Scalable Off-Chain Computing on Data Streams using Trusted Execution Environments

Thesis

B.Sc

Thesis

M.Sc

IDP

Motivation

As the adoption of blockchain applications grows, scalability becomes one of the key challenges faced by blockchain networks. Off-chain computing refers to computations that take place outside of a layer-1 blockchain. The basic idea of off-chain computing is to enhance blockchain scalability by offloading certain computation tasks from the layer-1 blockchain without sacrificing the security of the entire system. Off-chain computing is able to reduce the computational burden on the underlying layer-1 blockchain effectively, thereby resulting in improved transaction throughput and user experience. In the context of decentralized IoT applications, off-chain computing is a critical scaling component for handling a large number of IoT devices and data streams. Trusted execution environments (TEE) provides an effective hardware-based approach to proving validity of computations via a remote attestation. In this thesis, a student will investigate how to use TEE to build a scalable off-chain computing solution on IoT data streams.

Your Task

- Familiarize yourself with the topics (public blockchain, off-chain computing, trusted execution environments, data streaming in IoT)
- Research on the existing off-chain computing scaling solutions (rollups, zero knowledge proof, TEE)
- Design a TEE-based off-chain computing architecture on IoT data streams
- Build a proof-of-concept (PoC) implementation
- Evaluate the performance of the system

Requirements

- Knowledge in a common programming language
- Ability to write easy maintainable code
- Possible experience with TEEs

Sources

- [1] https://chain.link/education-hub/off-chain-data
- [2] https://entethalliance.github.io/trusted-computing/spec.html
- [3] https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9125420

Contact

