for ICMP echo reply messages. To summarize, almost 95% of all tested middleboxes
implement a protocol-based filtering strategy for ICMP.

When looking at incoming packets, we first sent out a regular packet (either a
UDP packet or an ICMP echo request packet) and tested if the ICMP packet sent in
response reaches the test client. 91.89% allowed “pinging” an external host and 78.21%
forwarded TTL exceeded messages as a response to UDP packets. Finally, modifying
the payload of ICMP packets influences the success rate for traversal only marginally.

Finding 4: Independent on the analyzed property, middlebox behavior differs from
model to model. The size of the mapping table is not critical unless LSN is deployed.
ICMP error handling mostly works, but is not implemented correctly. We recommend
to assume a UDP timeout smaller than 30 seconds in order to avoid problems with
many implementations.

4.6.5 Behavior-based Traversal Results

As described above we implemented several versions of common hole punching algo-
rithms and tested to which extent they work with existing middleboxes. The success
rates only show the percentages for a constellation where only one host (the service) is
behind a stateful middlebox since our test server is located in the public Internet. When
also considering different middlebox constellations as in section 4.6.2, the percentages
depend on the behavior of both middleboxes.

Traversal Technique Testset 1 Testset 2

UDP Hole Punching with high TTL 68.09% 73.87%

UDP Hole Punching with low TTL n/a 58.49%

UDP Hole Punching Silent n/a 76.91%

TCP HP low 40.82% 62.33%

TCP HP high 31.77% 52.46%

TCP SILENT n/a 45.61%

TCP FTP ALG 31.35% n/a

UDP combined 68.09% 77.92%

TCP combined 65.03% 66.5%

Traversal combined 83.88% 84.57%

Tab. 4.8: Results of the traversal measurements for testset 1 and 2

UDP hole punching with a high TTL, and therefore provoking ICMP port unreach-
able messages as a response to the initial UDP hole punching packet, was successful
in 68.09% for testset 1 and 73.87% for testset 2. When setting the TTL field of the
IP packet to a value lower than the number of hops between the test client and the
server, an ICMP TTL exceeded message is sent as a response to the hole punching
packet. This technique was successful in 58.49%. Finally, when emulating a middlebox
that does not send ICMP port unreachable messages as a response to the hole punching

4.6. Results and Discussion 81

packet, the traversal was successful in 76.91%. For TCP the results are different. When
setting the TTL of the hole punching packet to a low value, the success rate is signif-
icantly higher than with a high TTL (62.33% vs. 52.46% for testset 2). Determining
an appropriate TTL value can be done using our topology measurement algorithm as
described in section 4.3.4.

When considering any traversal method for UDP a combined success rate of 77.92%
was observed, which is very close to the 78.45% that implement an endpoint independent
binding. Thus, UDP hole punching works in 99.46% for all endpoint independent
middleboxes if a technique is applied that also considers the behavior of the middlebox.
For connection dependent middleboxes our findings in section 4.6.2 can be applied
for developing new port prediction algorithms that will work for approx. 60% of all
connection dependent implementations. Although TCP is a complex protocol compared
to UDP, we still reach a success rate of 88.37% for endpoint independent middleboxes
when carefully selecting the technique according to the behavior.

Finding 5: A single traversal mechanism can never be as effective as a solution that
carefully parameterizes a basic traversal algorithm according to the current situation,
the topology and the behavior of the involved middleboxes. This allows increasing the
success rate for UDP from 58.49% to 77.92% and for TCP from 45.61% to 66.5% (best
case).

4.6.6 Additional Results

Our additional measurements cover the protocols UPnP, SCTP, as well as a test for
different Application Layer Gateways and for an image proxy. For UPnP we used the
MiniUPnP library18 for testset 1 and the Cling library19 for testset 2 since MiniUPnP
seems to have problems with many implementations. Thus, a UPnP capable device
was found in 30.59% of testset 1, but we were only able to actually utilize the Internet
Gateway Device (IGD) in 21.73%. With Cling, we found a UPnP enabled model in
37.16% and were able to query the external IP address for 33.14%. Thus, approximately
one third of all middleboxes of testsets 1 and 2 actually enabled UPnP.

When testing for the support of the transport layer protocol SCTP [146], we used
the user-space SCTP library for Windows20 and for Linux the libsctp library that is
included in all common distributions. Our results show a success rate of 15.87% for
establishing a SCTP association. Similar results (for 34 different middleboxes) were
published in [68]. Most of the middleboxes that support SCPT are Linux-driven (e.g.
OpenWRT-based firmwares) since a SCTP module for iptables exists. We didn’t test
for the support of DCCP [85] since no stable implementation for Windows existed at
the time we conducted our tests. However, none of the 34 NATs tested in [68] supported
DCCP.

Application Layer Gateways for the SIP protocol [131] were found in 24.17% and
78.28% also support the translation of FTP (results of testset 2). Finally 1.12% of
testset 1 (mostly mobile operators) implement a proxy that manipulates JPEG images
by shrinking their size. We did not conduct further tests on content manipulation,
filtering and censoring, but leave this interesting and manyfold topic for future work.

18 http://miniupnp.free.fr/
19 http://4thline.org/projects/cling/
20 http://www.sctp.de/

82 4. Experimental Analysis of Middlebox Behavior

4.6.7 Topology Results

The architecture of our measurements is based on a test client located in the partic-
ipant’s network and a test server in the public Internet. Thus, the whole topology
between the client and the server is treated as a blackbox since individual middleboxes
cannot be detected with the state of the art. In most cases a middlebox is only de-
ployed as a CPE (Customer Premises Equipment), usually one hop from the test client.
However, additional firewalls, double NAT at the user side, Large Scale NAT at the
provider side or proxies deployed in the network might influence our results. There
are three possibilities to detect multiple stateful middleboxes with our experimental
results: First, by comparing IP addresses of the UPnP results with the actual public
IP addresses, second by our topology detection algorithm as presented in section 4.3.4
and third by analyzing the IP addresses of our Android-based test clients.

Once a participant finishes a testrun (web-based client, testsets 1 and 2) the results
are committed using a HTTP-POST. By comparing the source IP address of this packet
with the external IP address that is found in UPnP, we have a first indicator for double
NAT. 24% of all UPnP enabled devices carried an external UPnP address that was
different from the one that was used to post the results. In 24.5% of these cases the
UPnP address came from the 10/8 range, in 3.6% from the 172.16/16 range, in 58.3%
from the 192.168/24 range and in 13.6% the external UPnP address was also a public
one.

Our algorithm as described in section 4.3.4 allows detecting stateful middleboxes on
the path from the test client to the Internet. The UDP-based implementation requires
that ICMP messages are generated and forwarded by intermediate nodes. However,
in many cases where stateful middleboxes are involved, the provider blocks outgoing
ICMP messages as an answer to incoming UDP packets, which leads to problems with
our algorithm. Therefore, we were not able to reveal the exact topology for many
results. A TCP-based implementation using RST packets is highly recommended for
future work although it requires superuser privileges on the client side. However, the
proposed method is still valid for estimating the approximate position of the LSN and
for determining a valid TTL value for hole punching (which will be further described
in the following chapter). We found LSNs to be present in fixed-line networks (e.g. the
German provider EncoLine21 most likely implements a Linux-based LSN), as well as in
LTE networks that provide Internet access to remote areas. In the following we show
the topology of the Vodafone Germany LTE network that could be revealed using our
test. The resulting table from our detection algorithm is shown in table 4.9.

Hop 11 Hop 12 Hop 13 Hop 14 Hop 15 Hop 16 Hop 17(C)

20s 17 17 17 17 17 17 17
30s 16 16 16 16 16 16 17
50s 16 16 16 16 16 16 17
60s 16 16 16 16 16 16 17
90s 13 13 13 16 16 16 17

120s 13 13 13 16 16 16 17

Tab. 4.9: Result for the Vodafone Germany topology

21 http://www.encoline.de/

4.6. Results and Discussion 83

For a timeout value of 20 seconds, the test server is able to reach the client (hop
17) no matter which mapping the client tried to remove. Please note that removing
a mapping for UDP means that the TTL value of the servers keep-alive packets is set
to n − 1, n being the number of hops as seen by the client. For a timeout of 30s the
test server is able to reach hop 17 only if the mapping of hop 16 has not been removed.
Thus, hop 16 implements a stateful middlebox with a timeout value between 20 and
30 seconds. The same is true for hop 13 that implements a stateful middlebox with a
timeout between 60 and 90 seconds. The server is able to reach beyond hop 13 only
if either the timeout has not triggered yet (here 60s) or if the mapping has not been
removed yet (columns hop 14 to hop 17). With this table we are able to generate the
corresponding topology as shown in figure 4.35.

Client
HOP 17

Test
Server

LSN/FW
HOP 13

Consumer NAT
HOP 16

HOP 11 HOP 12

ISP Network

HOP 14 HOP 15

Home NetworkInternet

HOP 1

. . .

Fig. 4.35: Revealed topology for the Vodafone Germany LTE network

Altogether, Large Scale NATs and other stateful middleboxes are already deployed
by many providers and cause additional problems for middlebox traversal. When look-
ing at our preliminary Android-based results, all mobile operators issue private IP
addresses to their clients, a promising result for future research. To reveal further
topologies we propose to extend our algorithm by a TCP-based version. New predic-
tion algorithms might furthermore allow to predict approximate positions of stateful
middleboxes.

4.6.8 Lessons Learned

The last sections presented the results of our field test based on our information model
and based on the algorithms that we have developed for experimentally analyzing mid-
dlebox behavior. Many efforts have been made to classify the behavior of middleboxes
and to develop solutions for coping with them, but the state of the art does not have
a satisfying answer to the question why middleboxes still introduce many problems to
today’s networks and why existing techniques don’t work as expected. The results of
our field test shed light on these questions and serve as a basis for our solution to the
middlebox traversal problem that will be presented in the following chapters.

We started our field test by running the popular STUN algorithm and found a
Port Address Restricted Cone NAT to be the most popular one (66% of all tested
middleboxes). Symmetric NATs, which are said to introduce many problems, were
found in 8%, but when only considering the most current results (testset 2), the number
increased to 19%. These number were a first warning for us and we conducted a more
detailed test on the binding behavior, which is part of the Translation and Modification
element of our information model. We found 78.45% for UDP and 75.25% for TCP to
implement an independent binding strategy, which means that predicting an external
port is possible by querying an external server (such as STUN) as done in the state of the
art. However, when comparing the results to the STUN results, we also found that the
STUN classification only produces correct results for Restricted Cone NATs, but fails for

84 4. Experimental Analysis of Middlebox Behavior

Field Test Results Recommendation Expected Results

1) SotA: STUN is used to classify middlebox behavior.

Approx. 25% of FC
wrong. 5% of SYM
wrong.

Strict separation between pre-
dictable and unpredictable
endpoints.

Clear statement about ap-
plicability of traversal tech-
niques.

2) SotA: Middlebox traversal often fails for two hosts both behind NAT.

Only 61.4% (56.6%
for TCP) of all con-
stellations work with
the SotA.

Also consider constellations
with connection dependent
mapping and swap roles if
necessary.

68.4% (63.4% for TCP) of all
constellations will work.

3) SotA: Middleboxes with connection dependent bindings are hard to traverse.

22% (25% TCP) im-
plement a connec-
tion dependent bind-
ing. For 57% (44%
TCP) we found pre-
dictable binding pat-
terns.

Implement port prediction
based on binding behavior.

Ports can be predicted for
91% UDP and 86% TCP.

4) SotA: Hole Punching works in some cases and doesn’t in others.

Success rate for
a single variation:
between 58.49%
(45.61% TCP) and
76.91% (62.33%).

Parameterize hole punching
based on the behavior of the
involved middleboxes.

77.92% for UDP and 66.5%
for TCP.

5) SotA: Large Scale NAT has only been considered marginally [151].

Large Scale NAT is
already deployed by
providers in numer-
ous networks and in-
fluences end-to-end
communication, esp.
in mobile networks.

Take topology into account
when making decisions about
middlebox behavior.

Allows implementing lowTTL
HP with LSN: 62.33% vs.
45.61% for TCP (best case).

Tab. 4.10: Lessions learned

4.7. Summary and Key Findings 85

Symmetric NATs (in 3.85% for UDP and 9.79% for TCP) and Full Cone NATs (21.94%
for UDP and 34.18% for TCP). Thus, we follow and confirm the recommendation of
[130] not to use the STUN algorithm for categorizing middleboxes, especially not for
NAT binding behavior. However, for classifying filtering behavior, STUN still produces
correct and valuable results.

With these findings we were able to predict the success rate of behavior-based
traversal as used in the state of the art. Hole punching only works if both hosts are
able to predict their external port, which only 61.5% (56.6% TCP) of our constellations
are capable of. Considering the fact that state of the art hole punching works with 90%
of all endpoint independent bindings, only 55.4% of all constellations where both hosts
are located behind a middlebox will be able to successfully establish a direct connection.
As TCP is more complex than UDP the situation is even worse. In 56.6% both hosts
are endpoint independent and the state of the art traversal using a low TTL for the
hole punching packet showed a success rate of 62.33%, which is 88.37% of all endpoint
independent middleboxes. Thus, TCP traversal for an arbitrary constellation works in
approx. 50%.

When looking at the individual results of our field test we found a large window
of opportunity for improving these numbers. First, identifying patterns in connection
dependent bindings also allows predicting the external port of approx. 60% (46% TCP)
of all connection dependent middleboxes. Second, taking into account that middlebox
constellations where only one end implements a non-predictable binding strategy can
also be traversed by considering the behavior of both ends, we recommend to choose
an appropriate technique for the constellation and swap roles if necessary. Third,
predicting external mappings by analyzing mapping patterns helps to further increase
the probability for establishing direct connections through middleboxes. Fourth, by
parameterizing existing hole punching techniques it is possible to increase the success
rate even further. And finally, by also taking the topology of a path into account it is
possible to cope with the increasing number of middleboxes that are operated by ISPs.

Altogether, the state of the art has provided numerous methods and techniques for
coping with middleboxes, but due to the non-standardized behavior their success rate
depends on the situation. Our field test shows that a single mechanism, such as one
variant of hole punching, can never be as effective as a solution that takes the topology,
the behavior of involved middleboxes, as well as further user-defined requirements into
account. Only if such solutions exist, middleboxes may become a valid design principle
for the future Internet.

4.7 Summary and Key Findings

In this chapter we showed that a thorough and structured analysis of middlebox behav-
ior helps to improve the success rate of middlebox traversal techniques (Q1 according
to section 1.1). We presented an information model to describe middlebox behavior
in a structured way. Different measurement algorithms were then developed targeting
the individual elements of the model. After evaluating the algorithms in our virtual-
ized testbed that supports emulating arbitrary middlebox behavior, a public field test
was conducted. As a result, we are able to categorize middlebox behavior into “good”
and “bad” behavior and our findings help to better understand existing deployments.
Based on our experimental analysis we can give recommendations how to improve exist-
ing traversal techniques and argue that an optimal solution for coping with middleboxes
can only be found if their behavior is understood and a traversal algorithm is selected
and customized accordingly.

86 4. Experimental Analysis of Middlebox Behavior

Key Findings of this chapter
(and contributions according to section 1.2):

C4.1 Our information model contains relevant middlebox properties and
serves as a formal representation for middlebox behavior.

C4.2 The test routines and algorithms designed in this chapter allow system-
atically measuring middlebox behavior and to create an information
model instance that represents a specific middlebox.

C4.3 An experimental analysis first verified our algorithms in a virtualized
testbed, before conducting a public field test with the following find-
ings:

C4.3a Only 68.4% (63.4% for TCP) of all constellations in the Internet pro-
vide the essential prerequisites for behavior-based traversal.

C4.3b Even if the middlebox implements a connection dependent binding
strategy, in approx. 60% for UDP and 46% for TCP it is still possible
to predict the external binding by analyzing binding patterns.

C4.3c Large Scale NAT is already deployed by many ISPs and hinders com-
munication, especially in mobile networks.

C4.3d A single traversal mechanism can never be as effective as a solution
that carefully parameterizes a basic traversal algorithm according to
the current situation, the topology and the behavior of the involved
middleboxes.

Part III

TRAVERSAL OF MIDDLEBOXES

5. MIDDLEBOX TRAVERSAL AND SERVICE PROVISIONING

5.1 Introduction

Middleboxes have been introduced to IP-based networks to solve specific and in many
cases also urgent problems. For example, by allowing many hosts to share one address,
NAT fights against the lack of public IPv4 addresses. As an unwanted side-effect
of this achievement the connectivity across NAT devices is affected. According to
our information model as described in section 4.2, NATs, or stateful middleboxes in
general, maintain a state table for all connections and allocate a timer or policy to
each entry to define the lifetime of it. Packets traveling across the middlebox are then
processed according to the state. The same is true for firewalls that were introduced as
a network perimeter to prevent the communication of unauthorized applications across
network domains. Administrators who add a firewall to the communication path see the
blocking of certain applications as an intended feature. However, as network protocols
get more and more complex and applications implement their connectivity logic on the
application layer, firewalls may also block certain applications as a side-effect because
they don’t understand the details of the protocol. Furthermore, providing a globally
accessible service from behind a stateful middlebox requires to cooperate with the
middlebox in order to establish a state that allows incoming packets to be forwarded
to the defined service. All these scenarios and problems are examples for the so-called
“middlebox traversal problem”.

The traversal of middleboxes has been heavily discussed in research and standard-
ization, but the definition of middlebox traversal is rather vague. In general, middlebox
traversal is seen as a technique to communicate across middleboxes, but in our opinion
this is not precise enough. We follow the authors in [139] and state that a middlebox
traversal mechanism should take further requirements into account.

In this thesis we argue that a middlebox traversal solution has to take the role of
the application and the intention of the deployment of the middlebox into account.
For example, if a middlebox breaks the connectivity between two hosts only as a side-
effect, the traversal technique has to make sure that applications still work across the
middlebox as if the middlebox didn’t exist. On the other hand, if an administrator
aims to restrict the access to certain services, applications or protocols, the traversal
technique has to follow this policy. We thus define middlebox traversal for our thesis
as follows:

Definition: Middlebox Traversal describes a protocol or mechanism that enables an
application to communicate across middleboxes in a way that it is compliant with au-
thorization and accessibility requirements, as well as additional policies as defined by
the user or the administrator of the network.

For example, if users behind a consumer NAT simply want their application to work
across all middleboxes on the path, the utilized traversal technique can be chosen only
based on criteria such as performance. However, if a user wants to provide a service to

90 5. Middlebox Traversal and Service Provisioning

specific external hosts only, the traversal technique should take this into account. In
enterprise environments administrators are usually not thrilled about middlebox traver-
sal techniques, because they violate their security policy. Thus, it is important that a
middlebox traversal mechanism also considers policies as defined by (super)users. In
addition to authorization requirements, we have to consider the availability of external
infrastructural components and what the impact of the infrastructure could be. For
example, external data relays operated by a third party might violate security and
privacy policies of a user and should therefore be avoided for critical traffic, while still
being a legitimate choice for already encrypted traffic.

The following sections present the middlebox traversal problem in more detail. We
then discuss the state of the art in middlebox traversal, which leads to the definition of
new service categories for middlebox traversal. In the following chapter we then present
our knowledge-based approach that takes many variables into account when selecting
the most suitable technique for middlebox traversal.

5.1.1 Middlebox Traversal Problem

As stated in chapter 3.2 when presenting our middlebox processing model, a middlebox
operates between two network realms by modifying, filtering or adding packets that are
seen on its network interfaces according to middlebox specific processing rules. The
middlebox traversal problem occurs when packets are intended to be processed, but
the middlebox does not have the appropriate processing rules. Based on figure 5.1,
this section presents four problem categories for middlebox traversal that are derived
from [71]. The figure depicts two packet flows, one from the source to the destina-
tion and another flow from the destination to the source. The middlebox implements
packet translation and thus two endpoints for each packet flow exist: a local endpoint
describing the combination of an IP address and transport layer port for the private
realm, and a combination for the public domain towards the destination. For a regular
middlebox that translates packets and operates in a way that sessions are established
from the local to the public domain, the internal, as well as the mapped endpoints
of the two packet flows are identical. Dependent on the problem category, either one
packet flow is involved or the endpoints differ in a way that they are not related and
therefore cause problems.

Source DestinationMB

Packet Flow 1

Packet Flow 2

localEndpoint mappedEndpoint

Fig. 5.1: Illustration of packet flows for the middlebox traversal problem

Realm-specific Addresses

For the first problem category the packet flow from the source to the destination (flow
1 according to figure 5.1) contains information that is essential for the corresponding
protocol, but the middlebox is not able to handle it. This is the case if a protocol carries
Realm-Specific Addresses in its payload, such as the Session Initiation Protocol
(SIP) [131] that uses IP addresses and transport layer ports within its payload to

5.1. Introduction 91

signalize where related packets should be sent to. If the middlebox is not able to
translate these packets using an Application Layer Gateway (ALG), the protocol is
most likely to fail.

1 if found (pub := get state(p)) then
2 p := translate packet(p, pub); . translate packet immediately
3 else
4 pub := allocate new mapping(p); . a new external mapping is needed
5 store state(p); . also remember layer 7
6 p := translate packet(p, pub); . also translate layer 7

7 end if
8 send(p, external); . call send function in output stage

Alg. 5.1: Proc(internal, p) for Realm-specific address processing

The second packet flow according to figure 5.1, which is logically related to the
first one, will be sent to a wrong (local) endpoint since the addresses in the payload
of packet flow 1 are not translated. According to our information model, neither the
Translation and Modification element nor the Filtering and Stateful elements support
the correct (application layer) protocol. According to algorithm 5.1, the middlebox
would have to set the correct state entry in step (2) (for packet flow 2) and translate
the application layer protocol in step (3) in order to allow the incoming packet flow to
traverse the middlebox.

Peer-to-Peer Applications

The second problem category, Peer-to-Peer Applications, targets hosts behind a mid-
dlebox that offer a globally reachable service. This is not only true for traditional
services such as a web-server, but also for applications that require a direct connectiv-
ity between two arbitrary hosts. For example, Voice over IP uses direct connections
between the caller and the callee for transferring packets containing voice. According
to figure 5.1 this means packet flow 1 does not exist and packet flow 2 is initiated by
the destination. Since stateful middleboxes only establish state on outgoing packets the
incoming packet flow 2 is not related to any outgoing one and cannot be forwarded.

1 if found (priv := get state(p)) then
2 do something(); . this will never be reached
3 else
4 drop packet(p); . state not known: drop packet
5 end if

Alg. 5.2: Proc(external, p) and the Peer-to-Peer Application problem

More precisely, algorithm 5.2 shows the processing of incoming packets according
to our processing model for the P2P applications problem category. The middlebox
receives the packet on the external interface and queries the state table for an existing
entry. Since no entry is found the packet is immediately dropped.

92 5. Middlebox Traversal and Service Provisioning

Bundled Session Applications

The third category, Bundled Session Applications, is a combination of the other two.
Bundled session applications, such as FTP [120] or RTSP [138], carry realm-specific
addresses and ports in their payload to establish a second session. The first session
is usually referred to as the control session (packet flow 1), while the second session
(packet flow 2) carries the actual data. The problem here is not only the realm-specific
addresses, but also the data connection of a bundled session application that is estab-
lished from the public realm towards the private one, a direction the stateful middlebox
does not permit. According to figure 5.1, the second packet flow is logically related to
the first one, but sent to a different mapped endpoint. If the middlebox does not un-
derstand this relation, the second flow will be blocked as with P2P Applications. The
solution of the traversal of bundled session applications is a combination of the solutions
as presented above: An ALG needs to understand and translate the application layer
protocol and a state entry needs to be added to the mapping table.

Unsupported Protocols

In addition to the three problems above we identified the last category, Unsupported
Protocols, which includes non-translatable (flow 1) applications and protocols. Newly
developed transport layer protocols, such as the Stream Control Transmission Proto-
col (SCTP) [144] and the Datagram Congestion Control Protocol (DCCP) [85] cause
problems with middleboxes even if an internal host wants to establish a connection to
a public one. This is because current middleboxes do not have built-in support for
these protocols. In case of SCTP with its multi-homed design, it is not trivial to adapt
translation and modification support from UDP and TCP. As described in [154], it is
not possible for the SCTP checksum to be recalculated only based on the difference to
previous packets. Therefore, traversing a legacy NAT with SCTP-support would result
in a significant packet delay. There are already suggestions to the problem [144] that
propose changing the NAT, which is not possible in most cases. Unsupported protocols
also cover protocols that cannot work with middleboxes because their layer 3 or layer
4 header is not available for translation. This happens when using security protocols
such as IP-Security (IPSec) [83].

5.2 State of the Art in Middlebox Traversal

Over the past years a large number of traversal methods emerged in research and
standardization. The following sections give a detailed overview of the state of the
art in middlebox traversal. First, section 5.2.1 introduces techniques that need to be
explicitly supported by the middlebox. Behavior-based approaches are presented in
section 5.2.2. Section 5.2.3 covers further solutions. Finally, section 5.2.4 compares
existing solutions and summarizes our findings.

5.2.1 Explicit Solutions

Static Port Forwarding and Universal Plug and Play

The most intuitive way to allow an incoming non-related packet flow to traverse the
middlebox is to statically add an appropriate entry to the state table. Most modern
routers provide a web-based interface and pre-configured rules for popular services. The
drawback of this solution is not only the limited flexibility due to a static approach,

5.2. State of the Art in Middlebox Traversal 93

but also that it requires basic network knowledge in order to access the router and to
forward the correct ports.

UPnP enabled
NAT/FW

Host BHost A
NAT/FW

(2)
(1)

Fig. 5.2: Univeral Plug and Play (UPnP) and NAT-PMP

Universal Plug and Play (UPnP) is a set of protocols first proposed by the Mi-
crosoft Corporation and now under the control of the UPnP Forum [50]. UPnP enables
the seamless communication between all devices in the network and allows controlling
networked devices such as printers, multimedia devices, as well as home routers that
implement an Internet Gateway Device (IGD). This enables applications to dynami-
cally add, remove and control port forwarding entries to an UPnP-enabled middlebox.
Since UPnP does not come with any security mechanisms, many routers are shipped
with UPnP disabled. Instead of using UPnP, section 6.5.1 proposes a secure IGD based
on the Devices Profile for Web Services (DPWS) [42]. A similar protocol, the NAT
Port-Mapping Protocol (NAT-PMP) is mainly pushed by Apple and standardized in
the IETF [22].

Next Steps in Signaling: NSLP

The NSIS Signaling Layer Protocol (NSLP) for NAT and firewalls [147] is a signaling
protocol that allows configuring middleboxes on the path between two hosts. The basic
assumption of the RFC is that the sender and the receiver, as well as all involved
middleboxes are NSLP aware. By using two messages, create for outgoing flows and
external for incoming data flows, NSLP enables hosts to configure NATs and firewalls
according to the expected data flow and policies of the network. For example, a receiver
that is expecting incoming packets may use an external message to direct all stateful
middleboxes that would otherwise block the unknown packets due to missing state to
process and forward them. This also allows the traversal of multi-layered middleboxes
as long as all of them support the protocol. The RFC also discusses security issues and
recommends to use authentication and key exchange mechanisms as defined in [137].

MIDCOM: Middlebox Communication

Middlebox Communication (MIDCOM) [143] aims at shifting application specific func-
tionality from a middlebox itself into separate MIDCOM agents. Agents assist middle-
boxes to process and traverse applications that in general have problems with middle-
boxes because of realm-specific addresses or due to bundled sessions as described above.
More precisely, MIDCOM agents implement Application Layer Gateways (ALG) that
are independent of the core middlebox itself and are able to support an application
layer protocol. MIDCOM agents are controlled by the MIDCOM protocol that can be
used to configure and deploy application specific rules.

94 5. Middlebox Traversal and Service Provisioning

NUTSS

The NUTSS (NAT,URI, Tunnel, SIP and STUNT) architecture is an novel approach
to connectivity establishment. NUTSS was first mentioned in [63] and more thoroughly
documented in [61]. The basic idea is to use globally unique URIs for endpoints instead
of IP addresses. If a user wishes to establish a connection, he first initiates an end-
to-end signaling. Once a connection request is authorized by the end-hosts as well
as all middleboxes on the way, necessary state is established and a working 5-tuple is
provided to the initiator. NUTSS has two main components, policy boxes (P-boxes)
and middleboxes (M-boxes). P-boxes form an overlay and are used for signaling a
connection request. After signaling, M-boxes are configured according to the policy
and used to enforce this policy for the actual data connection. NUTSS also proposes to
include traversal techniques such as STUN(T) and proposes new ways of establishing
connections via TCP, which will be further described in section 5.2.2.

Application Layer Gateway

An Application Layer Gateway (ALG) operates on the application layer and helps
middleboxes by transparently translating application specific details such as realm-
specific addresses. ALGs for protocols such as FTP and SIP are often found in consumer
grade middleboxes and may also help to create the correct state entries for bundled
session applications.

SOCKS

SOCKet Secure (SOCKS) [90] is a protocol to use with a proxy server that resides
on the edge between two domains. SOCKS provides two modes of operation: connect
directs the proxy to connect to an external endpoint, while bind is used for bundled
session applications in order to allow secondary connections towards the client. Many
operating systems and applications support the SOCKS protocol, but only a few home
routers actually implement it for middlebox traversal.

RSIP

Realm Specific IP [12, 13] is considered an alternative to Network Address Translation
and allows leasing public endpoints to RSIP hosts within a private domain. The public
endpoint may be a unique IP address and a port or a shared IP address and a number
of unique ports. A RSIP client uses this allocated endpoint for communicating with
hosts in the Internet and tunnels them through the private realm. The RSIP gateway,
usually implemented on the middlebox that is translating addresses between the realms,
decapsulates the packets and sends them off into the Internet.

5.2.2 Behavior-based Solutions

STUN

Rather than being a middlebox traversal technique, Simple Traversal of User Datagram
Protocol through NATs (STUN) [133] and its successor Session Traversal Utilities for
NAT (also STUN) [130] is a “tool that is utilized as part of a complete NAT traversal
solution” [130], such as ICE [128] and SIP-Outbound [77].

STUN defines two main messages that allow discovering the public IP address and
port of an internal mapping: binding requests and binding responses. As depicted in

5.2. State of the Art in Middlebox Traversal 95

STUN

NAT/FW
Host BHost A

(1)

(3)

RP

(2) (2)

Fig. 5.3: Session Traversal Utilities for NAT (STUN)

figure 5.3 a client starts by sending a binding request (as a UDP packet by default) to
a STUN server which then replies with a binding response containing the outermost IP
address and port in the MAPPED-ADDRESS field (step 1). This address can then be
embedded into an actual traversal technique or used as a non-realm-specific IP address
in the payload (2) to eventually establish a direct connection to a remote host (3).
STUN only works with an endpoint independent binding strategy since only then the
external mapping is dependent on the internal one. In case of a connection dependent
binding the determined external endpoint is useless since it has nothing to do with
the actual endpoint that will be used for the actual protocol that requests middlebox
traversal. The initial STUN RFC, “Classic STUN”, also defines four categories of mid-
dlebox behavior as described in section 3.3.3 and proposes an algorithm for discovering
them. As already mentioned in section 4.6.2, the categories were removed from the
most current RFC since they were found to be faulty. Today, the STUN protocol is
mainly used by VoIP applications for replacing realm-specific addresses on the client
instead of relying on the middlebox to do so. Skype1 is also supposed to implement a
STUN-like protocol for discovering external mappings.

UDP Hole Punching

STUN is also used as a basis for hole punching as depicted in figure 5.4. The learned
external mappings are exchanged via a rendezvous point (RP) by embedding them in
a signaling protocol (step 1). Once both endpoints have received the others mapping
they start sending packets to the remote address. The packet sent in step (2) creates an
appropriate mapping in hosts A’s middlebox, but is blocked by host B’s middlebox since
no mapping exists. However, the packet sent by host B in step (3) matches the created
state and will eventually reach host A. Hole punching was first mentioned in [71] and
more thoroughly documented in [48]. Today, hole punching for UDP is used by many
proprietary protocols for instant-messaging, online-gaming and VoIP applications.

Unfortunately hole punching only works in some scenarios dependent on the be-
havior of the involved middleboxes. Most importantly, hole punching requires both
hosts to be able to predict their external mappings for the actual connection by using
a STUN server (for independent bindings) or by running a port prediction algorithm
taking our findings of the last chapter into account. For port address restricted filtering
the destination port of the packet sent in step (2) has to match the source port of packet
(3) and vice versa. For address restricted filtering a matching IP address is sufficient.

1 http://www.skype.com

96 5. Middlebox Traversal and Service Provisioning

Rendezvous
Point

NAT/FW
Host BHost A

NAT/FW

(1) (1)
(2)

(3)

Fig. 5.4: Illustration of the hole punching algorithm

Finally, since both hosts may be located behind the same middlebox without knowing
it, both hosts should also exchange their local mappings and send the packets of steps
(2) and (3) to the local endpoints as well.

TCP Hole Punching

Due to the stateful design of TCP, TCP hole punching is not as trivial as for UDP.
However, the basic concept is the same. Two hosts determine their external endpoints,
exchange them via a rendezvous point and establish a connection with each other. The
outgoing packets create a state in the state table which is then used by the remote
packets for traversing the middlebox. In order to be able to establish TCP connections
from the same source port to an external STUN-like server and to a remote endpoint,
[48] proposes to use the SO REUSEADDR option of the standard Berkeley Socket API
(BSD sockets). This allows binding multiple sockets to the same source port, namely
the session to the rendezvous point, the session to the remote endpoints (public and
private), as well as one socket that is listening for incoming connections from the remote
host. The exchanged messages are shown in figure 5.5.

A slightly different approach that does not require to simultaneously open TCP
sockets is proposed by [11] and depicted in figure 5.6. Their NATBLASTER [11] frame-
work uses TCP-SYN packets with low TTL values to create the mappings. The SYN
packets are discarded in the network and will not reach the remote host. A third party
is used for coordinating sequence and acknowledgement numbers and an appropriate
SYN-ACK packet is forged using RAW sockets. The authors also focus on different
scenarios and propose to use the birthday paradox to limit the number of tries in case
of an unpredictable mapping.

The last two approaches as proposed in [60] and [47] have already been explained
in section 4.3.2. Figure 5.7 shows the high TTL approach for two hosts both behind
a stateful middlebox. Here, H1 punches the hole by sending a TCP-SYN packet to
the remote endpoint and receives a TCP-RST as an answer. If M1 does not close
the mapping immediately, the TCP-SYN packet of H2 establishes a direct connection
between H1 and H2. Figure 5.8 shows the same approach for low TTL values. The
initial SYN packet gets discarded in the network and triggers an ICMP TTL exceeded
packet. The success rate of these approaches is highly dependent on the behavior of
the middlebox, in particular if SYN-SYN sequences are allowed and if a TCP-RST or
ICMP TTL exceeded packet closes a mapping or not. [60] provides a good comparison
of the techniques and lists the issues and requirements (network/implementation) of
each approach.

5.2. State of the Art in Middlebox Traversal 97

















































































Fig. 5.5: P2P Hole Punching Fig. 5.6: NATBLASTER





































































Fig. 5.7: STUNT using high TTL Fig. 5.8: STUNT using low TTL

98 5. Middlebox Traversal and Service Provisioning

Port Prediction Techniques

Translating middleboxes assign new mappings to each outgoing session according to
their behavior as described in the last chapter. Port prediction is a technique that
anticipates an external public mapping for a given private one. This is especially useful
for middleboxes that implement a connection dependent binding strategy and cannot
use STUN to query external mappings. The complexity of a port prediction algorithm
depends on the way a middlebox assigns external ports, the more random the strategy
the harder and error-prone the prediction. However, the results of our field test con-
ducted in chapter 4 show that approx. 57% (44% for TCP) use a rather straight-forward
assignment strategy and allow predicting the external port by observing patterns. How-
ever, this is only true if cross-traffic from other hosts behind the same middlebox does
not influence the port assignment strategy. The more active hosts behind one NAT the
more unreliable a port prediction algorithm.

[63] describes the general requirements for port prediction (e.g. using Cone NATs
that implement an independent binding) and also states that some Symmetric NATs
assign port numbers incrementally, thus making port prediction possible. The authors
mention timing issues when considering cross-traffic which leads to the impossibility of
predicting ports for large installations. NATBLASTER proposes to use the birthday
paradox for port prediction as already described above. [168] presents a port correlation
algorithm for predicting external port numbers. Finally, [151] suggests to also take
into account that other hosts in the same private network may also send out packets
and may disturb the port prediction algorithm. Two methods are introduced: the
capturing method captures all outgoing packets (including the ones from other hosts
and applications) and helps to predict the influence of additional hosts. The scanning
method actively scans the environment using tools such as ping and ARP. Based on
neighboring nodes, an error rate for a predicted port can be given.

5.2.3 Additional Solutions

Data Relay

While establishing inbound connections is not always possible, outgoing connections to
a peer located in the public Internet follow the intended packet flow and are therefore
possible (if not blocked by a firewall). A data relay follows this approach by letting
a client actively establish a connection and by forwarding incoming connections via
the so-created socket. Traversal using Relay around NAT (TURN) [92] is the IETF
approach for a data relay and developed as a STUN extension by using the same packet
format and similar messages.

NAT/FW
Host BHost A

NAT/FW

(2)

TURN Server

(1)
(2)

Host transport address

Server reflexive
transport address

relayed
transport address

Fig. 5.9: Traversal using Relays around NAT (TURN)

5.2. State of the Art in Middlebox Traversal 99

Figure 5.9 depicts the details of TURN. In step (1) the TURN client requests a
public endpoint from a TURN server containing the public endpoint of host B. The
server receives the request and generates two endpoints: One endpoint that is used by
the TURN client to communicate with the server and one “relayed transport address”
that is used by host B for sending packets to host A. TURN has the advantage of working
with almost every stateful middlebox since it is independent from the behavior of the
middlebox and does not require explicit support of the middlebox implementation.
However, the reliability and the throughput is dependent on the TURN server, which
can be seen as a single point of failure.

Interactive Connectivity Establishment

The Interactive Connectivity Establishment (ICE) is “a protocol for Network Address
Translator (NAT) traversal for UDP-based multimedia sessions established with the
offer/answer model” [128]. ICE is able to utilize many traversal techniques and aims
to select the one that works in the specific situation. Initially developed for VoIP, it is
mostly used together with SIP and SDP [67] for enabling the traversal of media data.

STUN

NAT/FW
Host BHost A

NAT/FW

(1) (1)

(3)

TURNRP

(2) (2)

Fig. 5.10: The Interactive Connectivity Establishment (ICE)

Figure 5.10 shows the ICE approach. In step (1) hosts A and B collect possible
mappings such as their local endpoints, as well as endpoints provided by STUN and
TURN. These endpoints are exchanged in (2) via a rendezvous point, e.g. a SIP signal-
ing infrastructure. Both hosts receive a list of remote endpoints, sort them in priority
order and send checks for each pair using STUN messages. Once a working pair is
detected it gets nominated for being used as a media endpoint. Dependent on the
implementation the ICE algorithm either stops or searches for better and alternative
pairs. An extension to ICE that supports TCP candidates also exists [129].

5.2.4 Evaluation and Comparison

As described in the last sections many proposals for middlebox traversal have been
made. Each of them approach the problem in a slightly different way and each has
advantages and disadvantages. While explicit solutions require active support of the
middlebox, behavior-based solutions only work if certain requirements are met. Table
5.1 compares the discussed techniques and evaluates their properties.

The first property performance not only means the performance of the actual data
connection, but also the overhead that is necessary to establish the according state in
the middleboxes. This is indicated by using double (++) and (−−) signs for this cat-
egory exclusively. For UPnP a short signaling period is needed only at the beginning
of a connection, resulting in a single plus (+). For NSLP, MIDCOM, NUTSS and ICE

100 5. Middlebox Traversal and Service Provisioning

U
P

n
P

N
S

L
P

M
ID

C
O

M

N
U

T
S

S

R
S

IP

S
O

C
K

S

A
L

G

S
T

U
N

H
P

T
U

R
N

IC
E

Performance + O O O - O ++ + + - - O

Security - + + + - O - O - O O

Supported Techniques O O O + O O O O + O +

Flexibility - + + + - - - + + - +

Support for legacy appl. - - - O - O + - O - O

External Entities + - - - + + + - O - -

Software on MB - - - - - - - + + + +

Software on end-host - - - - - O + - O - -

Tab. 5.1: State of the art summary

multiple messages or nodes are involved, resulting in a neutral rating (O) since the
performance of the actual data connection is not affected. SOCKS is dependent on
the proxy, RSIP tunnels packets to the gateway and TURN is completely dependent
on the external TURN server that has to relay all traffic. UPnP, RSIP, ALG and HP
do not provide security at all, STUN, SOCKS and TURN provide authentication and
also a TLS mode and ICE’s security mechanisms are dependent on the signaling pro-
tocol. MIDCOM uses PDPs, NSLP a complete authorization framework and NUTSS
security is based on policy boxes and signaling, which results in a positive evaluation.
Besides ICE, HP and NUTSS all other solutions are single techniques that either work
(if implemented) or not. ICE and NUTSS allow utilizing arbitrary techniques and HP
can be implemented in many different ways. Control-based frameworks provide a great
flexibility and can be adapted to many situations, whereas ALGs are protocol specific
and UPnP can either forward all packets to an internal port or block them. Legacy
Applications are supported by ALGs if implemented and the NUTSS implementation
proposes to use LD PRELOAD in order to redirect socket calls to the NUTSS library.
SOCKS is not only supported by many applications, but many operating systems also
allow configuring a default proxy for all applications. UPnP, ALGs, RSIP and SOCKS
are not dependent on external entities located in the public Internet. Hole punching
might work without a third party in a few situations. Explicit solutions as described
above need active support of the middlebox, if not implemented they don’t work. Fi-
nally, only ALGs are completely transparent and do not require to install software on
any end-host. Hole Punching might also work if the packets are sent in the correct
sequence. SOCKS might work if the operating system allows setting a system wide
proxy for all applications.

5.3. Application-Centric Middlebox Traversal 101

5.3 Application-Centric Middlebox Traversal

Each of the traversal techniques as discussed above has advantages and disadvantages
and their success rate is either dependent on the behavior of the involved middleboxes
(behavior-based solutions) or on the availability of external entities (explicit solutions).
If both of these parameters are known a technique can be selected accordingly and
applied to solve the traversal problem. The remaining question that has not been dis-
cussed in the state of the art is which technique is applicable for which application.
We argue that a middlebox architecture can only become a valid design principle for
the future Internet if the roles of applications and the intention of administrators are
taken into account when traversing them. Thus, we defined four Middlebox Traver-
sal Service Categories, each making assumptions about the purpose of the connection
establishment (intention of the middlebox placement) and the infrastructure (e.g. ex-
ternal entities) that is available. Our categorization emphasizes that the applicability of
many existing middlebox traversal techniques depends on the support of a combination
of requester (client), the responder (service), globally reachable infrastructure nodes
and the role of the application. On the one hand, server applications set up a socket
and wait for connections (this also applies to P2P applications). On the other hand,
client applications such as VoIP clients actively initiate a connection and wait for an
answer on a different port (bundled session applications). Other applications only work
across middleboxes if both ends participate in the connection establishment. Thus, we
differentiate between supporting a service and supporting a client. Here, the client is
called the requester, because it actively initiates a connection.

5.3.1 Service Categories for Middlebox Traversal

The first category Requester Side Middlebox Traversal (RSMT) covers appli-
cations that actively participate in the connection establishment and still suffer from
the existence of NATs. This is true for the problem categories realm-specific addresses,
for bundled session applications and for unsupported protocols. As depicted on the
top left hand side of figure 5.11 middlebox traversal solutions that can be applied to
the RSMT category need support of the requester side, either on the host or on the
middlebox. Packet (1) is sent out towards the service in order to create a mapping. If
this packet contains realm-specific addresses in the payload either the requester or the
middlebox needs to translate them. The most popular application for RSMT is VoIP
using SIP/SDP. For unsupported protocols a connection can only be established if the
initial packet (1) is already prepared (e.g. encapsulated into UDP) in a way that is
able to traverse the middlebox.

The second category, Global Service Provisioning (GSP), covers applications
and services that aim to be globally reachable. This service category applies to scenar-
ios where middleboxes are deployed without the intention of breaking the end-to-end
connectivity, e.g. NAT devices. To overcome this unwanted side-effect a peer hosting
a service behind a middlebox needs to actively take care of establishing a mapping in
a way that it can be accessed by arbitrary hosts located in remote networks (step 1 in
figure 5.11). Some of the remote hosts may also reside behind stateful middleboxes and
may not be able to participate in the traversal process. Globally accessible means that
once a mapping has been created it will accept multiple connections from previously
unknown clients. This is the main difference to RSMT, which only needs to create a
mapping for one particular session (e.g. one call in case of VoIP). All legacy server
applications (e.g. HTTP, FTP, IRC) are examples for the service category GSP. Addi-

102 5. Middlebox Traversal and Service Provisioning

MB

create mapping
signaling
access mapping
created mapping
access (not)-allowed

Requester

RT

(1)

Service

(2)(1)

GSP

Service

(3)
(1)

(3)

SPPS

Signaling

sup. (2)

(1)
(3)

(1)

(3)

SSP

Signaling

(2)

(1)

Service

sup.

sup.

sup.
sup.

sup.

MB (X)
 (X)

(1)
(2)

MB (X)
(X)

(1)
(2)

(2)

MB

(1)
(1)

(X)
MB

(2)

(2)

(X)
support needed at host

signaling

OK to access mapping

Access denied
(RSMT) (GSP)

(SPS) (SSP)

 (X)

MB

(1)
(1)

(X)
MB

(2)

 (X) (2)

Fig. 5.11: Middlebox Traversal Service Categories

tionally, P2P applications that require incoming connections from previously unknown
remote peers also fall into this category.

The third category Service Provisioning with Signaling (SPS) assumes sup-
port at both ends (the service and the requester) and does not make any assumptions
about the accessibility of the mapping once it has been created. As shown in figure 5.11
this service category uses a signaling infrastructure (step 1) for exchanging connection
specific information that helps to establish an appropriate mapping in the middlebox.
SPS supports all kinds of services where a one-to-one connection is sufficient and sig-
naling is available. Signaling also allows establishing a UDP tunnel between the hosts
allowing unsupported protocols to traverse legacy middleboxes.

The fourth category, Secure Service Provisioning (SSP) addresses scenarios
and applications that require certain restrictions for a mapping or rule created at the
middlebox. This could be either an exclusive access of authorized hosts to a firewall
or NAT mapping (as shown in figure 5.11), or a rather general restriction for using
resources of a middlebox such as a proxy. This requires additional functionality for
policy enforcement, which can be done at the middlebox itself, at a data relay or at
a firewall. The example as shown in figure 5.11 uses signaling for authenticating a
remote party before establishing a mapping, thus requiring support at both ends of
the connection. However, it would also be possible not to use signaling by configuring
rules or mappings for previously known clients or restrictions such as rate limits or
bandwidth restrictions.

5.3.2 Application of Existing Traversal Techniques

Table 5.2 shows implications when applying state of the art techniques to our service
categories. “Support at the S(ervice)/R(equester)/EX(tern)/MB” means that addi-
tional software needs to be deployed at this host. “Signaling messages” means that a
signaling protocol is used for setting up a traversal method. A rendezvous point (RP)
is needed for relaying signaling messages between the requester and service. Finally,
“stream independent” describes the requirement for consecutive connections. For ex-
ample, a port forwarding entry has to be created only once, while hole punching with
restricted filtering requires to send a new hole punching packet for every new stream.

None of the existing techniques can be applied to all service categories. RSMT is
required for applications and protocols that need active support to traverse a middle-

5.3. Application-Centric Middlebox Traversal 103

Serv. Traversal Requires support at Signaling messages Stream
Cat. Technique S R EX MB S R RP EX indep.

RSMT MB with ALG •
UPnP • • • •

GSP UPnP • • • •
HP (indep. filt.) • • • •
RSIP • • • • •

SPS HP • • • • • • (•)
UPnP • • • • • • (•)
data relay • • • • • • • (•)
tunneling • • • • •

SSP HP (restricted filt.) • • • • • •
NSLP/MIDCOM • • • • •
sec. relay (TURN) • • • • • • •
secure tunneling • • • • •

Tab. 5.2: Middlebox Traversal Service Categories and their implications for the SotA

box on outgoing packets. One common approach is therefore to integrate RSMT into
theses applications (e.g. the VoIP client), allowing them to establish mappings on the
fly. One possibility is the integration of a UPnP client. Another option is to use Appli-
cation Layer Gateways (ALG) that interpret in-band signaling and establish mappings
accordingly. ALGs are no general solution, because the middlebox must implement
the necessary logic for each protocol and end-to-end security policies may prohibit the
interpretation of the signaling messages by the middlebox.

GSP depends on traversal techniques that allow unrestricted access to a public
endpoint. A control protocol can be used to directly establish a port forwarding entry
in the mapping tables of the middlebox, for instance, with UPnP. Port forwarding
entries created by UPnP are easy to maintain and work independently from middlebox
behavior. However, UPnP only works for single middleboxes, since LSNs are (due to
security reasons) not UPnP compatible. Hole punching is an alternative if UPnP is
not applicable and works for independent filtering strategies. The mapping has to be
refreshed periodically, for instance, by sending keep-alive packets. For middleboxes
implementing a restricted filtering strategy, hole punching for GSP cannot be used
since the source port of a potential requester is unknown in advance.

SPS makes no assumption about the accessibility of a created mapping, thus all
possible techniques are applicable. Different to GSP, hole punching for SPS works as
long as port prediction is possible. For middleboxes implementing restricted filtering,
signaling helps to create the appropriate mapping since the 5-tuple of the connection
is exchanged. Signaling also allows the establishment of a UDP tunnel, allowing the
encapsulation of unsupported protocols. SPS can also use UPnP to establish port
forwarding entries for one session.

SSP only allows authorized hosts to allocate and to use a mapping. Protocols
that authorize requests and assume control over the middlebox, such as MIDCOM and
NSLP qualify for SSP. UPnP is not useful for SSP, because it forwards inbound packets
without considering the source transport address. Hole punching can only be applied if
the middlebox implements a restricted filtering strategy. All cases discussed above rely

104 5. Middlebox Traversal and Service Provisioning

on additional measures to prohibit IP spoofing. The use of secure tunnels impedes IP
spoofing and allows secure middlebox traversal, even for unsupported protocols (e.g.
IPSec, SCTP, DCCP). SSP can also be achieved by using TURN with authentication,
authorization and secure communication (e.g. via TLS).

Despite the great flexibility of SPS and SSP, both categories involve a number of
assumptions that are not always satisfied. The most important one is the need for
both ends (and sometimes also the infrastructure), to support compatible versions of
the middlebox traversal framework. It remains to be seen if the future will bring a
sufficiently large deployment of one framework to rely on for arbitrary applications.
The chances are better within homogeneous problem domains, like telecommunication,
where such frameworks can be integrated with the applications and be distributed in
large numbers. For instance, the adoption of ICE is mainly happening within the
VoIP/SIP community and focusing on VoIP specific use cases.

5.4 Summary and Key Findings

This chapter introduced the middlebox traversal problem and presented and evaluated
state of the art middlebox traversal solutions. We argued that a successful middlebox
traversal technique should not only enable the communication across middleboxes no
matter what, but should also take the role of the application and the intention of the
deployment into account. Thus, we defined four new service categories that consider
the support of a combination of requester (client), the responder (service), globally
reachable infrastructure nodes and the role of the application. This is the first step
towards answering the question how to find suitable traversal techniques for applications
(Q2 according to section 1.1). Finally, existing techniques were classified according to
our service categories.

Key Findings of this chapter
(and contributions according to section 1.2):

• Numerous state of the art traversal techniques exist and their success
rate dependents on the behavior of the middlebox and the availability
of external infrastructures.

C4.1a A middlebox traversal technique should not only enable the communi-
cation across middleboxes, but also consider authorization and acces-
sibility requirements, as well as additional policies as defined by a user
or administrator of a network.

C4.1b Middlebox Traversal Service Categories help to achieve this by taking
the role of the application and available infrastructure into account.

6. KNOWLEDGE-BASED MIDDLEBOX TRAVERSAL

6.1 Introduction

The traversal of middleboxes has been subject to many research projects as described
in the last chapter. Besides individual approaches, frameworks (ICE) and applications
(Skype) integrate many existing solutions to increase the probability for successfully
establishing a connection through middleboxes. Since middlebox behavior is not stan-
dardized and has a large impact on the success rate of individual techniques, this ap-
proach seems reasonable. However, state of the art frameworks only aim at establishing
a connection without considering the role of the application that can be expressed us-
ing our middlebox service categories. Solutions that also analyze the current situation,
the behavior of the involved middleboxes and requirements of external entities such as
administrators do not exist.

This chapter presents a new approach to middlebox traversal. The core contribution
is an innovative framework that not only applies middlebox traversal techniques for the
sake of connectivity, but also considers higher-level requirements of applications, users
and administrators. To achieve this, elements derived from Autonomic Networking,
such as an autonomic control loop, help to transform decisions into technical com-
promises and configurations. Such configurations are composed by considering and
transforming instances of our information model that represents middlebox behavior,
as well as policies introduced from external entities. Existing traversal algorithms and
solutions can be easily integrated into the framework and are parameterized based on
the exact policy for the session and the behavior of the involved middleboxes. This
helps to support all of the four service categories as presented in the last chapter
and allows applying the best applicable solution for the given scenario. We call this
approach knowledge-based middlebox traversal because all decisions are made based
on the knowledge about the network, the application and the participating entities.
Besides being more flexible, the knowledge-based approach also has performance ad-
vantages over the state of the art due to decoupling the gathering of information from
the actual traversal.

Section 6.2 introduces the general concept of knowledge-based middlebox traversal
and shows the essential information that has to be gathered and maintained in order to
make decisions. Section 6.3 describes a reference example for a framework implementing
knowledge-based middlebox traversal. Section 6.4 then presents NOMADS, our frame-
work that integrates existing and future traversal techniques and applies them according
to policies and the behavior of the involved middleboxes. After giving an architectural
overview we show how legacy as well as newly developed applications benefit from
NOMADS. Existing traversal techniques are integrated, extended and parameterized
according to the knowledge about the system and network. Our experimental results
as described in chapter 4 are hereby the cornerstones for improving and adapting ex-
isting solutions. Additionally, two new middlebox traversal techniques are developed
in section 6.5. After evaluating our approach in section 6.6, section 6.7 concludes this
chapter.

106 6. Knowledge-based Middlebox Traversal

6.2 Knowledge-based Middlebox Traversal

State of the art frameworks such as ICE query the network and determine working
traversal techniques for each connection request separately, thus delaying the connec-
tion establishment. The idea of our knowledge-based approach, as initially published
in [104], is to decouple the knowledge gathering process from the actual connection es-
tablishment. The knowledge about the network, involved middleboxes and applications
can then be directly applied when a decision for a traversal technique is needed. The
knowledge gathering process is iteratively ran in the background and not only makes
sure that a working technique is determined, but also allows reacting to network and
topology changes resulting in a fast connection establishment.

Registered
Applications

Users SuperUser Middlebox Analyzer

Policies

Decision

Middlebox
Model Instance(es)

Apply and Monitor

fe
e

d
b

ac
k

feedback

Fig. 6.1: Inputs to be considered for making decisions about suitable techniques

Figure 6.1 shows the components of our knowledge-based approach. Users register
applications to the framework and define accessibility parameters for them. Each appli-
cation may be assigned to a middlebox service category as described in chapter 5. This
automatically limits the number of traversal techniques to be applied for the applica-
tion, which is expressed by policies. Policies on the one hand are dynamically defined by
privileged users to express authentication and authorization restrictions, but also hold
rather static information about which middlebox traversal technique is applicable to
which service category. Security policies will be covered in chapter 7 when introducing
a new security architecture for unmanaged networks in general and for our framework
in particular. For the application of middlebox traversal categories we maintain the
following entries in the policy database:

(Service Category → Middlebox Traversal Technique → Condition)

For example, if an application is registered with the category Secure Service Provision-
ing (only authorized hosts are allowed to access it), the technique UPnP in general or
hole punching in combination with an independent filtering strategy cannot be applied,
because both violate the requirement of a secure public endpoint. However, a valid
entry for SSP would list hole punching with SSP with the condition that the middlebox
implements a restricted filtering policy. Conditions are linked to the instance of the

6.3. Reference Examples for a knowledge-based Framework 107

middlebox model as depicted on the upper right hand side of figure 6.1. The model
instance is created by repeatedly running the measurement algorithms (integrated into
the “Middlebox Analyzer”) as defined and evaluated in chapter 4 and represents the
exact behavior of the middlebox(es) towards the open Internet. It is important to note
that although our topology analysis algorithm allows recognizing individual stateful
middleboxes (or at least the number of hops towards the middleboxes), it is not possi-
ble to analyze all behavioral issues separately. Thus, if multiple middleboxes are found
the created middlebox instance always represents the combined behavior, which is the
desired behavior for establishing connections across the Internet. The Decision Module
then takes the registered applications, policies and the middlebox model instance as
an input and applies a middlebox traversal technique according to the situation. The
outcome of the decision is constantly monitored and reported back using a feedback
loop to users, as well as to the policies and measurement algorithms. This helps to be
aware of the network and to react to changes accordingly.

6.3 Reference Examples for a knowledge-based Framework

Before actually presenting our new middlebox traversal framework in section 6.4 this
section shows two reference examples to get an overall idea of our approach. This will
help to better understand our design choices and the application flow in general. In the
first scenario we assume an unilateral deployment where only one host runs an active
instance and aims to make a service globally reachable. The second scenario then shows
a complete example were both hosts run the framework and are thus able to coordinate
on middlebox traversal through signaling.

6.3.1 Unilateral Deployment

Our first example assumes an unilateral deployment where the framework is only avail-
able at one host. Figure 6.2 shows a scenario where a user aims to make a service
publicly available without knowing anything about a potential requester. In the first
step the user communicates with the framework via a web-based interface (the Session
Manager) and selects the web-server at port 80 from a list of running services. The
framework instantly accesses its knowledge database and selects an appropriate mid-
dlebox traversal technique for the detected middlebox. Here, UPnP is selected and a
public mapping is created. The framework also registers a dynamic DNS name for its
external IP address and provides it back to the user. From now on all external services
are able to connect to the DNS name to access the service.

6.3.2 Coordination of Traversal through Signaling

Figure 6.3 depicts a scenario where both ends run a framework instance and are able
to use a public signaling infrastructure (here SIP) for exchanging connection specific
information. A requester R aims to connect to a (web) service S running at port 80
using a TUN-base application interface that will be described in section 6.4. We assume
that a privileged user of network B has registered the service at the framework and no
policy exists that prevents the connection from being established.

First the requester R connects to web.service.nat which is resolved (by a DNS
proxy) to S’s SIP-URI (e.g. sip:service@sip.org). The application interface allocates
an available IP address (here 172.16.1.200) from the range that is routed to the TUN
device and reports it back as an answer for web.service.nat. This IP address only

108 6. Knowledge-based Middlebox Traversal



















































Fig. 6.2: Reference example for GSP with an unilateral deployment

needs to be unique on this host and does not represent the service in general (only
the SIP-URI does). Host R now sends the first TCP-SYN to this address and a new
mapping entry with a pending state is allocated. The packet is passed to the Decision
Module of R, which decides to integrate information about the filtering element of the
model instance into a so-called Service Request. The Service Request indicates that
the requester aims to connect to the (local) destination port 80 and is sent via the
signaling infrastructure to the SIP-URI. S looks up its Session Manager and finds an
entry for port 80. From the Service Request, S knows that the requester implements a
connection dependent binding strategy and assumes that R is not able to predict any
external mapping. Instead of asking for a predicted port range (which would be a valid
option), S selects hole punching as a valid technique for traversing the middleboxes as it
implements an independent filtering strategy that forwards packets independent of the
source address. S looks up the global mapping for port 80 and provides it to R (here
85.6.4.1:51543). R can now complete the mapping entry by adding this endpoint to its
translation table and the held back initial TCP-SYN from the requesting application
is translated and sent out to the real network interface. Since S’s middlebox now has
a mapping for this packet, it forwards it directly to the service. From now on every
packet in both directions is rewritten according to R’s mapping table. The following
sections now present the individual modules in detail and help to further clarify the
reference examples.

6.3. Reference Examples for a knowledge-based Framework 109



































































































































































































































































































































































































































Fig. 6.3: Reference example for coordination through signaling

110 6. Knowledge-based Middlebox Traversal

6.4 NOMADS: A new Middlebox Traversal Framework

The knowledge-based approach is the core element of our new kNOwledge-based Middle-
box trAversal and Detection Service (NOMADS). The first instance of this framework
was published under the name ANTS (Advanced NAT Traversal Framework) in [99]
and [105] and has since been developed into a generic middlebox traversal solution inte-
grating many existing and new techniques. One of the main requirements was not only
to support different types of applications according to their service categories, but also
to support legacy applications that do not have built-in middlebox traversal support.
State of the art frameworks, such as ICE, have to be compiled into the application it-
self and therefore cannot support legacy applications. Furthermore, when establishing
a connection between two hosts we cannot assume that both of them run the same
framework. Solutions for coping with these scenarios have to be developed.

Requester R

Private Network A

APP. A APP. B

Public Internet Service S

Private Network B

APP. C APP. D
InfrastructureInfrastructure

(2) (2)

NOMADS
(1)

(1)

Signaling
Infrastructure

NOMADS

(4)

(3)

Fig. 6.4: Overview of NOMADS

Figure 6.4 shows an example of NOMADS where both hosts run an instance of the
framework. NOMADS is only installed once on each host and supports all applications
requiring middlebox traversal support. The connectivity establishment process depends
on the available entities such as STUN servers, data relays and signaling infrastructure
nodes. Here, application B at the requester R aims to connect to application C at the
service S. First, NOMADS detects external infrastructures and gains knowledge about
the network (step 1). On a connection request the NOMADS instances are paired using
an external signaling infrastructure (2). After parameterizing a middlebox technique
in step 3, the requester is finally able to connect to the public endpoint of S (step 4).
This section presents our framework in detail. We first cover relevant scenarios and
give an architectural overview. Afterwards, the individual modules of our architecture
are described.

6.4.1 Scenarios

Our framework targets scenarios where middleboxes hinder a connection from being
established. We do not differentiate between multiple layers of middleboxes or specific
types of middleboxes. As defined above we aim to enable an application to communicate
across middleboxes in a way that is compliant with authorization and accessibility
requirements, as well as additional policies as defined by the user or the administrator
of the network. In the following we present four example scenarios that are targeted
by our framework. However, the applicability is not limited to the presented scenarios
and each scenario could also deploy additional middleboxes that are not shown.

6.4. NOMADS: A new Middlebox Traversal Framework 111

The first scenario covers unmanaged networks. The term “unmanaged networks”
describes networks that are not professionally administrated. In many cases home net-
works are an example for unmanaged networks. The owner of the home receives a
consumer router from his ISP (or has to buy it himself) and is responsible for config-
uring Internet access settings, IP connectivity for other devices and WLAN security
parameters. The top row of figure 6.5 depicts two scenarios of unmanaged networks.
On the left hand side both communication partners are behind a stateful home router
and either connected to different ISPs (s1) or to the same ISP in scenario (s2). On the
right hand side one of the ISPs also implements LSN. Applications, such as VoIP, that
aim to establish a direct connection between two or more hosts located in unmanaged
networks will benefit from our framework. Furthermore, applications that provide a
service on a global endpoint, such as traditional server applications, are supported.

ISP 2

Internet

Internet

(s1) ISP 1

(s2)

Home RouterHost A Host BHome Router

...

HOP 1

Internet

ISP 1

Home Router
Host A Host BHome Router

LSN

ISP 2

Internet

NAT/FW
Company FW

Unmanaged Network Unmanaged Network with Provider Middlebox

Mobile Network Company Network

HOP N

Fig. 6.5: Example scenarios targeted by our framework

Our second scenario, as depicted on the bottom left hand side of figure 6.5, targets
mobile users that are affected by middleboxes deployed by their provider, such as
LSNs, proxies and firewalls. Here we not only focus on smartphones, but also on
unmanaged networks that use a mobile connection as their main internet service, for
example via LTE in remote areas. In this case most of the unmanaged networks will also
deploy a consumer router in their own network for sharing the IP address as provided
by the ISP.

Finally we target company networks from small unadministrated start-ups to
larger networks. In such networks the administrator usually deploys a firewall to block
and filter traffic based on the companies policy. On the other hand many modern
protocols (mostly bundled session applications) fail when using static rules and scenarios
where hosts are temporarily authorized to provide a globally reachable service are not
possible.

One essential requirement for our middlebox traversal framework is that we don’t
require both ends of a communication path to install additional software. Thus, NO-
MADS can either be installed on one end-host, on two end-hosts to allow signaling, or
on middleboxes only. Dependent on the deployment, more or less middlebox traversal
techniques are applicable. For example, a connection between two middleboxes both
implementing port address restricted filtering cannot be established when using hole

112 6. Knowledge-based Middlebox Traversal

punching without signaling. Different to state of the art frameworks, our framework is
only installed once per host and is able to support all applications that are registered
to it. This is a huge advantage since it allows different applications to cooperate and to
share their knowledge about existing connections and about the success rate of applied
traversal techniques.

6.4.2 Architectural Overview

The modular architecture is depicted in figure 6.6 and consists of three layers and
six individual modules. The layers can be seen as logical layers, where the top layer
implements the registry point for applications, the policies and the actual middlebox
model instance as described in section 6.2. The middle layer implements the Decision
Module. The lower layer modules are used to communicate with the network.

Decision Module (sec. 6.4.6)

Middlebox Traversal
Module
(sec. 6.4.5)

Signaling
Module
(sec. 6.4.3)

Middlebox
Analyzer
(sec. 4.3)

Knowledge (sec. 6.4.6)

Model Instance
(sec. 4.2.4)

Policies
(sec. 6.4.6, 7.6)

Session Manager
(sec. 6.4.7)

TUN NETAPI

Application
Interfaces
(sec. 6.4.4)

NET NET NET

configure

result

signaling
protocol

initiate
and monitor

mapping
decision

Fig. 6.6: Modular architecture of NOMADS

Whenever an application needs middlebox traversal support, a privileged user reg-
isters it at the Session Manager and assigns a service category to it (e.g. a web server
needs to be globally reachable, thus GSP). The framework is then able to establish
connectivity using one of its middlebox traversal techniques located at the Middlebox
Traversal Module. The selection of a method depends on many factors such as the
behavior of the middlebox, potential requesters (not all of them also run an instance
of the framework) and the role of the application. As described above, the Middlebox
Analyzer periodically updates the middlebox model instance and together with the Ses-
sion Manager and the policies, knowledge about the network is created. Whenever a
decision is needed, the Decision Module reuses this knowledge in order to parameterize
an appropriate middlebox traversal technique. If an application is registered at the
Session Manager with the service category GSP and an “all allow” policy, the Decision
Module immediately invokes a middlebox traversal technique suitable for this service
category, e.g. UPnP. Additionally, a dynamic DNS name is assigned to the public IP
address and reported back to the user who is then able to distribute the so-created
public endpoint to potential external users.

Other connectivity scenarios (SPS and SSP) require a coordination of NOMADS
instances on the requester and service. In this case two other modules are needed:
the Signaling Module on both hosts for exchanging connection specific information

6.4. NOMADS: A new Middlebox Traversal Framework 113

(described in section 6.4.3), and the Application Interface Module at the requester for
connecting applications to the created public endpoint as described in section 6.4.4.

6.4.3 Signaling Module: Request Response Protocol

If both hosts of a connection run the NOMADS framework the Signaling Module can
be used to exchange information about an upcoming connection. This allows perfectly
adapting and parameterizing traversal techniques based on the involved middleboxes
and the current behavior of the network. Furthermore, signaling allows the service to
only allocate a mapping if the requester is authorized to access it. More generally,
signaling first informs the service about the source of the connection, while in the
second step the service reports the created endpoint back to the requester that is
then able to use it. Instead of exchanging a number of candidates and finding out
which one actually works (ICE), NOMADS uses its knowledge about the middlebox(es),
the application and the requester to allocate a working endpoint resulting in a fast
connection establishment.




























Fig. 6.7: Agreeing on a method using signaling

In NOMADS each host has a unique URI (e.g. a SIP-URI [131]) and is registered at
a public rendezvous point (e.g. a SIP proxy). The URI can be seen as an approach for
splitting the identifier and locator of a host as also proposed by HIP [98] and NUTSS
[61]. The signaling protocol is based on XML and can be easily used with an arbitrary
signaling infrastructure, such as SIP and XMPP (Jabber) [135]. We propose to use
SIP messages for signaling, including the decentralized P2P-SIP1 approach. Whenever
a peer wants to establish a connection to another peer it sends the signaling messages
through the signaling infrastructure to the host that runs a service. An URI identifies
a host behind a middlebox according to its layer 3 address and multiplexing between
different applications is done via the service port that is included in the so-called Service

1 http://www.p2psip.org/

114 6. Knowledge-based Middlebox Traversal

Request (see figure 6.7). The Service Request asks for a specific service (port) on this
host. The service is then responsible for allocating an appropriate endpoint according
to local policies and sends it back to the requester (via the Endpoint message). The
main advantage of our signaling process is that for basic signaling (service category
SPS) only two messages are needed. For the secure version, Secure Service Provision-
ing (SSP), we rely on authentication mechanisms as provided by SIP: The well known
Digest Access Authentication [51] increases the number of signaling messages to four.
A Service Request is answered with an Unauthorized messages and a second Service Re-
quest containing the computed response is sent. However, if a PKI exists (as described
in section 7) we are able to use S/MIME [122] as defined in the original SIP RFC.
The tunneled “message/sip” mechanism can be avoided by using a SIP Authenticated
Identity Body (AIB) [116]. If the service feels that it needs more information from
the requester after a Service Request, it may send a Model Request asking for specific
middlebox behavior issues. The requester will then decide again which information it
is willing to provide and reply with another Service Request. The complete signaling
protocol is shown in Appendix C.2.



















Fig. 6.8: Basic signaling messages for SPS

Figure 6.8 shows a more detailed example of the signaling protocol. The requester on
the left aims to access an application that is running on the local port 80 at the service.
Please note that NOMADS always works with local service ports, the actual translation
and mapping is completely transparent to the user, which is an enormous advantage
regarding usability. Thus, the requester sends a Service Request containing the destined
service port 80 and the protocol TCP. The model instance is either complete or in parts
provided in the model field (depending on the requester’s policy) and the requester may
also provide information about the source of the upcoming connection. In the example
showed in figure 6.8 the requester was able to predict the external mapping of the actual
(upcoming) connection, thus helping the service to take care of either accessibility
policies or to initiate techniques such as hole punching. After receiving the Service
Request and after creating a mapping the service sends the public endpoint 85.6.4.1
port 51543 back to the requester. In this example the service’s middlebox implements
non-port preservation, resulting in a “random” port 51534 that is forwarded to the local
port 80. To reach our goal of transparency the next section shows how to map between
the local port 80 and the provided external port.

6.4. NOMADS: A new Middlebox Traversal Framework 115

6.4.4 Application Interfaces

When connecting applications that utilize the signaling infrastructure to NOMADS
there are two options: the NOMADS socket API as described in Appendix C.1 al-
lows newly created applications to easily use the framework. The requester application
issues the connect function with the URI identifying the service as the destination. NO-
MADS then opens a real network socket to connect to the public endpoint created after
exchanging information through signaling and finally translates between the sockets.
Since legacy applications are not linked against the API yet, we also implemented a
TUN-based solution. A TUN device is a virtual network interface that delivers packets
to the user-space of a program and is well known from applications such as Open-
VPN2. With this approach the requester application only needs to send the packets to
the TUN device which then forwards them to NOMADS. NOMADS initiates signaling
based on these packets and translates them to the allocated public endpoint at the
service. From now on, NOMADS maps all packets coming from the TUN device to the
public endpoint and vice versa.

Requester

Requester

NOMADS_A

NOMADS_A

Internet

Internet

NOMADS_B

NOMADS_B

Service

Service

service listening on port A

1) connect(URI, port A)
or 2) packet to TUN device port A

Service Request for port A

create endpoint

Endpoint, port B

remember mapping
port A, endpoint B

packet

Fig. 6.9: Connecting applications to NOMADS

Figure 6.9 shows this process in detail. In order to trigger the NOMADS framework
the requester either uses the connect function of the socket API or sends a new packet
to the TUN interface. As described above, hosts are identified via a URI, thus the URI
is directly provided to the connect function. When using the TUN interface a tem-
porary IP address is used to communicate between the application and the NOMADS
framework. This can be achieved by using a DNS service that returns a temporary
IP address for the service’s DNS name as described in section 6.3. In either case the
requester uses the local port of the service (here port A) for sending packets. The initial
packet is intercepted at the NOMADS instance and a Service Request is sent. After
receiving a working public endpoint, NOMADS establishes a connection to it. In case
of TUN, NOMADS also has to translate between the local (temporary IP address and
port A) and the public endpoint (as provided by NOMADS B). Here, the functionality
is very similar to a traditional NAT44.

2 http://openvpn.net/

116 6. Knowledge-based Middlebox Traversal

6.4.5 Integration and Adaption of Middlebox Traversal Techniques

The Middlebox Traversal Module integrates actual middlebox traversal techniques and
provides interfaces for the Decision Module to parameterize them. The primary goal
is to use the knowledge about the middlebox instances for selecting and setting up
the most appropriate technique for the situation. This section shows the integration,
adaption and extension of existing traversal techniques. In the following section we
then present the Decision Module.

Explicit Solutions

Explicit middlebox traversal solutions as presented in section 5.2.1 can be integrated
into the Middlebox Traversal Module by using the following interfaces:

Technique: UPnP | NAT-PMP | MIDCOM | NSIS/NSLP | SOCKS
Protocol: transport layer protocol (TCP or UDP)
Destination: local endpoint for redirection
Source: optional: the source of the actual connection
Security Token: optional: authentication token

Dependent on the actual technique, different parameters are necessary. Since UPnP
cannot limit the accessibility of the mapping to selected hosts only, a wildcard is used for
the source parameter. Other techniques such as MIDCOM, NSIS/NSLP and SOCKS
also support authentication and need a security token for configuring the actual map-
ping.

Behavior-based: Hole Punching

The Middlebox Traversal Module integrates different behavior-based versions of hole
punching for UDP and TCP as described in sections 4.6.5 and 5.2.2. As a result of our
field test we stated that “a single traversal mechanism can never be as effective as a
solution that carefully parameterizes a basic traversal algorithm according to the current
situation, the topology and the behavior of the involved middleboxes”. Especially
different settings of the TTL value for the actual hole punching packet increases the
probability of a successful connection. In case of a home router that is usually deployed
only one hop from the end-host, the TTL value can be set to 2. This causes a packet
to expire in the ISPs network and prevents it from reaching the remote middlebox.
However, if middleboxes are not only deployed at the edges of a network, but also within
the network itself (e.g. LSN at the provider) a static TTL value of 2 is not sufficient.
The question here is how to detect an appropriate TTL value that still traverses all
outgoing middleboxes, but expires before it reaches the outermost middlebox of the
remote host. In the state of the art [151] proposes to first run the traceroute algorithm
to detect the number of hops between two hosts and set the TTL value to half of
it. With our topology detection algorithm as presented in section 4.3.4 we are able to
determine the exact position (and sometimes even the behavior) of involved middleboxes
and therefore set the TTL value dynamically (as described in section 6.4.6). For the
Middlebox Traversal Module it is only important to offer an interface for setting the
TTL value dynamically. Thus, the interface for hole punching traversal techniques is
as follows:

6.4. NOMADS: A new Middlebox Traversal Framework 117

Protocol: transport layer protocol (TCP or UDP)
Source: source address of the hole punching packet
Destination: destination address for the hole punching packet

(may be a port range for error-prone mappings)
TTL: TTL value for the hole punching packet

Dependent on the actual technique that is chosen by the Decision Module, hole punching
is instantiated by providing the protocol, the source address, the destination address and
the TTL value. For example, if an application listening on port 20000 needs middlebox
traversal support, the hole punching packet needs to be sent from this source port
in order to create the appropriate mapping in the stateful middlebox. The destination
address is the source address of the actual packet that is sent by the requester to initiate
the connection and provided within the Service Request.

Behavior-based: Endpoint Prediction

Endpoint prediction as described in section 5.2.2 is necessary for behavior-based traver-
sal such as hole punching. For endpoint independent binding strategies the STUN
protocol can be used to ask an external service for the current public endpoint of a con-
nection and reuse it for the actual data connection. For connection dependent binding
strategies STUN is not applicable. However, our field test showed that port prediction
is still possible with many connection dependent bindings by analyzing port allocation
patterns. Furthermore, analyzing a sequence of n external mappings often also allows
predicting the n+ 1 mapping dependent on the mapping category as presented in sec-
tion 4.6.3. The port prediction part of the Middlebox Traversal Module provides the
following generic interface:

Input: private (local) endpoint
Output: predicted external endpoint or range of endpoints plus error estimation
Model: optional: part of the middlebox model instance

The Decision Module provides a private endpoint to the prediction module and expects
a public one in return. The returned public endpoint may be precise or it may consist
of a port range plus an error estimation as described in section 4.6.3. As an option,
parts of the middlebox model instance may also be provided to allow the prediction
of ports based on the behavior of the middlebox. Cross-traffic can also be considered
by the use of techniques as presented in section 5.2.2. By combining these techniques
and considering the findings of our field test, port prediction with NOMADS is more
efficient that in the state of the art.

Data Relay

As a last resort data relays such as TURN are a valid choice for establishing a connection
between two hosts. The client part of the data relay is integrated into the Middlebox
Traversal Module and the source, destination (optional) and data relay to be used has
to be specified. Additionally, in [69] we extended the TURN protocol in a way that it
also supports our middlebox traversal service categories. The key contribution hereby
was to make sure to allow arbitrary sources, but at the same time not to overload the
data relay. This was done by a metric that monitors the load and used bandwidth of
the relay to regulate the access to mappings. The extensions were integrated into an
existing TURN implementation and are fully compliant with the existing protocol.

118 6. Knowledge-based Middlebox Traversal

6.4.6 Decision Module

The Decision Module together with the knowledge instance is the core component of
our framework and acts as the interface between the Input Module (containing policies,
model instances and registered applications) and the underlying modules (Application
Interface, Middlebox Traversal Module, Signaling Module and Middlebox Analyzer) as
described above. The Decision Module also monitors its decisions, learns from them
and provides feedback to the user, as well as to the actual technical modules. The
knowledge instance can be seen as a dynamic database that constantly gathers data
from the individual modules, aggregates and stores them for further processing. Figure
6.10 shows the internal steps of the Decision Module. Once it is triggered by a Service
Request or by the Session Manager it uses the knowledge about the involved middle-
boxes (which is expressed by the model instances) for determining a list of working
techniques (Pairing). The final decision is then made based on this list and additional
policies. Finally, the traversal is applied and feedback about the applicability and suc-
cess rate is provided. In the following sections we first describe the general approach of
the Decision Model, when it is conducted and which individual decisions (in addition to
the selection of a working technique) have to be made. Afterwards the pairing process
and the policies are presented.

feedback

feedback

Pairing

Model Instance(es) Policies

Decision Application

Service Request
(SPS, SSP)

Session Manager
(RSMT, GSP) Fig. 6.10: Internal steps of the Decision Module

General Approach

The Decision Module is conducted on the following events:

• An application is registered to the Session Manager and requests a globally reach-
able endpoint (category GSP): The Decision Module notices the new registration,
checks with local (security) policies, queries the model instance and initiates a
middlebox traversal technique suitable for the application. The so-created end-
point is then reported back to the user. A complete example is given in section
6.3.1.
• A local application initiates a connection: the connection is registered at the

Application Interface (NOMADS socket or TUN) and the Decision Module is
asked to initiate the request response protocol via the Signaling Module. In this
case the NOMADS instance acts as the requester of a session and decides which
parameters should be passed to the remote host via the Service Request.
• A remote application initiates a connection: in this case the host that runs the

NOMADS instance hosts a service and will be responsible for invoking an ap-
propriate middlebox traversal technique. Once the Signaling Module receives
a Service Request it passes the containing information to the Decision Module,
which then decides how to process it. First, the Session Manager and the lo-

6.4. NOMADS: A new Middlebox Traversal Framework 119

cal policy database is looked up to check if the application was registered and
which service category is assigned to it. This knowledge together with the local
middlebox model instance is then used to invoke a middlebox traversal technique
and to create the response to the Service Request. An example of two NOMADS
instances that use signaling for coordination is given in section 6.3.2. In addition
to invoking a middlebox traversal technique, the Decision Module also has to take
care of keeping mappings alive, e.g. by monitoring the Stateful:StateTimer and
by sending keep-alive packets.
• An environment change is detected: the environment (e.g. network links) is

constantly monitored and if a change is detected the Decision Module invokes
the Middlebox Analyzer to gather knowledge about the new environment. Once
the knowledge gathering process is completed the Decision Module compares the
most current middlebox model instance with the previous one and has to react
accordingly, (e.g. by reconfiguring mappings).
• A policy is updated: the Decision Module monitors the Session Manager as well

as the local policy database and has to react to updates as provided by the users.
For example, if the service category of an application changes from unrestricted
(GSP, SPS) to Secure Service Provisioning (SSP), the Decision Module has to take
care of “closing” existing connections and invoking new ones by using techniques
that are compliant with the service category.

Pairing

The most important task of the Decision Module is to find a working technique based
on the behavior of involved middlebox(es). More precisely, values to pass to the in-
terfaces for the individual middlebox traversal techniques as presented in section 6.4.5
are determined. Again, we have to differentiate between two scenarios. For the service
categories RSMT and GSP only one host runs an instance of the framework and chooses
a technique based on its own middlebox behavior. For the categories SPS and SSP the
service is able to pair the requester’s model with its own to determine working tech-
niques. However, only parts of the requester’s model may be provided to the service,
dependent on the policy as described in the following section. The actual pairing is
usually done at the service side that has to invoke the middlebox traversal technique,
but if we also want to allow the “swap role” functionality (as proposed in section 4.6.2),
the requester side may be chosen to become the service. Thus, the pairing component
expects the model instance of the service plus (optionally) additional information of
the requester in order to generate a list of working techniques as its output. We now
look at the individual techniques and list the prerequisites and rules for generating the
so-called “candidate list”.

Explicit middlebox traversal techniques (see sections 5.2.1 and 6.4.5) are not de-
pendent on the behavior of the involved middleboxes. If the technique is supported by
all middleboxes along the path from the open Internet to the service, it can be applied.
The Middlebox Analyzer tests for their support and their availability is reflected in the
ProtocolLayers element. For example, if a UPnP enabled Internet Gateway Device is
detected the model instance contains the following entry: ProtocolLayers:7:UPnP. For
some techniques it is essential to know the source of a connection in advance, thus they
are only applicable if the requester also supplies its predicted source address. Finally,
for explicit techniques we have to make sure that all hosts on the path support the ex-
plicit technique. Therefore, the Middlebox Analyzer also runs a topology test to detect
the number of middleboxes on the path towards the open Internet. This knowledge

120 6. Knowledge-based Middlebox Traversal

is then concatenated with the availability of the individual technique. For example,
if UPnP is available in the model instance it can only be applied if the topology test
found exactly one stateful middlebox towards the Internet.

As the name states, the applicability of behavior-based techniques depends on the
behavior of the involved middleboxes. Hole punching is the key technique that en-
ables a direct connectivity between two hosts across multiple layers of middleboxes
and is also the prerequisite for the tunneling of unsupported protocols. There are a
few things to consider before deciding if hole punching works and which parameters
should be used as an input for the hole punching module. First, the predictability of
the external mapping at the server side is needed. If the service is not able to pre-
dict the mapping (and pass it to the requester) the requester cannot connect to it.
As described in section 6.4.5 the endpoint prediction part of the Middlebox Traversal
Module returns a predicted public endpoint for a private one. If port prediction at the
service side is not possible, but the requester implements an independent filtering strat-
egy (Filtering:State-based:Independent) and supports port prediction, swapping roles is
still possible. If an error-prone endpoint is returned, hole punching can still be tried
using multiple connections simultaneously. Endpoint prediction on the requester side
is also necessary for hole punching with restricted filtering on the service side. As de-
scribed above, the requester queries the port prediction part of the Middlebox Traversal
Module and includes the result in the Service Request. Again, for error-prone mappings
a port range can be provided and multiple simultaneous connections increase the chance
of a successful connection.

Secondly, the service needs to prevent the middlebox from closing the mapping by
accident. For example, when sending out a UDP hole punching packet towards the
requester, an ICMP port unreachable messages may be sent as a reply, which may
close the mapping before it can be accessed by the actual connection. The same is
true for TCP, where ICMP port unreachable messages or even TCP-RST packets are
possible. For more details on hole punching please see section 4.3.2. This behavior
is listed in the Service:Stateful:StateRemovePolicy element and the service has to con-
sider the following: it first has to check its own behavior for packet sequences that
close the connection. This has to be paired with the behavior of the requester Re-
quester:Stateful:NoStatePolicy to finally determine the TTL value of the hole punching
packet. For example, if the service’s middlebox closes a mapping after seeing a TCP-
SYN/TCP-RST sequence and the requester’s middlebox actually sends a TCP-RST
when receiving a TCP-SYN on a non-existent mapping the service sets the TTL field
to a value smaller than the number of hops to the requester’s middlebox. Table 6.1
shows possible middlebox combinations and the implications for hole punching. Here
we assume that endpoint prediction is possible for both hosts. In Appendix C.1 we list
a complete example of the decision tree for hole punching. After the pairing process the
Decision Module has determined a list of working techniques that is, according to figure
6.10, passed to the actual decision part for further processing and applied afterwards.

Policies for Decision

After a successful pairing process an ordered list of working techniques exists (candidate
list). Before choosing the actual technique to be applied and parameterized further, the
Policy Module is conducted to make sure the selected technique is compliant with the
systems policies. Thus, the Policy Module holds rules that influence the behavior of
the framework. Some of the rules are rather static, others are dynamically updated by
the feedback loop of our system to react to network changes and to learn from former

6.4. NOMADS: A new Middlebox Traversal Framework 121

Requester Service Implication

(∗) Filtering:State-based:Indep. plain HP

Filtering:State-based:Indep. (∗) swap roles

Stateful:NoStatePolicy :
UDP in, dest. unreachable out

Stateful:StateRemovePolicy :
Remove on dest. unreachable

set low TTL

Stateful:NoStatePolicy :
TCP-SYN in, TCP-RST out

Stateful:StateRemovePolicy :
Remove on TCP-RST

set low TTL

(∗) Stateful:StateRemovePolicy :
Remove on ICMP TTL exceeded

set high TTL

Tab. 6.1: Possible model instance combinations and their impact for hole punching

decisions. The following listing gives an overview of the policies that are maintained:

• System policies for setting up the framework.
• Security policies defining who is allowed to access which service.
• Privacy and disclosure policies for requesters.
• Policies about the applicability of traversal techniques to service categories.
• Policies about the applicability of traversal techniques to applications.

The very basic configuration of NOMADS consists of an URI that is configured by
privileged users or administrators. The URI serves as the globally unique NOMADS
identifier (as described above) and is used by other hosts to contact the framework
before initiating middlebox traversal. Additional system parameters are DNS names
and information about available external infrastructure.

The Policy Module also holds security policies to express who is allowed to access
which service in case of Secure Service Provisioning. As described in section 6.4.3
NOMADS supports digest access authentication with text-based user-names and pass-
words. However, for the S/MIME approach, digital identities (certificates) are required.
Since digital certificates and public private key infrastructures (PKIs) are complex to
maintain and not suitable for unmanaged networks, chapter 7 presents a secure service
infrastructure that allows issuing digital certificates to entities in a user-friendly way,
thus providing secure identities for NOMADS. As the technical structure of our security
policies, the authorization framework XACML [97] is used (see chapter 7).

As part of the security (and privacy) policies, NOMADS defines which parts of
the middlebox model instance are sent to the remote party in case of an outgoing
Service Request. The more information NOMADS provides to the remote party, the
better the customized parameterization of the actual middlebox traversal technique.
For example, if the requester provides a predicted port within the Service Request the
service is able to initiate hole punching and report a working endpoint back to the
requester. If no information is provided, the service can only use hole punching if it
implements an independent filtering strategy. Thus, as the default policy, the Decision
Module of the requester invokes the port prediction part of the Middlebox Traversal
Module and includes the predicted external endpoint to allow hole punching if possible.
Additionally, information about the filtering element and typical packet sequences of
the information model are also provided.

122 6. Knowledge-based Middlebox Traversal

When describing the general knowledge-based approach to middlebox traversal in
section 6.2 we also mentioned that a condition should be assigned to each traversal
technique that has to be true before applying it to a service category. Table 6.2 lists
the rather static mappings and conditions that are mostly dependent on the actual mid-
dlebox model instance. Therefore, we also refer to the model elements as presented in
section 4.2. Whenever a new middlebox traversal technique is added to the framework,
a corresponding policy has to be set up.

Service Technique Condition

RSMT All techniques none

GSP UPnP none

GSP Hole Punching Filtering:State-based:Independent

GSP RSIP none

GSP SOCKS none

GSP Data Relay Relay:Filtering:State-based:Independent

SPS All techniques none

SSP Hole Punching Filtering:State-based:Restricted

SSP Data Relay Relay:Filtering:State-based:Restricted

SSP Tunneling Secure Tunnel Endpoint

SSP NSLP/MIDCOM Authentication

Tab. 6.2: Policies for the applicability of middlebox traversal techniques to service categories

The last policy set that is held in the Policy Module defines which technique should
be used for which application. Dependent on the middlebox behavior each technique
may have to be applied only once to establish a connection, or it has to be applied many
times if an application uses multiple simultaneous connections (stream independency
according to section 5.3). For example, a translating middlebox implementing restricted
filtering will have to utilize hole punching for every new IP5 tuple. Protocols such as
http use a different source port for each http request, thus resulting in many hole
punching packets for accessing only one website. UPnP on the other hand only opens
a port once and accepts packets from arbitrary sources, just like independent filtering.
The stream independency column as shown in table 5.2 (section 5.3) gives an overview
of the behavior of the individual techniques. The applicability policy (implemented as
a priority list) can be set manually, but is also continuously updated as part of the
feedback loop of the monitoring functionality.

Application

Finally, the application part of the Decision Module (see figure 6.10) receives the se-
lected traversal technique and its parameters and invokes the appropriate function in
the Middlebox Traversal Module. The application part also monitors the result of the
applied technique and gives feedback to the pairing and policy part of the Decision
Module. This is an important step to always be aware of changing environments and
to learn from previous decisions.

6.5. New Middlebox Traversal Techniques 123

6.4.7 Implementation

The NOMADS framework was implemented as a proof of concept for our approach
using the programming language C and Linux as an operating system. The algorithms
for analyzing middlebox behavior as presented in chapter 4 were extracted from the
field test software and included in the Middlebox Analyzer module that produces XML
instances of the involved middleboxes. For the Signaling Module we utilize the eXtended
osip library eXosip3 and send the messages of the request response protocol (Appendix
C.2) as XML payload embedded in SIP messages. This allows easily exchanging the
underlying signaling infrastructure. The algorithms in the Middlebox Traversal Module
were also extracted from the field test and adapted to match our interfaces as described
in section 6.4.5. For the Application Interface Module we implemented the socket API
as listed in the Appendix C.1, as well as the TUN-based approach using virtual network
interfaces in Linux. The Decision Module can be fed with text-based policies in order
to create a candidate list through pairing and to eventually decide which middlebox
traversal technique should be utilized. Finally, the Session Manager was implemented
as a web-based tool that runs on OpenWRT4. This allows runing only one centralized
Session Manager in a network (e.g. on the home router) that communicates with the
individual NOMADS instances running at the hosts. The prototype implementation is
also used for the evaluation of NOMADS.

6.5 New Middlebox Traversal Techniques

As presented in our state of the art survey in section 5.2, there are many existing
solutions for middlebox traversal. When evaluating existing techniques in the context
of measuring middlebox behavior in chapter 4, we also gave recommendations on how to
improve these techniques. The parameterization was then done in section 6.4.5. This
section presents two new approaches for middlebox traversal that not only improve
existing techniques, but explicitly solve two open problems: in section 6.5.1 we propose
a DPWS-enabled Internet Gateway Device that enables a UPnP-like service by also
providing security and in section 6.5.2 an approach for hole punching without the need
of a third party is presented.

6.5.1 Devices Profiles for Web Services IGD

UPnP is a useful and widely deployed technique that allows automatically configuring
port forwarding entries and can be seen as a good choice for the service category Global
Service Provisioning (GSP). However, due to its insecure architecture that offers neither
authentication nor a secure communication channel, router manufacturers often disable
UPnP functionality by default. With UPnP, any host in the network is able to discover
the IGD service and establish, modify or delete a port forwarding entry. An attacker
may manipulate existing connections or malware may try to forward a port on the router
in order to allow an attacker to access a host located in the private network. Some UPnP
devices are even vulnerable to attacks initiated from outside the private network. As
shown in [113], a cross-site scripting attack using a XMLHttpRequest object can be
used to execute a custom HTTP request, e.g. the SOAP action “AddPortMapping” to
open a port on the router.

3 http://savannah.nongnu.org/projects/exosip/
4 http://www.openwrt.org

124 6. Knowledge-based Middlebox Traversal

To target these problems we developed an Internet Gateway Device (IGD) on top
of the Devices Profile for Web Services (DPWS) [31], an architecture offering service
discovery, description and eventing in a secure and standardized manner. The following
sections shortly introduce DPWS, show the design goals of our IGD and describe the
architecture and implementation.

Devices Profile for Webservices

DPWS defines a “minimal set of implementation constraints to enable secure Web Ser-
vice messaging, discovery, description, and eventing on resource-constrained endpoints”
[42] and was originally developed by Microsoft as a possible successor for UPnP. DPWS
terminology distinguishes between two types of services: a hosting service representing
a device (or a server) and a hosted service, which is the actual service as provided by the
device. Hereby, a hosting service can host multiple hosted services. DPWS not only
builds upon web services standards such as the Web Services Description Language
(WSDL) [23], XML Schema [149], SOAP [57], WS-Addressing [58], WS-Eventing [93]
and WS-Discovery [96], it also supports a subset of the security features as defined in
WS-Security [107]. This allows signing multicast discovery messages and encrypting
the actual data exchanged.



























Fig. 6.11: The DPWS discovery phase

Figure 6.11 shows the standard DPWS discovery procedure. First, a client mul-
ticasts a probe message looking for a certain type of DPWS device. The server then
provides minimal information about a device (DPWS probe match), which the client
subsequently uses to request further metadata about hosted services on it. Each hosted
service replies with a WSDL file specifying the datatypes and messages the hosted ser-
vice understands, as well as the actions implemented by the service. This WSDL file
can also be sent via an HTTPS connection and section 8.2 presents our approach for
also securing specific DPWS actions.

6.5. New Middlebox Traversal Techniques 125

The Internet Gateway Device

In UPnP an Internet Gateway Device5 describes a standardized service that allows
learning the public IP address of a middlebox, as well as adding, altering and remov-
ing port mappings. An application that supports the IGD profile is able to discover
available IGDs in the network and to forward certain ports allowing the application
to communicate across a NAT device. We adapted the specification of UPnP IGD to
DPWS and created a secure way of establishing port forwarding entries in a DPWS
enabled middlebox.

Hosted Service
PortType: IGDService

Hosting Service
PortType: IGDDevice

Manufacturer: NOMADS
FriendlyName: DPWS IGD

EndPointPath: /IGDService
ServiceSecured: TRUE

Event 1..n

AddPortMapping
Type: Action

- Protocol (tcp, udp, sctp, dccp)
- Public Mapping (IP addr, Port)
- Redirect to (IP addr, Port)
- Source Addr (IP addr, Port or *)

DelPortMapping
Type: Action

- Protocol (tcp, udp, sctp, dccp)
- Public Mapping (IP addr, Port)

Action 1..n

Fig. 6.12: DPWS-IGD architectural overview

Figure 6.12 shows the architecture of our DPWS-IGD. The hosting service IGDDe-
vice provides the actual IGDService and its actions. The endpoint /IGDService can
be used by DPWS clients to communicate with the hosted service. ServiceSecured
indicates that all actions belonging to this service should be invoked within a secure
connection. The hosted service implements two actions: AddPortMapping and Del-
PortMapping. For adding a port mapping entry we extended the capability of UPnP
and allow specifying a redirection endpoint and (optionally) also a filter that only for-
wards packets coming from a specific source transport address (Source Addr). This
allows using the DPWS-IGD with all of our service categories as described in section
5.3.

Implementation

The DPWS-IGD was implemented using the Java Multi Edition DPWS Stack JMEDS6

that also supports embedded devices such as home routers. JMEDS provides the nec-
essary functionality for discovery, eventing and security and allows adding customized
hosted services. An internal mapping table is used to maintain entries for dealing
with duplicate requests, collisions and for exporting a list of currently active mappings.
Wildcards are supported for remote hosts and the actual mappings are created us-
ing iptables7. This prototype demonstrates the functionality of our DPWS-IGD and
supports to securely add, remove and list port mapping entries.

5 http://upnp.org/specs/gw/igd2/
6 http://sourceforge.net/projects/ws4d-javame/
7 http://www.netfilter.org/

126 6. Knowledge-based Middlebox Traversal

Evaluation

For the evaluation of DPWS-IGD we used two standard Linux PCs directly connected
via a 1Gbit/s link and a round trip time of approx. 1ms. Our goal was to measure the
latency that is introduced by adding and deleting a new port forwarding entry. For the
first test we established 200 random mappings and measured the time for creating a
new one. Figure 6.13 shows our results. The diagrams depict the minimum, maximum
and average values for each experiment and the boxes represent the 80% range of all
results.

 30

 40

 50

 60

 70

 80

Add (200) Delete (200) Add (5000) Delete (5000)

Ti
m

e
in

 m
se

c

Fig. 6.13: Performance of DPWS-IGD actions dependent on existing mappings

For adding a new port forwarding entry a mean value of 54ms was measured. Delet-
ing an entry took 53ms in average. For the second test we established 5000 mappings
and again measured the time for creating and deleting a new one. The latency was
only marginally higher due to the necessary check for collisions: 66ms and 65.5ms in
average. To summarize, the performance tests show that DPWS-IGD scales up to a
typical number of forwarding entries and only introduces minimal latency when estab-
lishing a connection. The advantage over solutions such as hole punching is that a
mapping only has to be created once when using wildcards for the source addresses
(stream independency).

UPnP-IGD Conclusion

UPnP offers a simple solution for automatically forwarding a port to an internal host.
Once created, all hosts in the public Internet are able to send packets to the created
endpoint. However, UPnP provides no security which enables hosts within the private
Internet to create arbitrary port forwarding entries. Malicious software such as a trojan
may create a mapping allowing other hosts to connect and control it. We target this
problem by the design and implementation of a UPnP-like Internet Gateway Device that
is based on the Devices Profile for Web-Services. DPWS supports digital certificates
for creating and controlling port forwarding entries and by also allowing to restrict the
access to a mapping for specific source addresses, DPWS-IGD is a powerful solution for
all of our middlebox traversal service categories.

6.5. New Middlebox Traversal Techniques 127

6.5.2 Autonomous Middlebox Traversal

As described in section 5.2.2 traditional hole punching techniques require a third party,
such as a rendezvous service and a STUN server, for predicting and coordinating ports
and IP addresses. This increases the complexity of the software and introduces an
unwanted dependency on external infrastructure. Furthermore, it may also cause pri-
vacy and security problems, e.g. when using anonymizing peer-to-peer networks such
as TOR [37]. In [100] we described a hole punching technique based on ICMP that re-
moves this dependency and enabled establishing a direct connection between two hosts.
We call this technique AutoMID: Autonomous Middlebox Traversal.

Approach

The general idea is based on the fact that once the time to live (TTL) field of an IP
packet expires, the intermediate router notifies the sender with an ICMP TTL exceeded
message. Parts of the headers of the original packet are used as the payload of the
TTL exceeded message. Since our ICMP field test results as presented in section 4.6.4
revealed that most middleboxes allow and forward manipulated ICMP messages, this
led to the approach as depicted in figure 6.14.

Middlebox
(85.1.2.3)

(1)

1.2.3.4

Peer C
(192.168.1.2)

Peer A
(10.0.0.1) Peer B

(131.15.1.1)

(2)

ICMP TTL Exceeded

131.1.2.3

ICMP Echo Request
Source: 192.168.1.2
Dest: 1.2.3.4
Data: NULL

ICMP Echo Request

Source: 85.1.2.3
Dest: 1.2.3.4
Data: NULL

Source: 131.15.1.1
Dest: 85.1.2.3
Data: original ICMP +
 Peer A/B‘s Port

Fig. 6.14: Technical approach of AutoMID

Instead of registering with a signaling infrastructure peer C (that wants to be reach-
able behind a middlebox) periodically sends out ICMP Echo Request messages to a
pre-defined non-existent (or controlled by the user) public IP address. These messages
create a state in the middlebox and arbitrary hosts are allowed to send ICMP TTL
exceeded messages to it. As depicted in step (1) of figure 6.14 the middlebox translates
the source IP address of the initial ICMP packet to the public IP address of the mid-
dlebox. Thus, our approach requires that peers need to learn the public IP addresses of
other peers before contacting them. This can be done be previous sessions or by a third
party. However, the third party is not needed when actually establishing a connection
and this is the main difference to the state of the art.

128 6. Knowledge-based Middlebox Traversal

Scenarios

In the first scenario peer B, located in the public Internet, wants to establish a connec-
tion to peer C located behind a stateful middlebox. In order to reach peer C, B fakes
an ICMP TTL exceeded message with it’s own source IP address and peer C’s public
IP address as the destination. As valid ICMP TTL exceeded messages carry a copy of
the original (expired) packet in their payload, peer B also has to fake the corresponding
fields and include them in the payload. This requires knowledge about the destination
address of the original ICMP echo request (here 1.2.3.4) as described above. The ICMP
TTL exceeded messages will reach peer C, which learns about peer B’s IP address (the
source IP address of the packet). If an application that implements AutoMID uses
pre-defined ports, peer C is now able to establish a UDP or TCP connection to peer B
using the provided IP address. If the ports are not known in advanced, peer B is able
to specify a port number within the payload of the TTL exceeded message as depicted
in step (2) of figure 6.14 and (according to our field test results) chances are high that
the ICMP packet will still be delivered.

In the second scenario both peers are behind a stateful middlebox (peer A and
peer C in figure 6.14), which arises further complications. The first requirement is
that peer A’s middlebox allows outgoing ICMP TTL exceeded messages without seeing
any related packet. Unfortunately, our field test revealed that only approx. 6% of
all tested middleboxes forward such messages. However, if the ICMP message was
transmitted successfully, both peers know about the others public IP addresses and
are able to send messages to each other to initiate hole punching. If both middleboxes
implement port preservation (probability for this constellation is approx. 50%) these
messages will create the appropriate holes in the middleboxes and eventually reach the
remote peers. However, if one of the middleboxes does not preserve port numbers, hole
punching only works if at the same time the filtering strategy is unrestrictive enough
to let the packets pass. As a possible extension a third party STUN-like server can be
used to predict external ports and the client is again able to provide the predicted port
within the ICMP TTL exceeded message. Again, the STUN-like server is not needed
for signaling, but only on one side for querying and predicting ports.

Implementation

[100] presents three implementations of AutoMID: the algorithms for testing allowed
packet sequences are integrated into our measurement suite as presented in section 4.3.1,
pwnat8 is a standalone implementation of AutoMID and GNUNet9 also implements the
approach as a transport plugin. The disadvantage when implementing the approach as
described above is that all of the peers need superuser privileges to send fake ICMP
messages. As a possible alternative to sending ICMP echo request messages to a fixed
IP address, peer C may send UDP messages to a fixed IP address and port in order
to create a mapping. Other peers then send ICMP TTL exceeded messages to this
IP address and embed the original UDP packet in the payload. In this case not only
the IP address of peer C has to be known, but also the public port number that is
used for the UDP packet, which is possible for port preserving implementations. For
middleboxes that implement an independent filtering strategy the initial UDP packet
already creates a hole that can be used as an alternative way of contacting the internal
peer.

8 http://samy.pl/pwnat/
9 https://gnunet.org/

6.5. New Middlebox Traversal Techniques 129

Evaluation

AutoMID was evaluated using our field test as presented above. We integrated the
necessary packet sequences into our libpcap-based test to predict the success rate of
the ICMP-only and the UDP-ICMP implementation.

Component Success Rate

ICMP-only Implementation

Echo-Server: echo request out, TTL exc. in 48.3% for modified payload

Echo-Client: TTL exceeded out 6.02%, 5.87% for modified payload

UDP Implementation

UDP-Server: UDP out, TTL exceeded in 78.21%

UDP-Client: TTL exceeded out (UDP) 7.43%, 6.1% modified

Port Preservation 71.45% for UDP

51% for two arbitrary hosts

Tab. 6.3: Experimental evaluation of AutoMID

Table 6.3 shows the results. For the ICMP-only variant the Echo-Server implements
the server part. Here, the middlebox has to support incoming TTL exceeded packets
as a response to an outgoing echo request, which was possible in 48.3%. The Echo-
Client implements the counterpart that sends ICMP TTL exceeded messages in order
to signalize a new connection. If this host is located in the public Internet (scenario 1
as described above) the success rate is only dependent on the Echo-Server. For scenario
2 (both peers are behind a stateful middlebox) the middlebox needs to allow outgoing
ICMP TTL exceeded messages without having seen any incoming packets. This is
possible in 6.02%. If we also want to include the peer’s port in the payload, the success
rate drops to 5.87%.

For the UDP-based implementation the server part needs to accept incoming ICMP
TTL exceeded as a response to outgoing UDP packets. This was possible in 78.21%.
The client part embeds the UDP header in the ICMP TTL exceeded packet, which was
successful in 7.43%. As stated above, the UDP implementation requires the middle-
boxes to implement a port preserving binding strategy, which is true for 71.45% of a
single hosts and for approx. 51% for two arbitrary hosts in the Internet.

AutoMID Conclusion

Autonomous Middlebox Traversal (AutoMID) utilizes ICMP messages to enable hole
punching without the need for a third party. We covered two application scenarios and
presented two technical approaches. AutoMID works reasonably well if only one host
is located behind a stateful middlebox. Since many middleboxes don’t allow outgoing
ICMP TTL exceeded messages, the success rate for scenarios where both hosts are
behind stateful middleboxes is rather low. Nevertheless, AutoMID can be seen as an
additional technique that extends the set of available middlebox traversal techniques
and can be seen as a valid choice if a policy forbids the use of third parties.

130 6. Knowledge-based Middlebox Traversal

6.6 Evaluation and Discussion

When presenting state of the art middlebox traversal techniques in section 5.2.4 we
identified eight criteria that were used to evaluate existing solutions. We stated that all
of the existing techniques have their strengths, but also significant weaknesses. When
evaluating the NOMADS framework using the same criteria we get the following results:

The performance criteria was split into two branches: First, we looked at the per-
formance of the framework when establishing a new connection. When using signaling
for coordinating hosts, a latency will be introduced. In NOMADS the latency through
signaling is minimized using the knowledge-based approach that only requires two sig-
naling messages when using the standard service category SPS. A time-consuming pair-
ing process like the one in ICE is not needed. The second branch dealt with the per-
formance of the actual data connection, which depends on the middlebox traversal
technique that is applied to the situation. NOMADS always tries to establish direct
connections by parameterizing hole punching and it also considers the role of the ap-
plication, e.g. how many consecutive connections will be made from different source
addresses (stream independency). A detailed performance evaluation is done in the
following section.

Security describes the capability of the middlebox traversal solution to restrict a
traversal solution to authorized users, thus taking decisions of external entities, such as
administrators, into account. In NOMADS there are two possibilities: First, the service
category Secure Service Provisioning defines that only authorized users are allowed to
create and access a mapping. The knowledge-based approach takes care of selecting an
appropriate technique and the signaling protocol includes the possibility to authenti-
cate hosts before establishing mappings. Second, NOMADS supports the definition of
policies for restricting the use of certain techniques or to prevent an application from
establishing a mapping. For example, a malicious application will not be able to utilize
our framework (like in UPnP) unless it is registered to the Session Manager. This is an
important step towards our goal that middlebox traversal should enable a communica-
tion in a way that is “compliant with authorization and accessibility requirements, as
well as additional policies as defined by the user or the administrator of the network”
(chapter 5). A framework for managing secure identities is introduced in the following
chapter.

The number of Supported Techniques in NOMADS is not limited. Once new
techniques become available they can be integrated into the Middlebox Traversal Mod-
ule. This requires to also set a policy that defines the applicability condition for the
corresponding middlebox traversal service category. So far, NOMADS integrates the
most popular techniques and parameterizes them based on the current behavior.

We defined Flexibility in the context of middlebox traversal as the ability to sup-
port many applications and to adapt to the current situation. Since NOMADS supports
many existing solutions and is able to control and adapt them further, it provides a
great flexibility to existing applications.

Many state of the art solutions have no Support for legacy applications. If
the technique is not built into the application it only helps if e.g. the operating system
allows setting a global rule (SOCKS). For NOMADS we designed two application inter-
faces both located at the Application Interface Module: First, a socket API for newly
developed applications and second, a TUN-based approach allowing legacy applications
to utilize the framework without any changes to the code.

The dependency of External Entities may limit the success rate of a traversal
solution if the entity is not available or if it only offers poor performance (e.g. data

6.6. Evaluation and Discussion 131

relay). Many existing solutions rely on external third parties for coordinating traversal
techniques. NOMADS is also dependent on an external signaling infrastructure (if
signaling is used) and the individual techniques show the same dependency as if they
were used standalone. However, due to the large set of integrated techniques, the
dependency to a specific external entity is rather low. Furthermore, NOMADS can also
be used in unilateral deployments where no signaling is required. Using a decentralized
signaling infrastructure such as P2PSIP also helps to minimize this dependency. Finally,
in section 6.5 we presented our new middlebox traversal technique AutoMID that allows
hole punching without the need for a third party, removing the dependency for external
entities.

Control-based techniques require to install Software on the Middlebox. If a
middlebox on the path to the public Internet does not run it, the technique cannot work.
NOMADS integrates many solutions and chooses the most applicable one from the set
of available techniques. Thus, if a particular control-based solution is not available
due to missing software, it is able to choose a different (behavior-based) technique.
Our Session Manager that was designed to run on the middlebox, can easily be shifted
towards the end-host and does not introduce such dependency.

Techniques that use signaling for coordination require to install Software on end-
hosts. When using the signaling protocol in NOMADS this is also true. In contrast,
NOMADS also supports unilateral deployments where only one end-hosts runs the
framework. This however limits the number of applicable middlebox traversal tech-
niques since many of them require knowledge about the potential requester.

6.6.1 Adaption to Experimental Results

The results of the field test as presented in section 4.6 serve as a motivation for our
knowledge-based approach. In section 4.6.8 we presented our lessons learned and gave
recommendations on how to improve future middlebox traversal techniques to increase
their success rate. This section shows how we reacted to our findings and how NOMADS
targets each of them.

The first finding was that the STUN algorithm is actually wrong for 25% of all
Full Cone NATs and 5% of all Symmetric NATs when determining the independency
of the NAT binding. This leads to low success rates for hole punching and other
techniques where an external endpoint needs to be predicted. In NOMADS we follow
the recommendation not to differentiate between endpoint independent bindings and
connection dependent bindings, but to differentiate between the possibility to predict
an endpoint or not. For predicting external ports we integrated different independent
variations for endpoint prediction into the endpoint prediction part of the Middlebox
Analyzer and are thus able to make a clear statement about the applicability of a
traversal technique.

The second finding revealed that middlebox traversal often fails for two hosts both
behind NAT because only 61.4% (56.6% for TCP) of all constellations provide the
necessary prerequisites for establishing direct connections. We proposed to also consider
other constellations by understanding their behavior and by introducing a technique
called “swap role”. NOMADS considers the behavior of both endpoints and allows
coordinating them through signaling. After analyzing their behavior and pairing their
model instances NOMADS is able to swap the roles of the requester and service if
necessary and establish the connection in the other direction.

The third finding showed that although many middleboxes implement a connection
dependent binding strategy, endpoint prediction is still possible by analyzing binding

132 6. Knowledge-based Middlebox Traversal

and mapping patterns. NOMADS implements this combined endpoint prediction algo-
rithm as part of the Middlebox Traversal Module, which is considered by the requester
(when using signaling) and the service (when making a decision). According to our field
test this endpoint prediction method is successful in 91% for UDP and 86% for TCP,
resulting in a much higher success rate compared to state of the art techniques. When
also considering error-prone mappings and by sending multiple simultaneous packets
these numbers can even be increased further.

Our forth finding showed that the success rate of a hole punching algorithm depends
on the behavior of the involved middleboxes and when adapting certain parameters (e.g.
the TTL) to the current situation the success rate can be increased. NOMADS parame-
terizes hole punching algorithms dependent on the behavior of the involved middleboxes
by pairing their model instances. Endpoint prediction as well as an unwanted dealloca-
tion of a created mapping are essential parts of the hole punching algorithms controlled
by the Decision Module.

Finally, the last finding stated that Large Scale NATs (and cascaded NATs) can
already be found in today’s networks and are another reason for the poor success rates
of existing behavior-based traversal techniques. The success rate of hole punching
can be increased in many cases by setting the TTL of the hole punching packet to a
value smaller than the number of hops to the first stateful middlebox of the requester.
Without considering multiple layers of middleboxes this value is usually set to 2. In
NOMADS we integrated our topology detection algorithm that reveals parts of the
network topology and detects stateful middleboxes. This allows setting the TTL of the
hole punching packet accordingly and also makes sure that control-based techniques
such as UPnP are only applied if all middleboxes on the path support the technique.

6.6.2 Applicability Evaluation

In section 6.4.1 we presented the scenarios that are addressed by our framework. Voice
over IP, peer-to-peer applications and traditional services are just a few examples for
applications in unmanaged networks that suffer from the existence of middleboxes. Fu-
ture scenarios that require a coordination of home networks for providing resilience,
privacy or just a decentralized way of sharing data in a secure and independent manner
will even aggravate the problems. Additionally, the deployment of middleboxes at the
provider side (e.g. LSN) and the presence of multiple layers introduces new complica-
tions and breaks existing state of the art solutions for middlebox traversal. NOMADS
targets these problems by supporting different middlebox service categories for applica-
tions and by thoroughly analyzing the actual behavior and applicability of a traversal
technique. Our TUN-based application interface supports legacy applications and can
already be used today. Finally, new middlebox traversal techniques, DPWS-IGD and
AutoMID, address new requirements such as privacy and security and help to extend
the set of available solutions to be integrated into a frameworks such as NOMADS.

For mobile networks we distinguish between LTE-based home networks in remote
areas and mobile clients that usually use resource restricted devices to access the net-
work. For LTE-based home networks the requirements and solutions as stated above
are still the same. However, the chance for cascaded middleboxes in these networks
is very high, thus making state of the art algorithms even worse. Since providing ser-
vices on smartphones is rather unusual, the main application area for mobile users are
applications such as Voice over IP and other applications that enable new services by
establishing direct connections between devices. Since provider-based middleboxes are
very common in mobile networks, again the topology analysis, as well as the parameter-

6.6. Evaluation and Discussion 133

ization of existing techniques are important contributions of this thesis. Additionally,
many users of unmanaged networks may wish to use their mobile devices as a frontend
for connecting to services in their network. In this case the mobile device is the re-
quester of a session and should therefore be able to also take part in the coordination
process. A first lightweight implementation for Android allowing the analysis of the
current network topology was described in section 4.5.3.

For corporate networks NOMADS allows defining policies to prevent the allocation
of public endpoints for unauthorized users. Furthermore, the service category Secure
Service Provisioning makes sure that only traversal techniques are used that are com-
pliant with the policy as defined by the administrator. Here, not only traditional and
future Network Address Translation devices are considered, but also the session-based
control of firewalls and other middleboxes. Instead of manually asking an administrator
to configure a firewall, NOMADS is fed with a policy that allows incoming connections
for a configurable amount of time. Once the time expires the session is closed and a new
one cannot be established without further authorization. NOMADS mechanisms for
the policy-based configuration of dynamic sessions also help with existing control-based
solutions in corporate networks. One last missing component is an easy to maintain,
but yet secure infrastructure for managing digital certificates and trust relationships.
A security infrastructure for unmanaged networks is therefore presented in chapter 7.

6.6.3 Performance Evaluation

Frameworks that utilize signaling for coordination before actually establishing a con-
nection introduce an additional delay to the network. State of the art middlebox
frameworks, such as ICE (see section 5.2.3), collect information about the network,
exchange it via a third party and determine a working endpoint by testing possible
combinations. Our knowledge-based approach does not require to actively (meaning
testing by actively sending messages) pair possible endpoints. Instead, the Decision
Module instantly decides which technique should be used, invokes it and provides a
working endpoint to the requester. This section compares NOMADS to the state of the
art framework ICE and analyzes if the decoupling of the knowledge-gathering process
from the connection establishment actually poses a performance advantage.

Testclient 1 Testclient 2

STUN SIP

Router

Fig. 6.15: Setup for our performance evaluation

In order to experimentally measure the introduced delay for NOMADS and ICE,
we configured a testbed as depicted in figure 6.15. Two clients with an Intel Core i5-
2520M CPU and 8Gb of RAM and two Asus EeeBox PCs with an Intel Atom CPU and
2Gb of RAM were connected to a 100MBit/s router running the OpenWRT operating
system. All hosts were running a standard Debian GNU/Linux 6.0 operating system.

134 6. Knowledge-based Middlebox Traversal

The clients represented the NOMADS and ICE instances (requester R and service S)
and the Atom-based PCs hosted a SIP signaling infrastructure, as well as a STUN
server (opensips10 and stund11). The router allows introducing configurable delays to
the network by utilizing the ip queue element of iptables12. There was no cross-traffic
and the average roundtrip time of ICMP echo requests/responses between two arbitrary
hosts was 1.3ms. We measured the time on the requester side from the beginning of the
connection establishment/signaling (received packet on the TUN device for NOMADS
and beginning of the ICE session for ICE) until the first byte (e.g. a TCP-SYN) was
sent out. Each test run was repeated 50 times and the largest standard deviation for
NOMADS was 4.76 and for ICE 1.2 with normal deviation.

For NOMADS the measurements include the following packets: the requester queries
the STUN server (1 RTT, 2 packets: binding request and response) and sends the service
request via SIP (1 RTT, 2 packets: SIP message and SIP OK). The service allocates
the mapping using a parameterized hole punching packet (1 packet), queries the STUN
server (1 RTT, 2 packets: binding request and response) and returns the allocated
public endpoint via SIP (1 RTT, 2 packets: SIP message and SIP OK) (note that many
of the tasks can be done in parallel, e.g. the hole punching packet and querying the
STUN server on the service side). For ICE we used the PJNATH implementation13 and
extended the icedemo example with SIP signaling capabilities using the same code as
we were using for NOMADS (eXosIP library14). For the first experiments we only used
one STUN-derived candidate and enabled the ICE aggressive mode that terminates the
pairing process as soon as the first working endpoints are found. Table 6.4 show the
results of our measurements.

Conn. Frmw. 1.3ms 20ms 50ms 100ms 150ms 200ms

R - SIP NOM. 37.2ms 55.1ms 87.8ms 135.9ms 182.1ms 236.3ms
ICE 500.7ms 520.7ms 550.6ms 600.6ms 651.3ms 700.6ms

R - STUN NOM. 37.2ms 47.9ms 78ms 128.2ms 177.1ms 228.4ms
ICE 500.7ms 519.9ms 550.3ms 599.8ms 650.9ms 700.5ms

R - S NOM. 37.2ms 37ms 36.5ms 36.9ms 36.8ms 36.2ms
ICE 500.7ms 520.9ms 550.9ms 600.4ms 649.3ms 700.9ms

Tab. 6.4: The connection setup time in milliseconds dependent on the network delay

With our standard setup (RTT of 1.3ms) NOMADS only introduces an additional
delay of 37.2ms to the network when setting up a connection. Surprisingly, the ICE
pairing process took 500.7ms, which may be acceptable for setting up a Voice over
IP connection, but may not be tolerated by many users for other applications. Since
NOMADS signaling process does not include packets traveling from the requester to
the service directly (only STUN and SIP are involved) the connection setup time (CST)
is only dependent on the RTT to the STUN or SIP server (here we assume that both
hosts use the same SIP server). Table 6.4 shows the impact of increasing the RTT on
different paths.

10 http://www.opensips.org/
11 http://sourceforge.net/projects/stun/
12 http://people.redhat.com/berrange/notes/network-delay.html
13 http://www.pjsip.org
14 http://savannah.nongnu.org/projects/exosip/

6.6. Evaluation and Discussion 135

 0

 100

 200

 300

 400

 500

 600

 700

 800

 1.3 20 50 100 150 200

Co
nn

ec
tio

n
se

tu
p

tim
e

in
 m

s

Round trip time in ms between requester and service

NOMADS
ICE: Aggressive

Fig. 6.16: Comparision for ICE’s
agressive mode

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1.3 20 50 100 150 200

Co
nn

ec
tio

n
se

tu
p

tim
e

in
 m

s

Round trip time in ms between requester and service

NOMADS
ICE: 1 Candidate

ICE: 2 Candidates
ICE: 3 Candidates

Fig. 6.17: Comparision for ICE’s
regular mode

Based on these results the connection setup time can be described as follows:

CSTNOMADS =NOMADScore +RTTR−STUN +RTTS−STUN

+RTTR−SIP +RTTS−SIP +RTTSIPR−SIPS

NOMADScore represents the time for processing the XML description coming from
the remote host, the pairing process, as well as the packet translation between the
TUN-device and the actual network interface. It is important to note that the time
needed for the actual pairing process (see section 6.4.6) can almost be neglected: When
comparing and emulating different middlebox constellations according to our decision
tree as depicted in Appendix C.1, we measured an average pairing time of less than
1ms, no matter how complicated the situation was. Since both the requester and the
service have to look up a STUN server we have to add one RTT to STUN for each
endpoint (RTTR−STUN and RTTS−STUN). For the signaling part, R and S both send
one message to the SIP server (RTTR−SIP and RTTS−SIP). Additionally, the latency
between the SIP proxies also has to be considered (RTTSIPR−SIPS

).
ICE performs STUN connectivity checks between the requester R and the service S

for each candidate pair. Thus, the connection setup time is not only dependent on the
RTT between R and S, but also on the number of candidates that have to be checked.
Each candidate on the requester side is paired with each candidate on the service side
which results in an additional delay of candR ∗ candS ∗ RTTR−S . For our tests we
enabled the (optional) aggressive mode that terminates the candidate pairing on the
first successful pair, thus delivering the fastest result possible15 and setting candR and
candS to 1. We can give the following formula where ICEcore includes the message
processing and the delay to the STUN server used during the gathering process:

CSTICE =ICEcore+STUN +RTTR−SIP +RTTS−SIP

+RTTSIPR−SIPS
+ candR ∗ candS ∗RTTR−S

Figures 6.16 and 6.17 depict the advantage of the NOMADS framework. While the
connection setup time of ICE depends on the latency between the requester and the
receiver and (in regular mode) also on the number of candidates, NOMADS is able
to instantly invoke a middlebox traversal technique. This dramatically decreases the
number of messages and therefore the overall connection setup time compared to the
state of the art.

15 it is important to note that ICE may not determine the optimal result in aggressive mode since
not all candidates are checked.

136 6. Knowledge-based Middlebox Traversal

6.7 Summary and Key Findings

This chapter shows that the knowledge about the behavior of involved middleboxes as
gathered in chapter 4 can be used to apply and parameterize middlebox techniques
suitable for applications and the involved infrastructure and therefore answers question
Q2 according to section 1.1. We presented our knowledge-based approach to mid-
dlebox traversal NOMADS that decouples the actual connectivity establishment and
periodically scans the network to gather knowledge about the behavior and presence of
middleboxes. Whenever a decision about middlebox traversal is needed the knowledge
is combined with local policies and requirements of the applications to parameterize an
appropriate middlebox traversal technique. A signaling protocol helps to coordinate
NOMADS instances and application interfaces support legacy as well as new applica-
tions. Obtained results confirm the applicability to existing problems and an increased
performance compared to state of the art frameworks. Finally, we presented two new
middlebox traversal techniques, DPWS-IGD and AutoMID, that extend the set of avail-
able middlebox traversal techniques and provide solutions for restricted environments.

Key Findings of this chapter
(and contributions according to section 1.2):

C6.1a Knowledge-based middlebox traversal was proposed to react to the
findings of our field test.

C6.1b The NOMADS framework supports our middlebox traversal service
categories and considers external user-defined policies.

C6.1c NOMADS integrates existing traversal techniques and parameterizes
them based on the actual behavior to increase their success rate.

C6.1d NOMADS is significantly faster and more applicable to open problems
than state of the art frameworks.

C6.2 Two new middlebox traversal techniques for restricted environments
were developed: DPWS-IGD can be seen as a secure alternative to
UPnP and AutoMID allows hole punching without the need of a third
party.

Part IV

SECURITY AND APPLICATION OF MIDDLEBOXES

7. A SECURE SERVICE INFRASTRUCTURE FOR
UNMANAGED NETWORKS

7.1 Introduction

Today, the authentication of services in the Internet is provided via digital public key
certificates following the IETF X.509 standard [28]. The Public Key Infrastructure
(PKI) model consists of a hierarchy with global Certificate Authorities (CAs) issuing
certificates to services and a chain of trust for verifying them. Due to the complexity of
today’s PKIs, client authentication is rather done via passwords instead of also using
digital certificates and mutual authentication as defined in protocols such as SSL/TLS
[34]. Maintaining the Public Key Infrastructure for servers is already a huge challenge
and inexperienced users are not able and willing to participate in this process [72].

However, home and small company networks would benefit from having enterprise
grade security mechanisms based on X.509 certificates as their mechanisms allow to
establish closed groups. In section 5.3 we introduced service categories for applications
and argued that a middlebox framework should take these categories into account when
making decisions about middlebox traversal. The category Secure Service Provisioning
relies on secure identities to authenticate the requester and to prevent unauthorized
access to a service. Other examples for the direct communication between two users are
VoIP and applications such as Android Beam that utilize Near Field Communication
(NFC) for sharing data between two devices. Additionally, future home networking
scenarios make the secure (remote) access to devices and services in the home, as well
as home-to-home communication highly desirable.

For inexperienced users that are not able and willing to maintain a PKI, the de-
ployment and management of digital certificates must be dramatically simplified. Thus,
this chapter proposes a secure service infrastructure for unmanaged networks that as-
sists inexperienced users to maintain their own PKI. The infrastructure hides technical
complexities from its users and provides assistance functionalities and semi-automatic
processes reaching from the discovery of an appropriate certification server to the trust
establishment across multiple networks. The centerpiece of our solution is called Mi-
croCA, a small box that integrates discovery, authorization and authentication services.

As described in section 6.4.1, unmanaged networks are not professionally adminis-
trated, e.g. home and small company networks. In home networks the access to the
wireless network is usually the only security mechanism that is available. Other typical
home services such as UPnP [50] implement no security at all, mostly because of the
lack of secure identities in home networks. Small company networks would also bene-
fit greatly from a user-friendly security architecture, as they often lack a professional
administrator. For example, start-up companies may not have the capacities to take
care of securing their devices and to set up a secure network in a professional way. Our
MicroCA provides an out-of-the-box solution with assistance functionalities for setting
up a secure network. Finally, our solution also targets administrators of professionally
managed networks by relieving the administrators and giving them more time to work
on other problems.

140 7. A Secure Service Infrastructure for Unmanaged Networks

7.2 Survey of the State of the Art

This section shortly presents the state of the art regarding identity management in un-
managed networks and two different trust models for the creation of a binding between
a public key and its owner.

7.2.1 Identity Management for Unmanaged Networks

Identity management describes the authentication and authorization of identities to
services in a network. Authentication aims at verifying the identity of an entity (e.g. a
host), whereas authorization deals with the assigned access rights. Besides using pass-
words, a common approach for authentication is to issue a digital public key certificate
to a user for mapping an authentication credential (here the public key) to the actual
identity.

There have already been a few approaches for introducing a PKI to unmanaged
networks. [89] propose a PKI-based home device authentication mechanism using a
hierarchical PKI structure. A Home Registration Authority (HRA) asks an external
CA for digital certificates on behalf of its devices. We see two problems with this
approach: First, keying material and certificate signing requests are computed by an
external CA that is not part of the home network itself, which introduces privacy issues,
because the disclosure of devices to the external CA might not be desired. Second, the
hierarchical CA infrastructure has to be maintained by a third party, thus introducing
costs and management overhead.

A concept for a personal CA for certification of devices inside a PAN (Personal
Area Network) is presented in [95]. This approach is limited to devices belonging to
one network only. The interconnection between PAN domains is not possible. The
authors assume to already have connectivity to the registration service and do not
target the registration and bootstrapping process.

As a decentralized identity management approach, SecBook [36] publishes keying
material via facebook and uses social structures to establish trust in a public key.
Facebook users sign their friend’s keys and use them for securing their communication.
Another community-based approach is Monkeysphere [148] that allows validating a
certificate of a website based on user-signed ratings. A browser plugin passes the
request to a validation agent, which then replies back with the rating for this website.

7.2.2 Trusted Third Party

The trust anchors of a centralized PKI are Certification Authorities (CA). CAs map a
public key to an identity by issuing digital certificates. In order to verify an identity,
a client needs to trust the CA, obtain the public key from it and check the signature.
Since most users are not able to differentiate between good and bad CAs, the public
keys of many CAs are included in operating systems or software products such as web
browsers. Thus, trusting a CA often means trusting the browser or operating system.
If a CA is not known to the operating system or browser it generates a warning, which
is often ignored and clicked away by the user.

This indeed is the weakness of many PKIs as we have them today. A recent analysis
of the SSL landscape shows that “the X.509 certification infrastructure is, in great part,
in a sorry state” [72]. The authors revealed that only 18% of all certificates of the Alexa
top 1 million list1 are accepted by today’s web-browsers without any warning. Reasons

1 http://www.alexa.com/

7.3. Architectural Overview and Components 141

for invalid certificates are incorrect or missing hostnames, incorrect certification chains
or expired certificates.

However, a CA provides a mapping of identities to an issuer and if the issuer is
known and trusted, identities can be easily verified and used for authentication. In fact,
many companies implement their own PKI and maintain it as a closed system, thus
circumventing the disadvantages of the distributed PKI as used in the web. We therefore
propose to use the concept of a CA for managing identities within our unmanaged
networks and implement an assistance system to overcome the difficulties and technical
complexities that exist in managing certification.

7.2.3 Web of Trust

Another approach for a trust model is the Web of Trust (WoT). Here the identification
of a user and the mapping of the user to a specific public key is based on one or
more signed assertions created by other users. The public key of the user and the
signed assertions are published on a number of well-known key servers. An entity
that wants to authenticate a user based on a public key obtains the user’s public key
and signatures from the key server and assesses the authenticity of this public key by
verifying the signatures. Authentication based on public keys taken from a WoT-like
infrastructure are mostly used for authenticating email communication. The drawback
of these systems is that the mapping between an identity and a key is only done via
names and email addresses, which can be easily mixed up (“Which John Smith?”).
Additionally, users who have multiple identities or devices need to maintain each single
key separately, which on the one hand adds security but on the other hand imposes
important usability limitation.

A recent analysis of the WoT shows that “the WoT is likely to be quite an effective
PKI structure within smaller node neighborhoods, and particularly for those users that
frequently sign other keys and are active in the WoT” [155]. Since we assume that
the interconnection of unmanaged networks, such as home networks, is done within
smaller neighborhoods with much cross-signing, we propose to use the Web of Trust for
establishing trust relationships between different MicroCAs by letting them cross-sign
each other.

7.3 Architectural Overview and Components

Our approach for a security infrastructure for unmanaged networks is based on a hy-
brid solution combining the advantages of centralized and decentralized approaches as
presented in the last section and shown in table 7.1. Within one network under one
administrative control (we assume each network belongs to a user that is responsible
and capable of deciding which users and devices also belong to the same network) a
local Certification Authority, which we call MicroCA, issues certificates to entities to
express their binding to that network. Based on these certificates, users within one
network are able to authenticate each other. For authenticating users belonging to dif-
ferent networks, thus holding certificates issued by another MicroCA, the public key of
the remote MicroCA has to be known and considered trustworthy, which is done using
the WoT approach.

The following sections describe the building blocks of our security architecture. We
first present requirements and contributions (section 7.3.1) and give an overview of the
MicroCA (section 7.3.2). Afterwards we present the user-friendly identity management
(section 7.4), as well as the interconnection of different MicroCAs (section 7.5).

142 7. A Secure Service Infrastructure for Unmanaged Networks

Centralized CA Web of Trust MicroCA

Security (+) - +
depends on CA depends on user hybrid

dep. on browser/OS difficult to verify trust into key fam.
fake IDs difficult to detect easy to verify

Usability (+) − +
ok for clients cross-signing assistance

setup complicated hard to understand mechanisms

Costs − + +
high low low

Tab. 7.1: Comparison of possible trust models

7.3.1 Requirements and Contributions

The following table 7.2 depicts functional and non-functional requirements, as well as
the contributions of our security infrastructure. The table also lists the sections that
describe the individual contributions in more detail.

Requirement Contribution Section

Functional Requirements

R1 Secure and unique IDs Cryptographic Identities 7.4.1

Every entity must possess a unique cryptographic identifier. Our IDs are derived
from public keys and concatenated with the MicroCA’s ID.

R2 Authentication MicroCA as trust anchor 7.3.2

Authentication of entities within the same network is required. Our MicroCA acts
as a trust anchor for its network.

R3 Interoperability Pairing Mechanism 7.5

Establishing trust into remote networks is required. Our pairing mechanisms allow
exchanging certificates to authenticate remote devices.

R4 Security MitM protect. and HW extension 7.4.2, 7.7

Common attacks have to be prevented and keying material has to be protected. Our
PIN-based approach for registering devices and hardware security mechanisms for
protecting keys solve these issues.

R5 Authorization Policy Manager and PEP/PDP 7.6, 8.2

Mechanisms for defining and enforcing access rights are needed. We allow con-
necting SSL/TLS enabled services to our framework by intercepting the SSL/TLS
handshake. Section 8.2 shows a reference example based on XACML.

7.3. Architectural Overview and Components 143

Non-Functional Requirements

R6 Usability Assistance Systems 7.4.2

Security mechanisms must be easy and intuitive to use. Our mechanisms hide the
technical complexity from inexperienced users.

R7 Security per Default No Opt Out 7.4.2

Security mechanisms must be mandatory for users. In our infrastructure a connec-
tion is only possible for registered entities.

R8 Support for legacy Appl. SSL interception 7.6.1

Access to legacy services must be possible. In section 8.2 we show how our infras-
tructure can be used by legacy applications supporting the SSL/TLS protocol.

Tab. 7.2: Requirements and contributions of our security infrastructure

7.3.2 Components

Figure 7.1 shows the components of the MicroCA including interfaces for the users and
the “administrator”. The central component of the MicroCA is the Entity Directory,
which holds the identity and security policy database. It stores information about
registered devices, issued certificates, their access rights, as well as trust relationships
to remote MicroCAs. All other entities provide interfaces to the Entity Directory in
order to access and modify it. Therefore, it is possible to define additional arbitrary
interfaces, such as the XACML policy interface, as depicted in figure 7.1. A reference
example on how to connect XACML to our MicroCA is given in section 8.2.

Entity Directory
(Identity and Security Policy Database)

XACML
Policy Set
(sec. 8.1)

Registration
Service

(issues identity)

Pairing
Service

(trust estab.)

1)
 re

gi
st

er

2)
 n

ot
ify

3)
 d

ec
id

e

4)
 c

er
t.

m
od

ify

Superuser /
MicroCA Owner

Users

Remote
Pairing Service
of MicroCA 2

pa
iri

ng

Legacy
Service

(sec. 8.1)

ac
ce

ss
?

policy
add rem

otem
od

ify

ad
d

en
tit

y

MicroCA
Policy

Manager

tr
an

sf
or

m

modify

MicroCA

access?

?

service access

PEP

PDP

PEP
Srv.

ac
ce

ss
?

Fig. 7.1: Architecture of the MicroCA

144 7. A Secure Service Infrastructure for Unmanaged Networks

The owner of the network, or administrator, has a special role. He monitors and
supervises activities and decides about device registrations, access policies and trust
relationships to other MicroCAs. However, easy to use interfaces hide the complex
technical background in order to also allow inexperienced users to hold the administra-
tor role. In the following sections we explain the structure of our identities, the device
registration process that issues certificates, the network pairing service, as well as our
authorization approach in more detail.

7.4 Identity Management

7.4.1 Identities

Our approach for cryptographic identities is similar to the Host Identity Protocol (HIP)
[98]. Each entity (user, device, service) owns a public/private keypair and derives its
globally unique identifier from the public key. The identifier can then be used for
expressing access rights, for sending messages or for routing to this device. Certificates
for identities are issued by MicroCAs to express their membership to a network. For
example, a home network runs its own MicroCA on the home router, which then signs
certificates for all devices, users and services belonging to this home.

Trust
MicroCA Network A
(self signed Cert)

ID: hash(pubKey_MicroCA)

Device ID: hash(pubKey_Device)

MicroCA
certificate exchange

through pairing

Device ID: hash(pubKey_Device)

issue and sign
certificate

MicroCA Network A
(self signed Cert)

ID: hash(pubKey_MicroCA)

issue and sign
certificate

Fig. 7.2: Identities issued by the MicroCA

Figure 7.2 shows how certificates are issued to devices and how identities are de-
rived from them. The MicroCA holds its own self-signed certificate, which may be
exchanged with remote MicroCAs in a WoT-like manner in order to establish trust to
other networks. The public key of the MicroCA is processed by a cryptographic hashing
function and serves as the networkID. Devices use the following concatenated identifier
for expressing the membership to a MicroCA:

ID MicroCA = hash(MicroCA PubKey)
ID Device = hash(Device PubKey).hash(MicroCA PubKey)
ID Service = hash(Service PubKey).hash(MicroCA PubKey)

7.4.2 Device Registration

One of the main and most urgent questions is how to issue, maintain and distribute
valid certificates if we assume that the average user of an unmanaged network is not
an expert. Instead of using rather technical terms such as certificate or issue and sign,
we propose to use an understandable metaphor: Device Registration. In order to
join a network, a user needs to register (or pair) his device with the corresponding

7.4. Identity Management 145

MicroCA. During this guided and user-friendly process the device obtains a public key
certificate from the local MicroCA and the user is able to join the network. The actual
certification process is completely hidden from the user.













































Fig. 7.3: Sequence diagram of the Device Registration Process

Before running the actual protocol, the client needs to discover and connect to the
MicroCA. Here, we have to make sure that no man-in-the-middle attack (meaning an
attacker introduces a fake MicroCA to the network) is possible. This can be done by
performing an authenticated Diffie-Hellman (DH) key exchange with the MicroCA or
by relying on near field communication techniques and benefit from the short radio
distance. A WLAN approach that includes the automatic network configuration with
the help of Zeroconf technology [19] will be further described in section 7.7.

The steps of the actual device registration protocol after discovering and connecting
to the registration service (and thus being sure about the authenticity of the MicroCA)
are shown in figure 7.3. Once the user’s registration client has located the device
registration service, it creates a Certificate Signing Request (CSR) and sends it to
the registration service of the MicroCA. This registration request also contains meta
information about the user and the device. Based on this information the owner of the
MicroCA is notified and has to decide about the device registration request. In the
case of a positive decision the MicroCA generates a random validation PIN code that is
needed by the user to complete the registration. The PIN code is transferred to the user
within a side channel, such as voice or email and acts as an implicit identity verification.
This step is essential for the security of our system, because the information given in the
first step of the registration process is not trustworthy and needs validation. Only if the
user is able to provide the PIN code (signed with the private key: enc(PIN) priv and
verified by the MicroCA with the public key: enc(PIN) pub), the registration service

146 7. A Secure Service Infrastructure for Unmanaged Networks

requests the MicroCA to sign the user’s certificate and send it to the device. Finally, the
registration service adds the identity of the newly paired device to the Entity Directory
and grants default access rights. The user is now able to join the actual network, e.g.
by connecting to a wireless network as described in section 7.7.

7.5 Trust Establishment

As each network operates its own MicroCA, mechanisms need to be created to also
allow the verification of certificates issued by remote MicroCAs. To authenticate entities
belonging to a remote network, the public key of the MicroCA that signed the certificate
for the entity is needed. In the state of the art trust into a third party is established
by introducing a chain of trust via multiple levels of CAs. This approach could also
be adapted to our MicroCAs. However, in section 7.2 we identified the trust into an
unknown CA as the weakness of today’s PKIs and we further argued that centralized
CAs introduce privacy and cost issues.

Therefore, we propose two additional ways of establishing trust into the public key
of a remote MicroCA. In our architecture, this process is called pairing and the corre-
sponding module is depicted on the very right bottom of figure 7.1. After a successful
pairing, the foreign MicroCA is added to the Entity Directory and, if authorized, de-
vices belonging to this network are able to access services from remote. The following
sections describe our two approaches for pairing.

7.5.1 Direct Pairing

The first mechanism requires that two users, who are authorized to perform the pairing
process, meet each other personally. Our identity exchange protocol then runs between
their devices (e.g. via Bluetooth or Near Field Communication) and exchanges the pub-
lic keys of their MicroCAs. This direct exchange is the most secure way for exchanging
keys, because the mapping (public key to identity) is implicitly done by the users.

The trust exchange is depicted in figure 7.4 and is also described in [102]. First, an
authenticated Diffie-Hellman key exchange prevents man-in-the-middle attacks. Both
users have to verify and confirm a fingerprint to make sure the DH-parameters are
correct. After the actual DH key exchange the certificates can be exchanged and verified
in a secure way. The pairing of two MicroCAs satisfies three needs:

1. The MicroCA certificates are exchanged securely.
2. As the users performing the pairing know each other, they are also able to identify

each other. The trust into the other person and confidence about the identity is
transferred into the exchanged certificate.

3. After the pairing, both networks are able to verify certificates issued by the remote
MicroCA.

7.5.2 Remote Pairing using Social Networks

In many cases it is not possible for users to meet in person. Thus, our second mechanism
is based on a Web of Trust-like approach and allows exchanging the public keys of the
MicroCAs via an insecure channel. One of the problems of traditional Web of Trust
approaches is usability. The mapping between keys and identities is often done using an
email address as an identifier, which makes it hard for an inexperienced user to decide
if the mapping is trustworthy or not. For example, an attacker could publish a fake
key by using a very similar email address.

7.5. Trust Establishment 147







































Fig. 7.4: Sequence diagram of the direct pairing mechanism

Therefore, we propose to use already established relationships of social networking
sites such as facebook to initiate the pairing mechanism. We argue that the profile of
a user with all his social relationships, pictures and posts is much easier to verify (and
harder to fake) than a plain email address. In order to further validate the authenticity
of keys, we propose to follow the Web of Trust approach where users cross-sign the
keys of others. Once a decision about the authenticity has to be made, a user ranks all
signatures and decides whether he wants to trust it or not.

Additional Entities for the Remote Pairing Process

In addition to the paring service as depicted in figure 7.1 our remote pairing protocol
relies on two additional entities: A Locator Storage (LS) and a Rating Storage
(RS). The LS stores the current network address (e.g. IP address and port) of the
remote pairing service running on the MicroCA that is responsible for the ID. A user
may publish a link to the LS on his personal social networking profile, which allows
visitors to directly communicate with the networks pairing service.

The RS holds ratings from other users about the trustworthiness of the binding
of the identity to a public key. The result of querying the rating storage helps to be
sure about the authenticity of a remote identity to a certain degree and is suitable for
granting access to many standard services. Ratings are generated and added to the
storage once two users meet personally and perform the direct pairing as described
above.

148 7. A Secure Service Infrastructure for Unmanaged Networks

Remote Pairing Protocol

The actual protocol for the remote pairing process between two users A and B and their
corresponding MicroCAs is shown in figure 7.5. User A queries the Locator Storage
and receives the current locator for a given ID of user B. For example, user A may have
visited the facebook profile of user B and by clicking on a published link his pairing
service automatically connects to the remote pairing service.






















































Fig. 7.5: Sequence diagram of the remote pairing mechanism

The pairing service of A first sends a pairing request that contains a random number
(nonceA). This number is signed by B in order to prove that B actually possesses the
private key for the certificate. B answers the pairing request by another pairing request
that contains the signature (sig(nonceA)), its certificate, as well as another random
number (nonceB). After validating the signature, user A queries the Rating Storage
for ratings about user B. Ratings are signed by other users and dependent on the trust
into them, user A is able to calculate his personal trust vector. Based on this vector
user A decides about the trust in B’s MicroCA.

7.6 Authorization

While authentication deals with the validation of the authenticity of an entity, autho-
rization describes the access control to specific resources. For example, a successfully
authenticated entity such as an employee may not be authorized to access the companies
database. Therefore, it is essential for our security architecture to allow inexperienced

7.6. Authorization 149

users to define and maintain fine-grained access rights to resources in the network. This
section briefly explains relevant entities of our authorization approach and describes in
section 7.6.1 how legacy services are able to use it. A detailed example is then given in
section 8.2.

IETF RFC 2754 describes “a framework for policy-based admission control” [166].
The authors introduce an architecture that describes two essential entities for a policy-
based management: a Policy Enforcement Point (PEP) and a Policy Decision Point
(PDP). The PEP runs on the policy-aware node and enforces the policy decision that
is made by a centralized PDP. In our architecture the Policy Decision Point is part of
the MicroCA (see figure 7.1) and uses policies stored in the Entity Directory in order
to make decisions. The owner of the network specifies polices via a user-friendly (web-
based) interface (the Policy Manager) before storing them to the Entity Directory. As
one instance of a real policy framework we use the eXtensible Access Control Markup
Language XACML [97] to define and store policies, which are transformed automati-
cally between the Entity Directory and the XACML policy database. More details on
XACML are described in section 8.2. The Policy Enforcement Point may be part of
the service itself, but we decided to also implement one generic PEP instance in the
MicroCA as well. This allows connecting legacy services that do not implement a PEP
by only defining a tiny XML-based protocol as described in the next section. If an
application already provides a PEP, it directly connects to the PDP to query the policy
database (see figure 7.1).

7.6.1 SSL/TLS interception for legacy Services

To connect existing services to our architecture we require a service to present a valid
identity for authentication. Once authenticated, our unique cryptographical identities
as presented in section 7.4.1 can then also be used for authorization. One of the most
common protocols for securing services in the Internet is SSL/TLS [34]. SSL/TLS
provides a handshake protocol that allows to mutually authenticate two hosts using
certificates. Once authenticated, the client is able to access the service and it is not
possible to also consider authorization policies. The goal of our security infrastructure
is to provide authentication and authorization for services in the network. Thus, we
extended the SSL/TLS handshake protocol and defined a XML-based interface (see
listing below) to query a PEP within the handshake. The PEP then transforms this
query to the policy specific protocol (e.g. a XACML request) and replies back with
its decision (permit or deny). Figure 7.6 depicts the interception of the SSL/TLS
handshake. First, the client establishes the connection sending a Client Hello and
requesting the service to provide its certificate. The ServerHello contains the certificate
and a request for the client to also provide its certificate (mutual authentication). Since
the certificates were issued by either the same MicroCA or by a trusted remote MicroCA
(after the pairing process) both parties are able to verify them. However, after verifying
the clients certificate, the service creates a request and asks the PEP if the client is
authorized to access the service. Only if the certificate is actually valid and the PEP
answers with a permit message, the certificate is declared valid for the SSL/TLS session
and the handshake proceeds. If the PEP answers with a denied message, the certificate
is declared invalid and the handshake is terminated. This mechanism adds authorization
to many services that only provide authentication today.

150 7. A Secure Service Infrastructure for Unmanaged Networks











































Fig. 7.6: Simplified SSL/TLS handshake interception

Subject: ID Client : Who wants to access the service
Resource: ID Service : ID of the service
Action: String: service specific Service specific action (e.g. Lights On)

As a proof of concept we extended two SSL/TLS-based services with authorization:
The RADIUS protocol as described in the next section, as well as DPWS, our reference
example that will be described in the following chapter.

7.7 Implementation

We implemented a first instance of our security architecture to prove the applicability
to unmanaged networks. For the Device Registration Service we chose to utilize the
virtualization capability of WLAN access points in order to create two separate WLANs:
an unprotected one (to prevent man-in-the-middle attacks, a pre-shared key (PSK)
should be used) for connecting to the Device Registration Service and a protected one for
the actual services. Figure 7.7 depicts the separation. The protected wireless network
uses a RADIUS [125] server to authenticate clients based on their provided certificate.
The RADIUS server (more specifically EAP-TLS [2]) was extended to connect it to our
PEP as described above. This allows specifying fine-grained policies for network access.

7.7. Implementation 151

Registration
WLAN

Perimeter
Network

Service
WLAN

RADIUS
Server

MicroCA

Registered
Client

Unregistered
Client

Registration
Service

Fig. 7.7: WLAN implementation of the device registration process

The client side is implemented as a tiny application on Linux that provides a GUI
for the registration process as described in section 7.4.2. We use Zero Configuration
Networking (Zeroconf) to automatically discover the registration service. Thus, the
client assigns itself an IPv4 link local address [19] and queries the network via Mul-
ticast DNS (mDNS) [21] for a registration service. We use the DNS-based service
discovery (DNS-SD) [20] protocol with a new record called DevRegSrv MicroCA. tcp.
The registration service replies back with its IP address and port and the user’s device
directly establishes a TCP connection to it. Now the actual registration protocol runs
using an XML-based encoding. Finally, once a client has obtained a certificate from the
MicroCA, it is able to access the service WLAN by connecting to the RADIUS server.

7.7.1 Hardware-based Security Extension

The private key of an entity, and in particular the one of a MicroCA, is a high priority
target for attackers and therefore further security mechanisms are desirable. Large scale
commercial CAs secure their private keys using very costly Hardware Security Modules
(HSM), which is not a feasible solution for smaller networks. Smartcards store security
tokens and perform cryptographic algorithms inside a closed environment. Because of
their broad availability, they are a good choice for unmanaged networks. Finally, a
Trusted Platform Module (TPM) [152] provides mechanisms to generate and securely
store keying material. Additionally, TPM allows proving to a remote party that certain
keys are stored in a way that they cannot leave the hardware container. This means,
TPM protected keys are never exposed to the computer’s main memory and cannot be
extracted by software attacks. It would be easily possible to extend the above pairing
mechanisms in a way that trust is only established into networks that are able to prove
that they protect their keys via a TPM.

7.7.2 Integration

To integrate the presented services into one box, the MicroCA, we implemented a ref-
erence architecture based on host and network virtualization on an Intel Atom based
system. The protection and separation of the Entity Directory and the Device Regis-
tration Service is reached by introducing a virtual perimeter network. The connection
between the registration and service network is necessary, because newly registered
clients have to obtain a certificate from the certification service.

Figure 7.8 shows the simplified architecture of the reference implementation. We
used XEN2 and a number of unprivileged domains for hosting the individual services.

2 http://xen.org/

152 7. A Secure Service Infrastructure for Unmanaged Networks

Hardware

Hypervisor

Domain 0
Configuration

DomU
Registration

DomU Services
Entity Directory
RADIUS
Policy Manager

DomU
Certification
Keying Material

Hardware
Token

 Wi-Fi

MicroCA

eth0
registration service

DomU
Firewall

eth0 eth0

vLANFW1

vLANSrv

vLANReg

eth1

eth0

eth0

eth1

Fig. 7.8: Architecture of our implementation

Dom0 bridges the different networks and enables the communication between them.
The separation of the registration and service network is done within the firewall DomU
by letting an iptables process filter all traffic between eth0 and eth1.

7.8 Possible Attacks and Recommendations

Compared to the state of the art our proposed protocols and integrated architecture can
be seen as an important step towards more security in unmanaged networks. However,
there are a number of attack vectors to be considered when actually deploying our
solutions.

When registering new devices to the MicroCA (Device Registration Process) we
have to make sure to actually connect to the correct MicroCA. A potential attacker
may try to force the device to first register to a fake MicroCA, which then acts as a man-
in-the-middle between the device and the actual MicroCA. To prevent this attack, an
authenticated Diffie-Hellman key exchange between the user’s device and the MicroCA
should be performed. If we assume physical access to the MicroCA, the DH fingerprint
could be shown on a small display on the MicroCA itself. Here, user-friendly ways
of showing ASCII images instead of fingerprints are possible (as proposed in [115] and
implemented e.g. in openssh3). The user then compares the fingerprint as shown on his
device with the fingerprint shown on the MicroCA and can be sure that no man-in-the-
middle is involved. Another option is to use NFC for the paring process and rely on the
fact that the radio only works within a distance of less than 10cm. An attacker would
have to manipulate the MicroCA to run a man-in-the-middle attack. However, possible
future attacks on NFC may still justify the use of the authenticated DH. When using
WLAN for pairing, a pre-shared key for the registration network should also prevent
from such attacks. However, the longer (and thus more secure) the passphrase, the
worse the usability. Thus, we highly recommend the use of an authenticated DH key

3 http://www.openssh.org/

7.9. Summary and Key Findings 153

exchange and the comparison of the fingerprints independent from the actual pairing
technology.

The same problem (fake MicroCA) applies to the remote pairing process. Our
system uses social networks as a trust anchor for the binding between an identity and
its public key. An attacker may be able to fake a social network profile (with all its
social relationships) or hack into the correct profile and change the public key (or the
link to the LS), resulting in a man-in-the-middle attack. Thus, an authenticated DH
using a sidechannel (e.g. email, phone) for verifying fingerprints is also highly desirable.
Additionally, our trustvector describes the level of trust for an identity and it should be
noted that a remote pairing is most likely not as trustworthy as a direct (face-to-face)
pairing. We therefore recommend that every remote pairing is verified at some time by
a direct pairing and that the authorization policy should take the trustworthiness of an
identity into account.

7.9 Summary and Key Findings

This chapter described the insights of our secure service infrastructure for unmanaged
networks and presented building blocks that help to considerably improve the security of
unmanaged networks. We are convinced that future scenarios for unmanaged networks
will benefit from security mechanisms that are common in today’s enterprise networks
and show that an adaption to unmanaged networks is possible. This contribution
answers question Q3 according to section 1.1.

We identified the combination of a local Certification Authority, the MicroCA, and
the Web of Trust approach as suitable for unmanaged networks, because it allows 1)
easily managing all devices, users and services within one network and 2) establishing
trust into a complete “key-family” (all keys signed by the MicroCA) rather than in
only one key. Our system assists inexperienced users in maintaining their own PKI and
hides the technical complexity from them. Trust establishment mechanisms for a direct
pairing and a remote pairing via social networks were presented. We implemented a
first instance of the MicroCA and showed how a small device is able to host all needed
services in a secure way.

Key Findings of this chapter
(and contributions according to section 1.2):

• Inexperienced users are not able and/or willing to maintain enterprise
grade security mechanisms, although they would benefit from them.

C7.1a The presented MicroCA architecture provides almost zero-configuration
plug and play security to unmanaged networks.

C7.1b The Device Registration process describes an easy-to-use mechanism
for issuing public key certificates to devices and users.

C7.1c By using already established trust relationships of social networks in
combination with a Web of Trust like rating system, it is possible to
establish a certain level of trust into a previously unknown identity.

C7.1d Our infrastructure allows providing authorization to legacy services
through SSL/TLS interception.

154 7. A Secure Service Infrastructure for Unmanaged Networks

8. NEW MIDDLEBOX SERVICES

8.1 Introduction

In the previous chapters we have shown why middleboxes have been introduced to the
network, what their impact is and which problems they impose. This chapter focuses
on problems that can be solved by new middlebox services. First, section 8.2 presents
a reference example for our security infrastructure showing how services can benefit
from our security framework. We equip the Devices Profile for Web Services (DPWS)
[42] with the authorization framework XACML in order to secure the access to specific
services as defined by an administrator of the network. Additionally, we develop a
middlebox that allows discovering and using services of remote trusted networks. Sec-
tion 8.3 then targets privacy problems that have been introduced with the availability
of IPv6. We develop a middlebox service that adds privacy to IPv6-based networks
without relying on the host to support the IPv6 Privacy Extensions [109]. Addition-
ally, the administrator is able to define policies for services to allow the reachability
via fixed addresses. Connections to protected services are obfuscated by a checksum
neutral translation mechanism as defined in [159]. Finally, section 8.4 presents an ap-
proach for combining host and network virtualization providing a great flexibility for
interconnecting different networks and for isolating concurrent services.

8.2 A Middlebox for securing DPWS

Unmanaged networks and inexperienced users call for services that follow the plug and
play paradigm. One of the most widespread plug and play protocols in unmanaged
networks is UPnP [50]. UPnP allows a seamless discovery and usage of services for
entertainment, data sharing and communication in general. However, UPnP offers no
security mechanisms and as networks grow, protecting the privacy of data and services
becomes more and more important. UPnP is not only vulnerable to attacks coming
from the internal network, [56] shows that many UPnP-enabled routers also enable
UPnP on the WAN interface. Several suggestions for securing UPnP [45] and for UPnP
remote access [110] have been made, but none of them provide an integrated solution
suitable for inexperienced users. This is mainly because providing security features
in a way that non-experts can benefit from them is not a trivial task. Our security
infrastructure as described in chapter 7 can be used as a basis for securing services in
unmanaged networks.

As a possible successor of UPnP, the Devices Profile for Web Services (DPWS)
[42] is built upon the OASIS Web Services (WS) stack and implements basic security
components (access to a service via SSL/TLS) by default. However, DPWS offers no
possibility to define fine-grained policies for controlling access to certain functions only
(DPWS actions). For example, browsing subfolders of a media collection cannot be
restricted to a user or a user group. Browsing can be either allowed (if the client
provides a valid certificate) or denied.

156 8. New Middlebox Services

This section illustrates how DPWS can be connected to our MicroCA infrastructure
and extended by the policy framework XACML [97] to reach two improvements over
the state of the art: First, we show how to restrict the access to DPWS actions to
authorized hosts only by intercepting the SSL/TLS handshake as proposed in section
7.6.1. Secondly, we present a new middlebox service that allows using DPWS across
multiple networks. Here, we in particular have to make sure to limit the discovery of
available services to authorized hosts.

8.2.1 Technology Overview

DPWS

The Devices Profile for Web Services (DPWS) distinguishes between a hosting service
representing a device (or a server) and the actual hosted service (see section 6.5.1). A
hosted service and its offered actions (e.g. the hosted service might be a light switch that
offers two actions: lights on and lights off) can be protected from illegitimate access
by providing the Web Services Description Language (WSDL) [23] over a mutually
authenticated HTTPS connection. However, once a client has been authenticated, it
is allowed to execute all the actions the service implements. For many scenarios (e.g.
guests in a home network) it is important to restrict the access of a service at the action
level instead of at the service level only.

The eXtensible Access Control Markup Language (XACML)

The eXtensible Access Control Markup Language (XACML) is a language for describing
authorization and privacy policies and was standardized by the OASIS consortium [97].

C S
(PEP) PDP

1 2 Policy Set

Metadata

4 3

Fig. 8.1: Main XACML entities

The XACML architecture consists of three main entities as depicted in figure 8.1:
a client application C that desires to access a service S (the Policy Enforcement Point
(PEP)) and a Policy Decision Point (PDP). Upon a service request of C (1), S creates
a XACML query that contains the ID of C (Subject), the ID of S (Resource) and an
Action that should be executed on S (e.g. read or write) and sends this query to the
PDP (2). The PDP evaluates the query using a pre-defined policy set and additional
meta information and sends the decision back to S (3). The answer to the initial query
(permit or deny) is then dependent on the PDP’s decision (4).

A XACML policy set as depicted in figure 8.2 consists of at least one policy. The
PDP first evaluates which policy to use by matching the target information (subject,
resource and action) of the policies. After finding the right policy, the PDP evaluates
which rule to use. A rule specifies under which conditions a request should be allowed
or denied.

8.2. A Middlebox for securing DPWS 157

Policy Set

Policy 1

Policy 2

Policy 1
Target Target

Rule 1

Rule 2

Rule 2

Target

Condition

Effect

Fig. 8.2: XACML policy set

8.2.2 Scenarios and Contributions

Our application example focuses on two scenarios. First, only one network that is
equipped with a number of DPWS services is considered. Members of this network
should be able to discover DPWS services and query DPWS actions. With the state of
the art and standard DPWS, service access (to all actions) is granted if the requester
provides a valid certificate. Our solution allows the definition of fine-grained policies to
restrict the access to certain actions dependent on the policies for the requesting entity.

The second scenario covers the access to DPWS services from a remote network.
This requires the cooperation of at least two networks and a possibility to restrict access
not only to certain actions, but also to the discovery mechanism of DPWS. Therefore,
a secure middlebox that allows the tunneling of multicast discovery messages across the
Internet is also part of our solution.

8.2.3 Approach

Figure 8.3 shows the main entities that are involved in the considered scenarios. In the
first step a DPWS client sends a probe multicast message to its own network searching
for available DPWS servers. In addition to local DPWS services, the middlebox (MB)
(here implemented as a proxy) responsible for the client’s network receives the messages
and establishes a secure tunnel to the according remote trusted middlebox.

Signaling
Infrastracture

Network 1

DPWS

Network 2

MB MB

MicroCA
MicroCADPWS

DPWS1)

1)

2)

2) 3)

4)

2)
5)

6)

7)
7)

7)

Fig. 8.3: Entities for our two scenarios

Once the remote middlebox receives the probe message, it checks with the local
Policy Decision Point (PDP) located at the MicroCA if there is any policy matching
the incoming packet. This means, the middlebox enforces the policies defined for the
network (policy enforcement point (PEP)). Finally the probe message is multicasted
into the local network 2 and the probe match message can be sent back to network 1.

158 8. New Middlebox Services

Equipping DPWS with XACML

After the discovery process the client may eventually want to access a DPWS action
as defined in the WSDL file provided over a HTTPS connection. In order to restrict
the access to certain actions (e.g. lights on/off), the DPWS hosting service is extended
by the SSL/TLS interception mechanism as described in section 7.6. This means,
whenever a client asks for a connection to an action, the service not only verifies the
provided certificate, but also asks the PEP and PDP in the network (located at the
MicroCA) if the client is allowed to access the action. Once the certificate has been
verified, the hosting service extracts the public key from the certificate and creates the
client ID by calculating hash(ClientPubKey) according to 7.4. The globally unique ID
ClientID.MicroCAID is then mapped to the subject field of the (XACML) request. The
resource field is the ID of the hosted service and the action field is the DPWS action
the client is requesting. The PDP evaluates the request with the help of additional
metadata, which are XACML attributes based on the clientID or its MicroCAID, and
sends back the response to the PEP. This provides the flexibility to control the access
levels for a remote network, as well as for a specific foreign client. Section 8.2.4 shows
how templates for these policies can be auto-generated for each hosted service.

8.2.4 DPWS service usage across Networks

DPWS, as well as UPnP, is restricted to only one broadcast domain because it uses
IP multicast for discovery. For UPnP, which provides no security at all, a remote
usage is not desirable. For DPWS we might also want to allow the discovery of devices
across domains, because it is possible to restrict the access on the service itself by using
certificates. There have been discussions and first implementations of discovery proxies
for DPWS1, however a complete system providing discovery, signaling, authentication,
authorization and finally remote service usage does not exist.

DPWS Middlebox Proxy for interconnecting Networks

To enable the remote discovery of DPWS devices we implemented a DPWS intercon-
nection proxy that forwards DPWS discovery messages to remote trusted networks.
The (TCP) connection to the service itself is then established directly from the DPWS
client to the server. This is because these messages may be encrypted (SSL/TLS) and
cannot be handled by the proxy. To allow the traversal of possible middleboxes on the
path we integrated our middlebox traversal framework as presented in chapter 6.

Whenever a device queries the network asking for a service (DPWS probe) the
DPWS proxy gets this packet (step (1) in figure 8.3), analyzes it and passes it to
the remote DPWS proxy (step (2)), which sends the multicast packet out to its own
network. The remote proxy then acts as a client on behalf of the requesting device and
therefore gets a reply (probe match) back from the actual service (step (6)) located
in the remote network (the complete DPWS discovery phase is depicted in figure 6.11
of chapter 6). This requires the proxies to maintain state and to map between the
local network and the identifier of the remote proxy. In our implementation the client
proxy also maintains a database where users can configure to which remote homes a
probe message should be forwarded. For example, when searching for a media server
the client proxy may forward this query to all trusted networks.

1 http://msdn.microsoft.com/en-us/library/system.servicemodel.discovery.discoveryproxy.aspx

8.2. A Middlebox for securing DPWS 159

Remote networks are identified by globally unique identifiers (e.g. as described in
chapter 7) and a signaling infrastructure (e.g. a peer-to-peer network) is used to resolve
IP addresses of remote middleboxes. Finally, the proxies establish a secure tunnel (e.g.
SSL/TLS) and authenticate each other using service certificates issued by the MicroCAs
(a trust establishment between the involved parties is necessary to verify the service
certificates, see section 7.5). Therefore, all DPWS servers can be sure that requests
only come from trusted remote networks. More security considerations are discussed
in section 8.2.5.

DPWS_Client

DPWS_Client

DPWS_MB_A

DPWS_MB_A

DPWS_MB_B

DPWS_MB_B

DPWS_Server

DPWS_Server

HostedServ.

HostedServ.

signed Probe

establish TLS tunnel

forward the Probe message

1) DPWS_MB_B drops msg if client is
not allowed to probe

Multicast Probe

ProbeMatch(es)

2) PEP of DPWS_MB_B asks PDP and edits
ProbeMatch message to suppress the
discovery of certain services

forward the edited ProbeMatch(es)

forward ProbeMatch

asks for DPWS Metadata

forward request

forward request

Metadata reply

3) Edit list of hosted
services based permissions

forward edited Metadata file

forward Metadata

client connects to a desired hosted service directly over an HTTPS connection

WSDL file

invoke an action on the service

4) ask PDP
for action
permissions
(see Fig. 7.6)

DPWS Fault or Reply (via SOAP)

Fig. 8.4: Protecting DPWS using a middlebox proxy

DPWS Firewall

With the proxy described above the system is now able to discover and use services
that are located in trusted remote networks. The remaining questions now are a)
how to suppress the forwarding of incoming probe messages and b) how to make sure

160 8. New Middlebox Services

that a client is only able to discover the services it is allowed to. To use XACML
for this purpose, we equip the proxies with PEP functionality as described in section
7.6.1. Figure 8.4 shows the individual steps that are necessary until a direct HTTPS
connection to the DPWS action URL can be established.

After receiving a signed probe message (containing a query for a certain DPWS
device) from an internal device (DPWS Client according to figure 8.4), the middlebox
of network A (DPWS MB A) extracts the public key from it, calculates the clientID
(hash(pubKey).MicroCAID) and asks the network’s Policy Decision Point (PDP) if the
client is allowed to send discovery messages to remote networks. If so, the probe message
is forwarded to the remote network and middlebox DPWS MB B decides if it accepts
it ((1) in figure 8.4). The resulting probe match message as generated by the DPWS
server, as well as outgoing metadata messages contain a list of hosted services, which
may be edited by the middlebox if the requesting client is only allowed to discover a
subset of them (steps 2 and 3). Finally, the client invokes an action on the DPWS
hosted service, which enforces the policy by querying the PDP as described above and
depicted in figure 7.6 of chapter 7.

Policy Creation

When aiming at protecting the discovery of services (suppress certain services for unau-
thorized clients already during the discovery phase), as well as the access to certain
DPWS actions, two types of policies are needed: The first policy set defines which
clients are allowed to discover which services, whereas the second policy defines which
client (client ID mapped to subject field of XACML) is allowed to access an action
(DPWS action mapped to action field of XACML) of the resource (service ID mapped
to the resource field of XACML). Policies for actions can be automatically derived from
the appropriate WSDL file of the DPWS hosted service (see figure 8.1). The Resources
field in the target section of an XACML policy is mapped to the ID of a service and the
Actions field contains multiple XACML actions; one for each DPWS action (port-type)
as defined in the service WSDL file. The Subjects field in the target section and the
Rules in the policy are kept blank and can be edited later by the administrator, if
and when required. A default Rule can be added as per the network configuration to
permit/deny all requests.

<Policy>

<Target>

<Subjects/>

<Resources>

<Resource> <AttributeValue>MediaServer</AttributeValue> </Resource>

</Resources>

<Actions>

<AttributeValue>GetDirectoryContent</AttributeValue>

<AttributeValue>PlayFile</AttributeValue>

<AttributeValue>Control</AttributeValue>

</Actions>

</Target>

<Rule Effect="Permit" RuleId="Default">

<Target/>

<Condition> <Apply/> </Condition>

</Rule>

</Policy>

List. 8.1: Skeleton of a XACML policy

8.2. A Middlebox for securing DPWS 161

8.2.5 Security Discussion

Our system aims at enabling authentication and authorization for service discovery and
for the access to DPWS actions. When discussing the security properties of our system,
we differentiate between a) access to local services within the network and b) access
across networks to remote services.

Attacker Model

Our attacker model follows the Dolev-Yao model [40], where an attacker is able to
eavesdrop, send, receive, change, replay and fake messages. We consider attackers
located in the public Internet, as well as attackers located within the trusted networks.
However, clients that possess valid certificates signed by the local or a trusted remote
MicroCA behave protocol conform and attackers are not able to steal private keys from
legitimate clients.

Access to local services

When considering a scenario with only one local network (DPWS broadcast/multicast
domain, thus no middleboxes), our system behaves like standard WS-Discovery. All
devices within the local network (legitimate clients, as well as attackers) are able to send
DPWS probe messages via IP multicast and are therefore able to discover all services
hosted by DPWS servers within the local network. If probe messages are signed by
clients, the server is not only able to verify their integrity, but also able to extract the
client’s identity. The client’s identity can then be used by the DPWS server to query
our Policy Decision Point and to determine if certain services should be excluded from
being discovered. This is an important improvement compared to standard DPWS and
excludes attackers that do not possess valid certificate from discovering services. An
attacker might try to run a denial of service attack by letting the DPWS server check
the signatures of many invalid messages. This can be prevented by first checking the
validity of the provided key before actually checking the signature.

Since the actual access to DPWS services is provided via HTTPS connections, clients
that do not possess valid certificates are not able to access them. Furthermore, since
our solution also adds authorization, accessing a services requires a valid certificate, as
well as an authorization policy, an additional improvement compared to the state of
the art.

Remote access via proxy

For service discovery and usage between trusted networks our secure SSL/TLS tunnel
prevents attacks coming from the public Internet. Additionally, we only forward dis-
covery requests originating from trusted networks, which excludes arbitrary attackers
located in untrusted remote networks. Attackers within trusted networks are able to
send discovery messages, allowing them to discover all services within the local and
the remote network. Again, we suggest that inter domain discovery messages (probe
messages) are signed using the compact signature format as defined in the Web Ser-
vices Security standard [107]. This enables a network to authenticate remote clients
and determine whether a) the client is allowed to send discovery messages into the
own network and b) to filter probe matches according to some policy in order to hide
services to clients from remote networks. For unsigned discovery messages the DPWS

162 8. New Middlebox Services

proxy is still able to determine the (trusted) origin of the request (on a per network
basis) and filter probe match messages accordingly.

As the WS-signature operates on the application layer and only signs the actual
DPWS message and not the underlying transport layer, an attacker in the remote net-
work might eavesdrop a legitimate discovery message and replay it. The only protection
against this is to log message IDs and discard duplicates. Filtering of duplicate mes-
sages can be done locally by the network, but could lead to additional load (possible
DoS attack). As the remote network is generally trusted, we propose to host this mes-
sage filter in the remote network. Additionally, the local network can filter messages
using a short sliding window of message IDs that will limit resource consumption.

8.2.6 Evaluation

Table 8.1 shows our achievements and compares them to the state of the art. The
combination of our authorization framework and an SSL/TLS-based service such as
DPWS allows defining fine-grained policies not only for accessing local services, but
also services in remote (trusted) networks.

UPnP Standard DPWS DPWS plus MicroCA

local access − (+) +
to actions unrestricted unrestricted restricted

no security valid cert. is sufficient on a per client basis

local − − (+)
discovery unrestricted unrestricted restricted

no security no security for signed probes

remote − − +
discovery not possible not possible restricted

per client or remote MicroCA

remote − − +
access not possible not possible restricted

per client

Tab. 8.1: Comparison to the state of the art

To prove that our system works as expected, we implemented a DPWS video stream-
ing solution, which is described in [101]. Video/audio streaming can be seen as an
example application representing unmanaged networks (especially home networks) and
as bandwidth grows, multi domain scenarios are most likely to appear. This means
the streaming between multiple home networks should work as automatically and self-
configuring as the discovery and streaming within one home.

We then measured the processing time at the middlebox between receiving a probe
message from a remote network until forwarding the probe message to the local network.
This includes the processing of the messages, as well as the XACML query. The DPWS
server was not involved, because it simply implements a second PEP querying the same
PDP as the proxy. Figure 8.5 shows the results. The prototype was run on a standard
2010 dual-core linux machine and the PDP implementation of SUN2 was used.

2 http://sunxacml.sourceforge.net

8.2. A Middlebox for securing DPWS 163

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 10 100 1000 10000

Pr
oc

es
si

ng
 ti

m
e

in
 m

se
c

Number of XACML Policies

Fig. 8.5: The processing time in milliseconds dependent on the number of policies

While the processing time of the middlebox itself was only approximately 1ms,
the XACML lookup is dependent on the number of policies that are maintained at
the PDP. We differentiate between policies needed for discovery and policies needed
to secure the actions of a service. While every hosted service in the local network
may get its own policy for discovery, the handling of policies for services is application
specific (dependent on the number of actions the service implements). For example, a
audio/video streaming service may hold a policy for each media file or it may hold only
one policy for a complete media collection. Furthermore, we propose to run multiple
PDP instances in parallel, one for discovery and one for the applications built on top
of DPWS. Thus, the discovery process cannot be blocked by a large number of policies
needed for a specific service (e.g. for accessing a media collection). Finally, for less
complex scenarios only requiring a few policies (e.g. one policy for a media collection),
text-based policy files might be sufficient to avoid the overhead of parsing XML. It
might also be desirable to evaluate the performance of other PDP implementations,
which claim to perform better than the SUN implementation.

8.2.7 Summary

In many unmanaged networks the only service that offers security is the access to the
wireless network. Popular service frameworks such as UPnP offer no security features
and impose many problems. In this section we showed how arbitrary SSL/TLS-based
services can be secured by our MicroCA approach as presented in chapter 7. As a
reference example we extended the Devices Profile for Web Services framework by the
ability to not only deliver its content via a secure connection, but also to restrict the
access to DPWS actions to authorized clients. Additionally, we developed a middlebox
service that allows the secure discovery of remote DPWS services and the filtering of
services during the discovery process. We showed how to use the security framework
XACML for authorization and for defining fine-grained policies for discovery and service
access.

164 8. New Middlebox Services

8.3 PrivMid6: A Privacy Preserving Middlebox for IPv6

The large address space of IPv6 (128bit) removes the need for Network Address Trans-
lation and allows allocating globally unique IP addresses to individual devices. While
this re-establishment of the end-to-end argument on the one hand solves many of the
issues of IPv4, it also introduces new problems. One of the most profitable business
models in today’s Internet is to sell customized advertisements. Thus, companies such
as Google and facebook try to collect as much information as possible about user behav-
ior and aim to track users across multiple websites. On the technical side, this requires
to identify individual users based on unique tokens. With dynamic public IP addresses
(as allocated by ISPs for IPv4), user tracking based on the network layer is rather diffi-
cult since middleboxes such as NAT and Large Scale NAT obfuscate the actual private
IP address of the client by translating it to a global one. Thus, a complete network
only uses a few (in many cases only one) global addresses. With globally unique IPv6
addresses tracking on the network layer is easily possible.

IPv6 addresses are usually created on the host following the stateless auto-con-
figuration protocol as described in [150]. The least significant 64bits of an IP address
are hereby derived from the unique layer 2 address using the EUI-64 identifier [74].
Thus, the device identifier of a public IPv6 address only depends on the host and is
therefore easily identifiable since it does not change even when changing the global
prefix. Another problem is related to enterprise networks. NAT for IPv4 is often used
by larger companies to hide their topology from the outside world, thus introducing
privacy for their topology. Instead of using their available IPv4 address space, only a
small number of addresses are visible to the public. Without topology hiding, internal
addresses are exposed to the public, which eases scanning and eventually attacking
internal hosts. Additionally, Network Address Translation provides address indepen-
dency when allocating addresses to internal hosts. As a result, only addresses of the
border router have to be changed when migrating to another ISP.

To overcome the privacy problems of a unique device identifier, the state of the art
proposes to randomize IPv6 addresses on the host following the IPv6 Privacy Exten-
sions [109] standard. However, if privacy extensions are not available (e.g. on mobile
phones) or enabled on the host, privacy can not be provided. Additionally, the state
of the art only randomizes the device identifier. For smaller networks that only need a
few subnets there is many room for improvement by also randomizing additional bits.
Finally, the randomized IPv6 address as generated by the original privacy extensions
is not dependent on the prefix. Thus, if a host switches to a different network, the
(randomized) device identifier remains the same and the host is still identifiable.

This section proposes a new middlebox service that is introduced as a gateway to
IPv6-based networks and takes care of randomizing IPv6 addresses. The middlebox
is designed as a hybrid solution: users are able to specify policies describing which
services should be obfuscated and which services should still be globally reachable.
Obfuscation is provided by translating between local and randomized public addresses.
As the translation of layer 3 addresses also affects the layer 4 checksum, the external
address has to be checksum-neutral to the internal one. Finally, our middlebox not
only provides privacy, but also addresses shortcomings of the IPv6 privacy extensions.

The following sections present our approach, which was initially developed in [10],
in more detail. After covering related work in section 8.3.1 and our scenarios in section
8.3.2, section 8.3.3 presents our requirements. Section 8.3.4 then describes our approach
and the design decision we have made. Finally we evaluate our middlebox service in
section 8.3.5 and summarize our findings in section 8.3.6.

8.3. PrivMid6: A Privacy Preserving Middlebox for IPv6 165

8.3.1 Related Work

Many protocols and applications exist that aim to anonymize IP-based traffic in a way
that the receiver of a packet cannot identify the sender. Examples are Tor3, I2P4 and
JAP5. Most of them are based on public key cryptography as initially proposed in
[18] and use the onion routing approach as presented in [37]. Here, each message is
encrypted multiple times and sent via a number of proxies. Each intermediate proxy
then decrypts and removes one layer before sending it to the next hop. This ensures
privacy and untraceability since only the last hop is able to see the plain message and
tracking between intermediate hops is not possible. However, this approach introduces
overhead and the performance depends on intermediate hops and especially on the
exit-node. An analysis of the performance of Tor is presented in [38].

Other approaches do not aim for complete anonymity, but only care about profiles
that are created based on the IP address. The most important solution in the state of
the art providing privacy to IPv6 is called “Privacy Extensions for Stateless Address
Autoconfiguration in IPv6” [109]. Instead of creating the 64bit device identifier based
on the layer 2 address, the privacy extensions create random identifiers with limited
lifetimes. Thus, IP addresses change over time and are not related to the static unique
MAC address of the host. While many desktop operating systems enable privacy ex-
tensions by default, mobile operating systems such as Android and iOS either don’t
support them or require administrative privileges for activating them. Thus, the level
of protection depends on the host, the user and the operating system.

With IPv6 privacy extensions only the last 64bit of the IPv6 address are randomized.
A network with only a few devices can still be identified by considering the more or
less static prefix that is assigned by the ISP. Providers such as Deutsche Telekom
plan to assign /56 or even /48 prefixes to their customers, thus allowing to randomize
additional bits. The IPv6 randomizer6 as presented by the German magazine Heise7

provides scripts for the router firmware OpenWRT8 to change the announced subnet
from time to time. The solution relies on activated privacy extensions on the hosts and
only uses one subnet at a time, which still allows to correlate individual hosts belonging
to one network.

In [9] the authors present weaknesses of the original privacy extension algorithm.
IPv6 privacy Extensions generate their random IPv6 addresses based on a hashed ran-
dom value and do not depend on the announced prefix. Thus, if only the prefix changes
(e.g. due to a network change), the random address stays the same and a host is track-
able across multiple networks. The authors therefore propose an alternative way of
generating random interface identifiers by also considering the prefix when hashing the
random number.

3 https://www.torproject.org/
4 http://www.i2p2.de/
5 http://anon.inf.tu-dresden.de/
6 https://bitbucket.org/reik/ipv6randomizer
7 http://www.heise.de
8 https://openwrt.org/

166 8. New Middlebox Services

8.3.2 Scenarios

Our proposed middlebox service targets consumer networks, as well as enterprise net-
works and mobile operators that aim to provide privacy to their customers. For home
networks and other unmanaged networks our middlebox service may replace today’s
home routers and may be used to connect a home network to the Internet. Existing
routers still focus on IPv4 and only offer few IPv6 features, excluding privacy and
topology hiding. Future home routers should cover these new issues that arise with the
introduction of IPv6, especially once IPv6 becomes the default network layer protocol.

For enterprise networks our middlebox can be used in addition to the existing in-
frastructure providing randomization and translation of IPv6 addresses. Here, topology
hiding and address independency are additional useful features that are provided by
our solution. The same is true for ISPs (e.g. mobile operators) that want to offer pri-
vacy services (e.g. as a new business model) to their customers. Instead of randomizing
IPv6 addresses on the customers device, our middlebox allows to track customers in the
internal network (legal interception), while at the same time providing them privacy
towards the public Internet.

8.3.3 Requirements

If available and configured, IPv6 privacy extensions randomize the 64bit host part
of an IPv6 address. Since ISPs plan to allocate a /48 or /56 network to consumers
and even larger prefixes to companies, there is further room for improvement. We
therefore propose to also randomize the subnet bits and to also support hosts that do
not implement the IPv6 privacy extensions. The following list presents the requirement
of such a solution:

• R1: Anonymization: The middlebox service should provide the anonymization
of a definable length. For example, a length of 0 means that the middlebox
behaves like plain IPv6, a value of 64 emulates the IPv6 privacy extensions and
128 would randomize all bits. Thus, each network administrator can define the
grade of anonymization based on the network prefix that is assigned by the ISP9.
Additionally, other host-based privacy techniques may coexist without influencing
the behavior of the system.
• R2: Topology Hiding: The middlebox should hide the topology of the internal

network.
• R3: Protocol Independent Translation: The translation of IPv6 addresses

(if necessary) should be done in a transport protocol friendly way and not affect
TCP and UDP.
• R4: Legal Interception: Anonymity aims to prevent external entities from

tracking user behavior based on IPv6 addresses. However, the operator of the
middlebox service should always be able to reconstruct the mapping between the
internal and external address.
• R5: Allow Incoming Connections: The advantage of having globally unique

IPv6 addresses is the ability to establish connections between arbitrary devices.
This allows to host services within edge networks and applications such as Voice
over IP don’t suffer from realm-specific addresses. Thus, our middlebox should
also support to exclude certain addresses from being randomized.

9 The maximum grade of the anonymization depends on the length of the assigned prefix.

8.3. PrivMid6: A Privacy Preserving Middlebox for IPv6 167

8.3.4 Design of PrivMid6

The primary goal of the Privacy-aware Middlebox for IPv6 (PrivMid6) is to introduce
privacy to IPv6-based networks by randomizing as many bits of the IPv6 address as
possible in a way that does not affect overlaying transport layer protocols. PrivMid6
acts as the interface between two IPv6 networks and controls the flow of packets be-
tween two realms. Packet flows in PrivMid6 are controlled by a central policy allowing
to define a trade-off between reachability and privacy. If the policy is set to reachability
(either for individual addresses or for a subnet) packets are forwarded and not processed
any further. For privacy critical packets PrivMid6 provides a checksum-neutral ran-
domization of a configureable amount of bits (e.g. interface ID plus subnet). Since there
is no relation between the internal and the external address, the middlebox maintains
a state table to store the lifetime and the mapping between the internal and external
address. Algorithm 8.1 shows the processing of outgoing packets (meaning packets that
are sent from internal hosts to the public Internet) according to our processing model
as defined in section 3.2. For incoming packets the reverse processing is applied, similar
to NAT44 functionality as presented in section 3.2.

1 if found (policy := get state(p)) then
2 case policy == forward
3 send(p, external); . forward packet to output stage

4 case policy == translate
5 if found (pub := get state(p)) then
6 p := translate packet(p, pub); . translate packet immediately
7 else
8 pub := allocate new mapping(p); . a new mapping is needed
9 store state(p); . remember new mapping

10 p := translate packet(p, pub); . translate packet

11 end if
12 send(p, external);

13 end case

14 end if

Alg. 8.1: Proc(internal, p) for PrivMid6 outgoing packets

1. For each packet p arriving at the internal interface the policy database is queried
and a processing thread is determined (line 1). Here the policy returns forward
or translate, but a firewall could also return a drop policy.

2. In case of a forward policy the appropriate function in the outgoing stage is
called (line 3).

3. In case of a translate policy PrivMid6 behaves like a stateful NAT device.
4. If the randomized IP address is still valid it is found in the database and passed

to the translation function (lines 5 and 6).
5. If the randomized IP address is not valid anymore or the packet belongs to a new

flow a new randomized IP address is generated in a checksum-neutral way (line
8) and stored to the mapping database (line 9).

6. Finally, the translated packet is passed to the outgoing stage by calling the send
function (line 12).

168 8. New Middlebox Services

Generation of Addresses

According to the processing model as shown in table 8.1 the middlebox has to generate
randomized temporary addresses whenever a translation event occurs. There are two
requirements for the new source address: first, it must not be possible to calculate the
internal address for any given external address and second, the layer 4 checksum of the
external address must match the layer 4 checksum of the internal one. Here, we follow
the approach as presented by the IPv6-to-IPv6 Network Prefix Translator [159]. The
actual generation of randomized addresses is based on the algorithm as presented in
[9] and shown in figure 8.6. Here we assume that the ISP assigns a /48 network to its
customers. If the prefix differs, the number of bits for the subnet will vary, but the
method is still the same.

Network Prefix randomized Interface Identifierrandomized Subnet

0 47 48 63 12764

Random Number
0 t

128bit Hash Function

Checksum-neutral Randomized IPv6 Address

checksum

new checksum

Network Prefix
0

Interface IdentifierSubnet
4748 63 64 127

unused
80 127

randomized
0 79

16bit
adjustment
position

chk difference

XOR

Fig. 8.6: Generation of addresses for PrivMid6

The initial IPv6 address on the host is configured by the stateless auto-configuration
protocol as described in [150]. Once a packet scheduled for translation arrives at the
middlebox, a random number is created that serves as the randomization part. The
random number XORed with the network prefix is hashed and the most significant
80bits are used as the new randomized subnet and interface identifier. This process is
different to the one proposed in [9], which only randomizes the least significant bits of
the host. Finally, 16bits (the length of the IP header checksum [14]) of the so-created
IPv6 address have to be adjusted to make sure the checksum of the privacy-conform
IPv6 addresses matches the checksum of the original packet. Luckily, valid Internet
checksums can be calculated incrementally [126], thus, according to [159], PrivMid6
calculates the difference of the old and the new checksum and adds the value to a
randomized position of the least significant 80bits.

Translation and Validity of Addresses

With the presented algorithm above, the middlebox is able to generate new randomized
IPv6 addresses in a checksum-neutral way. The remaining question is which state has
to be maintained at the middlebox and what happens if the lifetime of an entry expires.

8.3. PrivMid6: A Privacy Preserving Middlebox for IPv6 169

With state of the art privacy extensions the default lifetime of an IPv6 address is 24
hours and can be adjusted as the only parameter by the user. However, smaller timeouts
may result in dropped connections, which is one of the reasons that privacy extensions
“should be disabled by default in order to minimize potential disruptions” [109].

The default behavior of PrivMid6 generates a randomized IPv6 address to every
newly seen internal address and assigns a default lifetime of 24 hours to it (just like
privacy extensions). As long as the internal address doesn’t change, the external address
remains identical for 24 hours and changes afterwards by generating a new address using
a new random value. This behavior also drops existing connections since the middlebox
is not aware of the actual state of upper layer protocols. Therefore, PrivMid6 also
supports the tracking of TCP connections just like NAT44 or netfilter, allowing the
assignment of individual lifetimes for IP 5-tuples. An example policy for a PrivMid6
enabled middlebox that maintains a global prefix of 2001:a200:f000::/48 may be as
follows:

fixed prefix length 48
fixed subnet 1234
TCP destination port 80 per connection
default lifetime 2 hours

This policy specifies that IP addresses carrying the subnet 1234 are not translated, but
only forwarded. These IP addresses can be used by hosts in the internal network to
provide services and to run applications that require static IP addresses, such as VoIP
and other peer-to-peer applications. All outgoing connections to TCP port 80 should
be tracked and a new randomized IP address should be assigned to every new http
request. For all other connections a lifetime of 2 hours is used. The fixed prefix length
of 48 specifies that only these bits remain unchanged and for all other bits (subnet and
interface identifier) randomization is desired.

8.3.5 Evaluation and Discussion

PrivMid6 aims at protecting hosts from being tracked based on their globally unique
IPv6 address. Compared to the state of the art, PrivMid6 not only randomizes the
interface identifier, but also additional (subnet) bits of the IPv6 address. We also target
the problem of hosts moving through different networks that carry distinct prefixes, a
scenario that is not solved by the IPv6 privacy extensions. Here we follow the approach
of [9] by using the prefix as an input for the hash function.

Our threat model covers potential attackers aiming to correlate IPv6 addresses
with clients by monitoring connections coming from the same network, e.g. by logging
addresses on web-servers located in the Internet. For such attackers it should not be
possible to establish a correlation between two different addresses by the means of
being able to tell if two connections carrying two different IPv6 addresses were made
from the same client. We assume that a potential attacker does not have access to the
internal network, which would allow tracking hosts based on internal IP addresses or
MAC addresses.

The security of our approach is dependent on a secure random generator and a
secure collision resistant hash function. The adjustment of the checksum does not have
any impact on the security of our system since only the already randomized address
is changed. If an attacker is able to restore the original address before the checksum

170 8. New Middlebox Services

adjustment, a correlation between the random and the original IPv6 address of the
client is not possible.

PrivMid6 does not consider tracking on higher layers (above layer 3). Cookies
[88], browser characteristics10 and JavaScripts embedded in websites allow the tracking
without considering the IPv6 address. The authors of [62] show how to track users
based on DNS. We also do not consider the tracking of internal addresses by attacks
that have access to the LAN segment. This also complies with our requirement R4,
which aims at providing a possibility for legal interception. Also, the tracking based
on the allocated prefix is still possible. However, all clients sharing one Internet access
hold the same prefix, which is similar to today’s approach of sharing one global IPv4
address among a number of clients using NAT44.

IPv6 PrivacyExt. NAT66 PrivMid6

Anonymizing − + − +

Topology Hiding − - + +

Protocol Independency + + + +

Legal Interception + - + +

Incoming Connections + + + +

Tab. 8.2: Comparison to the state of the art

Table 8.2 shows the advantages of our middlebox approach compared to the state
of the art. For each requirement as defined above the middlebox provides a solution.
R1 asks for anonymization, which can be provided via IPv6 privacy extensions or by
our middlebox service. Here, PrivMid6 not only randomizes the interface identifier,
but also additional bits of the subnet. PrivMid6 also provides topology hiding (R2)
similar to NAT44: all internal clients carry the same prefix, while the suffix cannot be
used to distinguish between different clients. This is in particular true when configuring
a stateful translation with a per-connection obfuscation. Protocol independency (R3)
is achieved by translating packets in a checksum-neutral way. Therefore, protocols
above layer 3 remain unchanged. R4 (legal interception) is reached by the (optional)
possibility of logging mappings between (fixed) internal addresses and their random
external ones. Thus, a privileged user is able to suspend privacy, which of course may
also be done by a potential attacker. By the definition of fixed addresses that are only
forwarded and not translated, PrivMid6 achieves R5 and allows incoming connections.

Finally, we compare the performance of PrivMid6 to the performance of legacy
NAT44 devices. Middleboxes that process packets introduce an additional delay to
the network that is dependent on the number and the complexity of the individual
processing steps. We distinguish between two scenarios: one, the processing of new
packets and two, the processing of packets belonging to an already existing state. For
packets that can be translated according to their state there is not much difference
between NAT44 and PrivMid6. The mapping table is looked up, certain header fields
are translated and the packets leave the outbound interface. However, PrivMid6 only
needs to translate the IPv6 source address of outgoing packets, whereas NAT44 may
also translate the source port (if not using port preservation). Additionally, PrivMid6

10 https://panopticlick.eff.org/

8.3. PrivMid6: A Privacy Preserving Middlebox for IPv6 171

only operates on layer 3 and translates in a checksum-neutral way, while NAT44 always
has to adjust the checksum of the IPv4 and layer 4 header. Adjusting the checksum
can be done incrementally [126] and only has little influence to the performance. For
new packets both middleboxes need to allocate a new state before translating packets.
NAT44 chooses a new external endpoint, while PrivMid6 needs to generate a random-
ized IPv6 address by applying a hash function to a random number. Once this new
endpoint/address is generated, the middlebox continues with the address translation
(step 6 of the processing model as shown in table 8.1).

8.3.6 Summary

This section targeted the privacy vs. connectivity problem that is introduced by globally
unique IPv6 addresses. On the one hand, unique addresses re-establish the end-to-
end paradigm and avoid many problems that have been observed when introducing
NAT44. On the other hand, IPv6 addresses enable the tracking and identification of
users across multiple (web)-sites and also allow creating movement profiles of mobile
users. State of the art solutions, such as the IPv6 privacy extensions, operate on
the hosts and randomize the last 64bit of an IPv6 address. Our privacy preserving
middlebox service PrivMid6 allows specifying policies for packet flows, defining a trade-
off between reachability and privacy. Privacy and topology hiding for IPv6 is established
by randomizing IPv6 addresses and translating them in a checksum-neutral way. Here,
not only the device identifier, but also additional subnet bits are randomized to provide
a similar protection level as NAT44. Services can still be operated by defining certain
subnets to be directly reachable and not to be handled by the translation function.

172 8. New Middlebox Services

8.4 Virtual and Dynamic Infrastructures

New applications, services and communication paradigms have new demands regard-
ing the underlying network infrastructure that often cannot be satisfied with existing
deployments. Innovations, such as switching to a new network layer protocol, are hard
to introduce to existing networks and ISPs avoid modifications to their infrastructure
to protect their services and to limit costly investments. Middleboxes are one common
way of providing new services to networks without having to change too many entities.
There is one more paradigm that is currently discussed in the research community that
hasn’t been mentioned yet: a clean slate approach to the whole Internet infrastructure
as described in [127] with the goal of establishing a new architecture without consider-
ing the currently deployed infrastructure. The migrating to a clean slate architecture,
however, is costly and might only happen within restricted environments. Projects
such as GENI11 run virtualized instances of new architectures on the currently de-
ployed network. Virtualization in general is a powerful tool for adding more flexibility
and security to existing networks and for realizing new communication paradigms.

This section presents an architecture that combines host virtualization (via Virtual
Machines (VM)) and network virtualization (via Virtual Private Networks (VPN)) to
deploy dynamic infrastructures on top of existing networks. Virtual machines can be
bridged to virtual networks, while the resource management can either be done by
providing configuration files or by triggering decentralized configuration mechanisms,
e.g. by hardware tokens like smartcards. We show how this architecture extends
our MicroCA approach by implementing a middlebox service for clients located in
unmanaged networks.

First, section 8.4.1 starts by explaining targeted application areas. Section 8.4.2
then presents our approach for combining host and network virtualization and describes
the components of our architecture. Section 8.4.3 introduces VPN networks with a spe-
cial focus on P2P-based solutions. We then present our P2PVPN solution that is based
on Datagram-TLS (DTLS) [124] for authentication and uses the middlebox traversal
framework NOMADS. Finally, section 8.4.4 shows the integration and configuration of
our architecture.

8.4.1 Application Areas

Our proposed architecture mainly targets unmanaged networks, but can also be ap-
plied to enterprise networks. For unmanaged networks, such as home networks, our
approach allows securely creating, deploying and running different services that are
separated by virtualization. Separation is not only done by the means of hosts, but
also by allowing to configure multiple virtual networks. Possible use-cases not only in-
clude self-configured services that benefit from separation, but also commercial services
that require a restricted environment. A pre-configured home router may serve as a
common service platform that enables different stakeholders to run their services. For
example, a bank would distribute smartcards to their customers that are used (once
inserted into the home router) to automatically download a virtual image, connect it
to the bank’s VPN network (which may be a traditional client-server based VPN) and
execute banking services only within the protected environment. Services and network
configurations on the home router can be extended to physical hosts by providing a
middlebox-like service, e.g. by tunneling certain traffic to certain P2P networks.

11 http://www.geni.net/

8.4. Virtual and Dynamic Infrastructures 173

For enterprise networks our approach allows the deployment and management of
flexible large scale networks. Unused resources on machines may be used for running
virtualized services and dynamic networks can be configured and deployed from a cen-
tral configuration file. Scenarios such as building networks call for multi-tenancy with
many shared (computing) resources. Our approach can be seen as a foundation to
dynamically configure (e.g. time or location dependent) IT services for shared building
resources such as meeting rooms and offices.

8.4.2 Approach

We propose an architecture that is based on a combination of host and network virtual-
ization. Different virtual machines can be in different virtual networks, thus providing
isolation in multiple dimensions. Network virtualization (via virtual private networks)
is only done within the host operating system (privileged domain), which provides great
flexibility for managing large installations since reconfiguration can completely be done
within one domain. The actual virtualized guest system only sees its network adapter
and does not have to care about virtualization issues. Since the bridging is done in the
privileged domain, the virtualized guest system is still able to configure its interfaces
as without VPN. This is similar to the functionality that is provided by Virtual LAN
(VLAN) in Ethernet.

Hardware

Domain 0: Resource Management

Virtual System

peth0

VPN
Instance(s)

br0: VPN office

br2: VPN bank

br1: VPN home

eth0

DomU

Productive
Services

eth0

DomU

Secure
Banking

eth0

Hypervisor

vif0

vif1

vif2

DomU

Home
Automation

MR

MR MR MR

MR

MR

MR

MR

MR

MR

Resource
Manager

Fig. 8.7: Architecture for combining host and network virtualization

Figure 8.7 shows a reference example of our architecture. For the sake of security12

the three user domains (DomU) for home automation, productive services and secure
banking are isolated from each other. To directly and securely connect the according
virtual machine to the banking server, a VPN instance in the Dom0 is bridged to the
virtual representation of the banking machines network interface (vif2). The other two
domains (home automation and productive services) are bridged to the home’s VPN

12 Isolation as provided by the utilized virtualization techniques has to be secure and virtualized guest
systems should not be able to break out of their environment. For this chapter we assume that such
techniques will exist in the future and will not target the security of today’s hypervisors.

174 8. New Middlebox Services

network, whereas the office network is currently not bridged to any virtual machine.

To configure the network interfaces, VPN instances and bridges, each resource is
managed via a Resource Manager (RM). Each resource has its dedicated Managed
Resource (MR) interface that is used by the RM to pass resource specific configurations
to it. The RM itself is an accessible network service that acts as an interface to the
complete virtualized system (host and guest machines) and is reachable via a network
interface. Thus, the complete virtualized architecture can be seen as a manageable
resource and can be dynamically set up and configured from a centralized management
host located in another network.

In the following sections we describe the individual components in more detail.
First, our solution for a P2P-VPN networking instance is presented. It is based on
a structured P2P network and explicitly supports multiple virtual networks for one
physical machine. We then present our resource manager and show how the components
interact.

8.4.3 Virtualized Networks - P2PVPN

Virtual Private Networks (VPN) are overlay networks establishing a network topology
over the physical one. VPNs are often used to interconnect different branches of one
company or to securely join a network from remote. This allows to actually become
part of the network, which includes a valid IP address for that network and the ability
to broadcast into the network.

In a typical installation a centralized server manages authentication and authoriza-
tion issues and acts as a single connection point. All traffic between the nodes travels
through the server and is re-encapsulated and re-encrypted according to the client-
based session keys. The bandwidth is shared among the clients and the server can be
seen as a single point of failure for the whole system. A slightly different approach
is based on peer-to-peer networks: Instead of letting a server distribute data packets
among its clients, the peers directly connect to each other by forming a meshed net-
work. For unmanaged networks this has an enormous advantage as the performance
of a connection does not depend on the bandwidth of a single server, but only on the
own and the remote Internet connection. Especially if we assume an asymmetric access
to the Internet (meaning download vs. upload bandwidth), a centralized VPN access
server located in a home network suffers from the performance.

However, there are many problems that have to be solved for P2P-VPN networks,
such as authentication, authorization, revocation of access rights, confidentiality, mid-
dlebox traversal and bootstrapping just to name a few of them. This section presents
different approaches to P2P-VPN, explains advantages and disadvantages and finally
presents our own solution of a structured P2P-VPN System called P2PVPN.

Related Work

Many proposals have been made for establishing VPNs in a centralized and decen-
tralized manner. We not only differentiate between the layers they work on (network
(IPsec) vs. transport (OpenVPN)), but also how they provide certain functionality like
traffic flow, configuration and authentication.

Table 8.3 follows the definitions given in [164] and shows five different approaches
for providing VPN functionality. Centralized VPN Systems such as OpenVPN13 rely
on a (single) server that authenticates clients and routes traffic among all hosts in the

13 http://www.openvpn.org

8.4. Virtual and Dynamic Infrastructures 175

C
e
n
tr

a
li
z
e
d

V
P

N
S

y
st

e
m

s

C
e
n
tr

a
li
z
e
d

P
2
P

S
y
st

e
m

s

D
e
c
e
n
tr

a
li
z
e
d

P
2
P

S
y
st

e
m

s

U
n

st
ru

c
tu

re
d

P
2
P

S
y
st

e
m

s

S
tr

u
c
tu

re
d

P
2
P

S
y
st

e
m

s

Traffic C/S P2P P2P P2P P2P

Routing Server Server static unstructured DHT

Configuration Server Server manual connect to connect to
supernode DHT

Authentication Server Server Peers Peers Peers

Example OpenVPN Hamachi Tinc N2N GroupVPN
Wippien P2PVPN

Tab. 8.3: Different approaches for VPN [164]

system, which means the bandwidth of the server is shared among all clients. This
architecture is useful for typical client-server installations where a company provides
access to its network via a VPN server located in their datacenter. With Centralized
P2P-VPN Systems, a centralized server takes care of the authentication, while the ac-
tual data transfer is done peer-to-peer. This is a similar approach to Skype14 and early
P2P systems such as Napster15 (discontinued due to legal issues and relaunched as a
new service). The advantage is the management of centralized identities, which makes
revocation and accounting easy. Centralized P2P systems still represent a single point of
failure. One of the first P2P-VPN systems was the closed source solution Hamachi16.
Later on, open source systems following the same approach, such as Wippien17, ap-
peared and are predominantly used for online games that require layer 2 broadcasts.
In Decentralized P2P-VPN Systems there is no distinction between the peers, each one
is able to provide the same functionality and is able to connect to others. Discovery
and configuration of links is not defined and has to be done manually. Unstructured
P2P-VPN Systems, such as N2N18, provide peer-to-peer discovery, communication and
authentication. Discovery is usually done using flooding or broadcasting in an un-
structured manner. In N2N, each peer connects to a super-peer that is responsible for
storing and broadcasting messages. However, N2N has a number of critical security
flaws since it relies on a single shared key and does not provide authentication. Struc-
tured P2P-VPN Systems use a discovery mechanism that performs significantly better
than flooding, usually by using Distributed Hash Tables (DHTs) and a lookup perfor-
mance of O(log n) (n being the number of nodes) or better for routing. GroupVPN
[165] is an example for a structured P2P-VPN that uses DTLS [124] for authentication

14 http://www.skype.com
15 http://www.napster.com
16 https://secure.logmein.com/products/hamachi/
17 http://www.wippien.com/
18 http://www.ntop.org/products/n2n/

176 8. New Middlebox Services

and encryption. It is based on the IPOP (IP over P2P) framework [55] and allows
easily creating and managing groups. Our work is inspired by GroupVPN and also
uses DTLS for securing data communications. It uses the middlebox traversal frame-
work developed in this thesis and an arbitrary storing mechanism only providing GET
and PUT operations. Finally, allowing multiplexing multiple networks is an explicit
requirement.

Key Value

virtual MAC address + Group Name public Endpoint
virtual IP address + Group Name virtual MAC address

Tab. 8.4: Key/Value pairs for the P2PVPN network

Approach

The VPN instance has to provide authentication, encryption, encapsulation and for-
warding of data packets. P2PVPN works as a bridged network handling layer 2 packets.
Thus, we also need to take care of resolving layer 3 addresses to layer 2 addresses, which
is done by the ARP protocol [117]. Instead of broadcasting ARP request like N2N, we
propose to store the mapping in a (distributed) database and query it on an ARP
request.













































Fig. 8.8: Sequence diagram for the P2PVPN system

8.4. Virtual and Dynamic Infrastructures 177

More specifically, we propose to use an arbitrary storing mechanism (SM) that
holds key → value pairs and provides PUT and GET operations for manipulating
them. Table 8.4 shows the key-value pairs that P2PVPN needs to store. Figure 8.8
then depicts the processing of outgoing packets. Once an application sends a TCP-SYN
packet to a virtual IP address the operating system will generate an ARP request asking
for the corresponding MAC address. P2PVPN will intercept this request and use the
virtual IP address concatenated with the group name (and hashed again) as a key to
the SM. The SM then returns the virtual MAC address of this host and P2PVPN is
able to generate an ARP response. The initial TCP-SYN is passed to the P2PVPN
process, which will lookup the actual endpoint of the remote peer. Therefore, the
virtual MAC address together with the group name is used as a key in order to retrieve
the value of the public endpoint. Finally, P2PVPN establishes a DTLS connection to
the remote endpoint, which provides authentication and encryption of the encapsulated
data packet. On the receiver side the packet is decrypted, decapsulated, written to the
corresponding network device and eventually received by the application.

Security

Our security concept relies on X.509 certificates for authentication and uses DTLS as a
protocol providing mutual authentication and data confidentiality over UDP. With the
extension as defined in 7.6.1, DTLS in combination with our MicroCA is also able to
provide authorization and allows restricting a connection based on additional metadata
of the client. The distribution of certificates to clients, as well as the trust establishment
between different networks can be done using all our mechanisms as described above.

Since P2PVPN can be seen as a purely decentralized approach, the security of the
system depends on the security of the storing mechanism as described above. For un-
managed networks and small groups as created by our MicroCA approach, the storing
mechanism can be kept private and very simple (e.g. a protected web-service or data-
base running on a home router) and more or less static configurations can be exchanged
via a secure channel (secured by the MicroCAs) before establishing the actual P2PVPN
connection. This avoids security problems of storing mechanisms such as Distributed
Hash Tables (DHTs). However, for larger deployments DHTs might be a valid design
choice.

Additionally, there are a few extensions when considering the fact that there is no
central authority in the network. Before joining a centralized VPN network, a new
client has to authenticate itself to the VPN server. In P2PVPN we follow two different
approaches: the first one assumes that one peer acts as a central authority and decides
who is allowed to join the network (monarchy approach [46]). This super-node would
therefore run the PDP and define policies for it. Additionally, the initiator might sign
all entries before adding them to the storing mechanism.

Our second approach follows the group voting approach. Whenever a new client
wants to join the network, members (either all or only a subset) are allowed to vote if
they want to accept the new node or not. As one important decision factor, in [41] we
utilized smartcards following the Java Card 3.0 Connected Edition19 standard to check
the integrity of a system (by performing a remote attestation [152]) before letting it
join the VPN. This allows to make sure that clients within the virtual network are not
infected by malware or viruses and only run well-defined and well-understood software.

19 http://www.oracle.com

178 8. New Middlebox Services

Implementation

Our implementation is based on a TAP device that forwards all traffic including the
layer 2 headers to the user-space of our program. We use the patched openssl library20

for DTLS operations and the DHT Entangled21 based on Kademlia [94] as an example
for a storage mechanism.

There are basically two possibilities for multiplexing incoming and outgoing VPN
connections: First, it would be possible to define a small header that carries the group
name, which allows using only one transport layer port for all virtual networks. Second,
and this is the approach we follow, multiplexing can be done using different ports to
distinguish different virtual networks. Thus, once a new P2P instance is set up, an
available port is picked and registered to the DHT.

The algorithm below (8.2) shows the pseudo-code for the processing of outgoing
packets following the steps of figure 8.8. For the integration of the middlebox traver-
sal framework we provide two possibilities: First, a peer may choose to register the
P2PVPN endpoint as a globally reachable service (middlebox service category Global
Service Provisioning (GSP)) and thus call the framework to make the endpoint publicly
reachable. Second, if signaling is desired the peer may register an identifier (e.g. its
unique cryptographic ID according to 7.4.1) that can be used to agree on a valid public
endpoint following the protocol as presented above.

1 while receiveFromTAP do
2 analyzeLayer2(packet);
3 if packet is ARP then
4 intercept ARP;
5 query cache or DHT for vMAC;
6 assemble ARP response and send it;

7 else
8 analyzeLayer3(packet);
9 query cache or DHT for public endpoint;

10 if remote endpoint then
11 invoke middlebox traversal;
12 end if
13 pass packet to DTLS ;

14 end if

15 end while

Alg. 8.2: Pseudo-code for the processing of outgoing packets

Evaluation

Finally, we evaluate the performance of our implementation as it is critical for the
applicability of our approach and compare it to the state of the art VPN solutions
Hamachi, N2N and OpenVPN. Most VPNs are implemented in the user-space of the
operating system and context switches between kernel and user-space decrease the
maximum throughput. Additionally, encryption and encapsulation has to be performed
for every packet, which also influences the processing time.

The experiments were conducted on three PCs with a standard Debian GNU/Linux
6.0 operating system running kernel 2.6.32-5-amd64. Two clients with a quad-core Intel

20 http://www.openssl.org
21 http://entangled.sourceforge.net/

8.4. Virtual and Dynamic Infrastructures 179

Core i5-2520M CPU and 8Gb of RAM were connected to a gateway with two Intel
Gigabit network cards and an AMD Athlon(tm) Dual Core Processor 4850e with also
8Gb of RAM. The gateway acted as a server when evaluating OpenVPN, as a supernode
for evaluating N2N and as the DHT for P2PVPN. There was no cross-traffic and the
roundtrip time of ICMP echo requests/responses between the two clients was 0.406ms
on average. The performance measurements were done using the Linux tool iperf22 with
its standard settings. Each test was repeated 50 times. The direct average throughput
(10 runs with a standard deviation of 1.6) between the two clients was 933MBit/s.

 0

 50

 100

 150

 200

 250

 300

 350

 400

Hamachi N2N OpenVPN
UDP

OpenVPN
TCP

P2PVPN

Th
ro

ug
hp

ut
 in

 M
Bi

t/s

Fig. 8.9: Performance of P2PVPN compared to related (P2P)VPN implementations

The first test compares P2PVPN with a selection of the state of the art, namely
Hamachi, N2N and OpenVPN. The results are depicted in figure 8.9, where each bar
depicts the maximum and the minimum value of all measurements. The rectangle
shows the range between the 0.1 and the 0.9-quantile (80% of all values). The black
line within the rectangle represents the arithmetic mean value for each test series. For
Hamachi the standard settings were used, which led to an encapsulated UDP traffic
between the two clients. With an arithmetic mean value of 58.91MBit/s, Hamachi
was the slowest of our candidates. As the Linux version is only in a beta state and the
source code is not available, we were not able to analyze this further.

N2N23 was configured with a static key passed at the command line and used a
supernode running at the gateway. The supernode was only contacted by the edge
nodes at the beginning of the connection to determine the actual endpoints and for
resolving ARP requests via broadcast messages. Afterwards, the packet flow was from
client to client via UDP. With these settings we measured an average throughput of
73.28MBit/s on our gigabit link.

We then set up an OpenVPN server on the gateway in order to compare P2P-VPN
approaches to traditional client-server implementations. We distributed certificates to
our clients and configured them to use the AES-128-CBC algorithm for encryption and

22 http://sourceforge.net/projects/iperf
23 svn trunk, checkout August 5th 2012

180 8. New Middlebox Services

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

P2PVPN
plain

P2PVPN
D-TLS eNULL

P2PVPN
D-TLS 128

P2PVPN
D-TLS 256

Th
ro

ug
hp

ut
 in

 M
Bi

t/s

Fig. 8.10: Performance of P2PVPN

 0

 50

 100

 150

 200

 250

 300

 350

 0 2500 5000 7500 10000 12500 15000 17500 20000

Th
ro

ug
hp

ut
 in

 M
Bi

t/s

MTU size of TAP device

UDP: aes-128-cbc
TCP: aes-128-cbc

Fig. 8.11: Performance of OpenVPN depen-
dending on the MTU size

enabled LZO compression (disabling compression didn’t influence our results). The
MTU of the TAP device was set to 1500. We allowed a peer-to-peer communica-
tion by setting the client-to-client option. With these settings we got a throughput
of only 131MBit/s for UDP encapsulation and an average of 303.4MBit/s for TCP
encapsulation. When adjusting the MTU size, we finally got a maximum through-
put of 247.2MBit/s for UDP. Figure 8.11 shows the influence of the MTU value on
the throughput. By setting the value to 10000 and by disabling OpenVPN’s internal
fragmentation, the throughput increases dramatically on a gigabit link. A 100Mbit/s
Ethernet link can be saturated by the default values. This is also documented on the
OpenVPN website24.

Finally, P2PVPN was configured to use DTLS with X.509 certificates and AES-
128-CBC as its encryption algorithm. Our implementation uses the standard Debian
OpenSSL library version 0.9.8o-4 that supports DTLS. The DHT was configured on
the gateway and the clients used it only to resolve ARP messages and to look up
the remote address once. With these settings we measured an average throughput of
362.5MBit/s. The advantage of sending traffic peer-to-peer is because the OpenVPN
gateway decrypts and re-encrypts every message that is forwarded from one client to
another. With P2PVPN, a DTLS connection is directly established between two peers.
We confirmed this finding by measuring the throughput of OpenVPN between one
client and the server: with 350.4MBit/s it was almost as fast as P2PVPN between two
clients.

We then evaluated P2PVPN in more detail by adjusting the encryption param-
eters of DTLS. Figure 8.10 shows the results of four measurement series. P2PVPN
plain bypassed the DTLS library and our rather rudimental thread handling. Iperf
packets were simply encapsulated, sent via UDP and decapsulated again, leading to a
throughput of 845.75MBit/s. When enabling DTLS again and setting the encryption
method to eNULL (no encryption at all) the throughput dropped to 431.92MBit/s.
Thus, threading and the overhead of the DTLS protocol has a significant impact on the
performance. We then compared two different encryption settings: with a key length
of 128bit we obtained a throughput of 362.5MBit/s as described above. When set-
ting it to 256bit, the throughput remained at the same level: 367.11MBit/s, which
meets our expectation for a modern quad-core CPU. Considering the early stage of the
DTLS implementation and our proof-of-concept implementation, there is further room
for improvement in the future. Our throughput measurements show that a peer-to-peer

24 http://community.openvpn.net/openvpn/wiki/Gigabit Networks Linux

8.4. Virtual and Dynamic Infrastructures 181

VPN solution is suitable for asymmetric Internet services that can often be found in
unmanaged networks. The latency of establishing new connections, however, depends
on the storage mechanism or signaling infrastructure (e.g. the DHT) and will most
likely be higher for P2P approaches. The actual data connection benefits from direct
connections between individual peers, which removes the need for the re-encapsulation
of packets on the server.

8.4.4 Resource Manager

After choosing one of the VPN solutions as described above for virtualizing networks,
the Resource Manager (RM) is contacted to deploy the new configuration or to ma-
nipulate an existing one. We propose to use our unique cryptographic identities as
described in chapter 7 for identifying the RM and for connecting to it. The RM can
then be seen as a legacy SSL/TLS service and equipped with the ability to also query
a PEP/PDP for authorization. In a nutshell, our resource manager has the following
properties:

• Each RM holds a valid certificate signed by the corresponding MicroCA.

• The ID of the RM (ServiceID.MicroCAID) together with its current IP address
is registered to a database for reachability.

• The RM uses our middlebox traversal framework and registers its current IP and
port as a globally reachable service for reachability.

• The RM uses SSL/TLS to 1) mutually authenticate clients and 2) intercept the
handshake for authorization.

• (XACML)Policies in the MicroCA are used to configure who is allowed to access
what functionality. For example, the delegation feature of XACML version 3.0
allows an administrator to delegate the configuration of a resource (e.g. a VPN
for gaming purposes) to a specific user.

• The interface of the RM towards the administrator is rather generic and follows
our approaches for bridging heterogeneity in home networks as presented in [112].
The RM itself is responsible for managing host specific resources, e.g. invoking the
bridging command in Linux vs. bridging commands in other operating systems.

monitor

MR

Resource
Manager

plan executeXML
via TLS

XML via TLS

GUI

analyze

Fig. 8.12: Concept of the Resource Manager implementing MAPE

The internal concept of the RM is derived from approaches to autonomic comput-
ing [54]. The RM implements a closed control loop (MAPE: Monitor, Analyze, Plan,
Execute) enabling situation-based decisions and feedback [39] to control Managed Re-
sources (MR) such as network interfaces, virtual machines and bridges. As depicted

182 8. New Middlebox Services

in figure 8.12, a user interacts with the RM either via a GUI or by directly sending a
configuration file to it. The rather generic description (see listing below) is then trans-
formed within the plan stage into an implementation specific command. For example,
an “add VM office to P2PVPN network office” directive would be transformed to the
Linux command “brctl addif office vif0”, thus adding the virtual interface vif0 to the
(already existing) bridge named office. The command is then invoked within the ex-
ecute stage, while the monitor stage continuously observes changes and reports them
back in a structured way (analyze) using our software tool LinEX [106] as described in
section 4.3.5.

<machine_definition>

<libvirt>

<description>

<domain type="xen">

<name>machine1</name>

<uuid>f0672baf-3dbd-6923-3e68-d1a3d1af568a</uuid>

<memory>131072</memory>

...

<devices>

<disk type="file" device="disk">...</disk>

...

</devices>

</domain>

</description>

</libvirt>

<p2pvpn>

<param name="groupName">home</param>

<param name="IP">172.16.1.1</param>

<param name="MAC">00:34:11:a5:32:ba</param>

...

</p2pvpn>

</machine_definition>

List. 8.2: Example configuration file for the RM

Listing 8.2 shows an example configuration file of a virtual configuration as a user
would send it (via the SSL/TLS service) to the RM. In order to describe the settings of
the virtual machine itself, we decided to use libvirt25, a virtualization API that is able
to utilze many different virtualization techniques such as XEN26, KVM27, VMware28

and OpenVZ29. In addition to the VM description we defined a P2PVPN section that
describes to which virtual network the VM should be bridged. In this case, the VM
machine1 is part of the virtual network home. Thus, the analyze stage of the RM
has to determine if the network already exists and decide which commands should be
invoked. For example, if the virtual network already exists, it would simply add the
virtual interface of machine1 to the bridge. If it doesn’t exist, a new P2PVPN instance,
as well as a new bridge has to be created. The same is true for leaving the network or
for joining a different one. This example illustrates the usefulness of the separation of
the analyze and execute stage.

25 http://libvirt.org
26 http://www.xen.org
27 http://www.linux-kvm.org
28 http://www.vmware.com/
29 http://www.openvz.org

8.4. Virtual and Dynamic Infrastructures 183

On using Smartcards for Configuration

Instead of relying on an external entity that provides the configuration file, a smartcard
can also be used to initialize the system. It may unlock (or even hold) policies for new
configurations and once connected to the configuring host (e.g. an external management
host or b directly controlling the Resource Manager of a machine) and unlocked by
the user (a PIN is used for encrypting the private key that is stored on the card),
an encrypted configuration file can be downloaded from a remote server and loaded
into the RM. In a more advanced scenario the configuration file can also be stored
on the smartcard itself, thus being completely independent from external entities. We
developed and used this approach in [79] to automatically load and en/decrypt virtual
machine images for distributed installations.

8.4.5 Summary

This section presented an approach that combines host and network virtualization al-
lowing the deployment of dynamic infrastructures. A Resource Manager implementing
a MAPE cycle and running on the host operating system (the privileged domain) con-
figures the system based on a high-level configuration as provided by a user or by a
hardware token. We also presented P2PVPN, a solution for bridging networks in a
decentralized way using an arbitrary storing mechanism. We showed how this archi-
tecture can be used for extending our MicroCA approach for unmanaged networks and
mentioned different application areas and future scenarios.

184 8. New Middlebox Services

8.5 Summary and Key Findings

In this section we showed how middlebox services can be applied to open problems in
today’s networks (Q4 according to section 1.1). The first middlebox service equips the
Devices Profile for Web-Services (DPWS) with the authorization framework XACML,
thus securing the access to specific services in the network. Policies on the middlebox
also allow controlling the discovery of services in remote trusted networks using our se-
cure identities and trust relationships as presented in chapter 7. Our second middlebox
service, PrivMid6, targets the privacy problem that is introduced by the deployment
of IPv6. Instead of relying on hosts to implement IPv6 privacy extensions, PrivMid6
provides privacy to a network by translating between fixed internal and randomized
external addresses in a checksum-neutral way. In contrary to state of the art solutions,
PrivMid6 also randomizes the subnet bits and allows defining blocks of static addresses
that can be used to provide services. Finally, our third middlebox services proposes
to combine host and network virtualization to create and manage dynamic network
infrastructures for home and enterprise networks.

Key Findings of this chapter
(and contributions according to section 1.2):

• Unmanaged networks offer only little security and privacy features.
Middlebox services help to introduce new features to existing networks
without having to change existing software deployments.

C8.1 We used the Devices Profile for Web Services (DPWS) as a refer-
ence example for connecting existing SSL/TLS-based services to our
MicroCA approach. A new middlebox service allows discovering and
using service in trusted remote networks and adds authorization to
DPWS.

C8.2 Our middlebox PrivMid6 targets the privacy vs. connectivity problem
of IPv6 networks by randomizing the complete IPv6 suffix based on
policies. PrivMid6 provides a trade-off between privacy and reachabil-
ity without relying on the hosts to run specific software.

C8.3 Virtualization helps to run new services on top of existing installations
and networks. The proposed combination of host and network virtual-
ization together with a P2PVPN approach allows deploying dynamic
and flexible configurations for unmanaged networks.

Part V

CONCLUSIONS

9. CONCLUSION

During the last few years the Internet has become the largest communication network
in the world. The growing commercial success of the Internet, the availability of more
and more devices and the need for innovations have led to the deployment of middle-
boxes and to the violation of the initial end-to-end argument. This violation causes
numerous problems: Hosts located in private networks are not directly reachable from
the Internet, packets are filtered by firewalls and proxies and web-caches only deliver
specific web-content.

The goal of this thesis was to understand the behavior of middleboxes and to develop
solutions to cope with them. In part I we gave an introduction to this thesis and
presented the fundamentals regarding Internet architectures and middleboxes. Part II
analyzed middlebox behavior by designing algorithms for an experimental analysis. The
results of our conducted field test served as an input for part III where we developed our
knowledge-based approach to middlebox traversal. Finally, part IV covered the security
and application of middleboxes and presented a security architecture for unmanaged
networks, as well as new middlebox services.

9.1 Contributions

The contribution of this thesis is the study and development of concepts and algorithms
for understanding the behavior of middleboxes, their traversal, as well as their appli-
cation to problems that have emerged with the growing success of the Internet. The
main contributions of this thesis (as also shown in table 9.1) are as follows:

Processing and Information Model for Middlebox Behavior (C3.1, C4.1):
Due to the lack of standardization, middlebox behavior influences many protocols and
applications in a negative way. In the state of the art middlebox behavior has not been
thoroughly analyzed in a way that helps to fully understand the implications for appli-
cations and traversal techniques. In this thesis we presented two models for describing
middlebox behavior: Our processing model allows expressing the individual processing
steps for arbitrary middleboxes. Our information model on the other hand holds be-
havioral characteristics and properties of middleboxes. An instance of the information
model represents the exact behavior of a specific middlebox and can be used as an input
for customizing traversal techniques. The key findings of chapters 3 and 4 regarding
the processing and information model were as follows:

• Middlebox behavior and especially NAT behavior is not standardized.

• In the state of the art there have been many efforts to characterize NAT behavior,
but the impact of these classifications remains unclear.

• Our processing model helps to describe and understand middlebox packet pro-
cessing using arbitrary operations.

• Our information model contains relevant middlebox properties and serves as a
formal representation for middlebox behavior.

188 9. Conclusion

Research Question State of the Art This thesis

Q1 Does a thorough and structured
analysis of middlebox behavior help
to understand the implications for
applications and services and to im-
prove the success rate of middlebox
traversal techniques?

MB implication
for applications
unclear. Success
rate of many
techniques rather
low.

C3.1, C4.1-C4.3: Ex-
perimental Analysis shows
more room for improve-
ment if behavior is under-
stood.

Q2 Can the knowledge about the
behavior of involved middleboxes
be used to apply and parameterize
middlebox techniques suitable for
applications and the involved infras-
tructure?

Many individual
solutions and
frameworks with
trial and error
(ICE, Skype).

C5.1, C6.1-C6.2: Our
knowledge-based frame-
work parameterizes MB
techniques based on MB
behavior and on applica-
tion specific requirements.

Q3 Can security mechanisms com-
mon in enterprise networks be ap-
plied to networks that lack profes-
sional administration in order to se-
cure middlebox traversal?

Very little secu-
rity mechanisms
in unmanaged
networks due to
complexity.

C7.1: Our security infras-
tructure allows the man-
agement of secure identi-
ties in a user-friendly way
and hides the complexity
from its users.

Q4 Can well-designed and well-
understood middlebox services be a
valid design principle for the Inter-
net and can middlebox services be
applied to open problems in today’s
networks?

Many commercial
middleboxes. Im-
pact unclear.

C8.1-C8.3: Well-defined
middlebox services for
solving open problems
proposed.

Tab. 9.1: Contributions of this thesis

Experimental Analysis of Middlebox Behavior (C4.2, C4.3): To understand
different middlebox implementations we conducted an experimental analysis. Our de-
signed test algorithms create instances of the information model that can be verified
using a virtualized testbed. A public field test gave an insight on the deployment and
behavior of middleboxes in today’s Internet. Based on the results of the field test we
were able to give recommendations on how to improve existing traversal solutions and
how to design future ones. The key findings of chapter 4 were as follows:

• The test routines and algorithms designed in this thesis allow systematically mea-
suring middlebox behavior and to create an information model instance that rep-
resents a specific middlebox. An experimental analysis first verified our algorithms
in a virtualized testbed, before conducting a public field test.

• Only 68.4% (63.4% for TCP) of all constellations in the Internet provide the
essential prerequisites for behavior-based traversal.

• Even if the middlebox implements a connection dependent binding strategy, in
approx. 60% for UDP and 46% for TCP it is still possible to predict the external
binding by analyzing binding patterns.

• Large Scale NAT is already deployed by many ISPs and hinders communication,
especially in mobile networks.

9.1. Contributions 189

• A single traversal mechanism can never be as effective as a solution that carefully
parameterizes a basic traversal algorithm according to the current situation, the
topology and the behavior of the involved middleboxes.

Service Categories for Middlebox Traversal (C5.1): When presenting the state
of the art in middlebox traversal we figured that existing solutions not only have a
low success rate, but also establish connections without considering additional require-
ments of applications and users. We stated that a middlebox traversal technique should
enable an application to communicate across middleboxes in a way that is compliant
with authorization and additional policies as defined by privileged users. This led us
to the definition of four middlebox traversal service categories that also consider ex-
ternal infrastructure and the role of an application. We showed how existing traversal
techniques can be applied to our service categories and stated that a middlebox traver-
sal framework should select a technique based on the accessibility requirements of an
application. The key findings of chapter 5 were as follows:

• Numerous state of the art traversal techniques exist that may or may not work
dependent on the behavior of the middlebox and the availability of external in-
frastructures.

• A middlebox traversal technique should not only enable the communication across
middleboxes, but also consider authorization and accessibility requirements, as
well as additional policies as defined by a user or administrator of a network.

• Middlebox Traversal Service Categories help to achieve this goal by taking the
role of the application, as well as available infrastructure into account.

Knowledge-based Framework for Middlebox Traversal (C6.1, C6.2): Based
on the findings of our field test and on the evaluation of existing middlebox traversal
techniques we presented NOMADS, an innovative framework for middlebox traversal.
NOMADS not only applies middlebox traversal techniques for the sake of connectivity,
but also considers higher-level requirements of applications. Decisions about the appli-
cability of integrated traversal techniques are made based on the knowledge about the
network, the application and the participating entities. Our information model helps
to pair NOMADS instances and to find an optimal solution for the given situation.
Besides being more flexible, the knowledge-based approach also has performance ad-
vantages over the state of the art due to decoupling the gathering of information from
the actual traversal. Finally, two new middlebox traversal techniques were presented
and the key findings of chapter 6 were as follows:

• Knowledge-based middlebox traversal was proposed to react to the findings of our
field test.

• The NOMADS framework supports our middlebox traversal service categories
and considers external user-defined policies.

• NOMADS integrates existing traversal techniques and parameterizes them based
on the actual behavior to increase their success rate.

• NOMADS is significantly faster and more applicable to open problems than state
of the art frameworks.

• Two new middlebox traversal techniques for restricted environments were devel-
oped: DPWS-IGD can be seen as a secure alternative to UPnP and AutoMID
allows hole punching without the need of a third party.

190 9. Conclusion

Security Infrastructure for Unmanaged Networks (C7.1): Today, the authen-
tication of services in the Internet is provided via digital public key certificates. Due to
the complexity of maintaining a traditional PKI, authentication in unmanaged networks
is often not available. We argued that an adaption to unmanaged networks is possible
and identified the combination of a local Certification Authority, the MicroCA, and the
Web of Trust approach as suitable for unmanaged networks. This combination enables
the easy management of all devices, users and services within one network and to es-
tablish trust into a complete key-family rather than in only one key. Our system assists
inexperienced users in maintaining their own PKI and hides the technical complexity
from them. Trust establishment mechanisms for a direct pairing and a remote pairing
via social networks were presented. The key findings of chapter 7 were as follows:

• Inexperienced users that are often found in unmanaged networks are not able
and/or willing to maintain enterprise grade security mechanisms, although they
would benefit from them.

• The presented MicroCA architecture provides almost zero-configuration plug and
play security to unmanaged networks.

• The Device Registration process describes an easy-to-use mechanism for issuing
public key certificates to devices and users.

• By using already established trust relationships of social networks in combination
with a Web of Trust-like rating system, it is possible to establish a certain level
of trust into a previously unknown identity.
• Our infrastructure provides authorization to legacy services through SSL/TLS

interception.

Innovative Middlebox Services (C8.1-C8.3): Middleboxes may not only cause
problems but, if designed and deployed in a well-defined way, may also be valid design
components for today’s and tomorrow’s Internet. In chapter 8 we presented three
middlebox services and our findings were as follows:

• Unmanaged networks offer only little security and privacy features. Middlebox
services help to introduce new features to existing networks without having to
change existing software deployments.

• We used the Devices Profile for Web Services (DPWS) as a reference example for
connecting existing SSL/TLS-based services to our MicroCA approach. A new
middlebox service allows discovering and using service in trusted remote networks
and adds authorization to DPWS.

• Our middlebox PrivMid6 targets the privacy vs. connectivity problem of IPv6
networks by randomizing the complete IPv6 suffix based on policies. PrivMid6
provides a trade-off between privacy and reachability without relying on the hosts
to run specific software.

• Virtualization helps to run new services on top of existing installations and net-
works. The proposed combination of host and network virtualization together
with a P2PVPN approach allows deploying dynamic and flexible configurations
for unmanaged networks.

9.2. Future Work 191

9.2 Future Work

For each part of this thesis there are a number of directions for future research:

Behavior of Middleboxes: The first instance of the field test conducted in this
thesis was dependent on volunteers that download a software and execute it on their
computer. To remove the platform dependency, a web-based solution was developed.
To reach a larger number of users further improvements are desirable: We have already
implemented selected algorithms for an early version of the Android-based measurement
infrastructure MeasrDroid, which allows constantly measuring the current network and
delivers promising results. An adaption of all algorithms to Android is highly desirable.
Additionally, new measurement platforms, such as the browser-based Fathom [32] or
techniques such as web-sockets and Java Scripts, may help to collect more data. The
individual tests and algorithms can be seen as a proof of concept and there is further
room for improvement. Especially our topology detection algorithm may deliver more
accurate results with a TCP-based implementation. Finally, we did not conduct further
tests on content manipulation, filtering and censoring. These aspects could be examined
by integrating appropriate test routines into our software.

Traversal of Middleboxes: Our knowledge-based approach was motivated by the
findings of our field test and many of the findings have been adapted and integrated.
However, there is still room for further improvements: The implication of multiple
clients behind the same middlebox have only been considered marginally when present-
ing our endpoint prediction approach. However, for the coordination of clients located
within the same network a more detailed knowledge about the topology is essential for
a high success rate on middlebox traversal. Additionally, the use of a distributed signal-
ing infrastructure (e.g. P2P-SIP) was proposed, but not implemented and evaluated.
Future work should also look at different ways of utilizing existing infrastructures and
to extend our AutoMID approach to be used for coordinating NOMADS instances.

Security and Application of Middleboxes: Our secure service infrastructure is an
approach for introducing enterprise-grade security mechanisms to unmanaged networks.
While we mainly focused on the technical side, future research should also consider the
user’s perspective, because the frustration of overstrained users is the main hindrance
for the introduction of a security solution. Well-designed graphical interfaces and clear
usability structures are essential for a real world deployment. Pre-defined policies that
are distributed in an app-store like manner may also help to simplify setting up an initial
installation. Furthermore, the extension of additional existing services is necessary to
support a wide range of applications. One possible way is to introduce the proposed
SSL/TLS interception to existing security libraries. Finally, the runtime integrity of
the MicroCA and of our virtualized service platform should be ensured by host-based
integrity measurements.

192 9. Conclusion

APPENDIX

A. DTD OF THE MIDDLEBOX INFORMATION MODEL

1 <?xml version="1.0" encoding="utf-8"?>

2 <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" targetNamespace="http://example.

org/MiddleboxSchema" xmlns="http://example.org/MiddleboxSchema">

3
4 <xs:simpleType name="TableStrategyEnum">

5 <xs:restriction base="xs:string">

6 <xs:enumeration value="Replacement"/>

7 <xs:enumeration value="Block"/>

8 <xs:enumeration value="Other"/>

9 </xs:restriction>

10 </xs:simpleType>

11
12 <xs:simpleType name="TimerNameEnum">

13 <xs:restriction base="xs:string">

14 <xs:enumeration value="TCP-SYN"/>

15 <xs:enumeration value="TCP-Established"/>

16 <xs:enumeration value="TCP-FIN"/>

17 <xs:enumeration value="UDP"/>

18 <xs:enumeration value="UDPStream"/>

19 <xs:enumeration value="Other"/>

20 </xs:restriction>

21 </xs:simpleType>

22
23 <xs:simpleType name="FilteringTypeEnum">

24 <xs:restriction base="xs:string">

25 <xs:enumeration value="Independent"/>

26 <xs:enumeration value="Address Restricted"/>

27 <xs:enumeration value="Adress and Port Restricted"/>

28 <xs:enumeration value="Other"/>

29 </xs:restriction>

30 </xs:simpleType>

31
32 <xs:simpleType name="ProtocolLayerEnum">

33 <xs:restriction base="xs:string">

34 <xs:enumeration value="DataLinkLayer"/>

35 <xs:enumeration value="NetworkLayer"/>

36 <xs:enumeration value="TransportLayer"/>

37 <xs:enumeration value="ApplicationLayer"/>

38 </xs:restriction>

39 </xs:simpleType>

40
41 <xs:simpleType name="NATBindingEnum">

42 <xs:restriction base="xs:string">

43 <xs:enumeration value="EndpointIndependent"/>

44 <xs:enumeration value="ConnectionDependent"/>

45 </xs:restriction>

46 </xs:simpleType>

47
48 <xs:simpleType name="PoolingEnum">

49 <xs:restriction base="xs:string">

50 <xs:enumeration value="Paired"/>

196 A. DTD of the Middlebox Information Model

51 <xs:enumeration value="Unpaired"/>

52 </xs:restriction>

53 </xs:simpleType>

54
55 <xs:simpleType name="PortBindingEnum">

56 <xs:restriction base="xs:string">

57 <xs:enumeration value="PortPreservation"/>

58 <xs:enumeration value="NoPortPres"/>

59 </xs:restriction>

60 </xs:simpleType>

61
62 <xs:simpleType name="MappingAlgorithmEnum">

63 <xs:restriction base="xs:string">

64 <xs:enumeration value="Fixed-Delta"/>

65 <xs:enumeration value="Pattern-based"/>

66 <xs:enumeration value="Error-Prone"/>

67 </xs:restriction>

68 </xs:simpleType>

69
70 <xs:simpleType name="FilteringProtocolBasedEnum">

71 <xs:restriction base="xs:string">

72 <xs:enumeration value="Echo Request out, TTL exceeded in"/>

73 <xs:enumeration value="UDP out, TTL exceeded in"/>

74 <xs:enumeration value="Echo Request out, Echo Reply in"/>

75 <xs:enumeration value="TTL exceeded out"/>

76 <xs:enumeration value="Echo Request out"/>

77 <xs:enumeration value="Echo Reply out"/>

78 <xs:enumeration value="Other"/>

79 <xs:enumeration value="TCP-SYN out, TCP-SYN in"/>

80 <xs:enumeration value="TCP-RST out"/>

81 </xs:restriction>

82 </xs:simpleType>

83
84 <xs:simpleType name="StatefulPolicyEnum">

85 <xs:restriction base="xs:string">

86 <xs:enumeration value="UDP out, Des. unreachable in"/>

87 <xs:enumeration value="UDP out, ICMP TTL exceeded in"/>

88 <xs:enumeration value="TCP-SYN out, TCP-RST in"/>

89 <xs:enumeration value="TCP-SYN out, ICMP TTL exceeded in"/>

90 <xs:enumeration value="Other"/>

91 </xs:restriction>

92 </xs:simpleType>

93
94 <xs:simpleType name="NoStatePolicyEnum">

95 <xs:restriction base="xs:string">

96 <xs:enumeration value="UDP in, Dest. unreachable out"/>

97 <xs:enumeration value="TCP-SYN in, TCP-RST out"/>

98 <xs:enumeration value="Other"/>

99 </xs:restriction>

100 </xs:simpleType>

101
102 <xs:complexType name="IPAddressTypev4">

103 <xs:sequence>

104 <xs:element name="IPAddress" type="xs:string"/>

105 <xs:element name="Netmask" type="xs:string"/>

106 <xs:element name="Comment" type="xs:string" minOccurs="0" maxOccurs="1"/>

107 </xs:sequence>

108 <xs:attribute name="IPVersion" type="xs:string" fixed="IPv4"/>

109 </xs:complexType>

110
111 <xs:complexType name="IPAddressTypev6">

197

112 <xs:sequence>

113 <xs:element name="IPAddress" type="xs:string"/>

114 <xs:element name="Prefix" type="xs:string"/>

115 <xs:element name="PrivacyExtension" type="xs:boolean" minOccurs="0" maxOccurs="1

"/>

116 <xs:element name="Comment" type="xs:string" minOccurs="0" maxOccurs="1"/>

117 </xs:sequence>

118 <xs:attribute name="IPVersion" type="xs:string" fixed="IPv6"/>

119 </xs:complexType>

120
121 <xs:complexType name="NetworkInterfaceType">

122 <xs:sequence>

123 <xs:element name="IPv4" type="IPAddressTypev4" minOccurs="0" maxOccurs="1"/>

124 <xs:element name="IPv6" type="IPAddressTypev6" minOccurs="0" maxOccurs="

unbounded"/>

125 </xs:sequence>

126 <xs:attribute name="NetworkInterfaceName" type="xs:string"/>

127 </xs:complexType>

128
129 <xs:complexType name="ProtocolLayersType">

130 <xs:sequence>

131 <xs:element name="Layer" type="ProtocolLayerEnum"/>

132 <xs:element name="Protocol" type="xs:string"/>

133 </xs:sequence>

134 </xs:complexType>

135
136 <xs:complexType name="StateTableType">

137 <xs:sequence>

138 <xs:element name="TableSize" type="xs:integer"/>

139 <xs:element name="TableStrategy" type="TableStrategyEnum"/>

140 </xs:sequence>

141 </xs:complexType>

142
143 <xs:complexType name="StatefulType">

144 <xs:sequence>

145 <xs:element name="StateTable" type="StateTableType" minOccurs="1" maxOccurs="1"/

>

146 <xs:element name="StateTimer" type="StateTimerType" minOccurs="1" maxOccurs="

unbounded"/>

147 <xs:element name="StateRemovePolicy" type="StatefulPolicyEnum" minOccurs="0"

maxOccurs="unbounded"/>

148 <xs:element name="NoStatePolicy" type="NoStatePolicyEnum" minOccurs="0"

maxOccurs="unbounded"/>

149 </xs:sequence>

150 <xs:attribute name="Layer" type="ProtocolLayerEnum"/>

151 <xs:attribute name="Protocol" type="xs:string"/>

152 </xs:complexType>

153
154 <xs:complexType name="StateTimerType">

155 <xs:sequence>

156 <xs:element name="Timer" type="TimerNameEnum"/>

157 <xs:element name="Value" type="xs:double"/>

158 </xs:sequence>

159 </xs:complexType>

160
161 <xs:complexType name="FilteringType">

162 <xs:sequence>

163 <xs:element name="State-based" type="FilteringTypeEnum" minOccurs="0" maxOccurs=

"1"/>

164 <xs:element name="Protocol-based" type="FilteringProtocolBasedEnum" minOccurs="0

" maxOccurs="1"/>

198 A. DTD of the Middlebox Information Model

165 <xs:element name="Policy-based" type="xs:string" minOccurs="0" maxOccurs="

unbounded"/>

166 </xs:sequence>

167 <xs:attribute name="Layer" type="ProtocolLayerEnum"/>

168 <xs:attribute name="Protocol" type="xs:string"/>

169 </xs:complexType>

170
171
172 <xs:complexType name="TranslationFieldsType">

173 <xs:sequence>

174 <xs:element name="Mechanism" type="FilteringTypeEnum"/>

175 </xs:sequence>

176 </xs:complexType>

177
178 <xs:complexType name="MappingType">

179 <xs:sequence>

180 <xs:element name="Algorithm" type="MappingAlgorithmEnum"/>

181 </xs:sequence>

182 </xs:complexType>

183
184 <xs:complexType name="BindingType">

185 <xs:sequence>

186 <xs:element name="PortBinding" type="PortBindingEnum"/>

187 <xs:element name="NATBinding" type="NATBindingEnum"/>

188 <xs:element name="AddressPooling" type="PoolingEnum"/>

189 </xs:sequence>

190 </xs:complexType>

191
192 <xs:complexType name="TranslationType">

193 <xs:sequence>

194 <xs:element name="Mapping" type="MappingType" minOccurs="0" maxOccurs="1"

/>

195 <xs:element name="Binding" type="BindingType" minOccurs="0" maxOccurs="1"

/>

196 <xs:element name="Fields" type="xs:string" minOccurs="0" maxOccurs="

unbounded"/>

197 </xs:sequence>

198 <xs:attribute name="Layer" type="ProtocolLayerEnum"/>

199 <xs:attribute name="Protocol" type="xs:string"/>

200 </xs:complexType>

201
202 <xs:element name="Middlebox">

203 <xs:complexType>

204 <xs:sequence>

205 <xs:element name="NetworkInterface" type="NetworkInterfaceType" minOccurs="0"

maxOccurs="unbounded"/>

206 <xs:element name="ProtocolLayers" type="ProtocolLayersType" minOccurs="1"

maxOccurs="unbounded"/>

207 <xs:element name="Stateful" type="StatefulType" minOccurs="0" maxOccurs="

unbounded"/>

208 <xs:element name="Filtering" type="FilteringType" minOccurs="0" maxOccurs="

unbounded"/>

209 <xs:element name="Translation_and_Modification" type="TranslationType"

minOccurs="0" maxOccurs="unbounded"/>

210 </xs:sequence>

211 <xs:attribute name="MiddleboxType" type="xs:string" use="required"/>

212 </xs:complexType>

213 </xs:element>

214
215 </xs:schema>

B. LIST OF MIDDLEBOXES

B.1 List of Recommended Home Routers

The following list was extracted from our testset 2 and contains home routers that could
be identified by their UPnP data. Of course, there are other models and manufacturers
that also showed “good” behavior, but as we could not clearly identify them using
UPnP, we cannot list them. We therefore recommend the following models and consider
them to behave “good” because:
• they implement an independent binding for UDP and TCP,
• all of them implement port preservation,
• all traversal algorithms for UDP and TCP have been tested successfully.

Manufacturer UPnP Model STUN

ASUSTeK Inc. ASUS Wireless Router AR
ASUSTeK Inc. RT-N66U PAR
ASUSTek Inc. RT-N56U Router PAR
AVM Berlin FRITZ!Box 2170 PAR
AVM Berlin FRITZ!Box 6360 Cable (kdg) PAR
AVM Berlin FRITZ!Box 7330 PAR
AVM Berlin FRITZ!Box Fon WLAN 7112 (UI) PAR
AVM Berlin FRITZ!Box Fon WLAN 7170 (UI) PAR
AVM Berlin FRITZ!Box Fon WLAN 7170 PAR
AVM Berlin FRITZ!Box Fon WLAN 7240 (UI) PAR
AVM Berlin FRITZ!Box Fon WLAN 7270 v1 (UI) PAR
AVM Berlin FRITZ!Box Fon WLAN 7270 v2 PAR
AVM Berlin FRITZ!Box Fon WLAN 7270 v3 PAR
AVM Berlin FRITZ!Box Fon WLAN 7320 (UI) AR
AVM Berlin FRITZ!Box Fon WLAN 7320 (UI) PAR
AVM Berlin FRITZ!Box Fon WLAN 7320 PAR
AVM Berlin FRITZ!Box Fon WLAN 7390 PAR
AVM Berlin FRITZ!Box WLAN 3170 PAR
AVM Berlin FRITZ!Box WLAN 3270 v3 PAR
AVM FRITZ!Box Fon WLAN (UI) PAR
Ambit EVW320B PAR
Buffalo Inc. Gateway PAR
Cisco Systems. Cisco VPN Router PAR
Cisco DPC2325 PAR
Cisco DPC2420 PAR
Cisco EPC3825 PAR
Cisco EPC3925 PAR
Cisco Linksys by Cisco Internet Gateway Device FC
Cisco Linksys by Cisco Internet Gateway Device PAR
D-Link Systems Wireless N Quadband Router PAR

200 B. List of Middleboxes

Manufacturer UPnP Model STUN

D-Link Systems Wireless N Router AR
D-Link D-Link DIR-320 PAR
D-Link D-Link DIR-615 PAR
D-Link DIR-655 PAR
D-Link Wireless Broadband Router PAR
DD-WRT Gateway PAR
Freebox NASModem/Routeur ADSLFTTH PAR
Linksys Inc. WRT54G2 PAR
Linksys 10100 4-Port VPN Router PAR
Motorola Corporation SBG6580 PAR
NETGEAR NETGEAR DGN3500B 16M Router PAR
NETGEAR CG3100D PAR
NETGEAR CG3101D PAR
NETGEAR VMDG480 PAR
NETGEAR, Inc. DG834Gv5 54 Mbps Wireless Router AR
NETGEAR, Inc. DGND3700 RangeMax NEXT PAR
NETGEAR, Inc. WNDR4500 N900 Wireless Router FC
NETGEAR, Inc. WNR2000 N300 Wireless Router FC
NETGEAR, Inc. Wireless-G Router AR
Netgear CG814WG v2 PAR
Netgear CGD24G-100NAS FC
Netgear VMDG280 PAR
OpenWRT OpenWRT router PAR
Pace plc Residential Gateway PAR
SMCD3GNV SMCD3GNV router PAR
SmoothWall Express SmoothWall Express router PAR
TP-LINK Wireless N Router TL-WR841N FC
Technicolor IGD with UPnP support AR
Thomson TWG870U FC
ZTE ZTE,pl,step3-sip-fr PAR
ZyXEL NBG5715 ZyXEL NBG5715 router PAR

B.2. List of Non-Recommended Home Routers 201

B.2 List of Non-Recommended Home Routers

The following middleboxes that have been identified via UPnP showed a connection
dependent behavior for UDP and TCP and none of our traversal tests was successful.

Manufacturer UPnP Model STUN

2004W-S 2004W-S SYM
ASUSTek ASUS Wireless Router SYM
AVM Berlin FRITZ!Box Fon WLAN 7570 vDSL SYM
Cisco Internet Access Server SYM
D-Link D-Link Corporation UPnP IGD in ISOS

1.00.08.dm12
SYM

D-Link Xtreme N GIGABIT Router SYM
D-Link D-Link DIR-300 SYM
D-Link D-Link DIR-600 SYM
D-Link Wireless Gaming Router SYM
D-Link Wireless N Router SYM
FreeBSD FreeBSD router SYM
Huawei Huawei Gateway SYM
Linksys Inc. Internet Access Server SYM
Motorola Netopia SmartModem SYM
NETGEAR, Inc. Linux router SYM
NETGEAR, Inc. NETGEAR 802.11 Broadcom Reference Range-

Max NEXT
SYM

NETGEAR, Inc. NETGEAR DGN2200 RangeMax NEXT SYM
NETGEAR, Inc. NETGEAR RangeMax N300 Wireless Router

WNR2200
SYM

NETGEAR, Inc. NETGEAR WNDR3400 N600 Wireless Router SYM
NETGEAR, Inc. NETGEAR WNDR4000 N750 Wireless Dual Band

Gigabit Router
SYM

NETGEAR, Inc. WNR2000 router SYM
Netopia, Inc. Netopia SmartModem SYM
THOMSON DSL Internet Gateway Device SYM
ZyXEL ZyXEL ZyWALL 10W Internet Security Gateway SYM

202 B. List of Middleboxes

C. NOMADS DOCUMENTATION

C.1 NOMADS Decision Tree

The decision tree as depicted in figure C.1 refers to the pairing procedure for hole
punching as described in section 6.4.6. The first part determines the predictability of
public endpoints (service S and requester R), whereas the second part makes sure that
the TTL field of the hole punching packet is set in a way that a possible answer (to the
hole punching packet) as sent by the requester does not close the created mapping by
accident.

Remove mapping on Port
unreachable in

(Stateful:StateRemovePolicy)
S

Part 2: UDP in
(Stateful:NoStatePolicy)

Endpoint predictable
(Binding:NATBinding)

Endpoint predictable
(Binding:NATBinding)

R

Part 1: Endpoint
predictable

(Binding:NATBinding)
S

R

Indep. Filtering
(Filtering:State-based)

S

Swap role

Part 2 (error-prone)Part 2

Part 2

Part 1

Part 2 (error-prone)

yes no

yes no

yes no

yes no

Remove mapping on
ICMP TTL exc. in

(Stateful:StateRemovePolicy)S

Port unreachable out

R
nothing out

yes no

Set TTL according
to topology

Default TTL

noyes

HP not possible

Default TTL

Part 2: TCP in
(Stateful:NoStatePolicy)

TCP-RST out

R
nothing out

Default TTLRemove mapping on TCP-
RST in

(Stateful:StateRemovePolicy)
S

Remove mapping on
ICMP TTL exc. in

(Stateful:StateRemovePolicy)S

yes no

Set TTL according
to topology

Default TTL

noyes

HP not possible

Default TTL

Fig. C.1: Decision tree for hole punching

204 C. NOMADS Documentation

C.2 NOMADS Signaling Protocol

established

- / Service Request

Model Request /
Updated Service
Request

Unauthorized /
Updated Service
Request

Endpoint / -

Swap Role /
Endpoint

Swap Role /
Error

Error / -

Service
Request sent

Service
Request /
Endpoint

Service
Request /
Unauthorized
or Model Request
or Swap Role

pending

ready

Service Request /
Endpoint

Endpoint / -

Error / -

Fig. C.2: State diagram for NOMADS

The state diagram as shown in figure C.2 depicts the individual messages of the
request response protocol. The notation we use here is “Input Message / Output
Message”. “Established” means that the framework reached a state where it is able to
forward the initial held back packet (e.g. the first TCP-SYN) to the received endpoint.
From now on all packets will use the negotiated endpoint.

C.3 NOMADS Socket API

// struct definitions

struct sipaddr

{

short sin_family;

unsigned short sin_port;

char * sin_sipaddr;

};

struct sipaddrinfo {

int ai_flags;

int ai_family;

int ai_socktype;

int ai_protocol;

size_t ai_addrlen;

struct sipaddr *sipaddr;

char *ai_canonname;

struct addrinfo *ai_next;

};

// create a file descriptor

int nomads_socket(int domain, int type, int protocol);

// connect to the socket given in sipaddr

int nomads_connect(int nomadsfd, const struct sipaddr *addr, socklen_t addrlen);

// send and receive data

C.3. NOMADS Socket API 205

int nomads_send(int nomadsfd, void *msg, int len, int flags);

int nomads_recv(int nomadsfd, void *msg, int len, int flags);

// close connection

int nomads_close(int nomadsfd);

// DNS lookup

// domain -> IP address

int getaddrinfo(const char *node, const char *service, const struct sipaddrinfo *hints,

struct addrinfo **res);

// IP address -> domain

int getnameinfo(const struct sipaddr *sa, socklen_t salen, char *host, size_t hostlen,

char *serv, size_t servlen, int flags);

// free struct

void freesipaddrinfo(struct sipaddrinfo *res);

List. C.1: The NOMADS socket API

206 C. NOMADS Documentation

Bibliography

[1] 3GPP. IP Multimedia Subsystem (IMS); Stage 2. TS 23.228, 3rd Generation
Partnership Project (3GPP), Sept. 2008.

[2] B. Aboba, L. Blunk, J. Vollbrecht, J. Carlson, and H. Levkowetz. Extensible
Authentication Protocol (EAP). RFC 3748 (Proposed Standard), June 2004.
Updated by RFC 5247.

[3] C. Aoun and E. Davies. Reasons to Move the Network Address Translator -
Protocol Translator (NAT-PT) to Historic Status. RFC 4966 (Informational),
July 2007.

[4] F. Audet and C. Jennings. Network Address Translation (NAT) Behavioral Re-
quirements for Unicast UDP. RFC 4787 (Best Current Practice), Jan. 2007.
Updated by RFC 6888.

[5] M. Bagnulo, P. Matthews, and I. van Beijnum. Stateful NAT64: Network Address
and Protocol Translation from IPv6 Clients to IPv4 Servers. RFC 6146 (Proposed
Standard), Apr. 2011.

[6] M. Bagnulo, A. Sullivan, P. Matthews, and I. van Beijnum. DNS64: DNS Exten-
sions for Network Address Translation from IPv6 Clients to IPv4 Servers. RFC
6147 (Proposed Standard), Apr. 2011.

[7] F. Baker, X. Li, C. Bao, and K. Yin. Framework for IPv4/IPv6 Translation. RFC
6144 (Informational), Apr. 2011.

[8] C. Bao, C. Huitema, M. Bagnulo, M. Boucadair, and X. Li. IPv6 Addressing of
IPv4/IPv6 Translators. RFC 6052 (Proposed Standard), Oct. 2010.

[9] D. Barrera, G. Wurster, and P. van Oorschot. Back to the Future: Revisiting
IPv6 Privacy Extensions. LOGIN: The USENIX Magazine, 36(1):16–26, 2011.

[10] S. Bendeich. A privacy aware Middlebox for IPv6. Bachelor thesis, Technische
Universität München, Germany, September 2012.

[11] A. Biggadike, D. Ferullo, G. Wilson, and A. Perrig. NATBLASTER: Establish-
ing TCP connections between hosts behind NATs. In ACM SIGCOMM Asia
Workshop, Beijing, China, 2005.

[12] M. Borella, D. Grabelsky, J. Lo, and K. Taniguchi. Realm Specific IP: Protocol
Specification. RFC 3103 (Experimental), Oct. 2001.

[13] M. Borella, J. Lo, D. Grabelsky, and G. Montenegro. Realm Specific IP: Frame-
work. RFC 3102 (Experimental), Oct. 2001.

[14] R. Braden, D. Borman, and C. Partridge. Computing the Internet checksum.
RFC 1071, Sept. 1988. Updated by RFC 1141.

208 BIBLIOGRAPHY

[15] B. Carpenter. Architectural Principles of the Internet. RFC 1958 (Informational),
June 1996. Updated by RFC 3439.

[16] B. Carpenter. Internet Transparency. RFC 2775 (Informational), Feb. 2000.

[17] B. Carpenter and S. Brim. Middleboxes: Taxonomy and Issues. RFC 3234
(Informational), Feb. 2002.

[18] D. L. Chaum. Untraceable electronic mail, return addresses, and digital
pseudonyms. Communications of the ACM, 24(2):84–90, Feb. 1981.

[19] S. Cheshire, B. Aboba, and E. Guttman. Dynamic Configuration of IPv4 Link-
Local Addresses. RFC 3927 (Proposed Standard), May 2005.

[20] S. Cheshire and M. Krochmal. DNS-Based Service Discovery. RFC 6763 (Pro-
posed Standard), Feb. 2013.

[21] S. Cheshire and M. Krochmal. Multicast DNS. RFC 6762 (Proposed Standard),
Feb. 2013.

[22] S. Cheshire and M. Krochmal. NAT Port Mapping Protocol (NAT-PMP). RFC
6886 (Informational), Apr. 2013.

[23] R. Chinnici, J.-J. Moreau, et al. Web Services Description Language (WSDL)
Version 2.0. W3C Recommendation, June 2007.

[24] D. Chouinard, J. Richardson, and M. Khare. H.323 and Firewalls. ITU-T SG16
H.323, Intel White Paper, 2005.

[25] B. Claise. Specification of the IP Flow Information Export (IPFIX) Protocol for
the Exchange of IP Traffic Flow Information. RFC 5101 (Proposed Standard),
Jan. 2008.

[26] D. Clark. The design philosophy of the DARPA internet protocols. In Sympo-
sium proceedings on Communications architectures and protocols, SIGCOMM ’88,
pages 106–114, New York, NY, USA, 1988. ACM.

[27] D. Clark, L. Chapin, V. Cerf, R. Braden, and R. Hobby. Towards the Future
Internet Architecture. RFC 1287 (Informational), Dec. 1991.

[28] D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Housley, and W. Polk. Inter-
net X.509 Public Key Infrastructure Certificate and Certificate Revocation List
(CRL) Profile. RFC 5280 (Proposed Standard), May 2008. Updated by RFC
6818.

[29] J. Crowcroft. Net neutrality: The technical side of the debate: a White Paper.
Computer Communication Review, 37(1):49–56, 2007.

[30] L. D’Acunto, J. Pouwelse, and H. Sips. A measurement of NAT and firewall
characteristics in peer-to-peer systems. In Proc. 15-th ASCI Conference, pages
1–5. Advanced School for Computing and Imaging (ASCI), June 2009.

[31] D. Degel. NAT-Traversal with DPWS. Bachelor thesis, Technische Universität
München, Germany, October 2009.

BIBLIOGRAPHY 209

[32] M. Dhawan, J. Samuel, R. Teixeira, C. Kreibich, M. Allman, N. Weaver, and
V. Paxson. Fathom: A Browser-based Network Measurement Platform. In ACM
SIGCOMM Internet Measurement Conference (IMC), Boston, MA, USA, Novem-
ber 2012.

[33] L. DiCioccio, R. Teixeira, M. May, and C. Kreibich. Probe and Pray: Using
UPnP for Home Network Measurements. In Proceedings of Passive and Active
Measurement Conference (PAM), Vienna, Austria, March 2012.

[34] T. Dierks and E. Rescorla. The Transport Layer Security (TLS) Protocol Version
1.2. RFC 5246 (Proposed Standard), Aug. 2008. Updated by RFCs 5746, 5878,
6176.

[35] T. Dietrich. DNSSEC Support by Home Routers. Technical report, Federal Office
for Information Security, 2010.

[36] M. Dietz and D. Grady. Secbook: Formalizing the Facebook Web of Trust.
http://apps.facebook.com/secbook/, 2011. (Accessed: 04/29/2013).

[37] R. Dingledine, N. Mathewson, and P. Syverson. Tor: The Second-Generation
Onion Router. In Proceedings of the 13th USENIX Security Symposium, pages
303–320, 2004.

[38] R. Dingledine and S. J. Murdoch. Performance Improvements on Tor or, Why
Tor is slow and what we’re going to do about it. https://www.torproject.org/
press/presskit/2009-03-11-performance.pdf. (Accessed: 04/29/2013).

[39] S. Dobson, S. Denazis, A. Fernández, D. Gäıti, E. Gelenbe, F. Massacci, P. Nixon,
F. Saffre, N. Schmidt, and F. Zambonelli. A survey of autonomic communications.
ACM Trans. Auton. Adapt. Syst., 1(2):223–259, Dec. 2006.

[40] D. Dolev and A. C. Yao. On the security of public key protocols. Technical
report, Stanford University, Stanford, CA, USA, 1981.

[41] M. Dorner. Combining Trusted Computing and Smart Cards for trustworthy VPN
access. Bachelor thesis, Technische Universität München, Germany, December
2012.

[42] D. Driscoll and A. Mensch. DPWS Version 1.1. OASIS Standard Specification,
July 2009.

[43] A. Durand, R. Droms, J. Woodyatt, and Y. Lee. Dual-Stack Lite Broadband
Deployments Following IPv4 Exhaustion. RFC 6333 (Proposed Standard), Aug.
2011.

[44] K. Egevang and P. Francis. The IP Network Address Translator (NAT). RFC
1631 (Informational), May 1994. Obsoleted by RFC 3022.

[45] C. Ellison. DeviceSecurity:1 Service Template. http://www.upnp.org/, 2003.
(Accessed: 04/29/2013).

[46] B. Elser, G. Groh, and T. Fuhrmann. Group Management in P2P Networks. In
Proceedings of the 2nd IEEE Workshop on Grid and P2P Systems and Applica-
tions, Zurich, Switzerland, August 2010.

http://apps.facebook.com/secbook/
https://www.torproject.org/press/presskit/2009-03-11-performance.pdf
https://www.torproject.org/press/presskit/2009-03-11-performance.pdf
http://www.upnp.org/

210 BIBLIOGRAPHY

[47] J. Eppinger. TCP Connections for P2P Applications - A Software Approach to
Solving the NAT Problem. Technical report, Carnegie Mellon University, Pitts-
burgh, PA, 2005.

[48] B. Ford, P. Srisuresh, and D. Kegel. Peer-to-peer communication across network
address translators. In Proceedings of the annual conference on USENIX Annual
Technical Conference, ATEC ’05, pages 13–13, Berkeley, CA, USA, 2005. USENIX
Association.

[49] M. Ford, M. Boucadair, A. Durand, P. Levis, and P. Roberts. Issues with IP
Address Sharing. RFC 6269 (Informational), June 2011.

[50] U. Forum. Internet Gateway Device (IGD) standardized device control protocol,
November 2001.

[51] J. Franks, P. Hallam-Baker, J. Hostetler, S. Lawrence, P. Leach, A. Luotonen,
and L. Stewart. HTTP Authentication: Basic and Digest Access Authentication.
RFC 2617 (Draft Standard), June 1999.

[52] V. Fuller, T. Li, J. Yu, and K. Varadhan. Supernetting: an Address Assignment
and Aggregation Strategy. RFC 1338 (Informational), June 1992. Obsoleted by
RFC 1519.

[53] V. Fuller, T. Li, J. Yu, and K. Varadhan. Classless Inter-Domain Routing (CIDR):
an Address Assignment and Aggregation Strategy. RFC 1519 (Proposed Stan-
dard), Sept. 1993. Obsoleted by RFC 4632.

[54] A. G. Ganek and T. A. Corbi. The dawning of the autonomic computing era.
IBM Syst. J., 42(1):5–18, Jan. 2003.

[55] A. Ganguly, A. Agrawal, P. O. Boykin, and R. Figueiredo. IP over P2P: Enabling
Self-configuring Virtual IP Networks for Grid Computing. In Proc. of 20th In-
ternational Parallel and Distributed Processing Symposium (IPDPS-2006, pages
1–10, 2006.

[56] D. Garcia. Universal plug and play (UPnP) Mapping Attacks. Presented at
DEFCON 19, Las Vegas, NV, USA, 2011.

[57] M. Gudgin et al. SOAP Version 1.2. W3C Recommendation, April 2007.

[58] M. Gudgin, M. Hadley, and T. Rogers. Web Services Addressing 1.0 - Core. W3C
Recommendation, May 2006.

[59] S. Guha, K. Biswas, B. Ford, S. Sivakumar, and P. Srisuresh. NAT Behavioral
Requirements for TCP. RFC 5382 (Best Current Practice), Oct. 2008.

[60] S. Guha and P. Francis. Characterization and measurement of TCP traversal
through NATs and firewalls. In Proceedings of the 5th ACM SIGCOMM confer-
ence on Internet Measurement, 2005.

[61] S. Guha and P. Francis. An end-middle-end approach to connection establish-
ment. In Proceedings of the 2007 conference on Applications, technologies, ar-
chitectures, and protocols for computer communications, SIGCOMM ’07, pages
193–204, New York, NY, USA, 2007. ACM.

BIBLIOGRAPHY 211

[62] S. Guha and P. Francis. Identity trail: covert surveillance using DNS. In Pro-
ceedings of the 7th international conference on Privacy enhancing technologies,
PET’07, pages 153–166, Berlin, Heidelberg, 2007. Springer-Verlag.

[63] S. Guha, Y. Takeda, and P. Francis. NUTSS: A SIP based approach to UDP
and TCP connectivity. In Proceedings of the 2004 ACM SIGCOMM Workshop
on Future Directions in Network Architecture (FDNA), 2004.

[64] R. Hancock, G. Karagiannis, J. Loughney, and S. V. den Bosch. Next Steps in
Signaling (NSIS): Framework. RFC 4080 (Informational), June 2005.

[65] M. Handley. Network Neutrality and the IETF. Plenary presentation at the Stock-
holm IETF meeting, http://www0.cs.ucl.ac.uk/staff/m.handley/slides/

net-neutrality.pdf, July 2009. (Accessed: 04/29/2013).

[66] M. Handley. Flow processing and the rise of the middle. Pre-
sented at MSN 2011, http://www0.cs.ucl.ac.uk/staff/m.handley/slides/

change-coseners2011-print.pdf, July 2011. (Accessed: 04/29/2013).

[67] M. Handley, V. Jacobson, and C. Perkins. SDP: Session Description Protocol.
RFC 4566 (Proposed Standard), July 2006.

[68] S. Hätönen, A. Nyrhinen, L. Eggert, S. Strowes, P. Sarolahti, and M. Kojo. An Ex-
perimental Study of Home Gateway Characteristics. In Proceedings of ACM SIG-
COMM Internet Measurement Conference (IMC), Melbourne, Australia, Novem-
ber 2010.

[69] T. Heck. An extension for TURN supporting multiple Service Categories. Bach-
elor thesis, Technische Universität München, Germany, October 2009.

[70] T. Heer, R. Hummen, M. Komu, S. Götz, and K. Wehrle. End-host Authenti-
cation and Authorization for Middleboxes based on a Cryptographic Namespace.
In Proceedings of the IEEE International Conference on Communications 2009
(ICC 2009), Dresden, Germany, 2009. IEEE.

[71] M. Holdrege and P. Srisuresh. Protocol Complications with the IP Network
Address Translator. RFC 3027 (Informational), Jan. 2001.

[72] R. Holz, L. Braun, N. Kammenhuber, and G. Carle. The SSL landscape: a
thorough analysis of the X.509 PKI using active and passive measurements. In
Proceedings of the 2011 ACM SIGCOMM conference on Internet measurement
conference, IMC ’11, pages 427–444, New York, NY, USA, 2011. ACM.

[73] I. Hkan, J.P. Morgan (Goldman Sachs). Nothing But Net: 2011 Internet Invest-
ment Guide, January 2011.

[74] IEEE Standards Association. Guidelines for 64-bit global identifier (EUI-64).
http://standards.ieee.org/develop/regauth/tut/eui64.pdf.
(Accessed: 04/29/2013).

[75] International Telecommunications Unions (ITU). The World in 2011: ITC
Facts and Figures. http://www.itu.int/ITU-D/ict/facts/2011/material/

ICTFactsFigures2011.pdf, 2011. (Accessed: 04/29/2013).

http://www0.cs.ucl.ac.uk/staff/m.handley/slides/net-neutrality.pdf
http://www0.cs.ucl.ac.uk/staff/m.handley/slides/net-neutrality.pdf
http://www0.cs.ucl.ac.uk/staff/m.handley/slides/change-coseners2011-print.pdf
http://www0.cs.ucl.ac.uk/staff/m.handley/slides/change-coseners2011-print.pdf
http://standards.ieee.org/develop/regauth/tut/eui64.pdf
http://www.itu.int/ITU-D/ict/facts/2011/material/ICTFactsFigures2011.pdf
http://www.itu.int/ITU-D/ict/facts/2011/material/ICTFactsFigures2011.pdf

212 BIBLIOGRAPHY

[76] C. Jennings. NAT Classification Test Results. Internet Draft - expired, Internet
Engineering Task Force, July 2007.

[77] C. Jennings, R. Mahy, and F. Audet. Managing Client-Initiated Connections in
the Session Initiation Protocol (SIP). RFC 5626 (Proposed Standard), Oct. 2009.

[78] S. Jiang, D. Guo, and B. Carpenter. An Incremental Carrier-Grade NAT (CGN)
for IPv6 Transition. RFC 6264 (Informational), June 2011.

[79] M. E. Jobst. Security and Privacy for Virtual Machine Images in Distributed En-
vironments using Smart Cards. Bachelor thesis, Technische Universität München,
Germany, August 2012.

[80] D. Joseph and I. Stoica. Modeling Middleboxes. IEEE Network Special Issue on
Implications and Control of Middleboxes in the Internet, 22(5):20–25, October
2008.

[81] M. Karsten, S. Keshav, S. Prasad, and M. Beg. An axiomatic basis for Com-
munication. In Proceedings of the 2007 conference on Applications, technologies,
architectures, and protocols for computer communications, SIGCOMM ’07, pages
217–228, New York, NY, USA, 2007.

[82] J. Kempf, R. Austein, and IAB. The Rise of the Middle and the Future of End-
to-End: Reflections on the Evolution of the Internet Architecture. RFC 3724
(Informational), Mar. 2004.

[83] S. Kent and K. Seo. Security Architecture for the Internet Protocol. RFC 4301
(Proposed Standard), Dec. 2005. Updated by RFC 6040.

[84] A. Knutsen and A. Ramaiah. TCP option for transparent Middlebox discovery.
Internet Draft - work in progress, Internet Engineering Task Force, February
2012.

[85] E. Kohler, M. Handley, and S. Floyd. Datagram Congestion Control Protocol
(DCCP). RFC 4340 (Proposed Standard), Mar. 2006. Updated by RFCs 5595,
5596, 6335, 6773.

[86] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek. The Click
Modular Router. ACM Trans. Comput. Syst., 18(3):263–297, Aug. 2000.

[87] C. Kreibich, N. Weaver, B. Nechaev, and V. Paxson. Netalyzr: Illuminating The
Edge Network. In Proceedings of the ACM Internet Measurement Conference
(IMC), Melbourne, Australia, November 2010.

[88] D. Kristol and L. Montulli. HTTP State Management Mechanism. RFC 2965
(Historic), Oct. 2000. Obsoleted by RFC 6265.

[89] Y.-k. Lee, D. Lee, J.-w. Han, and K.-i. Chung. Home Network Device Authen-
tication: Device Authentication Framework and Device Certificate Profile. In
Advances in Web and Network Technologies, and Information Management, vol-
ume 4537 of Lecture Notes in Computer Science, pages 573–582. Springer Berlin
/ Heidelberg, 2007.

[90] M. Leech, M. Ganis, Y. Lee, R. Kuris, D. Koblas, and L. Jones. SOCKS Protocol
Version 5. RFC 1928 (Proposed Standard), Mar. 1996.

BIBLIOGRAPHY 213

[91] L. Lessig. Innovation, Regulation, and the Internet. The American Prospect,
December 2001.

[92] R. Mahy, P. Matthews, and J. Rosenberg. Traversal Using Relays around NAT
(TURN): Relay Extensions to Session Traversal Utilities for NAT (STUN). RFC
5766 (Proposed Standard), Apr. 2010.

[93] A. Malhotra, K. Warr, D. Davis, and W. Chou. Web Services Eventing (WS-
Eventing). W3C Recommendation, December 2011.

[94] P. Maymounkov and D. Mazières. Kademlia: A Peer-to-Peer Information Sys-
tem Based on the XOR Metric. In Revised Papers from the First International
Workshop on Peer-to-Peer Systems, IPTPS ’01, pages 53–65, London, UK, UK,
2002. Springer-Verlag.

[95] E. Mobile, P. Ab, C. G. Kaisa, K. Nyberg, and C. J. Mitchell. The personal CA
– PKI for a Personal Area Network. Technical report, Ericsson Mobile Platforms
AB and Nokia Group and University of London, 2002.

[96] V. Modi and D. Kemp. Web Services Dynamic Discovery (WS-Discovery). OASIS
Standard Specification, July 2009.

[97] T. Moses. XACML Version 2.0. OASIS Standard Specification, February 2005.

[98] R. Moskowitz, P. Nikander, P. Jokela, and T. Henderson. Host Identity Protocol.
RFC 5201 (Experimental), Apr. 2008. Updated by RFC 6253.

[99] A. Müller. ANTS: An Advanced NAT-Traversal Service for future Home Net-
works. Diploma thesis, University of Tübingen, Germany, December 2007.

[100] A. Müller, N. Evans, C. Grothoff, and S. Kamkar. Autonomous NAT Traversal.
In 10th IEEE International Conference on Peer-to-Peer Computing (IEEE P2P
2010), Delft, The Netherlands, August 2010.

[101] A. Müller, H. Kinkelin, S. K. Ghai, and G. Carle. An Assisted Device Registration
and Service Access System for future Home Networks. In IFIP Wireless Days
2009, Paris, France, December 2009.

[102] A. Müller, H. Kinkelin, S. K. Ghai, and G. Carle. A Secure Service Infrastructure
for Interconnecting Future Home Networks based on DPWS and XACML. In
HomeNets: ACM SIGCOMM Workshop on Home Networks, New Delhi, India,
September 2010.

[103] A. Müller, A. Klenk, and G. Carle. Behavior and Classification of NAT devices
and implications for NAT Traversal. IEEE Network Special Issue on Implications
and Control of Middleboxes in the Internet, 22(5):14–19, October 2008.

[104] A. Müller, A. Klenk, and G. Carle. On the Applicability of knowledge-based NAT
Traversal for future Home Networks. In Proceedings of IFIP Networking 2008,
Singapore, May 2008.

[105] A. Müller, A. Klenk, and G. Carle. ANTS - A Framework for Knowledge based
NAT Traversal. In IEEE Globecom 2009 Next-Generation Networking and Inter-
net Symposium, Honolulu, Hawaii, USA, November 2009.

214 BIBLIOGRAPHY

[106] A. Müller, G. Münz, and G. Carle. Collecting Router Information for Error
Diagnosis and Troubleshooting in Home Networks. In Workshop WISE, held in
conjunction with the IEEE Conference on Local Computer Networks 2011 (LCN),
Bonn, Germany, October 2011.

[107] A. Nadalin, C. Kaler, R. Monzillo, and P. Hallam-Baker. Web Services Security
1.1. OASIS Standard Specification, February 2006.

[108] G. Nalepa. A Unified Firewall Model for Web Security. In Advances in Intelli-
gent Web Mastering, volume 43 of Advances in Soft Computing, pages 248–253.
Springer Berlin / Heidelberg, 2007.

[109] T. Narten, R. Draves, and S. Krishnan. Privacy Extensions for Stateless Address
Autoconfiguration in IPv6. RFC 4941 (Draft Standard), Sept. 2007.

[110] B. Nguyen. UPnP RemoteAccess. http://www.upnp.org/specs/ra/, 2009.
(Accessed: 04/29/2013).

[111] K. Ono and S. Tachimoto. Requirements for End-to-Middle Security for the
Session Initiation Protocol (SIP). RFC 4189 (Informational), Oct. 2005.

[112] M.-O. Pahl, C. Niedermeier, M. Schuster, A. Müller, and G. Carle. Knowledge-
based middleware for future home networks. In IFIP Wireless Days 2009, Paris,
France, December 2009.

[113] A. Pastor. Exploiting IGDs remotely via UPnP. http://www.gnucitizen.org/
blog/bt-home-flub-pwnin-the-bt-home-hub-5/, January 2009. (Accessed:
04/29/2013).

[114] S. Perreault, I. Yamagata, S. Miyakawa, A. Nakagawa, and H. Ashida. Com-
mon Requirements for Carrier-Grade NATs (CGNs). RFC 6888 (Best Current
Practice), Apr. 2013.

[115] A. Perrig and D. Song. Hash visualization: a new technique to improve real-
world security. In In International Workshop on Cryptographic Techniques and
E-Commerce, pages 131–138, 1999.

[116] J. Peterson. Session Initiation Protocol (SIP) Authenticated Identity Body (AIB)
Format. RFC 3893 (Proposed Standard), Sept. 2004.

[117] D. Plummer. Ethernet Address Resolution Protocol: Or Converting Network Pro-
tocol Addresses to 48.bit Ethernet Address for Transmission on Ethernet Hard-
ware. RFC 826 (INTERNET STANDARD), Nov. 1982. Updated by RFCs 5227,
5494.

[118] J. Postel. Internet Control Message Protocol. RFC 792 (INTERNET STAN-
DARD), Sept. 1981. Updated by RFCs 950, 4884, 6633, 6918.

[119] J. Postel. Transmission Control Protocol. RFC 793 (INTERNET STANDARD),
Sept. 1981. Updated by RFCs 1122, 3168, 6093, 6528.

[120] J. Postel and J. Reynolds. File Transfer Protocol. RFC 959 (INTERNET STAN-
DARD), Oct. 1985. Updated by RFCs 2228, 2640, 2773, 3659, 5797.

[121] J. Quittek, M. Stiemerling, and P. Srisuresh. Definitions of Managed Objects for
Middlebox Communication. RFC 5190 (Proposed Standard), Mar. 2008.

http://www.upnp.org/specs/ra/
http://www.gnucitizen.org/blog/bt-home-flub-pwnin-the-bt-home-hub-5/
http://www.gnucitizen.org/blog/bt-home-flub-pwnin-the-bt-home-hub-5/

BIBLIOGRAPHY 215

[122] B. Ramsdell. Secure/Multipurpose Internet Mail Extensions (S/MIME) Version
3.1 Message Specification. RFC 3851 (Proposed Standard), July 2004. Obsoleted
by RFC 5751.

[123] Y. Rekhter, B. Moskowitz, D. Karrenberg, G. J. de Groot, and E. Lear. Address
Allocation for Private Internets. RFC 1918 (Best Current Practice), Feb. 1996.
Updated by RFC 6761.

[124] E. Rescorla and N. Modadugu. Datagram Transport Layer Security. RFC 4347
(Proposed Standard), Apr. 2006. Obsoleted by RFC 6347, updated by RFC 5746.

[125] C. Rigney, S. Willens, A. Rubens, and W. Simpson. Remote Authentication Dial
In User Service (RADIUS). RFC 2865 (Draft Standard), June 2000. Updated by
RFCs 2868, 3575, 5080, 6929.

[126] A. Rijsinghani. Computation of the Internet Checksum via Incremental Update.
RFC 1624 (Informational), May 1994.

[127] J. Roberts. The clean-slate Approach to future Internet Design: a Survey of
Research Initiatives. Annals of Telecommunications, 64:271–276, 2009.

[128] J. Rosenberg. Interactive Connectivity Establishment (ICE): A Protocol for Net-
work Address Translator (NAT) Traversal for Offer/Answer Protocols. RFC 5245
(Proposed Standard), Apr. 2010. Updated by RFC 6336.

[129] J. Rosenberg, A. Keranen, B. B. Lowekamp, and A. B. Roach. TCP Candi-
dates with Interactive Connectivity Establishment (ICE). RFC 6544 (Proposed
Standard), Mar. 2012.

[130] J. Rosenberg, R. Mahy, P. Matthews, and D. Wing. Session Traversal Utilities
for NAT (STUN). RFC 5389 (Proposed Standard), Oct. 2008.

[131] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson, R. Sparks,
M. Handley, and E. Schooler. SIP: Session Initiation Protocol. RFC 3261 (Pro-
posed Standard), June 2002. Updated by RFCs 3265, 3853, 4320, 4916, 5393,
5621, 5626, 5630, 5922, 5954, 6026, 6141, 6665, 6878.

[132] J. Rosenberg and H. Tschofenig. Discovering, Querying, and Controlling Firewalls
and NATs. Internet Draft - expired, Internet Engineering Task Force, October
2007.

[133] J. Rosenberg, J. Weinberger, C. Huitema, and R. Mahy. STUN - Simple Traver-
sal of User Datagram Protocol (UDP) Through Network Address Translators
(NATs). RFC 3489 (Proposed Standard), Mar. 2003. Obsoleted by RFC 5389.

[134] E. S. Perreault, I. Yamagata, S. Miyakawa, A. Nakagawa, and H. Ashida. Com-
mon requirements for Carrier Grade NATs (CGNs). Internet Draft - work in
progress, Internet Engineering Task Force, August 2012.

[135] P. Saint-Andre. Extensible Messaging and Presence Protocol (XMPP): Core.
RFC 3920 (Proposed Standard), Oct. 2004. Obsoleted by RFC 6120, updated by
RFC 6122.

[136] J. H. Saltzer, D. P. Reed, and D. D. Clark. End-to-end arguments in system
design. ACM Trans. Comput. Syst., 2:277–288, November 1984.

216 BIBLIOGRAPHY

[137] H. Schulzrinne and R. Hancock. GIST: General Internet Signalling Transport.
RFC 5971 (Experimental), Oct. 2010.

[138] H. Schulzrinne, A. Rao, and R. Lanphier. Real Time Streaming Protocol (RTSP).
RFC 2326 (Proposed Standard), Apr. 1998.

[139] S. Son. Middleware approaches to middlebox traversal. PhD thesis, University of
Wisconsin at Madison, Madison, WI, USA, 2006. AAI3222909.

[140] P. Srisuresh and K. Egevang. Traditional IP Network Address Translator (Tra-
ditional NAT). RFC 3022 (Informational), Jan. 2001.

[141] P. Srisuresh, B. Ford, S. Sivakumar, and S. Guha. NAT Behavioral Requirements
for ICMP. RFC 5508 (Best Current Practice), Apr. 2009.

[142] P. Srisuresh and M. Holdrege. IP Network Address Translator (NAT) Terminology
and Considerations. RFC 2663 (Informational), Aug. 1999.

[143] P. Srisuresh, J. Kuthan, J. Rosenberg, A. Molitor, and A. Rayhan. Middlebox
communication architecture and framework. RFC 3303 (Informational), Aug.
2002.

[144] R. Stewart. Stream Control Transmission Protocol. RFC 4960 (Proposed Stan-
dard), Sept. 2007. Updated by RFCs 6096, 6335.

[145] R. Stewart, M. Tuexen, and I. Ruengeler. Stream Control Transmission Protocol
(SCTP) Network Address Translation. Internet Draft - work in progress, Internet
Engineering Task Force, February 2013.

[146] R. Stewart, Q. Xie, K. Morneault, C. Sharp, H. Schwarzbauer, T. Taylor, I. Ry-
tina, M. Kalla, L. Zhang, and V. Paxson. Stream Control Transmission Protocol.
RFC 2960 (Proposed Standard), Oct. 2000. Obsoleted by RFC 4960, updated by
RFC 3309.

[147] M. Stiemerling, H. Tschofenig, C. Aoun, and E. Davies. NAT/Firewall NSIS
Signaling Layer Protocol (NSLP). RFC 5973 (Experimental), Oct. 2010.

[148] The Monkeysphere Project. Monkeysphere. http://web.monkeysphere.inf/,
2011. (Accessed: 04/29/2013).

[149] H. S. Thompson, D. Beech, M. Maloney, and N. Mendelsohn. XML Schema Part
1: Structures Second Edition. W3C Recommendation, October 2004.

[150] S. Thomson, T. Narten, and T. Jinmei. IPv6 Stateless Address Autoconfiguration.
RFC 4862 (Draft Standard), Sept. 2007.

[151] K. Tobe, A. Shimoda, and S. Goto. Extended UDP Multiple Hole Punching
Method to Traverse Large Scale NAT. In Proceedings of the 30th Asia Pacific
Advanced Network Meeting, Hanoi, Vietnam, August 2010.

[152] Trusted Computing Group. Architecture Overview, Rev. 1.4. TCG Specification,
2007.

[153] G. Tsirtsis and P. Srisuresh. Network Address Translation - Protocol Translation
(NAT-PT). RFC 2766 (Historic), Feb. 2000. Obsoleted by RFC 4966, updated
by RFC 3152.

http://web.monkeysphere.inf/

BIBLIOGRAPHY 217

[154] M. Tuxen, I. Rungeler, R. Stewart, and E. Rathgeb. Network Address Translation
for the Stream Control Transmission Protocol. IEEE Network Special Issue on
Implications and Control of Middleboxes in the Internet, 22(5):26–32, October
2008.

[155] A. Ulrich, R. Holz, P. Hauck, and G. Carle. Investigating the OpenPGP Web of
Trust. In Computer Security ESORICS 2011, volume 6879 of Lecture Notes in
Computer Science, pages 489–507. Springer Berlin / Heidelberg, 2011.

[156] B. van Schewick. The Network Neutrality Debate - An Overview. Talk at the
Technical Plenary of IETF 75, http://www.ietf.org/proceedings/75/slides/
plenaryt-5.pdf, July 2009. (Accessed: 04/29/2013).

[157] Z. Wang and J. Crowcroft. A Two-Tier Address Structure for the Internet: A
Solution to the Problem of Address Space Exhaustion. RFC 1335 (Informational),
May 1992.

[158] Z. Wang, Z. Qian, Q. Xu, Z. M. Mao, and M. Zhang. An untold story of middle-
boxes in cellular networks. In Proceedings of the ACM SIGCOMM 2011 confer-
ence, Toronto, Ontario, Canada, 2011.

[159] M. Wasserman and F. Baker. IPv6-to-IPv6 Network Prefix Translation. RFC
6296 (Experimental), June 2011.

[160] J. Weil, V. Kuarsingh, C. Donley, C. Liljenstolpe, and M. Azinger. IANA-
Reserved IPv4 Prefix for Shared Address Space. RFC 6598 (Best Current Prac-
tice), Apr. 2012.

[161] B. Wellington. Domain Name System Security (DNSSEC) Signing Authority.
RFC 3008 (Proposed Standard), Nov. 2000. Obsoleted by RFCs 4035, 4033,
4034, updated by RFC 3658.

[162] D. Wing, S. Cheshire, M. Boucadair, R. Penno, and P. Selkirk. Port Control
Protocol (PCP). RFC 6887 (Proposed Standard), Apr. 2013.

[163] F. Wohlfart. Topology-based Traversal of Large Scale NAT. Masters thesis,
Technische Universität München, Germany, July 2012.

[164] D. I. Wolinsky. On the design and implementation of user-friendly, self-
configuring, and scalable Virtual Private Networks. PhD thesis, University of
Florida, Gainsville, FL, USA, 2009.

[165] D. I. Wolinsky, K. Lee, P. O. Boykin, and R. Figueiredo. On the Design of
Autonomic, Decentralized VPNs. In Proceedings of the International Conference
on Collaborative Computing (CollaborateCom), Chicago, IL, USA, October 2010.

[166] R. Yavatkar, D. Pendarakis, and R. Guerin. A Framework for Policy-based Ad-
mission Control. RFC 2753 (Informational), Jan. 2000.

[167] L. Zhang. A retrospective View of Network Address Translation. IEEE Network
Special Issue on Implications and Control of Middleboxes in the Internet, 22(5):8–
12, October 2008.

http://www.ietf.org/proceedings/75/slides/plenaryt-5.pdf
http://www.ietf.org/proceedings/75/slides/plenaryt-5.pdf

218 BIBLIOGRAPHY

[168] L. Zhang, W. Jia, X. Xiao, B. Dai, and H. Li. Research of TCP NAT Traver-
sal Solution Based on Port Correlation Analysis & Prediction Algorithm. In
International Conference on Wireless Communications, Networking and Mobile
Computing, 2010.

	

	

	

	

ISBN 3-937201-35-1
ISSN 1868-2634 (print)
ISSN 1868-2642 (electronic)
DOI: 10.2313/NET-2013-07-1

	Part I Introduction and Background
	Introduction
	Thesis Objectives and Research Questions
	Positioning and Goals

	Contributions and Document Structure

	Background
	End-to-end Principle of the Internet
	Analysis of today's Internet
	Middleboxes
	Introduction
	Categories and Properties
	Impact and Problems
	Assessment

	Operation of selected Middleboxes
	Network Address Translation
	Large Scale NAT
	Firewalls and ALGs

	Part II Analysis and Behavior of Middleboxes
	Modeling and Classification of Middlebox Behavior
	Introduction
	Modeling of Middlebox Behavior
	Related Work
	Notation and Processing Model
	Modeling Network Address Translation

	Classification of NAT Behavior
	NAT Behavior for Outgoing Packets
	Incoming Packets
	NAT Classification
	Behavior of Large Scale NATs

	Firewall Behavior
	Stateless Firewalls
	Stateful Firewalls

	Application Layer Middleboxes and Proxies
	Tor and Polipo

	Summary and Key Findings

	Experimental Analysis of Middlebox Behavior
	Introduction
	Information Model
	Stateful Element
	Filtering Element
	Translation Element
	Reference Example of a Middlebox Instance

	Detailed Description of our Measurement Algorithms
	Behavior Measurements
	Behavior-based Traversal Analysis
	Additional Measurements
	Topology Measurements
	Active Monitoring of Middlebox Parameters

	Experiments in the Lab and Verification of our Algorithms
	Test Setup
	Virtualized Testbed and Topology Generator

	Field Test
	Related Work
	Requirements and Contributions
	Design and Implementation

	Results and Discussion
	Testset Description
	Binding and Filtering Behavior Results
	Mapping Behavior Results
	Additional Behavior Results
	Behavior-based Traversal Results
	Additional Results
	Topology Results
	Lessons Learned

	Summary and Key Findings

	Part III Traversal of Middleboxes
	Middlebox Traversal and Service Provisioning
	Introduction
	Middlebox Traversal Problem

	State of the Art in Middlebox Traversal
	Explicit Solutions
	Behavior-based Solutions
	Additional Solutions
	Evaluation and Comparison

	Application-Centric Middlebox Traversal
	Service Categories for Middlebox Traversal
	Application of Existing Traversal Techniques

	Summary and Key Findings

	Knowledge-based Middlebox Traversal
	Introduction
	Knowledge-based Middlebox Traversal
	Reference Examples for a knowledge-based Framework
	Unilateral Deployment
	Coordination of Traversal through Signaling

	NOMADS: A new Middlebox Traversal Framework
	Scenarios
	Architectural Overview
	Signaling Module: Request Response Protocol
	Application Interfaces
	Integration and Adaption of Middlebox Traversal Techniques
	Decision Module
	Implementation

	New Middlebox Traversal Techniques
	Devices Profiles for Web Services IGD
	Autonomous Middlebox Traversal

	Evaluation and Discussion
	Adaption to Experimental Results
	Applicability Evaluation
	Performance Evaluation

	Summary and Key Findings

	Part IV Security and Application of Middleboxes
	A Secure Service Infrastructure for Unmanaged Networks
	Introduction
	Survey of the State of the Art
	Identity Management for Unmanaged Networks
	Trusted Third Party
	Web of Trust

	Architectural Overview and Components
	Requirements and Contributions
	Components

	Identity Management
	Identities
	Device Registration

	Trust Establishment
	Direct Pairing
	Remote Pairing using Social Networks

	Authorization
	SSL/TLS interception for legacy Services

	Implementation
	Hardware-based Security Extension
	Integration

	Possible Attacks and Recommendations
	Summary and Key Findings

	New Middlebox Services
	Introduction
	A Middlebox for securing DPWS
	Technology Overview
	Scenarios and Contributions
	Approach
	DPWS service usage across Networks
	Security Discussion
	Evaluation
	Summary

	PrivMid6: A Privacy Preserving Middlebox for IPv6
	Related Work
	Scenarios
	Requirements
	Design of PrivMid6
	Evaluation and Discussion
	Summary

	Virtual and Dynamic Infrastructures
	Application Areas
	Approach
	Virtualized Networks - P2PVPN
	Resource Manager
	Summary

	Summary and Key Findings

	Part V Conclusions
	Conclusion
	Contributions
	Future Work

	Appendix
	DTD of the Middlebox Information Model
	List of Middleboxes
	List of Recommended Home Routers
	List of Non-Recommended Home Routers

	NOMADS Documentation
	NOMADS Decision Tree
	NOMADS Signaling Protocol
	NOMADS Socket API

	Bibliography

