
Chair of Network Architectures and Services
School of Computation, Information, and Technology
Technical University of Munich

TECHNICAL UNIVERSITY OF MUNICH

SCHOOL OF COMPUTATION, INFORMATION, AND TECHNOLOGY

INFORMATICS

BACHELOR’S THESIS IN INFORMATICS

Analyzing the Effect of Transport Parameters on QUIC‘s
Performance

Simon Karan Guayana

Technical University of Munich
School of Computation, Information, and Technology

Informatics

Bachelor’s Thesis in Informatics

Analyzing the Effect of Transport Parameters on
QUIC‘s Performance

Analyse der Auswirkung von
Transportparametern auf die Leistung von

QUIC

Author: Simon Karan Guayana
Supervisor: Prof. Dr.-Ing. Georg Carle
Advisor: Johannes Zirngibl

Benedikt Jaeger

Date: February 15, 2023

I confirm that this Bachelor’s Thesis is my own work and I have documented all sources
and material used.

Garching, February 15, 2023
Location, Date Signature

Abstract

The QUIC protocol aims to improve user experience by replacing the TCP + TLS +
HTTP/2 stack. Among many features, such as optimized handshakes and connection
migration, QUIC introduces transport parameters that are negotiated by the client and
server during connection establishment. Previous research on the protocol’s Internet
deployments shows that a wide variety of transport parameter sets are being advertised
with values ranging across multiple orders of magnitude. QUIC transport parameters
define potentially impactful values, such as flow control limits or the acknowledgement
frequency.

This work explains, how and in which conditions, the advertised transport parameters
impact the performance of QUIC connections. We analyze the parameters used by pop-
ular web browsers and those used by QUIC servers on the Internet. We show that for
the LSQUIC implementation, the transport parameters do not have a major impact on
connections in a network with perfect conditions, but when introducing packet delay we
identify that some parameters advertised by the client can bottleneck the goodput of a
connection.
In a network with 30 ms delay, setting the client’s initial_max_data transport para-
meter to values notably lower than 6.29 MB can reduce the goodput of a file download
by more than 90%. Lowering the parameter to 196.61 kB decreases the goodput from
519.03 Mbit/s down to 31.93 Mbit/s.
We also find that in a network with high packet delay, a QUIC client configuration that
advertises the transport parameters used by the Mozilla Firefox browser achieves higher
throughput in a file download than a configuration using Google Chrome’s parameters.
This increase of around 170 Mbit/s in the throughput is caused by the different intial_
max_stream_data_bidi_local values used.

Based on these results, it could be of interest to further investigate the impact of these
parameters on different use cases, on other QUIC implementations and to keep track
of future protocol extensions which may introduce new performance-relevant transport
parameters.

Contents

1 Introduction 1
1.1 Research Questions . 2
1.2 Outline . 2

2 Background 3
2.1 Transport Layer . 3
2.2 QUIC . 4

2.2.1 Transport Parameters . 5
2.2.2 LSQUIC . 8

3 Related Work 11

4 Methodology 15
4.1 Transport Parameters Data . 15

4.1.1 Internet Wide Scans . 15
4.1.2 Internet Browsers . 16

4.2 Measurements . 17
4.2.1 WAN Emulation . 18
4.2.2 LSQUIC Configuration . 19

5 Results 21
5.1 Transport Parameters Data . 21

5.1.1 Internet Wide Scans . 21
5.1.2 Internet Browsers . 27

5.2 Measurements . 28
5.2.1 Server Parameters . 31
5.2.2 Client Parameters . 33

6 Conclusion 41
6.1 Summary . 41

6.2 Future Work . 42

A Appendix 43
A.1 List of acronyms . 43

Bibliography 45

II

List of Figures

2.1 ISO/OSI Model . 3
2.2 TCP and QUIC Protocol Stacks . 4

4.1 Firefox’s Transport Parameters Inspected with Wireshark 17
4.2 TBF on the Server’s Interface and NetEm on the Client’s Interface . . . 18

5.1 Goodput with Multiple Transport Parameter Sets Used by Client and
Server . 30

5.2 Goodput with Different Server Transport Parameter Sets 32
5.3 Goodput with Different Client Transport Parameter Sets 33
5.4 Goodput with Different initial_max_data Values 35
5.5 Number of Packets Comparison with Different initial_max_data Values 36
5.6 Goodput with Different initial_max_stream_data_bidi_local Values 37
5.7 Number of Packets Comparison with Different initial_max_stream_

data_bidi_local Values . 38

List of Tables

2.1 LSQUIC’s Default Transport Parameter Values 9

5.1 Most Common Transport Parameter Sets 22
5.2 Five Most Common max_idle_timeout Values 23
5.3 5 Most Common max_udp_payload_size Values 23
5.4 10 Most Common initial_max_data Values 24
5.5 10 Most Common initial_max_stream_data_{bidi_local, bidi_re-

mote, uni} Values . 25
5.6 5 Most Common initial_max_streams_bidi Values 26
5.7 5 Most Common initial_max_streams_uni Values 27
5.8 Chrome and Firefox’s Transport Parameters 28

Chapter 1

Introduction

The QUIC protocol, initially designed and implemented by Google, is a connection-
oriented, reliable and cryptographically secure transport layer protocol. The protocol
also implements features from higher layers of the International Organization for Stan-
dardization (ISO)/Open Systems Interconnection (OSI) model [1]. QUIC was firstly
introduced back in 2012 [2], and it was standardized by the Internet Engineering Task
Force (IETF) in May 2021 with the release of RFC 9000 [3]. The protocol was intro-
duced to address the limitations of the traditional Transmission Control Protocol (TCP),
Transport Layer Security (TLS) and Hypertext Transfer Protocol (HTTP)/2 stack.
Some of QUIC’s main advantages are: the optimized handshake, which reduces con-
nection establishment times; the introduction of connection migration, which allows a
connection to be IP address- and port-independent; it solves the Head-of-Line (HOL)
blocking problem and it prevents ossification by being implemented in user space.

During QUIC’s initial handshake, cryptographic and transport parameters are exchan-
ged and negotiated between a QUIC client and server. As suggested by Zirngibl et
al. [4] the values used for QUIC’s transport parameters could allow analyzing current
deployments of the protocol in more detail. There is related work on the topic of
QUIC’s transport parameters, but they mainly focus on exploring the impact of a
proposed protocol extension that introduces a new type of transport parameter [5] and
on checking for conformance to the RFC in interoperability tests [6]. This Bachelor’s
Thesis aims to analyze different parameter sets used by actual endpoints on the Internet
as well as understand their effect on the protocol’s performance. This way, clarity on
their impact when considering the future support and evaluation of the protocol could
be achieved [4].

Chapter 1: Introduction

1.1 Research Questions

We pretend to answer the following research questions with this work:

• Which transport parameters are used by QUIC deployments on the Internet?

• Do these parameters have an effect in the first place?

• If they do, how do they affect the performance?

1.2 Outline

We divide this work into different chapters. Chapter 2 serves the purpose of transmitting
the basic knowledge of the transport layer and the QUIC protocol is introduced in more
detail. This chapter also contains a description of the QUIC’s transport parameters,
which will be used throughout this work. In Chapter 3 related work is presented; this
includes research on the topic of QUIC transport parameters, as well as useful discoveries
that help us configure and optimize our testing setup. The methodology of this work
is explained in detail in Chapter 4. The methodology chapter provides insight into the
procedures used to collect the transport parameter data used in this work. It describes
our measurement environment and presents our chosen QUIC reference implementation.
It also introduces the QUIC Interop Runner and our contributions to it as well as the
techniques we used to perform our measurements. The obtained results and findings
are presented in various plots and tables and are analyzed in detail in Chapter 5. The
observed results are summarized and evaluated in order to answer our research question
in Chapter 6. Additionally, we propose future work.

2

Chapter 2

Background

The background chapter serves the purpose of transmitting the basic knowledge of the
transport layer in Section 2.1. The QUIC protocol is introduced in more detail, along
with the main features that differentiate it from the TCP protocol in Section 2.2. Then
the QUIC’s transport parameters are presented in more detail. Finally, the LSQUIC
implementation is introduced.

2.1 Transport Layer

Physical Layer

Data Link Layer

Network Layer

Transport Layer

Session Layer

Presentation Layer

Application Layer

Figure 2.1: ISO/OSI model.

The transport layer is one of the seven layers defined in the ISO’s OSI model [1]. This
model, seen in Figure 2.1, classifies the different networking protocols according to

Chapter 2: Background

their functionality and their purpose. In this work, we focus on layer-four protocols
mainly. This layer is responsible for providing end-to-end communication between one
or multiple programs in a system, i.e., it multiplexes and demultiplexes the data received
from the layers below to the layers above. In practice, this is achieved with the source
port and destination port fields in the headers of the different protocols. Depending on
the actual transport layer protocol, other functionalities such as flow control, congestion
control and reliable data transfer can also be implemented. Historically, there have been
two transport layer protocols, the more widespread TCP [7], and the much simpler User
Datagram Protocol (UDP). [8]

2.2 QUIC

QUIC is considered a transport layer protocol, it is built at the user level on top of UDP
as shown in Figure 2.2. This is beneficial because existing middleboxes are by default
already compatible. From their point of view, QUIC traffic is just UDP traffic. The
user-level implementation of the protocol also allows faster development and rolling out
updates is less complicated, but can lead to less optimization in general.

Network

Transport

Application

IP

TCP

TLS

HTTP/2

UDP

QUIC

HTTP/3

Figure 2.2: TCP and QUIC protocol stacks.

One way in which QUIC optimizes the classic TCP+TLS stack is accomplished by inte-
grating TLS 1.3 directly into the protocol and thus increasing efficiency. By merging the
TCP and TLS handshakes into a single handshake, QUIC can save up to one complete
round-trip-time (RTT) when establishing a new connection. The possibility of perform-
ing 0-RTT handshakes is also introduced with the protocol. This 0-RTT handshake is
performed when the client uses previously acquired encryption details from the server
(in a previously established connection) to send data instantly with the first packet sent.
It is important to note, that the data sent in 0-RTT handshake packages are susceptible
to replay attacks. [9]

Another problem that QUIC addresses is the HOL blocking problem. This is solved
by implementing the concept of streams directly in the transport layer and transmit-
ting each resource in a separate and uniquely identified stream (using STREAM frames).

4

2.2 QUIC

When packet loss occurs, not all resources are held back until the missing packet
is re-transmitted, just the needed STREAM frames from the affected resource are re-
transmitted, while the unaffected data can be passed to the upper layered protocols
instantly.

QUIC also introduces the concept of connection migration, which means, that a connec-
tion is independent of the IP address and the port being used. Connections are no longer
identified by the classic 4-tuple (source IP, source port, destination IP, destination port),
instead, the source- and destination connection ID fields in the protocol’s headers are
used. This change is beneficial, especially for mobile devices which encounter frequent
changes to their IP address (e.g., changing from a wi-fi connection to a cellular connec-
tion), because connections are kept alive and the overhead of a connection establishment
is saved.

2.2.1 Transport Parameters
QUIC’s transport parameters are exchanged between the client and server during the
initial handshake. The protocol’s transport parameters are encapsulated in a quic_
transport_parameters extension in the TLS 1.3 ClientHello and EncryptedExten-
sions messages, sent by the client and server respectively during the initial handshake.
The declaration of these parameters is done independently of the other endpoint’s choice.
The use of 0-RTT depends on the parameters previously negotiated between the client
and server. Not only cryptographic details but also values of stored transport parameters
are used when performing this type of handshake.

According to the Internet Assigned Numbers Authority (IANA), there are currently 20
different transport parameters assigned to be ‘permanent’ and 6 other parameters which
are assigned as ‘provisional’ by the time of writing this work [10]. The firstly introduced
permanent parameters are defined in RFC 9000 [3] section 18.2 and these are:

1. original_destination_connection_id: This parameter has the same value as
the Destination Connection ID field from the first Initial packet sent by the client,
this is done to authenticate Connection IDs.

2. max_idle_timeout: Connection timeout in ms. If a connection stays idle for
longer than the minimum value advertised with this parameter by the client and
the server, the connection is closed.

3. stateless_reset_token: This parameter is used to verify a stateless reset. A
stateless reset can be conducted when a peer in a connection can no longer asso-
ciate a received packet to an active connection due to e.g., a crash. This parameter
may only be sent by a server.

5

Chapter 2: Background

4. max_udp_payload_size: This parameter advertises the size of the largest UDP
payload in B that the endpoint is willing to receive. This constraint is similar to
the one imposed by the path Maximum Transmission Unit (MTU), but it is not
dependent on the path itself but on the actual endpoints.

5. initial_max_data: The initial max data parameter indicates the maximum
amount of data allowed to be transmitted throughout the connection as a whole in
B. This value is used for flow control but can be updated later in the connection
with a MAX_DATA frame.

6. initial_max_stream_data_bidi_local: The value of this parameter sets the
flow control limit in B for bidirectional streams initiated locally and applies to the
streams created by the endpoint that advertises the parameter.

7. initial_max_stream_data_bidi_remote: This parameter is analogous to the
initial_max_stream_data_bidi_local parameter, but applies to the streams
created by the endpoint that receives the parameter.

8. initial_max_stream_data_uni: This value sets the initial flow control limit in
B for unidirectional streams and applies to streams initiated by the endpoint that
receives the parameter.

9. initial_max_streams_bidi: This integer value limits the maximum amount of
bidirectional streams that are allowed to be created by the receiver of the para-
meter.

10. initial_max_streams_uni: This parameter is analogous to the initial_max_
streams_bidi parameter, but for unidirectional streams.

11. max_ack_delay: This value indicates the maximum time delay that an endpoint
may have before sending acknowledgments

12. ack_delay_exponent: This parameter is used to decode the ACK Delay field in
ACK frames. This parameter allows having a larger range of values that can be
used in the ACK Delay field.

13. disable_active_migration: This parameter is sent if the endpoint does not
support active connection migration.

14. preferred_address: When a server advertises this parameter, the server changes
the IP address (and port) to a ‘preferred’ one once the handshake is completed.
This parameter may only be sent by servers.

6

2.2 QUIC

15. active_connection_id_limit: This value limits the number of connection IDs
that an endpoint can store. A QUIC connection has a set of connection IDs to
identify the connection. Multiple connection IDs are used during a connection to
avoid packets being identified to the same connection by a third party. Therefore,
the minimum value for this parameter must be 2. After the handshake, new con-
nection IDs can be issued and retired with the NEW_CONNECTION_ID and RETIRE_
CONNECTION_ID frames.

16. initial_source_connection_id: This is the same value that the sender included
in the Source Connection ID field on the connection’s very first Initial packet.

17. retry_source_connection_id: The value of this parameter is the same as the
one sent by the server in the Source Connection ID field of a Retry packet. It
is used to authenticate connection IDs. A server can respond to a client’s Initial
packet with a Retry packet and the client will then send another Initial packet
with the connection ID advertised in the Retry packet. This can be useful to
redirect to another server as explained in [11]. The parameter is only sent by
servers.

Other transport parameters have been introduced later in different RFCs:

1. max_datagram_frame_size: This transport parameter is introduced with the un-
reliable datagram extension in RFC 9221 [12]. Values greater than 0 indicate
support for DATAGRAM frames and the maximum size of a DATAGRAM frame willing
to be received.

2. grease_quic_bit: This transport parameter is introduced with RFC 9287 [13],
and the presence of this parameter indicates that the ‘QUIC Bit’ (the second-most
significant bit of the first Octet of QUIC packets) is allowed to be used for other
purposes other than to always set this bit to 1 to effectively distinguish QUIC
from other protocols.

3. version_information: The Internet-Draft (by February 2023) ‘Compatible Ver-
sion Negotiation for QUIC’ [14] introduces this new transport parameter which
carries the information of the chosen QUIC version for the current connection
and a list of the endpoint’s available versions sorted by preference. Even though
this RFC has still not been released, IANA already classifies this parameter as
permanent.

7

Chapter 2: Background

2.2.2 LSQUIC
LiteSpeed QUIC (LSQUIC) is an open-source implementation of the QUIC protocol [15].
LSQUIC is the chosen reference QUIC implementation for this work. This implemen-
tation was selected due to it being implemented in the performant C programming
language, for its flexibility when configuring and for being one of the most deployed im-
plementations as observed by Zirngibl et al. [4]. The LSQUIC library also provides an
HTTP client and server which are also used during this work to test the protocol. The
client and server are highly customizable with so-called ‘engine settings’, these settings
let us set different values for the following transport parameters:

• initial_max_data,

• initial_max_stream_data_bidi_local,

• initial_max_stream_data_bidi_remote,

• initial_max_stream_data_uni,

• initial_max_streams_bidi,

• initial_max_streams_uni,

• max_idle_timeout,

• max_udp_payload_size and

• grease_quic_bit.

All other parameters are not configurable as engine settings. There are also other
interesting configurable settings, such as the congestion control algorithm. LSQUIC
offers three different options for congestion control: CUBIC, BBRv1 and an adaptive
mechanism that switches between CUBIC and BBRv1 depending on the RTT.

LSQUIC uses different default values for the client’s and server’s transport parameters.
These default values are presented in Table 2.1.

8

2.2 QUIC

Table 2.1: LSQUIC’s default transport parameter values for the client and server.

Transport Parameter Client Server

max_idle_timeout 30000 30000

max_udp_payload_size 65527 65527

initial_max_data 15728640 1572864

initial_max_stream_data_bidi_local 6291456 0

initial_max_stream_data_bidi_remote 0 1048576

initial_max_stream_data_uni 32768 12288

initial_max_streams_bidi 100 100

initial_max_streams_uni 100 3

ack_delay_exponent 3 3

max_ack_delay 25 25

disable_active_migration False False

active_conn_id_limit 8 8

9

Chapter 3

Related Work

This chapter introduces relevant related work on the topic of QUIC’s transport para-
meters and in LSQUIC’s performance in particular.

Wolsing et al. [16] present a comparison between QUIC and TCP. This comparison is
done by ‘tuning’ TCP parameters such as the congestion window and buffer sizes and
thus achieving significant improvements in the performance of the protocol. It is shown,
that in studies where QUIC outperforms the TCP stack (TCP, TLS, and HTTP), the
comparisons are done with default TCP configurations. The authors claim, that large
content providers adjust TCP’s parameters to offer better performance, therefore this
study focuses on making a fair comparison between an adjusted and finely-tuned TCP
implementation and the QUIC protocol, which is optimized for today’s networks and
devices by design. They conclude that QUIC offers superior performance when com-
pared to optimized TCP, mainly because of the more efficient connection establishment,
but the performance difference is smaller when compared to an unoptimized configura-
tion. This finding further rises the question if tuning QUIC’s parameters can produce
a similar impact and improve performance, which we look at in our work.

Experimentation with QUIC’s transport parameters has been done already. Volodina
and Rathgeb’s work [5] explores a protocol extension draft that introduces the new
frame type ‘ACK frequency frame’ and a new transport parameter min_ack_delay to
dynamically adapt the acknowledgement (ACK) ratio [17]. They show the impact of
adjusting the ACK ratio with the new transport parameter and frame type by bench-
marking the performance under different network conditions. A similar testing approach
is performed in our work to study the protocol’s transport parameters while taking into
account the values used in actual QUIC deployments.

Chapter 3: Related Work

In the paper by Piraux et al., [6] early QUIC implementations’ interoperability is
tested. Among the protocol features that are tested, the protocol’s flow control tests
are interesting. They advertise a small value for the initial_max_stream_data_bidi_
local parameter (80 B) to check if the servers would respect this limit and stop sending
the data. The researchers would then update the limit with MAX_STREAM_DATA frames to
see that the servers continued transmitting the data. In their findings, they noticed that
some implementations did not behave as expected. This work sets different values for
the mentioned transport parameter and evaluates its effect on the protocol’s behavior,
but does not consider the impact on the performance that values used by Internet
deployments may produce.

The work by Zirngibl et al. [4] analyzes QUIC deployments on the Internet in more de-
tail. For this study, Internet-wide scans were conducted to retrieve information about
active QUIC deployments by performing stateful scans. The authors evaluate the trans-
port parameter configurations advertised by the different scan targets. On the one
hand, they found parameters such as active_connection_id_limit, max_ack_delay
and ack_delay_exponent for which default values are commonly used. On the other
hand, parameters that can potentially influence performance, have large deviations in
the values used. For max_udp_payload_size, initial_max_data and initial_max_
stream_data seen values range between 1500 B and 65 527 B for the first parameter,
between 8192 B and 16 777 216 B for the second one and between 32 000 B and 10
000 0000 B for the last one. The researchers collected 45 different transport parameter
sets that QUIC servers were advertising throughout the Internet. The authors argue
that a server’s advertised transport parameters can help to analyze QUIC deployments
and their differences and that configuring these parameters can have an impact on
QUIC connections.

The master’s thesis by Kempf [18] is of great interest to our work because it takes a deep
dive into the performance of QUIC implementations, particularly that of LSQUIC. The
author observed that in the case of the LSQUIC implementation, the choice of the con-
gestion control algorithm causes significant performance differences. The BBR imple-
mentation did not keep up with CUBIC when it came to goodput in the measurements.
Additionally, the UDP receive buffer sizes can affect performance. It was concluded,
that the buffer size is not enough for high bandwidth usage, since a significant amount
of dropped packets was detected. Furthermore, it was identified, that there is a large de-
viation in ACK frequency between measurements. Unnecessarily many ACKs resulted
in additional overhead for the server, and thus it affects performance. The work by
Kempf also contributed to the QUIC Interop Runner used in our work [19], especially
by extending its functionality. Support to run scripts on the client and server before

12

and after measurement was added, passing environmental variables to the client and
server is now possible, and support for YAML configuration files was introduced.

13

Chapter 4

Methodology

This chapter introduces the procedures used to produce the results and findings during
this thesis. It includes information on the data collection methods and the measurements
performed in this work.

4.1 Transport Parameters Data

In this section, we explain how we get the data of transport parameters used by QUIC de-
ployments on the Internet.

4.1.1 Internet Wide Scans
In order to get an insight into the transport parameters used by QUIC servers on the
Internet, we analyze the results from two Internet-wide scans like the ones performed
by Zirngibl et al. [4]. The first scan was performed on January 27, 2022; the second
scan on October 13, 2022. The raw data analyzed consists of the transport parame-
ters advertised by IPv4 QUIC servers. We filter out connection-specific parameters to
analyze the data. Connection-specific parameters are:

• original_dst_conn_id,

• stateless_reset_token,

• preferred_address,

• initial_src_conn_id and

• retry_src_conn_id.

The parameters we analyze from the scans in more detail are:

Chapter 4: Methodology

• max_idle_timeout,

• max_udp_payload_size,

• initial_max_data,

• initial_max_stream_data_bidi_local,

• initial_max_stream_data_bidi_remote,

• initial_max_stream_data_uni,

• initial_max_streams_bidi,

• initial_max_streams_uni,

• ack_delay_exponent,

• max_ack_delay,

• disable_active_migration and

• active_conn_id_limit.

The most common parameter combinations were extracted and we also present the
parameters’ most commonly used values.

4.1.2 Internet Browsers
It is also in the interest of our work, to analyze transport parameters advertised by pop-
ular QUIC clients. We extract the transport parameters used by two different browsers:

• Google Chrome for Windows 109.0.5414.119 (64-bit)

• Mozilla Firefox for Windows 109.0 (64-bit)

To get this data, we host a QUIC server and then enforce the browsers to use QUIC as
the transport layer protocol when trying to connect to our server’s IP address. Both
browsers have different ways to force the use of QUIC and HTTP/3. For the Chrome
browser, the options shown in Listing 4.1 have to be present when executing the browser
from the command line.

Listing 4.1: Options to force QUIC in Google Chrome
1 chrome --enable -quic --origin -to-force -quic -on=<server -hostname >:443

The Firefox browser has a configuration option to force QUIC on selected hosts. To
enable it, it is necessary to type about:config in the address bar. Then, in the prefer-
ence search bar, search for the network.http.http3.alt-svc-mapping-for-testing

16

4.2 Measurements

option and add an entry in the format seen in Listing 4.2. Finally, save and restart the
browser.
Listing 4.2: Entry in the network.http.http3.alt-svc-mapping-for-testing Firefox’s option to
force a QUIC connection.

1 <server -hostname >;h3=":443";h3 -29=":443"

We capture the packets sent by the client to our server using Wireshark [20] and inspect
their content. The client’s transport parameters in the Initial packet are not confiden-
tiality protected and, as explained in Section 2.2.1, the client’s transport parameters
are selected independently from the server’s configuration. Therefore, we can simply
read the values from the packet as seen in Figure 4.1.

Figure 4.1: Firefox’s transport parameters inspected with Wireshark.

4.2 Measurements

To perform the measurements for this work, we use the blockchain testbed infrastruc-
ture provided by their Chair of Network Architectures and Services along with the
QUIC Interop Runner’s fork [19].

The topology of the setup consists of two test nodes (Uniswap and Solana) and a
management node (Coinbase). One of the test nodes acts as the QUIC client and the
other as the server. The two test nodes communicate over a 10 Gbit Ethernet link and
both are controlled directly via the management node. From the management node, the
test nodes are booted, configured (with the Debian 11 operating system) and controlled
completely using the Plain Orchestrating Service (POS) [21]. Both test nodes have an
Intel® Xeon® E51650 v3 CPU, 64 GB of memory and an Intel® 10G X550T network
adapter.

17

Chapter 4: Methodology

The QUIC Interop Runner’s original purpose is to test the interoperability between
different QUIC implementations (by setting different implementations for client and
server) under several test cases such as a handshake test, a version negotiation test or
a 0-RTT test between others [22]. It can also be used to test the performance of single
implementations with benchmarking tests. The Interop Runner’s fork we use is adapted
to run directly on the hardware and thus saves the overhead which would be introduced
by using Docker (which the original QUIC Interop Runner uses).

To perform our measurements, we use the ‘goodput’ test. This test creates a file with
a relatively large size (e.g., 500 MB or 1 GB) on the server node, then it downloads the
file from the server to the client. It is made sure, that the file is downloaded correctly
and then the throughput of the download is returned as result in Mbit/s. To analyze
our results, we measure with the same parameters 10 or 20 times (depending on the
measurement), and then we compute the mean of those measurements. After completing
the measurements, we plot our results to compare them.

Additionally, in our measurements, we use Ethtool [23]. This tool extracts information
from the network interface and get statistics of packets transmitted, packets received
and packets dropped. The pre- and post-measurement scripts provided by Kempf [18]
are used to generate this information before and after each measurement.

4.2.1 WAN Emulation
For this work, we extend the functionality of the QUIC Interop Runner. We implement
a feature to emulate different network conditions when using the QUIC Interop Runner.
TC’s NetEm can be used to add delay on packets, add random packet loss, add random
noise corruption (which introduces a single bit error at a random offset in a packet) and
add random packet reordering. All of these options are configurable as command line
arguments when executing the Interop Runner. TC’s NetEm is configured on the client’s
network interface to impact ingress traffic. A model of this can be seen in Figure 4.2.

Figure 4.2: TBF on the server’s interface and NetEm on the client’s interface.

By default NetEm only affects egress traffic. The Interop Runner already had a feature
to limit the bandwidth using TC’s Token Bucket Filter (TBF) on the server’s outgoing
traffic. To avoid having to dynamically create and adapt a child queueing discipline

18

4.2 Measurements

depending on the different possible usage combinations of TBF and NetEm, we opt to
follow the approach of applying NetEm to the client’s ingress traffic. It is important to
note, that in our testing environment, NetEm and TBF have a significant impact when
used for the server’s outgoing traffic or the client’s incoming traffic and not so much in
the other traffic direction.
To apply NetEm’s rules on ingress traffic, we use an Intermediate Functional Block (IFB)
pseudo network interface to redirect the client’s ingress traffic to the IFB. The IFB
handles the client’s ingress traffic as ‘egress’ traffic, so we can apply NetEm to the IFB
and emulate different network environments.

4.2.2 LSQUIC Configuration
To use a specific QUIC implementation in the Interop Runner, three bash scripts are
required:

• setup-env.sh, as the name suggests, the necessary environment to use the QUIC
implementation is set up. For example, this can be the installation of requirements.

• run-client.sh, this script starts the client with any necessary options (such as
setting the IP address).

• run-server.sh, the server is started when this script is executed.

For our work, we extend the run-client.sh and the run-server.sh scripts used for the
LSQUIC implementation (which is our chosen reference implementation as explained in
Section 2.2.2). We add the option to configure and set different values for the transport
parameters that are advertised by the client and server. The values used for the para-
meters are passed to the script using POS environmental variables for the client and
server separately. This allows us to modify the values being used for the transport pa-
rameters easier using configuration files. In case no POS variable is set for a parameter,
the default value in the script is used. The default values in our scripts are the same
default values seen in the LSQUIC source code. Nonetheless, this script lets us change
the parameters’ default values eventually. A snippet of the used script to run the client
and set the values for the transport parameters can be seen in Listing 4.3.

Listing 4.3: Transport parameter configuration in run-client.sh
1 ...
2 IDLE_TIMEOUT=$(pos_get_variable -r IDLE_TIMEOUT)
3 MAX_UDP_PAYLOAD=$(pos_get_variable -r MAX_UDP_PAYLOAD)
4 INITIAL_MAX_DATA=$(pos_get_variable -r INITIAL_MAX_DATA)
5 INITIAL_MAX_STREAM_DATA_BIDI_LOCAL=$(pos_get_variable -r

INITIAL_MAX_STREAM_DATA_BIDI_LOCAL)
6 INITIAL_MAX_STREAM_DATA_BIDI_REMOTE=$(pos_get_variable -r

INITIAL_MAX_STREAM_DATA_BIDI_REMOTE)
7 INITIAL_MAX_STREAM_DATA_UNI=$(pos_get_variable -r INITIAL_MAX_STREAM_DATA_UNI)

19

Chapter 4: Methodology

8 INITIAL_MAX_STREAMS_BIDI=$(pos_get_variable -r INITIAL_MAX_STREAMS_BIDI)
9 INITIAL_MAX_STREAMS_UNI=$(pos_get_variable -r INITIAL_MAX_STREAMS_UNI)

10
11 if [[$TESTCASE == "goodput"]]; then
12 # Default values for the transport parameters
13 # are the same defaults used in the lsquic implementation
14 LSQUIC_O_FLAG=
15 ...
16 ‘"-o␣idle_timeout=${IDLE_TIMEOUT :-30}␣"‘
17 ‘"-o␣max_udp_payload_size_rx=${MAX_UDP_PAYLOAD :-0}␣"‘
18 ‘"-o␣init_max_data=${INITIAL_MAX_DATA : -15728640}␣"‘
19 ‘"-o␣init_max_stream_data_bidi_local=${INITIAL_MAX_STREAM_DATA_BIDI_LOCAL

: -6291456}␣"‘
20 ‘"-o␣init_max_stream_data_bidi_remote=${

INITIAL_MAX_STREAM_DATA_BIDI_REMOTE :-0}␣"‘
21 ‘"-o␣init_max_stream_data_uni=${INITIAL_MAX_STREAM_DATA_UNI : -32768}␣"‘
22 ‘"-o␣init_max_streams_bidi=${INITIAL_MAX_STREAMS_BIDI :-100}␣"‘
23 ‘"-o␣init_max_streams_uni=${INITIAL_MAX_STREAMS_UNI : -100}"
24 ./ http_client \
25 ...
26 $LSQUIC_O_FLAG

For our measurements, we fix the LSQUIC congestion control algorithm to CUBIC.
Furthermore, we increase our UDP receive buffers. As presented in Chapter 3, these
changes made by Kempf [18] enable LSQUIC to deliver better performance overall.

We make use of YAML configuration files to create different transport parameter com-
binations for our measurements. In these scripts, we set values for the POS variables
which are then read by the client and server using the run-client.sh and run-server.sh
scripts respectively. An example configuration file is presented in Listing 4.4.

Listing 4.4: Example transport parameter configuration file
1 client_implementation_params:
2 - IDLE_TIMEOUT =120
3 - MAX_UDP_PAYLOAD =1472
4 - INITIAL_MAX_DATA =196608
5 - INITIAL_MAX_STREAM_DATA_BIDI_LOCAL =131072
6 - INITIAL_MAX_STREAM_DATA_BIDI_REMOTE =131072
7 - INITIAL_MAX_STREAM_DATA_UNI =131072
8 - INITIAL_MAX_STREAMS_BIDI =100
9 - INITIAL_MAX_STREAMS_UNI =103

10 server_implementation_params:
11 - IDLE_TIMEOUT =30
12 - MAX_UDP_PAYLOAD =1472
13 - INITIAL_MAX_DATA =16777216
14 - INITIAL_MAX_STREAM_DATA_BIDI_LOCAL =1048576
15 - INITIAL_MAX_STREAM_DATA_BIDI_REMOTE =32768
16 - INITIAL_MAX_STREAM_DATA_UNI =1048576
17 - INITIAL_MAX_STREAMS_BIDI =100
18 - INITIAL_MAX_STREAMS_UNI =10

20

Chapter 5

Results

This chapter presents the results of the analyzed data and the measurements performed
according to the methodology presented in Chapter 4.

5.1 Transport Parameters Data

This section shows the data of the collected transport parameters. We get this data from
two sources. The first one is from two Internet-wide scans performed on January 27, 2022
and on October 13, 2022. The second source is directly from inspecting QUIC packets
sent by two web browsers.

5.1.1 Internet Wide Scans
The scan on January 27, 2022 (scan 22-01-27) reaches 290746 targets and we identify 91
different transport parameter combinations. For the scan on October 13, 2022 (scan 22-
10-13), we recognize 148 different transport parameter sets for 516877 reached targets.
We can see an increase in QUIC endpoints on the Internet, but we can also notice that
more transport parameter combinations are in use.

We group the entries in our data by the transport parameters that we are interested in.
On the one hand, the most common set in scan 22-01-27 (set α) is advertised by 68892
endpoints, which is 23,7% of all reached targets. On the other hand, the most common
parameter combination in scan 22-10-13 (set β) is advertised by 148728 QUIC servers,
this accounts for 28,8% of the scanned targets. Table 5.1 displays the values of the most
common transport parameter combination for scan 22-01-27 and scan 22-10-13.

Chapter 5: Results

Table 5.1: Values of the most common transport parameter set for each scan.

Transport Parameter Set α Set β

max_idle_timeout 30000 120000

max_udp_payload_size 1472 1472

initial_max_data 16777216 196608

initial_max_stream_data_bidi_local 1048576 131072

initial_max_stream_data_bidi_remote 32768 131072

initial_max_stream_data_uni 1048576 131072

initial_max_streams_bidi 100 100

initial_max_streams_uni 10 103

ack_delay_exponent 10 3

max_ack_delay 25 25

disable_active_migration False False

active_conn_id_limit 4 0a

a The value 0 indicates that the default limit of 2 connection IDs is used.

We observe, that the most used combination changes between the two dates. In scan
22-01-27, set β is advertised by 50805 of the 290746 scanned targets (17,5%). This
makes set β, the third most common combination in scan 22-01-27. Set α is advertised
by 100115 of the 516877 reached endpoints in scan 22-10-13 (19,4%), making it the
second most common parameter combination in scan 22-10-13.

We also set focus on the individual parameters. The five most common values for the
max_idle_timeout can be seen in Table 5.2

22

5.1 Transport Parameters Data

Table 5.2: Five most common max_idle_timeout values for each scan

max_idle_timeout

scan 22-01-27 scan 22-10-13

Value in ms # Endpoints Value in ms # Endpoints

30000 71829 120000 180489
180000 66735 30000 113033
300000 56088 180000 108323
120000 51037 300000 62047
240000 36140 240000 37760

The advertised values for this parameter vary but are all roughly within an order of mag-
nitude (excluding some outliers which reach a value of up to 90 000 000 000 ms ≈ 1042 d).
This parameter does not have a direct impact on the performance (throughput) of a
connection due to the nature of the parameter, but it could give an insight into the
purpose of the endpoint. Use cases where user interaction is expected could opt for
longer or no idle timeouts at all.

QUIC endpoints on the Internet also show different values for the max_udp_payload_
size transport parameter as seen in table Table 5.3.

Table 5.3: 5 most common max_udp_payload_size values for each scan

max_udp_payload_size

scan 22-01-27 scan 22-10-13

Value in B # Endpoints Value in B # Endpoints

1472 212996 1472 350751
1404 30680 65527 94222
65527 25437 1404 38143
1500 18761 1500 20521
1452 2833 1452 12318

In total, there are 9 and 12 different values for this parameter seen in scans 1 and 2
respectively. The predominant value for this parameter is 1472 B, which is advertised
by 73,3% of servers in scan 22-01-27 and by 67,9% in scan 22-10-13. In scan 22-10-13,
we observe an increase in the use of the value 65 527 B between the two scan dates. This
value is the protocol’s maximum permitted payload size as well as its default value as

23

Chapter 5: Results

defined in RFC 9000 [3]. The max_udp_payload_size transport parameter cannot have
much of an effect on the performance (especially for larger values such as 65 527 B), since
the size of the UDP payload is also dependant on the path’s MTU. Theoretically, a
low value for this parameter could hinder the performance, but the protocol’s minimum
allowed value is 1200 B. In the scans less than 1% of endpoints advertise values below
1404 B (i.e., 1350 B, 1280 B and 1200 B). Additionally, it is stated in the LSQUIC
documentation, that this limit is not enforced for incoming packets. Therefore we
assume that in the case of traditional Ethernet-based networks with an MTU of 1500 B,
the impact of this parameter is not significant.

The initial_max_data transport parameter serves as a flow control limit on the total
amount of data sent by the connection’s streams. The performed scans demonstrate
that there is a large number of different values being advertised for this parameter. In
scan 22-01-27, there are 34 different values, while in scan 22-10-13, 50 can be seen. As
seen in Table 5.4, the values used for this parameter vary within multiple orders of
magnitudes.

Table 5.4: 10 most common initial_max_data values for each scan

initial_max_data

scan 22-01-27 scan 22-10-13

Value in B # Endpoints Value in B # Endpoints

196608 143091 196608 248617
16777216 68949 16777216 100128
1048576 54926 1048576 53623

10485760 19058 137363456 31676
786432 2798 10485760 29516

50331648 1069 68681728 26797
8585216 341 786432 12204

34359738368 205 8585216 10861
16384 113 50331648 1068

2097152 60 10000000 770

The smallest advertised value for this parameter is 8192 B (observed 21 times in scan 22-
10-13) and the largest is roughly 4 611 686 TB (observed by one endpoint in both scans).
Since this is a potentially significant parameter for the performance of a connection, it
is one of the focuses of this work to analyze it in more detail in Section 5.2.

24

5.1 Transport Parameters Data

The three stream-level flow control parameters are analyzed, i.e.:

• initial_max_stream_data_bidi_local,

• initial_max_stream_data_bidi_remote and

• initial_max_stream_data_uni.

These three parameters serve as flow control limits. In contrast to initial_max_data,
they limit the data that can be sent on each stream instead of limiting the connection
as a whole.
It should be remarked, that servers tend to advertise these parameters as a group. There
are relatively few value combinations for this three-parameter set in relation to all the
theoretically possible combinations. As seen in Table 5.5, more than 99% of the scanned
QUIC servers (in both scans) advertise one of the 10 most common values sets for the
maximum stream data transport parameters.

Table 5.5: 10 most common initial_max_stream_data_{bidi_local, bidi_remote, uni} values for
each scan

initial_max_stream_data_{bidi_local, bidi_remote, uni}

scan 22-01-27 scan 22-10-13

bidi_local bidi_remote uni
∑α bidi_local bidi_remote uni

∑α

131072 131072 131072 143151 131072 131072 131072 248668
1048576 32768 1048576 68892 1048576 32768 1048576 100124
67584 67584 67584 47598 67584 67584 67584 51583

0 1048576 1048576 17422 524288 524288 524288 39001
65536 65536 65536 7668 1048576 1048576 1048576 31678

524288 524288 524288 2798 0 1048576 1048576 23046
10485760 10485760 10485760 1638 65536 65536 65536 12906
3145728 3145728 3145728 1069 10485760 10485760 10485760 6470
16777216 16777216 16777216 211 3145728 3145728 3145728 1068

16384 16384 16384 113 1000000 1000000 0 766
Parameter values are in B

a Number of endpoints advertising the given three-parameter set.

As seen in Table 5.5, values for the initial_max_stream_data_bidi_local parameter
varies by multiple orders of magnitude. Even some servers advertise 0 B as a limit. This
parameter limits locally initiated bidirectional streams. On the first date, 23 different
values are observed, while the second date presents 43 different values for this parame-
ter. There are use cases where the server does not initiate any streams themselves (such
as our file download measurement). In such cases, this server parameter is not relevant
to the connection and therefore it might be set to 0 B. The largest seen parameter is

25

Chapter 5: Results

1073.7 MB and it is sent by 10 endpoints in scan 22-10-13.
The initial_max_stream_data_bidi_remote parameter limits stream-level flow con-
trol, analogous to initial_max_stream_data_bidi_local, but for streams initiated by
the peer. The values for this parameter shown in Table 5.5, hint that this parameter is
also given values that vary similarly to initial_max_stream_data_bidi_local. This
parameter can potentially influence the connection’s performance in our measurements
and we take a look at it in more detail in Section 5.2. In the first scan, 27 different
values are identified, while in the second scan, we can see 45 different values for this
parameter. The smallest seen value for this parameter is 1000 B (by one endpoint in
both scans) and the largest one is 1048.6 GB (by two endpoints in scan 22-01-27 and
three endpoints in scan 22-10-13).
The initial_max_stream_data_uni transport parameter limits unidirectional streams
opened by the receiver of the parameter. For this parameter, the values advertised are
also very similar to those being advertised for initial_max_stream_data_bidi_local
and initial_max_stream_data_bidi_remote as can be observed in Table 5.5. The
first scan found 27 different values for this parameter and the second scan found 47.
The smallest advertised value is 0 B (by 766 servers in scan 22-10-13) and the largest is
also 1048.6 GB (by two endpoints in scan 22-01-27 and three endpoints in scan 22-10-13).

initial_max_streams_bidi and initial_max_streams_uni determine how many bi-
directional and unidirectional streams the receiver of the parameter is allowed to initiate
respectively. Again, for these parameters, we can observe a large variety of values
being sent by servers on both dates. This is presented for initial_max_streams_bidi
in Table 5.6. The large range of different values can also be seen for initial_max_
streams_uni in Table 5.7.

Table 5.6: 5 most common initial_max_streams_bidi values for each scan

initial_max_streams_bidi

scan 22-01-27 scan 22-10-13

Value # Endpoints Value # Endpoints

100 213478 100 361209
100000 49236 128 79628

256 10005 100000 58175
128 7998 256 15102
16 7619 16 1798

26

5.1 Transport Parameters Data

Table 5.7: 5 most common initial_max_streams_uni values for each scan

initial_max_streams_uni

scan 22-01-27 scan 22-10-13

Value # Endpoints Value # Endpoints

103 143747 103 250265
10 68896 10 100129

100000 49236 3 94332
3 25438 100000 58175

100 2694 100 10093

The transport parameter ack_delay_exponent only has two main advertised values: 3,
which is sent by 76,3% and 80,6% of servers in scan 22-01-27 and scan 22-10-13 respec-
tively; and 10, which is used by 23,7% and 19,4% in scan 22-01-27 and scan 22-10-13.
There exists one server in scan 22-01-27 and two servers in scan 22-10-13 which advertise
the value of 8.

More than 99% of QUIC endpoints in scan 22-01-27 and more than 97% in scan 22-
10-13, send the max_ack_delay parameter set to 25 ms. The second most seen value is
26 ms (used by less than 1% in scan 22-01-27 and 2,4% in scan 22-10-13). Other rarely
seen values are: 20 ms, 41 ms and 251 ms.

In scan 22-01-27, 33,2% of endpoints do not allow active connection migration due to
them advertising the disable_active_migration transport parameter. In scan 22-10-
13, this percentage is reduced to 22%.

For all the scanned QUIC servers in both scans, the values set for the active_conn_
id_limit range between 2 (the allowed minimum) and 8. 2 is the most advertised
value for this parameter with 75,3% and 78,1% of servers having sent this limit in scan
22-01-27 and scan 22-10-13 respectively.

5.1.2 Internet Browsers
By capturing the QUIC Initial packets sent by the Google Chrome and Mozilla Firefox
browsers, we can retrieve the transport parameters that they advertise. This provides
an insight into what transport parameters QUIC clients use.

Chrome sends additional transport parameters which are Google-specific. These para-
meters are:

27

Chapter 5: Results

• google_version,

• google_connection_options and

• initial_rtt.

The Google-specific parameters are ignored in the rest of this work because we cannot
test the impact of this and cannot set them using LSQUIC.

In Table 5.8, the values advertised by both browsers are presented.

Table 5.8: Chrome and Firefox’s transport parameters.

Transport Parameter Chrome Firefox

max_idle_timeout 30000 30000
max_udp_payload_size 1472 65527a

initial_max_data 15728640 25165824
initial_max_stream_data_bidi_local 6291456 12582912
initial_max_stream_data_bidi_remote 6291456 1048576
initial_max_stream_data_uni 6291456 1048576
initial_max_streams_bidi 100 16
initial_max_streams_uni 103 16
ack_delay_exponent 3a 3a

max_ack_delay 25a 20
disable_active_migration Falsea True
active_conn_id_limit 2a 2a

a The transport parameter is not sent by the browser and the default value is assumed.

We see that both browsers advertise different values for potentially impactful transport
parameters. We compare both of these client configurations later in Section 5.2.2.

5.2 Measurements

In this section, we present the results of the different measurements performed in our
testing environment.

At first, we do not differentiate between client and server parameters. LSQUIC is
configured to advertise the same transport parameter sets for the client and the server.
We use four different transport parameter configurations along with LSQUIC’s default
parameters (presented in Table 2.1) for these measurements. The first and the second
configurations are the two most common transport parameter sets (α and β) from

28

5.2 Measurements

Section 5.1.1. The third configuration is the seventh most common parameter set seen
in the scan performed on Oct 13, 2022. This configuration uses the following values:

• max_idle_timeout: 180

• max_udp_payload_size: 65527

• initial_max_data: 68681728

• initial_max_stream_data_bidi_local: 524288

• initial_max_stream_data_bidi_remote: 524288

• initial_max_stream_data_uni: 524288

• initial_max_streams_bidi: 128

• initial_max_streams_uni: 3

The fourth and last configuration is the second least common parameter set seen in the
scan from Oct 13, 2022. Its parameter values are:

• max_idle_timeout: 120

• max_udp_payload_size: 1500

• initial_max_data: 4294967295

• initial_max_stream_data_bidi_local: 16777216

• initial_max_stream_data_bidi_remote: 16777216

• initial_max_stream_data_uni: 16777216

• initial_max_streams_bidi: 1024

• initial_max_streams_uni: 1024

We choose these last two parameter sets due to them using not commonly observed
values for the flow-control-related parameters. During the measurements, we discover
that LSQUIC does not support the initial_max_data value of the fourth configuration.
This occurs because LSQUIC uses the ‘unsigned’ type in C to store the value of the
transport parameter. We try setting the value to 34359738368, which is the retrieved
value from the scan, but this value is larger than the maximum 32 bit unsigned integer
value (4294967295). Therefore we decide to use the largest possible value instead.

The goodput test is performed, and we compare the average result of 10 repetitions
downloading a 500 MB file under different added packet delay and loss values. The

29

Chapter 5: Results

comparison under packet delay can be seen in Figure 5.1a. and the results when packet
loss is present can be seen in Figure 5.1b.

(a) Goodput under delay (b) Goodput under loss (note the x-axis does not start
with 0 since it is a logarithmic scale).

Figure 5.1: Goodput achieved using the same transport parameter configurations for client and server
under packet delay and loss. (The colored area surrounding each curve represents the standard devia-
tion.)

In a perfect network environment with no loss or delay, the achieved throughput among
all the configurations is comparable. The highest goodput, on average, is achieved by
LSQUIC’s defaults with 1069.48 Mbit/s (± 27.95 Mbit/s). The lowest goodput is seen
for configuration 1 with 977.79 Mbit/s (± 22.96 Mbit/s). Configuration 3 lies within one
standard deviation from configuration 1, while configurations 2 and 4 are also within
the standard deviation of LSQUIC’s defaults.
When network delay is introduced, configurations 1, 2 and 3 experience a significant de-
crease in the goodput of the connection when compared to configuration 4 and LSQUIC’s
defaults. For example, with only 10 ms of added delay, configuration 1 sees a goodput
decrease of more than 95%; configuration 2 decreases over 70%; and configuration 3
experiences a reduction of more than 80%. Increasing delay leads configurations 1, 2
and 3 to slowly and continuously decrease the goodput of the connection (note that
with a delay of 40 ms and beyond, the download with configuration 1 timeouts). In
contrast, configuration 4 and LSQUIC’s default do not suffer such an impact on the
throughput with the initial addition of network delay. Configuration 4 performs simi-
larly to LSQUIC’s defaults (lying within the standard deviation) with 10 ms of added
delay. As the delay increases, we see that configuration 4 has a higher goodput average
across the board, but this comes with a relatively high standard deviation (up to added
delay values of 70 ms). The standard deviation of configuration 4 reaches a standard
deviation of ± 127.18 Mbit/s with 40 ms delay, which is relatively high when compared

30

5.2 Measurements

to the other configurations. It is especially noticeable considering that for the other
configurations, the standard deviation is not even visible or barely visible at most in
Figure 5.1a.
The packet loss measurement, depicted in Figure 5.1b, has a fixed delay of 10 ms to
amplify the effects of packet loss and make it more noticeable. At a low probability of
0.001% packet loss, results similar to those in Figure 5.1a with 10 ms delay are observed
due to the low chance of packets being dropped. However, a noticeable difference can
be seen in the standard deviation of the measurements for LSQUIC’s default configura-
tion. Increasing the probability of packets being lost provoke a decreased throughput on
configuration 4 and the LSQUIC default configuration’s connections. At 0.01% packet
loss, there is no difference significantly larger than the standard deviation between con-
figuration 2, configuration 4 and LSQUIC’s defaults. For even higher loss values, the
goodput of all configurations decreases to relatively low and similar values, with the
default configuration even timing out at 1% loss1. This behavior is expected due to the
underlying congestion control algorithm; CUBIC. CUBIC makes the assumption, that
packet loss signalizes congestion in the network [24], and thus the sending rates should
get decreased in our case.

The results seen in Section 5.2 raise our interest in explaining the subpar performance
of configurations 1, 2 and 3. Furthermore, it opens the question of why configuration
4 outperforms LSQUIC’s default configuration when there is added delay in the net-
work as seen in Figure 5.1a. To answer these questions, we proceed to differentiate
between server and client parameters and perform measurements for them individually
in Section 5.2.1 and Section 5.2.2 respectively. It is also adequate to make this differen-
tiation since in actual QUIC connections, clients and servers tend to advertise different
transport parameter sets as shown in Section 5.1.

5.2.1 Server Parameters
To measure the impact of the server’s advertised transport parameters, we decide to fix
the client’s transport parameters to LSQUIC’s defaults and try out different parame-
ters for the server. We begin by using the same five configurations as in the previous
measurements, but only set the configuration’s values on the servers. Again we perform

1When a repetition timeouts in a measurement, the test is marked as failed and the remaining repetitions
get aborted. The measurement with LSQUIC’s default transport parameter configuration with 1%
packet loss timeouts in the 8th repetition, until that point the default configuration was averaging a
goodput of around 21 Mbit/s, the same as all the other configurations.

31

Chapter 5: Results

10 repetitions downloading a 500 MB file under added packet delay and packet loss (see
Section 5.2.1).

(a) Goodput under delay (b) Goodput under loss (note the x-axis does not start
with 0 since it is a logarithmic scale).

Figure 5.2: Goodput achieved with different transport parameter combinations for the server and
LSQUIC’s default parameters for the client under packet delay and loss. (The colored area surrounding
each curve represents the standard deviation.)

When comparing the parameter configurations in a network with packet delay, it is seen
in Figure 5.2a, that the goodput of the different configurations is almost identical. The
curves of the different configurations are the same as the curve of the LSQUIC default
configuration in Figure 5.1a.
Similar behavior is observed in Figure 5.2b when packet loss is added to the connection.
A likelihood of 0.001% packet loss produces a minimal difference between the goodput
achieved with the different transport parameter combinations. This minimal difference
is within the standard deviation, which is shown as the colored area surrounding the
curves. Higher loss values result in a reduced standard deviation and with 1% loss, all
configurations end up converging to the same 21 Mbit/s goodput mark.

The findings observed in Section 5.2.1 reveal a negligible difference in the connection’s
goodput between LSQUIC’s standard parameters and configurations 1, 2, 3 and 4 on
the server. From these findings, we can deduce that the differences in the goodput, seen
in Section 5.2, between the measured configurations must be caused by the transport
parameters used by the QUIC client and not the parameters advertised by the server.
The client’s parameters impact is analyzed in more detail in Section 5.2.2.

32

5.2 Measurements

5.2.2 Client Parameters
In this section, the impact of the client’s advertised transport parameters is presented.
QUIC clients’ transport parameter values tend to differ from those advertised by QUIC
servers. This can be observed when comparing the values advertised by actual clients
(Chrome and Firefox browsers in Section 5.1.2) to the values advertised by the servers
in the Internet-wide scans from Section 5.1.1. Therefore, the transport parameters con-
figurations used in the previous sections (configurations 1, 2, 3 and 4 defined at the
start of Section 5.2) are not used for the coming measurements. Instead, the trans-
port parameter values advertised by the Chrome and Firefox browsers are used. The
LSQUIC’s default client transport parameter set is also included in the measurements
for comparison purposes. To evaluate the effect of QUIC client’s transport parameters,
the server’s transport parameters are fixed to use LSQUIC’s default server values. Once
again we perform a 500 MB file download introducing packet delay and packet loss into
the network. 10 repetitions are done for each data point. We plot the results of these
measurements in Section 5.2.2.

(a) Goodput under delay (b) Goodput under loss (note the x-axis does not start
with 0 since it is a logarithmic scale).

Figure 5.3: Goodput achieved with different transport parameter combinations for the client using
LSQUIC’s default parameters for the server under packet delay and loss. (The colored area surrounding
each curve represents the standard deviation.)

In Figure 5.3a, we can observe that for 0 and 10 ms of delay, the difference between
Firefox, Chrome and the default LSQUIC configuration is negligible. Chrome’s configu-
ration achieves a very similar goodput to that of LSQUIC’s default client for higher de-
lay values. This is expected since both configurations share many values for potentially
performance-relevant parameters. The initial_max_data and initial_max_stream_
data_bidi_local transport parameters have the same values in both the Chrome con-
figuration and the LSQUIC’s default configuration. In contrast, the configuration used

33

Chapter 5: Results

by the browser has a better performance than the other two configurations when we
introduce delay values of 20 ms and beyond. For those delay values, the Firefox con-
figuration averages around 170 Mbit/s more than the other configurations. The Firefox
configuration also has a higher standard deviation than the other configurations (de-
picted as the area surrounding the curves). Interestingly, the Firefox browser advertises
significantly higher values than the other clients analyzed. For the textttinitial_max_
data and initial_max_stream_data_bidi_local, Firefox uses values that are 1.6 and
2 times larger respectively.
Introducing packet loss into the connection does not reflect a significant difference be-
tween the three measured client configurations as seen in Figure 5.3b. We observe that
the higher the loss rate, the less the difference between the configurations; this finding is
consistent with all the previous measurements with added packet delay (see Figure 5.1b
and Figure 5.2b).

Building on the results showing the improved performance of the Firefox browser’s
configuration in a network with increased delay values, we now turn our attention to
analyzing the potential client parameters that contribute to this increase in the good-
put.
The connections we measure are file downloads initiated by the client, therefore the
QUIC streams are initiated by the client as well. This lets us discard parameters such as
initial_max_stream_data_bidi_remote, and initial_max_streams_bidi since they
only affect peer-initiated streams. We can also disregard the initial_max_stream_
data_uni and the initial_max_streams_uni transport parameters since in our case,
the data in our download is transferred in client bidirectional streams (this is checked
by inspecting the traffic of several measurements) and not uni-directional streams. This
leaves the client’s initial_max_data and initial_max_stream_data_bidi_local pa-
rameters in question. These client transport parameters can be relevant to the perfor-
mance of our connections because the initial_max_data parameter limits the max-
imum amount of data to be transmitted in an entire connection; and the initial_
max_stream_data_bidi_local parameter advertises the flow control limit for locally
initiated bidirectional streams. All mentioned transport parameters are previously de-
scribed in Section 2.2.1. We now isolate the client’s initial_max_data and initial_
max_stream_data_bidi_local transport parameters and investigate their impact on
the connection’s performance.

To measure the impact of the initial_max_data parameter, we fix all other client and
server transport parameters to the default values provided by LSQUIC. We perform 20
repetitions of the goodput test for each of the values we test and we set 30 ms delay in
the network. The added delay simulates the conditions of the previous measurements

34

5.2 Measurements

(see Figure 5.1a and Figure 5.3a) where we observed a performance difference. We
use a combination of values advertised by the analyzed QUIC clients and arbitrary
values (some of which were advertised by servers) to create a range of values to allow
comparison. For example, we notice that LSQUIC’s initial_max_data value for the
client is exactly 10 times the value advertised by the server. Therefore we also consider
the values in between those two advertised values.

Figure 5.4: Goodput with different initial_max_data values with 30 ms delay. All other client and
server transport parameters are fixed.

In Figure 5.4, we confirm that the initial_max_data transport parameter value adver-
tised by the client affects the performance of the connection. We observe, that higher
initial_max_data values produce a higher goodput in the connection. Although it
should be noted, that for values greater than 6 291 456 B (6.29 MB), there is no longer
an increase in the goodput. Even using the highest possible value for the parameter
does not increase the goodput significantly. The goodput obtained with the initial_
max_data values of the Chrome browser, the LSQUIC’s default client, the value of set
α from Section 5.1.1, the Firefox browser; and the maximum possible value is very sim-
ilar. Values lower than 6.29 MB present a decrease in the goodput of the connection.
Note that this value is not the exact threshold from which the goodput starts dropping
considerably. We see that the initial_max_data advertised by set α from Section 5.1.1
and the value advertised by LSQUIC’s default server have a very significant effect on
the connection; lowering the goodput by more than half in the case of the LSQUIC’s

35

Chapter 5: Results

server and by reducing the throughput by more than 90% in the case of set β from
Section 5.1.1.

We look into the network interface’s statistics generated with Ethtool [23] to find out
if there is a difference in the packets sent and received by the client and server when
different initial_max_data values are advertised by the client. The number of server-
sent packets is assumed to be the same as the number of received packets by the client
and vice-versa. This assumption is done since in some isolated cases, there may exist
a difference of at most one single packet. Due to this assumption, we only plot and
analyze the number of packets sent by the client and the number sent by the server in
Section 5.2.2.

(a) Client’s transmitted packets. (b) Server’s transmitted packets (note that the y-axis
does not start with 0 to help contrast the observed re-
sults)

Figure 5.5: Comparison of the number of packets sent by the client and the server interface for different
values of the client’s initial_max_data with a fixed delay of 30 ms.

In Figure 5.5a we observe that the values that achieve lower goodput in Figure 5.4 tend
to transmit more packages. Advertising 196 608 B, results in the client sending substan-
tially more packets than other values; it can send up to 5 times as many packets. The
client can send more than 10 000 packets when advertising 196 608 B as the initial_
max_data, but it send roughlt between 2000 and 4000 packets. Less noticeably, it can
be observed that the higher the initial_max_data, the lower the number of pack-
ets sent by the client. Nonetheless, this affirmation is only applicable up to a certain
point. Similar to Figure 5.4, the threshold for the point from which further increasing
the transport parameter’s value does not affect performance could be defined again as
6.29 MB.
Due to the relatively high number of packets sent by the server during a download,
the relative change in packets transmitted by the server is lower when compared to the

36

5.2 Measurements

numbers seen with the client. Nevertheless, a significantly higher number of packets are
sent, in this case by the server, when the used value for the initial_max_data is equal
to 196 608 B. As seen in Figure 5.5b, the server can send upwards of 5000 packets when
advertising the previously mentioned initial_max_data value. It could be argued that
a correlation between the size of the advertised parameter’s value and the number of
server-sent packets exists, although again due to the smaller relative difference, the
affirmation is weaker in this case.

In the next measurement, we evaluate the impact of the initial_max_stream_data_
bidi_local transport parameter. For this measurement, we fix all other LSQUIC
transport parameters to their default values and perform 20 repetitions of the goodput
test with 30 ms of added delay for each different parameter value. The values selected
for the transport parameter consist of a similar range of values as the one used for
Figure 5.4 and Section 5.2.2.

Figure 5.6: Goodput with different initial_max_stream_data_bidi_local values with 30 ms delay.
All other client and server transport parameters are fixed.

In Figure 5.6 it can be seen, that the client’s advertised initial_max_stream_data_
bidi_local value affects the connection’s goodput in the presence of packet delay.
We can see, that using values lower than 12 582 912 B (12.58 MB) decrease the the
goodput significantly. It is observed that for greater parameter values, the goodput’s
average does not vary much, but the observed goodput tends to vary more for each
repetition. The subpar performance offered by using the initial_max_stream_data_

37

Chapter 5: Results

bidi_local values used by set α and β from Section 5.1.1 further explain the results
seen in Figure 5.1a. The difference between setting the parameter to 6.29 MB and
12.58 MB results in a goodput difference of almost 200 Mbit/s. This finding explains
the difference seen between the goodput achieved by the Chrome and Firefox browser
configurations in Figure 5.3a.

To further understand this finding, we analyze the interface statistics that are generated
during the measurements in Section 5.2.2. The number of server-sent packets is assumed
to be the same as the number of received packets by the client and vice-versa. This
assumption is done since at most, a difference of one single packet between the two
counters may exist in some cases.

(a) Client’s transmitted packets. (b) Server’s transmitted packets (note that the y-axis
does not start with 0 to help contrast the observed re-
sults)

Figure 5.7: Comparison of the number of packets sent by the client and the server interface for different
values of the client’s initial_max_stream_data_bidi_local with a fixed delay of 30 ms.

The client’s number of sent packets varies greatly depending on the value of the client’s
advertised initial_max_stream_data_bidi_local transport parameter as seen in Fig-
ure 5.7a. In contrast to the initial_max_data transport parameter, initial_max_
stream_data_bidi_local values that produce a higher goodput, tend to cause the
client to send more packets than values that achieve a lower goodput (i.e., values lower
than 12.58 MB). However this does not apply for all initial_max_stream_data_bidi_
local values; when setting the parameter to 131.72 kB, we observe a low goodput of
16.81 Mbit/s but roughly the same number of packets sent as when setting the para-
meter to 12.58 MB (which causes a goodput of 701.33 Mbit/s). The number of packets
sent by the server (seen in Figure 5.7b) resembles the number of packets sent by the
client depending on the value of initial_max_stream_data_bidi_local. Parameter
values higher than 6.26 MB make the connection achieve a higher goodput but also

38

5.2 Measurements

cause the server to send more packets. Again the relatively small value of 131.72 kB is
an exception to this.

39

Chapter 6

Conclusion

Here we summarize and discuss the effect of QUIC’s transport parameters on the proto-
col’s performance. Furthermore, we present an outlook on future research possibilities.

6.1 Summary

The main questions for our research were as follows:

• Which transport parameters are used by QUIC deployments on the Internet?

• Do these parameters have an effect in the first place?

• If they do, how do they affect the performance?

At first, we differentiate between transport parameters advertised by clients and servers.
We recognize 148 different server transport parameter sets in the latest Internet-wide
scan and we find out that for some parameters many different values are being advertised
while for other parameters, a large majority of QUIC servers advertised the default
values defined for the protocol. This finding is consistent with the findings from Zirngibl
et al. [4]. We show that the Firefox and Chrome browsers also advertise different values
for the transport parameters. These different values found for client and server transport
parameters are used to perform our measurements.

The measurements performed allows us to show the effect of transport parameters in
different network environments. In perfect network conditions, we notice a negligible
effect of client and server transport parameters on the performance. We identify that
for high packet loss rates, it is probably the congestion control algorithm in use (CU-
BIC) that limits the throughput in the connection. Furthermore, when adding packet

delay into the network we observe different behavior. On the one hand, the transport
parameters advertised by the server do not have a significant effect on the goodput.
On the other hand, the parameters advertised by the client can significantly impact the
performance of the connection.

It is also shown, that the Firefox browser’s transport parameter configuration achieves
higher goodput than the Chrome configuration in connections that experience high
packet delay. We distinguish which specific client transport parameters cause the impact
on the performance. We try out different values for these parameters and also see that
the number of packets sent varies when using different transport parameter values.

The results of our work and the seen effects of certain transport parameters are obtained
by using the LSQUIC implementation. Therefore, it must be noted that using another
QUIC implementation may lead to different results.

6.2 Future Work

The effect of transport parameters on QUIC’s performance still has a lot of potential for
future studies, especially considering that protocol extensions can add more transport
parameters in the future.

We believe that the findings shown in this work can bootstrap further work on the topic.
As the QUIC protocol continues to evolve and be adopted more widely, it might be of
interest to find transport parameter values that can optimize connections given different
network conditions. Areas that this work does not cover but could be interesting to
research further are:

• Analyzing the effect of transport parameters on other QUIC implementations.

• Exploring effect of other parameters such as max_ack_delay, which LSQUIC does
not allow configuring. As well as implementation-specific transport parameters
like Google-specific parameters advertised by the Chrome browser.

• Comparing the advertised parameters from other Internet browsers.

• Performing similar measurements with BBR as the congestion control algorithm.

42

Chapter A

Appendix

A.1 List of acronyms

TCP Transmission Control Protocol
UDP User Datagram Protocol
ISO International Organization for Standardization
OSI Open Systems Interconnection
IETF Internet Engineering Task Force
TLS Transport Layer Security
RTT round-trip-time
HOL Head-of-Line
IANA Internet Assigned Numbers Authority
LSQUIC LiteSpeed QUIC
POS Plain Orchestrating Service
MTU Maximum Transmission Unit
HTTP Hypertext Transfer Protocol
ACK acknowledgement, a message, sent by the receiver to the sender,

confirming the received data sent previously and that it is ready for the
next.

TBF Token Bucket Filter, is a classful queueing discipline available for traffic
control with the tc command [25].

IFB Intermediate Functional Block, a pseudo network interface, regularly used
to redirect other interfaces to it and apply a single stack of queueing
disciplines, classes and filters.

Bibliography

[1] I. O. for Standardization, “"ISO/IEC 7498-1:1994 Information technology" - Open
Systems Interconnection - Basic Reference Model”, International Organization for
Standardization, Tech. Rep., 1994.

[2] J. Roskind, “QUIC: Design Document and Specification Rationale”, Tech. Rep.,
Apr. 2012. [Online]. Available: https://docs.google.com/document/d/1RNHkx_
VvKWyWg6Lr8SZ - saqsQx7rFV - ev2jRFUoVD34 / edit ? usp = sharing (visited on
01/21/2023).

[3] J. Iyengar and M. Thomson, “RFC 9000: QUIC: A UDP-Based Multiplexed and
Secure Transport”, Tech. Rep., May 2021. [Online]. Available: https://www.rfc-
editor.org/rfc/rfc9000.txt.

[4] J. Zirngibl, P. Buschmann, P. Sattler, B. Jaeger, J. Aulbach, and G. Carle, “It’s
over 9000: Analyzing Early QUIC Deployments with the Standardization on the
Horizon”, in Proceedings of the 21st ACM Internet Measurement Conference,
ser. IMC ’21, Virtual Event: ACM, 2021, 261–275, isbn: 9781450391290. doi:
10.1145/3487552.3487826.

[5] E. Volodina and E. P. Rathgeb, “Impact of ACK Scaling Policies on QUIC Per-
formance”, in 2021 IEEE 46th Conference on Local Computer Networks (LCN),
2021, pp. 41–48. doi: 10.1109/LCN52139.2021.9524947.

[6] M. Piraux, Q. De Coninck, and O. Bonaventure, “Observing the Evolution of
QUIC Implementations”, in Proceedings of the Workshop on the Evolution, Per-
formance, and Interoperability of QUIC, ser. EPIQ’18, Heraklion, Greece: Associ-
ation for Computing Machinery, 2018, 8–14, isbn: 9781450360821. doi: 10.1145/
3284850.3284852.

[7] W. Eddy, “RFC 9293: Transmission Control Protocol (TCP)”, Tech. Rep., Aug.
2022. [Online]. Available: https://www.rfc-editor.org/rfc/rfc9293.txt.

[8] J. Postel, “RFC 768: User Datagram Protocol”, Tech. Rep., Aug. 1980. [Online].
Available: https://www.rfc-editor.org/rfc/rfc768.txt.

https://docs.google.com/document/d/1RNHkx_VvKWyWg6Lr8SZ-saqsQx7rFV-ev2jRFUoVD34/edit?usp=sharing
https://docs.google.com/document/d/1RNHkx_VvKWyWg6Lr8SZ-saqsQx7rFV-ev2jRFUoVD34/edit?usp=sharing
https://www.rfc-editor.org/rfc/rfc9000.txt
https://www.rfc-editor.org/rfc/rfc9000.txt
https://doi.org/10.1145/3487552.3487826
https://doi.org/10.1109/LCN52139.2021.9524947
https://doi.org/10.1145/3284850.3284852
https://doi.org/10.1145/3284850.3284852
https://www.rfc-editor.org/rfc/rfc9293.txt
https://www.rfc-editor.org/rfc/rfc768.txt

[9] M. Thomson and S. Turner, “RFC 9001: Using TLS to Secure QUIC”, Tech. Rep.,
May 2021. [Online]. Available: https://www.rfc-editor.org/rfc/rfc9001.
txt.

[10] “IANA: QUIC Transport Parameters”, IANA, Tech. Rep., Feb. 2021. [Online].
Available: https://www.iana.org/assignments/quic/quic.xhtml#quic-
transport (visited on 01/22/2023).

[11] M. Kühlewind and B. Trammell, “Applicability of the QUIC Transport Protocol”,
Internet Engineering Task Force, Internet-Draft, Sep. 2022, Work in Progress.
[Online]. Available: https://quicwg.org/ops- drafts/draft- ietf- quic-
applicability.html (visited on 01/30/2023).

[12] T. Pauly, E. Kinnear, and D. Schinazi, “RFC 9221: An Unreliable Datagram
Extension to QUIC”, Tech. Rep., Mar. 2022. [Online]. Available: https://www.
rfc-editor.org/rfc/rfc9221.txt.

[13] M. Thomson, “RFC 9287: Greasing the QUIC Bit”, Tech. Rep., Aug. 2022. [On-
line]. Available: https://www.rfc-editor.org/rfc/rfc9287.txt.

[14] D. Schinazi and E. Rescorla, “Internet-Draft: Compatible Version Negotiation
for QUIC”, Tech. Rep., Dec. 2022. [Online]. Available: https : / / www . ietf .
org/archive/id/draft-ietf-quic-version-negotiation-14.html#name-
version-information (visited on 01/23/2023).

[15] LSQUIC, LiteSpeed. [Online]. Available: https://github.com/litespeedtech/
lsquic (visited on 01/22/2023).

[16] K. Wolsing, J. Rüth, K. Wehrle, and O. Hohlfeld, “A Performance Perspective on
Web Optimized Protocol Stacks: TCP+TLS+HTTP/2 vs. QUIC”, in Proceedings
of the Applied Networking Research Workshop, ser. ANRW ’19, Montreal, Quebec,
Canada: Association for Computing Machinery, 2019, 1–7, isbn: 9781450368483.
doi: 10.1145/3340301.3341123.

[17] J. Iyengar and I. Swett, “QUIC Acknowledgement Frequency”, Internet Engineer-
ing Task Force, Internet-Draft draft-ietf-quic-ack-frequency-02, Jul. 2022, Work
in Progress, 13 pp. [Online]. Available: https://datatracker.ietf.org/doc/
draft-ietf-quic-ack-frequency/02/ (visited on 01/24/2023).

[18] M. Kempf, “Analysis of Performance Limitations in QUIC Implementations”, Dec.
2022.

[19] QUIC Interop Test Runner, Chair of Network Architectures and Services. [On-
line]. Available: https://gitlab.lrz.de/acn/quic-project/quic-interop-
runner-dev.

[20] Wireshark: Network Analyzer. [Online]. Available: https : / / www . wireshark .
org/.

46

https://www.rfc-editor.org/rfc/rfc9001.txt
https://www.rfc-editor.org/rfc/rfc9001.txt
https://www.iana.org/assignments/quic/quic.xhtml#quic-transport
https://www.iana.org/assignments/quic/quic.xhtml#quic-transport
https://quicwg.org/ops-drafts/draft-ietf-quic-applicability.html
https://quicwg.org/ops-drafts/draft-ietf-quic-applicability.html
https://www.rfc-editor.org/rfc/rfc9221.txt
https://www.rfc-editor.org/rfc/rfc9221.txt
https://www.rfc-editor.org/rfc/rfc9287.txt
https://www.ietf.org/archive/id/draft-ietf-quic-version-negotiation-14.html#name-version-information
https://www.ietf.org/archive/id/draft-ietf-quic-version-negotiation-14.html#name-version-information
https://www.ietf.org/archive/id/draft-ietf-quic-version-negotiation-14.html#name-version-information
https://github.com/litespeedtech/lsquic
https://github.com/litespeedtech/lsquic
https://doi.org/10.1145/3340301.3341123
https://datatracker.ietf.org/doc/draft-ietf-quic-ack-frequency/02/
https://datatracker.ietf.org/doc/draft-ietf-quic-ack-frequency/02/
https://gitlab.lrz.de/acn/quic-project/quic-interop-runner-dev
https://gitlab.lrz.de/acn/quic-project/quic-interop-runner-dev
https://www.wireshark.org/
https://www.wireshark.org/

[21] S. Gallenmüller, D. Scholz, H. Stubbe, and G. Carle, “The Pos Framework: A
Methodology and Toolchain for Reproducible Network Experiments”, in Pro-
ceedings of the 17th International Conference on Emerging Networking EXper-
iments and Technologies, ser. CoNEXT ’21, Virtual Event, Germany: Association
for Computing Machinery, 2021, 259–266, isbn: 9781450390989. doi: 10.1145/
3485983.3494841. [Online]. Available: https://doi.org/10.1145/3485983.
3494841.

[22] M. Seemann and J. Iyengar, “Automating QUIC Interoperability Testing”, in Pro-
ceedings of the Workshop on the Evolution, Performance, and Interoperability of
QUIC, ser. EPIQ ’20, Virtual Event, USA: Association for Computing Machinery,
2020, 8–13, isbn: 9781450380478. doi: 10.1145/3405796.3405826.

[23] ethtool man page. [Online]. Available: https://man7.org/linux/man-pages/
man8/ethtool.8.html.

[24] S. Ha, I. Rhee, and L. Xu, “CUBIC: A New TCP-Friendly High-Speed TCP
Variant”, SIGOPS Oper. Syst. Rev., vol. 42, no. 5, 64–74, Jul. 2008, issn: 0163-
5980. doi: 10.1145/1400097.1400105. [Online]. Available: https://doi.org/
10.1145/1400097.1400105.

[25] tbf man page. [Online]. Available: https://man7.org/linux/man-pages/man8/
tbf.8.html.

47

https://doi.org/10.1145/3485983.3494841
https://doi.org/10.1145/3485983.3494841
https://doi.org/10.1145/3485983.3494841
https://doi.org/10.1145/3485983.3494841
https://doi.org/10.1145/3405796.3405826
https://man7.org/linux/man-pages/man8/ethtool.8.html
https://man7.org/linux/man-pages/man8/ethtool.8.html
https://doi.org/10.1145/1400097.1400105
https://doi.org/10.1145/1400097.1400105
https://doi.org/10.1145/1400097.1400105
https://man7.org/linux/man-pages/man8/tbf.8.html
https://man7.org/linux/man-pages/man8/tbf.8.html

	Introduction
	Research Questions
	Outline

	Background
	Transport Layer
	QUIC
	Transport Parameters
	LSQUIC

	Related Work
	Methodology
	Transport Parameters Data
	Internet Wide Scans
	Internet Browsers

	Measurements
	WAN Emulation
	LSQUIC Configuration

	Results
	Transport Parameters Data
	Internet Wide Scans
	Internet Browsers

	Measurements
	Server Parameters
	Client Parameters

	Conclusion
	Summary
	Future Work

	Appendix
	List of acronyms

	Bibliography

