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Abstract

With the recent advent of blockchains, we have witnessed a plethora of blockchain
proposals. These proposals range from using work to using time, storage, or stake
to achieve consensus about which block is appended to the chain. As a drawback,
it makes it difficult for the application developer to choose the suitable blockchain to
support their applications. Even though many publicly available data about blockchain
protocols, scalability, and performance are available, detailed baseline measurements
that compare them in a fixed setup are missing. The publicly available results cannot
be easily compared, as the setups, the number of nodes, locations, and load are not
unified. As the setup conditions vary and, in some cases, lack details, it makes these
results irreproducible and hard to compare.

In this thesis, we extend the prototype blockchain benchmark tool Diablo, which so
far only supported Ethererum and uses a master-worker architecture. The improved
Diablo-v2 blockchain benchmark tool generalizes Diablo’s functionality to offer com-
patibility with other blockchain protocols. To achieve this goal, we analyze six state-
of-the-art blockchain protocols and design an extensible interface for our tool based on
this analysis.

Second, we create Minion, a deployment and orchestration tool for Diablo-v2. Minion
provides the facilities to deploy the required software, setup and configure a blockchain
network, run the benchmark, and collect the results. Minion can use machines from
Amazon Web Services and was extended to support the local testbed at the Chair of
Network Architectures and Services.

Finally, we evaluate the blockchain protocols on Amazon Web Services and the local
testbed. We use AWS to make extensive measurements with up to 200 geographically
distributed machines. Even though the local testbed cannot reach such scale, prop-
erly designed experiments can assess the scalability aspects, and in addition controlled
environment helps with assessing bottlenecks in a higher level of detail.
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Chapter 1

Introduction

With the growing adoption of blockchain technology, the number of readily-available
solutions has multiplied dramatically. As of March 2021, approximately five thousand
distinct cryptocurrencies have been reported on a single website [1]. Each of these im-
plementations aims at offering improvements through distinctive features, focused on
the performance and application to various use-cases. Although a number of these vari-
ants could, in theory, be running on multiple instances of the same blockchain, they
are often packaged as their own standalone implementation with distinctive features. A
recent survey [2] highlights the breadth of the blockchain landscape through a classifica-
tion of blockchains, listing eight different protocols to select nodes that are tasked with
proposing blocks, 13 different consensus protocols, and 9 data structures to store trans-
action information. This diversity illustrates a probably small subset of all blockchain
implementations that exist today.

This plethora of blockchain proposals raises the question of which proposal is the ideal
blockchain for a particular application. Unfortunately, most of these proposals are not
reported in scientific publications. They are at best presented in the form of white papers
that present a 10-000-foot-view of their implementation details. As an example, the
Ethereum yellow paper [3] presents the technicalities of the Ethereum Virtual Machine
but does not explain how Ethereum participants can reach consensus on a unique block
at a given index of the chain. In order to analyze the underlying protocols of such
blockchains, researchers typically had to look at the available source code before being
able to reason about the correctness of the protocols [4].

Another approach is for researchers to evaluate blockchains as black boxes by generating
workloads and measuring their performance. Following this approach, many announce-
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ments were made online about the performance of a specific blockchain. As an example,
Avalanche was recently claimed to achieve 4500 TPS with a 2 second latency on its offi-
cial website [5]. However, the environmental settings are not communicated. This could
be confusing, especially given that a technical report or white paper presented a peak
throughput at 1300 TPS [6].

There have been some thorough scientific publications about blockchain perfor-
mance [7]–[12]. These usually provide enough details to make the results reproducible.
The detailed environmental settings give the reader the ability to get similar perfor-
mance by re-running the experiments. Most of these evaluations [7]–[12], however,
evaluate few blockchains on synthetic workloads that are not representative of realistic
use-cases. With the growing amount of use-cases and the ability of modern blockchains
to run Decentralized Applications (DApps), one can evaluate blockchain when running
real applications under an existing workload trace.

1.1 Previous Work

We improve and generalize Diablo benchmark framework [13] prototype, which supports
Ethereum [3], and uses a master-worker architecture. We describe Diablo in detail in
Section 2.1. For protocol evaluation, in addition to synthetic token transfer workloads,
we use five realistic smart contracts developed by Aymeric Bacuet [14] to recreate real-
work workload scenarios. We explain how each smart contract was derived in Section 2.2.

1.2 Problem Statement

The authors of different blockchain protocols claim impressive performance. These
results are usually obtained in isolation and are often non-reproducible, which makes
them hard to compare and verify. Existing blockchain benchmark frameworks are either
specifically focused on testing a single protocol or do not support or provide workloads
that reflect the real-world usage of the blockchain system. Furthermore, we are not
aware of the framework which came with a generic solution to automatically execute
the experiments in the cloud and local environments.

In this thesis, we aim to create a blockchain protocol benchmarking framework, which
would be easy to extend by developers to support different protocols, covering the API
differences. As a result of extensibility, we need to come up with a design of a generic
workload specification, which would allow us to run the same experiment regardless of
the underlying protocol. Then, we need the results of the experiments to be comparable,
and therefore there should be a list of metrics that are relevant across different blockchain
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implementations. As cloud compute environments and local testbeds have their own
advantages and drawbacks, we want to create a tool that will allow us to easily deploy
the network in the cloud or on-premise infrastructures and automate the experiment
execution and the collection of the results.

1.3 Goals and Research Questions

Based on the problem statement, we define two research goals and the questions that
help us to achieve the goals

G1 Create an extensible blockchain benchmark framework which can run in
the cloud and local environments

Q1 Which architecture would cover the protocol differences while being easy
to use and maintainable?
In Chapter 4, we describe the limitations of existing architecture and client interface,
and derive improvements and generalizations in Chapter 5.

Q2 How to distribute and scale the transaction load in the framework?
We explain the limitations of Diablo workload definition syntax and explain the cases
it does not cover in Chapter 4, and propose a new syntax in Chapter 6.

Q3 What metrics are relevant across different blockchain protocols?
Chapter 7 provides an evaluation based on different metrics, such as throughput, latency,
and the ratio of committed transactions to submitted transactions.

Q4 What are the differences between the local and the globally distributed
test environments?
We first analyze the differences between Amazon Web Services and iLab testbed in
Chapter 4. Later, we look at the empirical findings in Section 7.

G2 Use the new framework to create initial measurements

1.4 Methodology and Structure

In Chapter 2, we describe the architecture of Diablo prototype, which serves as the
basis of the benchmarking framework that we propose in this thesis. We describe the
smart contracts that we used for the experiments that simulate the real world workload.
We provide an overview of the 6 blockchain protocols we used to derive a generic and
extensible architecure.

3
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Chapter 3 gives an overview of different blockchain benchmark framework proposed and
developed previously, and lists their limitations.

We conduct an analysis of Diablo prototype and its architectural limitations in Chap-
ter 4. We also look at the differences of AWS and iLab testbed, their pros and cons as
an experimental environment. We note which aspects of the blockchain protocols can
be better tested with the suitable environment.

In Chapter 5, we derive the design of the new Diablo-v2 benchmarking framework and
the orchestration and deployment tool Minion. We use the study of different blockchain
protocols and the analysis of the original Diablo prototype as the foundation for the new
generic framework. For Minion, we consider the analysis and characteristics of AWS
and iLab environments.

We explain the implementation details of Diablo-v2 and Minion in Chapter 6. We give
the details on the specification file formats used in Diablo-v2.

Chapter 7 describes the experimental evaluation of 6 blockchain protocols in AWS and
iLab testbed environments. We assess the scalability and robustness in geographically
distributed realistic and fully controlled local environments. We explain the challenges
in comparing the results from different testbeds and the deployment specifics which
might affect the observations.

Finally, we conclude our work in Chapter 8, where we provide an overview of the work
done, its outcomes and our observations, and propose future work.

1.5 Contributions

The main contributions of the thesis are:

1. We propose Diablo-v2 (DIstributed Analytical BLOckchain benchmark frame-
work), written in 10,083 lines of Go code, that allows developers to evaluate their
blockchain with real applications. We derive a generic and extensible architecture
and client interface by analyzing 6 state-of-the-art blockchains, including Algo-
rand [15], Avalanche [6], Ethereum [3], Diem [16], Quorum [17] and Solana [18].

2. We provide an orchestration and deployment tool called Minion, which allows to
setup blockchain networks and conduct the experiments in an automated fashion.
We make sure that the developers can use public environments, as well as local
testbeds by implementing support for Amazon Web Services and Plain Orches-
trating Service [19].

4
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3. We evaluate the different aspects of the 6 mentioned blockchain protocols, such
as scalability and robustness in geographically distributed setting with up to 200
AWS machines, as well as local iLab testbed with full control over the network
environment.

1.6 Collaboration acknowledgements

Chris Natoli is the author of the original Diablo prototype. Diablo-v2 and Minion were
developed together with Gauthier Voron. Aymeric Bacuet developed the smart contracts
used for the experiments. Vincent Gramoli took part in the experiment design, analysis
of the results, and writing the paper [20].
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Chapter 2

Background

This chapter gives an overview of the original Diablo framework prototype, its architec-
ture, smart contracts used for experimental evaluation, and blockchain protocols which
serve as the foundation of the new Diablo client interface and architecture.

2.1 Diablo Benchmark Framework

Diablo (DIstributed Analytical BLOckchain benchmark framework) [13] is a prototype
benchmark framework for blockchain protocols initially developed by Chris Natoli in
2021. It serves as the basis of this thesis and is extended and generalized as explained
in Section 1.3. It is important to note that the original prototype did not come with
any generic deployment scripts, which allowed us to simply conduct the experiments
in different environments. The experiments in the technical report were semi-manually
executed on an OpenStack cluster. It allows comparing the protocols in the same
environment, using configurable workloads with different transaction types, such as
native transfers or smart contract invocations.

The architecture and components of Diablo are displayed in Figure 2.1. Diablo has
master-worker architecture, where Primary acts as an orchestrator and result aggrega-
tor, and Secondaries produce the workload and collect results for individual transactions.

The main task of the Primary is to generate the workload, distribute it over the secon-
daries, and send commands to secondaries to start the benchmark and collect the results
when they become available. The Workload Generator is an interface to be specialized
for each blockchain protocol, which creates a transaction in a protocol-specific format.
Listing 2.1 shows some of the interface methods. All the interface methods operate on
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Benchmark Configuration

• Workload Name

• Number of secondaries

• Number of threads

• Intervals

• Transaction Type

Chain Configuration

• Blockchain Name

• Node information

• Key information

Configurations

Primary

Result Handler Workload Generator

TCP Server

Secondary

TCP Client

Workload Handler Blockchain Interface

Blockchain
Network
Nodes

Command Response/ACK

(worker threads)

Figure 2.1: The architecture of Diablo

DApp Exchange Mobility service Web service Gaming Video sharing

Workload
0 60 120 1800

5000
10000
15000
20000

0 40 80 1200
300
600
900

1200

0 60 120 1800
1500
3000
4500
6000

0 100 200 3000
4500
9000

13500
18000

0 40 80 1200
20000
40000
60000
80000

Source trace Nasdaq Uber Fifa Dota 2 YouTube
Characteristics Burst Compute intensive Contended High sending rate Very high sending rate

Table 2.1: Decentralized applications and their associated workload

byte slices in order to be generic, and the methods perform protocol-specific encoding
and decoding.

2.2 The Decentralized Applications Suite

The five default decentralized applications (DApps) contributed by Aymeric Bacuet [14]
are used to measure the performance of blockchains in a realistic setting. In this thesis,
we use them together with Diablo-v2 that we develop by extending the original Diablo
prototype. As summarized in Table 2.1, each of these DApps illustrates a distinct
behavior and runs a workload trace taken from a real centralized application. Each
workload figure shows the number of submitted transactions per second (TPS on the
y-axis) for the duration of the run (seconds on the x-axis). For the sake of compatibility
with all blockchains, DApps are implemented in both the Solidity v0.7.5 (language
supported originally by Ethereum but also by Avalanche, Quorum, and Solana), the
PyTeal v5 (Python language binding for Algorand smart contracts), and the Move v3
(language for Diem smart contracts) programming languages.
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1 // Workload definitions for ease of use: [secondary ][ worker
][time][ txlist ][ txbytes]

2 type Workload [][][][][] byte
3
4 type WorkloadGenerator interface {
5 // CreateContractDeployTX creates the raw signed

transaction that will deploy a contract
6 CreateContractDeployTX(fromPrivKey []byte ,

contractPath string) ([]byte , error)
7
8 // CreateInteractionTX create a signed transaction

that performs actions on a smart contract at the
given address

9 CreateInteractionTX(fromPrivKey []byte ,
contractAddress string , functionName string ,
contractParams [] configs.ContractParam , value
string) ([]byte , error)

10
11 // CreateSignedTransaction creates a transaction

that is signed and ready to send from the given
private key.

12 CreateSignedTransaction(fromPrivKey []byte ,
toAddress string , value *big.Int , data []byte)
([]byte , error)

13
14 // GenerateWorkload generates the workload specified

in the chain configurations.
15 GenerateWorkload () (Workload , error)
16 }

Listing 2.1: WorkloadGenerator interface

9
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Exchange DApp / Nasdaq
Exchange DApp is designed as a decentralized exchange (DEX) with a workload trace
taken from the National Association of Securities Dealers Automated Quotations Stock
Market (Nasdaq). The Nasdaq experiences a boom of trades at its opening at 9
AM Eastern Time Zone. The number of trades for Google (GOOGL), Apple (AAPL),
Facebook (FB), Amazon (AMZN), and Microsoft (MSFT) were extracted from the
official website [21]. These workloads proceed in a burst by experiencing an initial
demand of about 800 TPS for Google, 1300 TPS for Amazon, 3000 TPS for Facebook,
4000 TPS for Microsoft and 10,000 TPS for Apple before dropping to 10–60 TPS. The
accumulated workload, denoted GAFAM, runs for 3 minutes and experiences a peak of
19,800 TPS before dropping between 25–140 TPS.

The exchange DApp is implemented as an ExchangeContractGafam smart con-
tract with functions checkStock, buyGoogle, buyApple, buyFacebook, buyAmazon,
buyMicrosoft. Each order consists of invoking the corresponding buy* function that,
in turn, checks the availability of the stocks before updating the number of available
stocks and emitting a corresponding event. More specifically, the process consists of
a fungible token available in limited supply implemented by a single integer counter.
Each transaction buys one token by decrementing the counter after checking that this
counter is greater than 0.

Gaming DApp / Dota 2
Gaming DApp executes the trace of the most popular game on Steam, which is a
Multiplayer Online Battle Arena video game called Dota 2 [22]. The number of Steam
users peaked at 26.85 million in March 2021 [23]. The DApp comprises players who
interact with each other and with the environment.

The gaming DApp is implemented as a smart contract DecentralizedDota whose
update function moves the positions of 10 players along the x-axis and y-axis of a
250-by-250 map so that they turn back whenever they reach the limit of the map.
The trace lasts for 276 seconds invoking at an almost constant update rate of about
13,000 TPS, which is particularly demanding.

Web service DApp / Fifa
The web service DApp is modeled as the number of requests to the Fifa website during
the 1998 soccer world cup. More than 1.35 billion requests to the Fifa website were
recorded over the course of the 84 days of the world cup with an average requests
length of 3689 bytes. In particular, during the final match on June 30th, 1998, between
11:30 PM and 11:45 PM, the total number of requests reached 3,135,993 for an average

10
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request per minute of 209,066, a total of 8.5 GB transferred and an average of 580 bytes
transferred per minute. During the most demanded minute of this period, 215,241
requests were sent, translating into an average of 3587 TPS.

The web service DApp is implemented as a simple Counter smart contract, with an add
function that gets incremented at each request Hence its workload is highly contended.
The duration of the workload is 176 seconds, sending an overall 3, 500 transactions at a
rate varying from 1416 to 5305 requests per second.

Mobility service DApp / Uber
The mobility service DApp is based on a study of Uber requests in New York City (NYC)
from 2018 [24]. The study reports a peak of 16,496 requests per hour between January
2015 and March 2015. As the demand grew since 2015, this peak throughput does no
longer reflect the Uber demand. The average Uber demand between 2015 and 2019 grew
from 70,348 to 556,387 requests per day with an increase of monthly users of 7.91.1 The
current Uber demand is approximated in NYC to 16, 496×7, 91 = 130, 483 requests per
hour, which translates into 36 TPS. In the first quarter of 2019, nearly 1,55 billion Uber
trips were booked around the world, while 63,48 million Uber trips were booked in NYC
alone [25]. As the NYC demand represents 1/24 of the world demand, to extrapolate
this demand to Uber worldwide, the demand is derived to 24 × 36 = 864 TPS.

The mobility service DApp consists of a ContractUber smart contract whose function
checkDistance computes the Euclidean distance between the customer (the requester)
and 10,000 drivers in an area (a 2-dimension grid) of 10, 000 × 10, 000 in order to match
the closest driver to the customer. As neither the PyTeal nor the Move languages
support floating points or define the square root function √ to compute Euclidean
distances, Newton’s integer square root function is implemented in Solidity, PyTeal,
and Move languages and used to compute the Euclidean distance. As Algorand DApps
state is limited to key-value pairs, the PyTeal implementation of ContractUber only
stores the position of one driver and computes the Euclidean distance to this unique
driver 10,000 times. As the function executes a loop with 10,000 iterations computing
the distance, the mobility service DApp is computation intensive.

Video sharing DApp / YouTube
The video sharing DApp is based on the number of videos uploaded to YouTube [26].
More precisely, from the YouTube traffic observed during the three months of 2007, the

1 https://toddwschneider.com/dashboards/nyc-taxi-ridehailing-uber-lyft-data/.
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Blockchain Prop. Consensus VM DApp lang.
Algorand [15] probabilistic BA⋆ [15] AVM PyTeal
Avalanche [6] probabilistic Avalanche [6] geth Solidity
Diem [16] deterministic HotStuff [28] MoveVM Move
Quorum [17] deterministic IBFT [29] geth Solidity
Ethereum [3] eventual Clique [30] geth Solidity
Solana [18] eventual TowerBFT [31] eBPF Solidity

Table 2.2: Blockchains evaluated in the thesis.

day with the peak request rate and the hour within this day with the peak request rate
of 1,680,274 transactions per hour was extracted. This result was normalized to obtain
a request rate of 467 transactions per second. Between 2007 and 2021, the number of
videos uploaded to YouTube has been multiplied by 83 [27]. Hence the average through-
put is approximated to 467×83 = 38, 761 TPS, which makes this DApp very demanding.
The video sharing DApp corresponds to a smart contract called DecentralizedYoutube
with an upload function that gets some video data as a parameter and assigns the re-
quester’s address to the data before emitting a corresponding event.

2.3 Blockchain Protocols

In this section, we describe the six blockchains with smart contract support that we
compare using Diablo-v2. They are listed in Table 2.2.

Algorand
Algorand [15] is a proof-of-stake blockchain that elects a subset of nodes, through sor-
tition, that can append the next block. It does not fork with a high probability, so the
transaction is final as soon as it is included in a block.1 Algorand features a blocking API
that waits for the transaction to be committed before returning to the client. Although
it makes it natural to use this blocking call to detect the commit of each transaction,
Diablo-v2 was too demanding. Hence we made Diablo-v2 polls every appended block
to detect transaction commits, which significantly improved Algorand’s performance.

Avalanche
Avalanche [6] is a blockchain also offering instant finality with high probability. There
are now three blockchain protocols in Avalanche: one featuring the Ethereum Virtual

1 https://algorand.foundation/algorand-protocol/core-blockchain-innovation.
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Machine (C-Chain), one supporting only native transfers (X-Chain), and another one
for metadata management. To evaluate the DApps, we used C-Chain, which exposes
a web socket streaming API (shared by Ethereum and Quorum) to access the current
blockchain head or the latest block. Avalanche supports the London release improvement
of Ethereum (improvement #1559 of August 5th, 2021) with the new gas fee structure
with tips, which means the gas fee is computed dynamically (differently from Ethereum’s
original method). Avalanche limits the gas per block to 8M gas and the lower bound
the period between blocks to 1.9 seconds1.

Diem
Diem, formerly known as the Libra blockchain [16], was initiated by Facebook. It fea-
tures a variant of the HotStuff protocol that solves the consensus problem deterministi-
cally (hence avoiding forks) while reducing the communication of traditional consensus
protocols in good executions.

Ethereum
Ethereum [3] is the second largest blockchain in market capitalization. As the default
version of Ethereum uses the proof-of-work cryptopuzzle resolution, which inherently
limits its throughput, we exclusively used the Ethereum proof-of-authority consensus
protocol, called Clique, as available in geth. This version still limits the block period
to 15 seconds by default. Just like Avalanche, the Ethereum API exposes a web socket
streaming API to access the current blockchain head or the latest block.

Quorum
Quorum [17] is a blockchain initiated by J.P. Morgan and currently maintained by Con-
sensys. It features different consensus algorithms: Raft, which only tolerates crash
failures, and IBFT and QBFT, which both tolerate Byzantine failures and partial
synchrony. As Quorum features the geth Ethereum Virtual Machine, with the latest
changes from the Berlin upgrade (April 15th, 2021), it also features the Clique proof-of-
authority consensus algorithm. However, it does not feature the more recent London gas
fee computation used by Ethereum and Avalanche. Similar to Ethereum and Avalanche,
Quorum exposes a web socket streaming API to access the current blockchain head or
the latest block.

1 https://snowtrace.io/chart/blocktime.
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Solana
Solana is a recent blockchain that is highly optimized for special hardware features
(GPU and Intel instructions). Similar to Ethereum, Solana may fork and needs to
wait for 30 confirmations (additional appended blocks) before a stored transaction can
be considered final [32]. Its algorithm builds upon proof-of-history and “depends on
messages eventually arriving to all participating nodes within a certain timeout” [18].
To append a block every 400 milliseconds, Solana replaces the Merkle Patricia Trie of
Ethereum with a simplified data structure and replaces the ECDSA signature scheme
with EdDSA (ED25519). Solana uses its own API, also based on a web socket, that
allows the client to specify a commitment level. The clients listen for new blocks with
the desired commitment level by subscribing to a web socket interface. Interestingly,
Solana fetches the block hash before issuing transactions because the last block hash
needs to be signed as part of the issued transaction.

Collaboration acknowledgements
The author of the thesis implemented Avalanche and Solana support in Diablo. Gauthier
Voron contributed Algorand and Diem client interfaces. Chris Natoli added support for
Ethereum and Quorum.

2.4 Amazon Web Services and i8 testbed

To evaluate different blockchain protocols using our framework, we need a set of ma-
chines where we can run the blockchain network and the benchmarking framework. In
this thesis, we have AWS (Amazon Web Services) and the chair testbed to availability.

Amazon Web Services
If we begin looking at the interaction with the service from the bottom-up, we start
with Machine Images. An image contains a snapshot of storage containing the operating
systems and required software. An instance is a virtual server, which is created by
specifying the instance type and the machine image. The instance type describes the
hardware configuration of an instance, and the same machine image can be reused with
different instance types. A fleet is a group of instances that can be created with a single
request. Fleets can be created in different regions, which represent different data centers
around the globe.

Instances get a public IPv4 address when they are created, which can be used to access
the instance.
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AWS provides an API to perform actions with the service, a command-line tool, and
SDKs in different programming languages to use the mentioned API.

i8 testbed
With the chair testbed, we get to use the bare-metal servers, as well as deploy virtual
machines on them. The testbeds are controlled with the Plain Orchestrating Service
(pos). Before moving to the notions related to the servers, we start with the calendar.
Because there are bare-metal servers, the user has to create a calendar entry for the
server they want to use. After the calendar entry is created, the user can make an
allocation that allows them to execute different commands with pos, such as rebooting
the server. Here, we also have a concept of an image, which contains the operating
system and applications. Nodes represent servers and virtual machines.

The testbed network topology is heterogeneous, meaning that servers have a different
number of NICs and accessibility from the management node. For example, the iLab
testbed is only accessible through a jump host and does not have connectivity to other
machines from the coinbase testbed.

pos also provides an API to manage the servers, a command-line tool, and Python SDK
for the API.
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Related Work

In the following chapter, we outline the related work comprised of blockchain benchmark
frameworks and explain their limitations.

Hyperledger Caliper [8] is a blockchain benchmark framework enabling users to evalu-
ate the performance of blockchains developed within the Hyperledger project, such as
Fabric, Sawtooth, Iroha, Burrow, and Besu. It also supports Ethereum and has plans
to extend to other blockchains in the future. Caliper provides pre-defined workloads,
specifying the calling contract, functions, and the rate of transaction sending over time.
Unfortunately, all these workloads are synthetic, and we are not aware of any pre-defined
DApps with realistic workloads that can be used with Caliper.

Blockbench [7] is one of the most notable benchmarking frameworks for blockchains, as
it supports a number of micro and macro benchmarks. The most significant aspect of
Blockbench is that it ports over the notable YCSB workload from the database systems
community. Aimed at private blockchains, Blockbench benchmarks the different layers
of the blockchain, such as consensus or data storage, with tailored workloads, allowing
fine-grained testing and measurement of the effectiveness of each of these layers. The
evaluation metrics available show throughput and latency, but also the tolerance of faults
through injected delays, crashes, and message corruption. Blockbench’s complexity
introduces difficulty when extending to other blockchains or introducing new workloads.

The variety of Ethereum adapted blockchains motivated the development of Chainham-
mer [9], a benchmark tool focused on the performance of Ethereum-based blockchains
under extremely high loads. Chainhammer, unlike others, does not follow a workload
curve but provides continuous high load generation, aiming to measure the throughput
in extreme situations. The design is specialized, meaning that there is little flexibility in
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modifications to support other workloads. Conversely, as Chainhammer is exclusively
for Ethereum, it can perform post-benchmark analysis and obtain metrics on informa-
tion critical to the Ethereum infrastructure, such as transaction cost analysis and the
structure of blocks.

Most evaluations that were made on blockchains are ad hoc and do not aim at comparing
very different blockchain designs on the same ground. Previous works have, for example,
focused on permissioned blockchains as one can find in the context of the Internet of
Things [10]. Others have evaluated exclusively Byzantine fault tolerant blockchains [11].
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Analysis

In this chapter, we perform a review of the Diablo prototype. We focus on the parts
which are critical for the extensibility and generalizability of the framework and point
out the limitations of the prototype. Furthermore, we discuss the differences between
AWS and iLab testbed and which characteristics of the protocols can be better evaluated
in the right environment.

4.1 Benchmark framework

In this section, we focus on identifying the design decisions which create issues when
we try to extend the framework to support other blockchains and negatively affect the
performance. We started our work based on commit 823ad60 of Diablo.

4.1.1 Transaction signing
We notice that the workload generator interface and the architecture assume that all the
transactions can be pre-signed on the primary and then distributed over the secondaries
in order to be sent to the blockchain network. This creates problems with several
protocols that we want to use in our experiments.

Solana requires to include a recent block hash to every transaction submitted to the
network in general. Solana also has an implementation of transaction nonces which
involves deploying a special smart contract to the user account. This smart contract then
allows storing the current block hash when any transaction involving the user account
is executed. However, this still does not allow us to prepare the whole transaction
workload in advance since we don’t know the block hashes which will appear during the
experiment execution.
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Ethereum “London” update introduced a dynamic fee policy for transactions, which
resulted in transactions failing to commit due to being underpriced. This change also
affects Avalanche since it uses Ethereum Virtual Machine for its C-Chain as well.

To address this issue, the blockchain interface should not expect the transactions to be
pre-signed. The contents of the transactions should be opaque to the framework, and
the required logic should be contained within the protocol-specific implementation.

4.1.2 Blockchain interface
The workload generator and client interfaces consist of 11 and 15 methods, respectively,
which were designed with Ethererum JSON-RPC API.

First, the actual implementation does not use all of the methods when the experiment
is executed. For example, the client interface contains methods for contract deployment
and querying the blocks, but they are not called in the generic part of Diablo. This
might be misleading for the developers who want to integrate new protocol support in
Diablo.

Second, this creates an issue that it is too restrictive for other blockchain protocols,
which might have a different interaction pipeline. For example, the implementation
assumes that a single transaction is required to deploy a smart contract to the blockchain
network. However, Solana API uses UDP for communication and therefore restricts the
message size sent over the network, resulting in multiple transactions being required to
deploy a smart contract.

Lastly, the interface assumes that the methods will be called inside a concrete implemen-
tation of the interface. The problem that arises from such an approach is that the data
passed between the methods have to be encoded and decoded, creating an additional
burden for the developer.

As in the previous aspect, the contents of transactions and protocol-specific notions
should be opaque to the framework. The client implementations for the protocols should
hide all the details of operations, such as smart contract deployment or block listening.
The benchmarking framework should only operate on transaction submissions and later
get the commit timestamp based on their interface.

4.1.3 Workload specification
As described in Section 2.1, the workload specification consists of the number of threads,
number of secondaries, and time series representation of workload, defined in per-second
granularity.
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The limitation of such a simple description is that the workload is uniformly distributed
over all the secondaries. While this works well if all the secondaries have the same
hardware specifications, there is a possibility that if the machines have different com-
pute power, the secondaries with slower hardware might fail to produce the expected
workload.

Furthermore, such a specification format does not allow to specify access patterns be-
tween different secondaries and blockchain nodes. In some cases, it might be required
that some secondaries only access a subset of blockchain nodes, for example, when traffic
between some pairs of secondaries and blockchain nodes is more expensive.

To solve this problem, it is possible to assign deployment-specific tags to blockchain end-
points and later specify which tag a particular secondary should use for its connections.
As for the workload distribution, the configuration can specify transaction per second
workload on a per-secondary basis. This will add complexity to the configuration, and
the configuration will not be portable across different deployments. However, it will
be possible to convert a simple uniform workload distribution description to the new
format in an automated fashion.

4.1.4 Workload scheduling
As mentioned, the workload is specified in per-second granularity. During the experi-
ment execution, the framework schedules the transactions to be sent every second and
sends all the transactions for a particular time point immediately. On a small scale,
such behavior results in local load bursts, followed by a period of inactivity until the
next time point.

In order to prevent the idle time between the bursts, the framework can schedule the
transactions uniformly throughout a single second, as the timestamps can be represented
as the number of milliseconds or microseconds.

4.1.5 Bandwidth usage
All the transactions are expected to be created and signed on the primary and then
distributed over the secondaries to be sent to the blockchain network. Such an ap-
proach results in high bandwidth usage between primary and secondaries, as the signed
transactions contain all the required protocol-specific data.

To address this aspect, the transactions can be generated on the secondaries, and the
primary can only distribute the descriptions of the transactions, which contain data,
such as source and destination account identifiers, and the token amount to be trans-
ferred.
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4.1.6 Command-line parameters
Diablo uses benchmark and chain configuration files to define an experiment. Both files
are passed to primary and secondaries as command-line parameters. This adds overhead
to the developers as they have to distribute the files to all the machines used by Diablo,
and make sure that the same files are used in the experiment.

Instead of specifying the configuration file for every binary, the network connections
between the primary and the secondaries can be reused to share the settings, such as
blockchain endpoints or other parameters.

4.1.7 Output format
The output file contains per-thread results for each client in a secondary, per-secondary
aggregated results, and total results. Per-thread results include a list of transaction la-
tencies and metrics such as average and median latency, average throughput, per-second
window throughputs, number of successfully committed transactions, and transactions
that failed to be committed. Per-secondary aggregated results contain the same data
and metrics, the difference being that all the lists of transaction latencies from threads
are used in the calculations. Total results include maximum, minimum, and average
throughput and latency, plus aggregated latency lists and per-second window through-
puts.

The problem with such output format is that the data about timepoints when individual
transactions were sent and committed are lost and replaced with inferred data – latencies
and throughputs. For example, if we want to include ramp-up and tear-down periods,
we need a possibility to consider only a subset of the experimental results, removing the
transaction information for the mentioned periods. With the current output format, we
cannot filter out the unneeded transactions based on their submit and commit times.

The solution, in this case, would be to output the whole list of transaction submissions
metadata, containing submission time and commit time. Having individual submission
and commit times will allow selecting a subset of the results to account for ramp-up and
ramp-down, for example. It will also allow deriving additional metrics later if required.

4.2 AWS and the i8 chair testbed comparison

In this section, we look into the differences of cloud provided virtual machines and local
testbeds on the example of Amazon Web Services and the i8 chair testbed.

First, we discuss the benefits of cloud environments for the blockchain protocol evalu-
ation. One of the important points is scalability in terms of computing power. AWS
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provides a vast range of machine types, for example, from 2 vCPUs and 4 GB RAM to
96 vCPUs and 192 GB RAM. Protocols can be optimized for different hardware with
multiprocessing capabilities, such as GPU and CPU with vector extensions or CPU
with specific architecture. Such factors are taken into account by the providers, and
machines with different hardware are also available.

While multiple machines of different types can be spawned in the same datacenter, cloud
providers also typically have multiple data centers across the globe. This brings us to
the second benefit of AWS, which is geographical distribution. Currently, Amazon has
AWS datacenters in more than ten regions. With this feature, we can create networks
of hundreds of machines, which allows us to easily test the scalability aspect of the
protocol in terms of the number of blockchain nodes.

The fact that the datacenters are distributed across the globe provides us with a network
with realistic latency and bandwidth. Even though virtualization is present in the
setup, the machines share the actual hardware and network links. As the datacenters
are located on different continents, we are provided with the latencies limited by the
physical properties of the connection and the actual distance and underlying network
topology between the locations. As different services on the machines communicate
with each other and are accessed by the users, the bandwidth of the links is being used.
This allows taking another important aspect of real networks into account during the
evaluation, which is background traffic.

The example of measured latency and bandwidth is displayed in Figure 4.1. We see the
pairwise RTT in milliseconds and throughput between 10 geographically distributed
regions. The measurements were done with iperf3 and its default parameters. The
traffic was generated over 10 seconds. In the table, we can see that the distance between
the locations affects the latency. We observe minimal RTTs between the closely located
regions – Milan and Stockholm, Bahrain and Mumbai, Oregon and Ohio. The maximal
RTTs are observed in distant regions, such as Sydney and Cape Town.

On the other hand, such an environment makes it hard to perform reproducible tests.
The utilization of the network links between the datacenters changes throughout the
day, as the services may be accessed more during the day and less at night. The usage is
reflected in latency and bandwidth, with lower latency and higher bandwidth available
at hours with reduced usage and higher RTT and lower throughput being observed at
peak usage hours.

In order to account for the variance in the network parameters, local testbeds can be
used to perform the measurements. In this environment, the whole network can be
exclusively used by the system under test. For example, with the iLab testbed, we have
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Figure 4.1: Round trip time and bandwidth between the 10 selected AWS regions

measured an average of 1.1 millisecond RTT using the same approach as with AWS.
Given that the latency between the nodes does not change, we can introduce arbitrary
delays to evaluate the tolerance of the blockchain protocol against the network delays.

Such property of the iLab testbed network as fixed latency between the nodes allows
us to replicate the latencies of geographically distributed cloud networks at a particular
point in time. With tc-netem tool, we can specify the added delay on a network
interface of the machine used for running the experiments. Ideally, such a setup can be
used to reduce the usage of cloud environments, produce similar results, and reduce the
cost of the experiments.

In order for the deployment solution to be backend-independent, it should operate on
a unified protocol, such as SSH. In this case, it will be possible to operate on any set of
servers that are accessible with SSH on the host.

4.3 Summary

In this chapter, we analyzed the Diablo prototype and discovered the limitations that
prevent it from being extensible to support different blockchain protocols. We also
looked at the differences between cloud environments and local testbeds and their ad-
vantages and disadvantages. We came to the conclusion that both environments should
be considered as they can be used for evaluating different aspects of the protocols.

Therefore, we can provide a list of requirements for an extensible and generic blockchain
benchmarking framework.
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R1 Flexibility
The framework should support different modes of workload generation, such as pre-
signed or unsigned, to support different protocols.

R2 Simplicity
The client interface that has to be implemented in order to support a new protocol
should be simple and not contain unused methods.

R3 Configurability
The framework configuration should account for different deployment topologies and
hardware.

R4 Granular scheduling
The framework should schedule the transaction submissions with subsecond granularity
to prevent unnecessary idle time.

R5 Minimal overhead
Resources used inside the framework, such as the bandwidth required to distribute the
information about transactions, should be minimal.

R6 Usability
The framework configuration should prevent an incorrect combination of parameters.

R7 Extensibility
It should be possible to derive different metrics from the framework’s experimental
results.

R8 Interoperability
It should be possible to deploy the framework in different environments, such as cloud
VMs or local testbeds.
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Design

The goal of this chapter is to create the generic and extensible architecture for the
Diablo-v2 benchmarking framework and design the orchestration and deployment tool
Minion. The design is based on the analysis from the previous chapter. We derive an
extensible approach for Minion based on interfaces of AWS and pos.

5.1 Diablo-v2

This section describes the improved architecture for Diablo-v2 that allows comparing
different blockchain protocols on the same ground in different environments.

In Figure 5.1, we see the components of Diablo-v2. To facilitate distributed workload
generation, Diablo-v2 comprises two main components, a single Primary and multiple
Secondaries. For the sake of extensibility, Diablo-v2 offers a blockchain abstraction
with four functions that a developer can implement to compare their new blockchain
protocol to existing blockchains, and Diablo-v2 also offers a workload specification
language for a developer to add new DApps.

Figure 5.1: The architecture of Diablo-v2
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Diablo Primary Diablo Secondary Blockchain

Resource generation (e.g. account creation, smart contract deployment)

Generate transaction descriptions

Distribute transaction descriptions

Generate the transactions

(and pre-sign if possible)

Send the transactions

Confirm transaction finality

Collect submission times,

finalization times, and benchmark abort time

Calculate the metrics

(e.g. latency and throughput)

Figure 5.2: Diablo-v2 interaction sequence

Figure 5.2 gives an overview of Diablo-v2’s workflow. Below, we describe the respon-
sibilities of the primary and the secondaries in detail.

5.1.1 Primary
The purpose of the Primary machine is to coordinate the experiment: it generates the
workload and dispatches it between Secondaries, launches the benchmark, aggregates
the results, and reports them back.

Prior to starting the benchmark, its workload generator parses the benchmark and
blockchain configuration files. A benchmark configuration file indicates the requests
type, whether requests are native transfers or DApp invocations, and their distribu-
tion between Secondaries and blockchain nodes over time. For each workload invoking
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DApps, the Primary also deploys the smart contracts listed in the benchmark config-
uration file. The blockchain configuration file is necessary to generate the workload
appropriately because the transaction distribution depends on the number and loca-
tions of the deployed blockchain nodes. Then, the Primary transmits a description of
the transactions to the Secondaries, waits for all Secondaries to be ready, and informs
all Secondaries when to start the benchmark. Such an approach satisfies R5, as we min-
imize the used bandwidth by transferring the descriptions of the transactions instead of
the fully signed transactions.

Once the benchmark is complete, each Secondary sends its results to the Primary, and a
results aggregator collects them to output a file, indicating the start time and end time
of each transaction (as recorded by the Secondaries). These timestamps can then be
used post-mortem to generate time series and analyze the distribution of latencies (e.g.,
Fig. 7.6) or more simply, to output aggregated values like the average (e.g., Fig. 7.3).

5.1.2 Secondary
Secondaries are responsible for the presigning of the transactions and the execution of
the workload, interacting directly with blockchain nodes for the system under test. The
number and specification of the Secondaries are typically chosen to match the resources
allocated to the blockchain (cf. Table 7.1) to be able to stress test the blockchain. Note
that each Secondary can send requests to multiple blockchain nodes.

The Secondary interacts with the blockchain through a client interface specific to each
blockchain. The current clock is recorded as the submission time right before a trans-
action is sent. The Secondaries constantly check if the submission time is not too late
compared to the time demanded by the Primary and emit a warning otherwise. Each
worker thread constantly polls the blockchain nodes to obtain the last block and check
whether it contains sent transactions. When a sent transaction is detected within a
block, the current clock time is recorded as the decision time for this transaction.

5.1.3 Blockchain abstraction
To make Diablo-v2 compatible with various blockchain implementations, we abstract
away the main components of a blockchain. The Diablo-v2 benchmark specification
interacts with the resulting blockchain abstraction. Let C be the set of clients. A
blockchain is modelled as a tuple ⟨E, R, I⟩ where E is the finite set of endpoints that
act as blockchain nodes, R is a finite set of resources (e.g., account balance, smart
contract state) maintained in the blockchain state, and I is a potentially infinite set of
interactions types (e.g. asset transfer, smart contract function invocation) between a
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client and the blockchain. An interaction event is denoted as a tuple {(c, i, r, t)} with
c ∈ C, i ∈ I, r ∈ R and t ∈ R.

The benchmark specification contains a function M mapping the Secondaries to the
blockchain endpoints, a set φR of resources needed for the test and the interactions
{(φc, φi, φr, t)} where φc ∈ φC , φr ∈ φR, t ∈ R. More precisely, M : S ×E ⇒ φC where
S is the set of Secondaries, E is the set of endpoints, both available only at runtime,
and φC is the set of specified clients, each specified client is implemented by an explicit
worker thread. The two types of interactions are transfer_X to transfer X coins from
one account to another one and invoke_D_Xs to invoke a Dapp D with the parameters
Xs.

To add a new blockchain, one has to implement at least one of these interaction types
as well as 4 functions that convert the benchmark specification to an executable test
program: (i) s.create_client(E) where s ∈ S, (ii) create_resource(φr) and φr ∈
φR, (iii) encode(φi, r, t) where t ∈ R and r ∈ R, and (iv) trigger(i, r, t).

Such an abstraction satisfies R2 mentioned in Section 4.3, as it allows the framework
to be extended to support multiple different protocols. It also satisfies R1, as the
transactions are opaque to the framework behind the interaction interface and can be
either pre-signed or signed just as they are sent to the blockchain network.

5.2 Minion

In order to automate the deployment of Diablo-v2, we designed an orchestration and
deployment tool called Minion. It allows allocating machines from a provider, preparing
the hosts, and installing the required software to run the blockchain network and Diablo,
run the experiments and collect the results. Minion features an extensible design that
allows to easily add support for different machine providers.

Figure 5.3 gives an overview of Minion’s workflow. We define three actors in the inter-
action sequence. The Minion host is the host that is responsible for orchestration and
deployment. It interacts with the machine provider, where it can request the machines
and perform other provider-specific operations, and with the system under test, which
consists of machines used to run the blockchain network and Diablo-v2. Minion host
stores all the required parameters for the experiment and the results of the measure-
ments. The machine provider allocates the machines and returns a list of handles to
be used by Minion for communication with the machines. The allocated machines are
then used to run the blockchain network and Diablo-v2.
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Minion Host Machine Provider Machine

Request the machines (with the provider-specific parameters)

List of the machine handles (e.g. IP addresses)

Minion can now connect to the machines using a provider-specific interface (e.g. SSH)

Detect system

(e.g. Linux APT Ubuntu 20.04)

Set instance roles (e.g. which machine should run Diablo Primary, Secondary)

Blockchain-specific deployment

Start the blockchain network

Start Diablo

Benchmark done, send the results

Cleanup

Figure 5.3: Minion interaction sequence
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First, the Minion host starts the operation by requesting the machines from the provider,
specifying the required parameters if needed. The result of this request is the list of
handles that can be used by Minion to interact with the machines, execute the required
commands, and transfer the files. Next, we detect the system on the machines in order
to install the software. Such an approach allows us to have a set of installation scripts for
each operating system and easily add a set of scripts for a new distribution if required.

After the software is installed, the roles are assigned to the allocated machines. The
roles define which software will be run on the node and the addresses of the related
machines if required. In this phase, we can also specify the number of the blockchain
nodes or Diablo-v2 secondaries we want to have on a single host.

Then, Minion executes blockchain-specific deployment scripts. The scripts prepare the
hosts to run the blockchain network and Diablo-v2. The scripts allow delegating the
work, which requires the installed blockchain binaries to the allocated machines and
performing the generation with the gather-scatter operation. For Diablo-v2, informa-
tion about the blockchain network and the workload specification is distributed to all
the nodes which will run the experiment.

The experiment execution phase begins with the start of the blockchain network. Since
Minion waits until a blockchain-specific start script exits, it is possible to implement
the health check, which waits until the network is ready to accept the requests from
the clients. When the blockchain network initialization is completed, Minion starts
Diablo-v2 primary and the secondaries. After Diablo-v2 has finished collecting and
aggregating the results of the experiment, they are transferred to the Minion host, along
with the logs of the blockchain nodes.

As described, such architecture decouples the interaction between the machine provider
and the machines themselves, making it possible to use the tool in different environ-
ments. Therefore, R8 is satisfied.
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Implementation

In this chapter, we outline the implementation details of Diablo-v2 and Minion. We
present the workload specification format used in Diablo-v2 and the extra steps im-
plemented in Minion to prepare the iLab testbed hosts for the experiments.

6.1 Diablo-v2

Diablo-v2 is implemented in Golang, as it provides all the required facilities for con-
currency and networking. Also, Golang is a popular language choice, as it is used by
Algorand, Avalanche, Ethereum, and Quorum.

6.1.1 Workload specification
Using the notation described in Section 5.1.3, the benchmark configuration file specifies
the function M , the set φR and the interactions {(φc, φi, φr, t)} using YAML format.
For example, the gaming DApp configuration file in Listing 6.1 defines 4 variables: acc
(line 4) is a set of 2,000 user accounts, dapp (line 5) is a set containing one instance of
the dota DApp. Those two variables form the φR set.

The variable loc (line 2) is the set of Secondaries tagged with the string us-east-2 (an
AWS availability zone) and end (line 3) is the set of all endpoints. These two variables
are used in the definition of the M function (lines 7-10) which defines 3 clients invoking
the DApp dapp from accounts in acc with the parameters parsed from update(1, 1)
at the rate specified in the load section (lines 16-19): each client sends 4,432 TPS for
the first 50 seconds then 4,438 TPS for the next 70 seconds which is the end of the test.
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1 let:
2 - &loc { sample: !location [ "us -east -2" ] }
3 - &end { sample: !endpoint [ ".*" ] }
4 - &acc { sample: !account { number: 2000 } }
5 - &dapp { sample: !contract { name: "dota" } }
6 workloads:
7 - number: 3
8 client:
9 location: *loc

10 view: *end
11 behavior:
12 - interaction: !invoke
13 from: *acc
14 contract: *dapp
15 function: "update(1,␣1)"
16 load:
17 0: 4432
18 50: 4438
19 120: 0

Listing 6.1: Workload file example

The schema satisfies R3, as the workload can be specified for each blockchain client
individually and distributed according to the hardware capacity of the secondaries.
Using the load description, the primary schedules the transactions uniformly across the
time periods, satisfying R4.

6.1.2 Diablo-v2 configuration
Diablo-v2 has the following command-line arguments, which can be used to specify
the parameters and the configuration of the experiment.

diablo primary -vvv --port=5000 \
--env="accounts=accounts.yaml" \
--env="contracts=dapps-directory" \
--output=results.json --compress --stat \
10 setup.yaml workload.yaml

To run the Primary, we specify the verbosity level, port number for the secondaries to
connect to, the path to the accounts file, DApps source codes, output file path, compress
output (with gzip), printing statistics to standard output, number of Secondaries (10 in
the example), blockchain setup file, and workload specification file.

34



6.2 Minion

diablo secondary -v --tag="us-east-2" \
--port=5000 127.0.0.1

To run the Secondary, we again specify the verbosity level, port and address of the
Primary to connect to and a tag to indicate the Secondary location for collocation with
blockchain nodes.

Such design satisfies R6, as the configuration files are only passed to the primary, and
the secondary gets all the required information for the experiment from the primary.

6.1.3 Results file format
The results file uses JSON format and contains all the concrete data regarding the clients
and interaction events defined in the workload file. In Listing 6.2, we show a part of an
example results file to describe its structure. On the top level, there is the seed used for
operations requiring a random generator and the list of the locations corresponding to
the secondaries. For each location, we store its IP address and port, associated tags, and
the information about the clients that were running in the specified location. For every
client, we report its index, reference to the client in the workload file, and the list of
performed interactions. Finally, for every interaction, we also store the reference to the
interaction type in the workload file. Then, depending on whether the interaction was
submitted, committed, aborted, or had an error, we store the corresponding timepoints
or a boolean flag for the error.

The format satisfies R7, as using the timepoints of individual interactions, we can
calculate the metrics for the subsets of data and derive throughput and latency.

6.2 Minion

Minion is implemented in Perl as a set of modules and the main script, which contains
the main deployment scenario.

6.2.1 pos support
To support pos, we first create a Cli module that wraps command-line interface tool
commands, such as managing an allocation or a node.

We extend the Ssh module to create a Node module, similarly to the AWS Instance
module. In Node, we wrap the calls to the Cli module with the correct arguments, such
as node name. To initialize the Ssh parent, we pass the correct hostname, which differs
from the node identifier in the case of iLab machines, by appending .ilab to the node
identifier. We also create a method to get the correct IPv4 address for communication
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1 {
2 "Seed":883378932 ,
3 "Locations":[
4 {
5 "Address":"3.139.56.33:57098",
6 "Tags":[
7 "3.139.56.33:57098"
8 ],
9 "Clients":[

10 {
11 "Index":0,
12 "Kind":"/home/ubuntu/deploy/diablo/workload.

yaml :18:7",
13 "Interactions":[
14 {
15 "Kind":"/home/ubuntu/deploy/diablo/

workload.yaml :21:24",
16 "SubmitTime":0.100119845 ,
17 "CommitTime":0.614523155 ,
18 "AbortTime":-1,
19 "HasError":false
20 }
21 ]
22 }
23 ]
24 }
25 ]
26 }

Listing 6.2: Results file example

36



6.3 Blockchain protocols

between the nodes. The method fetches the IPv4 address of eno0 in the case of coinbase
machines and the address of eth-static for the iLab machines.

We also create an Allocation module, similar to the AWS Fleet module. Here, we store
the list of related nodes and wrap the calls to allocate and free CLI methods.

Therefore, such a structure allows us to have the following sequence of actions to run
the experiment. First, we create a calendar entry and a corresponding allocation. Then
we set the image and reset the nodes. At the end of the experiment, we stop the nodes
and free the allocation along with the calendar entry.

6.2.2 iLab support
For the iLab testbed, several features have been taken into account to easily run the
experiments with the blockchain networks we used.

The switches assign link-local IPv6 addresses to the machines. Since there are multiple
interfaces on the machines, and several of them have an IPv6 address assigned, we should
use scoped addresses to connect to other machines in the testbed. Such addresses did
not work with Diem, which is implemented in Rust and uses std::net::TcpStream to
create the connections. To eliminate the issue, we manually assign IPv4 addresses for
the experiments. We use the addresses of form 10.20.ord(isle).index, where isle is
in a-s,r, and index is in 1-6.

6.2.3 Network template preparation
We noticed that the network creation process might take a significant amount of time,
which is too expensive to accept on each experiment run. For example, Algorand re-
quires running a subprocess during the generation of cryptographic material for each
node, which becomes an issue when the network size is on the order of hundreds of
nodes. For Diem, the account creation function of the provided tooling runs sequen-
tially in the blocking mode, and each individual call may take a couple of seconds. To
solve this problem, we prepare all the files required to run a network of nodes, and we
store the archive with the files for different sizes of the network. When we need to run
an experiment, we unpack the archive and use the current IP addresses of nodes.

6.3 Blockchain protocols

Algorand
We experimented the Algorand version with commit 116c06e dated from Nov. 23rd 2021
and available at https://github.com/algorand. In addition to Solidity, a version of
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each DApp was implemented in PyTeal because Algorand only supports the Transaction
Execution Approval Language (Teal), which is bytecode and requires a conversion from
the PyTeal higher level language.

Avalanche
For the experiments, we used the master branch with commit number 7840200. We
initially tried to setup the Avalanche experiments using the RSA4096 cryptographic
signature scheme as recommended by Avalanche. However, this signing process was
taking too long due to the scale of our experiments. As we could not make Avalanche
work after replacing RSA4096 by ED25519, we opted for using ECDSA instead.

Diem
Like Ethereum, Diem requires that each transaction contains a sequence number, i.e., a
monotonically incremented integer. The difference with Ethereum is that Diem nodes
only accept a maximum of 100 transactions from the same signer in their memory pool,
limiting the rate at which a unique signer can submit transactions. To bypass this lim-
itation, we made workloads submit from 2,000 different accounts in most deployment
configurations, however, we noticed that the provided setup tools would fail systemati-
cally after creating 130 accounts. This is why we restricted the number of accounts to
130 in the community and consortium configurations.

We experimented the testnet branch from Aug. 21st 2021 with commit number 4b3bd1e
of the Diem repository https://github.com/diem/diem. Diem testnet branch is dated
Aug. 20 of 2021, while the main branch was updated at the time of writing (Feb. 27,
2022). Even though the testnet branch seems outdated, the official Diem tutorial still
recommends using the testnet branch for development purpose: https://developers.
diem.com/docs/tutorials/tutorial-my-first-transaction/.

Ethereum
We evaluated the geth version from the master branch with commit hash 72c2c0a from
Dec. 12 of 2021 available at https://github.com/ethereum/go-ethereum. In August
2021, the “London” update to the gas calculation introduced the notion of tips. With
this new version, the gas fee changes at every block, which can impact the execution of
transactions: when the fee increases then the transaction risks to be underpriced. This is
why, we tried to adjust the fee dynamically during the execution of the benchmark—this
implied signing transactions online.
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Quorum
We experimented the master branch with commit hash 919800f of Quorum from 2
Nov. of 2021 available at https://github.com/ConsenSys/quorum. Given that Clique
is vulnerable to message delays [4] and Raft is vulnerable to arbitrary failures, we
exclusively run Quorum with IBFT in our experiments.

Solana
We experimented the commit number 0d36961 of the master branch of Solana from
March 12 of 2022, as available at https://github.com/solana-labs/solana.

Previous tests ran by the Solana team all consisted of requesting the last block hash
before issuing concurrently transactions withdrawing from different accounts. We could
not use this technique while evaluating realistic DApps because Solana requires the
hash to be created less than 120 seconds before the transaction request is received while
DApps can run for longer. To cope with this limitation, the Solana-Diablo-v2 interface
periodically fetches the last block hash.
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Chapter 7

Evaluation

This chapter focuses on evaluating six state-of-the-art blockchain protocols with Dia-
blo-v2 on Amazon Web Services and the local testbed environments. First, we describe
the design of the experiments for both environments. Second, we provide the results of
our experiments on AWS and iLab testbed. Lastly, we explain the challenges of com-
paring the results in different environments and the deployment specifics of different
protocols.

7.1 Design

In this section, we describe the deployment configurations we used for the experiments on
AWS and iLab testbed, including specifications of the machines and network topologies.

7.1.1 AWS
We deployed Diablo-v2 and the blockchains in different configurations with up to 200
virtual machines ranging from c5.xlarge (2 vCPUs and 4 GiB memory) to c5.9xlarge
(36 vCPUs and 72 GiB memory) and spread equally among different geo-distributed
regions in five continents: Cape Town, Tokyo, Mumbai, Sydney, Stockholm, Milan,
Bahrain, São Paulo, Ohio, Oregon. Table 7.1 lists these different configurations. They
range from a datacenter scenario with extensive resources to a testnet of collocated
machines, to a geo-distributed devnet, to a large scale community of machines, to
a large-scale consortium of modern machines. The table indicates the number of
blockchain nodes deployed, the hardware they use, and how many regions they are
spread across.
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Configuration Blockchain nodes Regions
number #vCPUs memory

datacenter 10 36 72 GiB Ohio
testnet 10 4 8 GiB Ohio
devnet 10 4 8 GiB all
community 200 4 8 GiB all
consortium 200 8 16 GiB all

Table 7.1: The experimental settings

We deployed both the blockchains and Secondaries in the different deployment configu-
rations to measure the impact of geo-distribution on the blockchain performance. In all
cases, we applied the same geo-distribution strategy to the blockchain nodes and to the
Secondaries: each Secondary submits its requests to its collocated blockchain node so as
to mimic requests being routed from a client towards its closest blockchain node. In all
these configurations, a single Primary was used for setting up the experiment and gath-
ering the performance results. As the Primary is not involved during the performance
monitoring phase, its location does not impact the experimental results.

Datacenter
The datacenter configuration aims at showcasing the blockchain’s peak performance
in an idealized setting. Such a configuration features powerful c5.9xlarge machines
located in the closed network of a single datacenter, the Ohio AWS availability zone.
These machines are not commodity hardware as each machine features 36 vCPUs, and
72 GiB memory, the bandwidth and latency between machines are 10 Gbps and 1 ms1,
respectively, which is not representative of an open network. Instead, this configuration
allows evaluating blockchains when a lot of resources are available.

Testnet
The testnet configuration features small c5.xlarge machines located in a single data-
center, the Ohio AWS availability zone. This typically corresponds to a testnet setting
where blockchain developers typically run their blockchains in order to assess perfor-
mance and stability during development phases. As the machines are cheaper to rent
than c5.9xlarge, they allow the testnet to run for a long period of time, allowing for
continuous deployment.

1 https://aws.amazon.com/ec2/instance-types/c5/.
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Devnet
The devnet configuration geo-distributes the machines in an open network to assess
the performance in a setting involving the network latencies over long distance commu-
nications. This intends to mimic the performance one could expect from a blockchain
devnet, where external beta testers or preliminary validators from different regions could
participate in the evaluation of the blockchain before a release of a mainnet available
to internet users.

Community
The community configuration increases the number of machines to about the number
of countries around the world. This configuration aims at mimicking the performance
of the blockchain as if it was used in a geo-distributed environment involving as many
blockchain participants as there are jurisdictions (there are currently 195 universally
recognized self-sovereign states in the world). Such a highly distributed setting is often
considered to be particularly censorship resistant by not being strongly affected by
political decisions in only one of the jurisdictions where it operates.

Consortium
The consortium configuration geo-distributes 200 blockchain nodes similar to the
community configuration. However, it features more powerful c5.2xlarge machines that
better represent modern computers featuring 8 vCPUs and 16 GiB of memory. This aims
at mimicking a consortium of individuals or institutions, like the R3 consortium [33],
who have the resources to devote modern machines without specialized hardware to
participate in the blockchain service.

7.1.2 iLab
To run the experiments on the iLab [34] testbed, we use eth-static interface, which is a
dedicated 10 gigabit network between all the testbed machines. As shown in Figure 7.1,
the network consists of 7 isles (named a, b, c, d, e, f, s) of 6 machines each, plus an isle
of 3 machines (named r), giving 8 isles and 45 machines in total. Every two isles (a and
s, b and r, c and d, e and f) are connected to a switch, and there are overall 4 switches,
and all of them are connected to each other.

The machines have the following hardware:

• Intel Core i7-8700 CPU @ 3.20GHz (6/12 cores/threads)

• 64 GB RAM

• 500 GB SSD
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Isle S Isle B

Isle E

Isle F Isle C

Isle D

Secondary 

  ■ Legend 

  ■ Blockchain 
  ■ Diablo 

Primary, 

Secondary

Secondary

Figure 7.1: iLab topology

• Intel X550T 10 GbE NIC

• Debian 11 Bullseye

To distribute the workload generation over the testbed, we spread the Secondaries across
all the available isles. We use the first machines of isles a-s and the machines of isle
r for workload generation, giving us 10 machines for Secondaries in total. We use the
remaining machines for blockchain nodes in different configurations. For simplicity, we
vary the number of blockchain nodes as a multiple of 5, since we have 5 machines left
from isles a-s. Same as in AWS setup, for the Primary, we use one of the machines
which run the Secondary, as the Primary does not use any resources when the workload
is applied to the blockchain network.

7.2 Results

In this section, we stress test the blockchains described in Section 2.3 under the realistic
DApps of Section 2.2, synthetic workload, and real but less demanding workload traces
to compare the scalability, robustness, universality, and availability of these blockchains.

7.2.1 AWS
To provide an overview of blockchains performance executing realistic DApps, we deploy
each DApp of Section 2.2 in the consortium deployment configuration (200 8 vCPUs–
16 GiB machines spread over 10 countries in 5 continents) and generate the workload
associated with each of these DApps. For each run, we make sure that Diablo-v2 uses
enough Secondaries to not be the bottleneck.
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Figure 7.2 shows the average throughput, average latency, and the proportion of com-
mitted transactions for each blockchain-DApp pair. For each DApp (column), shows
the average workload effectively submitted by Diablo-v2 (top of each column), av-
erage throughput (first row), average latency (second row), and proportion of com-
mitted transaction (third row) for each blockchain. Each blockchain is deployed on
200 c5.2xlarge AWS instances spread among 10 datacenters. We observe that for
the Exchange DApp, which has the lowest average workload, Nasdaq, of 168 TPS
only, Avalanche and Quorum commit more than 86% of the transactions, all the other
blockchains commit 47% or less of the transactions. For the most demanding workload,
the YouTube workload, the proportion of commits is lower than 1% for all evaluated
blockchains. In addition, when the average workload is 852 TPS (like the Uber work-
load), or 3,483 TPS (like the Fifa workload), only Quorum maintains a throughput
higher than 622 TPS while the other blockchains have a throughput lower than 170 TPS.
For higher workloads (like Dota 2), no blockchain maintains a throughput higher than
66 TPS. Finally, among all DApps, no blockchains commit with a latency lower than
27 seconds. We indicate below what are the causes of this performance gap and how a
blockchain developer can use Diablo-v2 to find these causes on their own blockchain.

Scalability and deployment
Using Diablo-v2, we quantify scalability as the ability to allow a large number of
unprivileged users to participate in the blockchain execution. To this end, we deploy the
blockchains on networks of different sizes composed of machines ranging from enterprise
grade hardware with high computational power (datacenter) to commodity hardware
with modest computational power (community). We then measure their performance
when stressed with a synthetic workload.

More precisely, we deploy each blockchain on four deployment configurations:
datacenter, testnet, devnet and community. For each configuration, we use Dia-
blo-v2 to emulate clients sending native transactions to the blockchain for 120 seconds
at a constant rate of 1,000 TPS, which is the same order of magnitude as the average load
of the Visa system1. We measure the average throughput and average latency for each
blockchain. If the measured throughput is close to the workload of 1,000 TPS, then we
conclude that the blockchain handles the simple payment use case for the configuration.

1 Visa claims 150 million transactions per day = 1,736 TPS on average (https://usa.visa.com/
run-your-business/small-business-tools/retail.html)
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Figure 7.3: Throughput and latency with a constant workload of 1,000 TPS

Figure 7.3 shows the average throughput and average latency for each blockchain on the
four configurations. We observe that only Solana handles a 1,000 TPS constant workload
for all configurations while maintaining a throughput higher than 800 TPS with a latency
below 21 seconds. Solana uses an eventually consistent consensus based on a verifiable
delay function which puts away all communication steps but a broadcast. By using
a verifiable delay function, Solana makes the block generation delay independent of
the number of cores the participant uses. By removing most of the communication
steps, Solana also performs better in more challenging network settings. Quorum also
stands out in the community setup with a throughput of 499 TPS for a latency of
13 seconds. Quorum uses a well known deterministic consensus algorithm that does
not introduce artificial delays and provides immediate finality. In addition, Quorum
benefits from many blockchain specific optimizations by using geth as a base code.
For all blockchains, there is no significant difference between the datacenter and the
testnet configurations. In all the configurations, Diem achieves the best throughput
(more than 982 TPS) and the best latency (2 seconds or less) but only on configurations
with a local setup. We conjecture that Diem is designed to provide very low latency
and is optimized to run on network setups with a low round-trip time (RTT). Over the
remaining blockchains, only Algorand achieves a throughput higher than 820 TPS when
deployed on the devnet configuration, which is a geodistributed network. In particular,
the best average throughput that Algorand reaches in 885 TPS on the testnet. We
conjecture that the other blockchains, namely Avalanche and Ethereum, are designed
to run at a relatively low throughput regardless of the available computational power
or network bandwidth.
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Figure 7.4: Throughput and latency of each blockchain with a constant workload

Robustness and denial-of-service attacks
To better understand whether blockchains are robust to high demand, we used Dia-
blo-v2 to inject high workloads and test whether the blockchain collapses or continues
treating requests further. Intuitively, a blockchain is more robust if a higher workload
is needed to penalize its latency and throughput. This property is desirable to mea-
sure how hard it is for an adversarial user to perform a denial-of-service attack on the
blockchain by submitting transactions at a high rate. The test consists of deploying the
blockchain in a deployment configuration where it performs well under the moderate
workload and observing whether a higher workload leads to performance degradations.

To compare the blockchain robustness, we deploy each blockchain on its most suited de-
ployment configuration and observe its performance when stressed with a high workload.
To this end, we configured Diablo-v2 to send native transactions to the blockchain for
120 seconds at a constant rate of 10,000 TPS, which is 10× higher than the sending
rate in the deployment challenge. Although Diablo-v2 can send transactions at higher
rates, we found this workload to be sufficient to show some interesting behaviors of the
tested blockchains.

Figure 7.4 compares the throughput and latency of each blockchain when stressed with
workloads of 1,000 TPS and 10,000 TPS. Diem and Quorum are the most negatively
affected by the higher workload: Diem throughput is divided by 10 while Quorum
throughput drops to 0. Interestingly, Diem and Quorum are the only blockchains we
evaluated that use a deterministic Byzantine fault tolerant (BFT) consensus. These
algorithms were originally designed to commit as many client requests as possible, a
behavior that easily leads to saturated memory pools or network queues when exposed
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to high workloads. When applied to blockchains this effectively results in a vulnerability
to DoS attacks1.

Algorand and Solana are more robust as their throughputs are divided by 1.45 and
1.94, respectively, while the latencies of Algorand and Solana are multiplied by 2.43
and 4, respectively. These results show that despite being affected by a high workload,
these two blockchains do not completely collapse, and the performance decrease likely
results from the inability of the underlying hardware to handle too many requests.
Interestingly, Avalanche throughput is not negatively affected by the higher workload,
as its throughput is multiplied by 1.38, which makes it comparable to Solana throughput
for the same workload. This confirms the conjecture about scalability that Avalanche
throttles its throughput. It is hard to say something about Ethereum results since this
blockchain only commits 0.09% of the transactions when the workload is 10,000 TPS.

Universality and DApp executions
To understand whether a blockchain is universal in that it can handle requests that are
made arbitrarily complex, we test whether the blockchains can handle a large variety
of DApps with a potentially complex execution logic. To this end, we first deploy the
smart contracts of the DApps of Section 2.2 on the blockchains and then execute the
real workload that invokes the functions of these contracts.

To test if a blockchain can execute arbitrary programs, we use the Mobility service
DApp, which is CPU intensive and generates a 810–900 TPS workload during 120 sec-
onds. We test whether the blockchains can provide the service delivered by Uber by
measuring the throughput and latency and verifying that it matches the demand. As one
can expect this workload to be more demanding than with the native transfers generated
above, we deploy the blockchains in the consortium configuration (see Table 7.1), which
has the same number of machines and the same network as the community configuration
but with more powerful machines.

Figure 7.5 shows the throughput and latency for each blockchain running the computa-
tionally intensive Mobility service DApp on the consortium configuration. When the
blockchain is unable to execute the smart contract, Figure 7.5 shows an X letter in-
stead. Algorand, Diem, and Solana are unable to execute the DApp because the client
reports an error of type "budget exceeded" indicating that the execution ran out of
gas or timed out. This execution limit is hard-coded and cannot be lifted by paying a
higher gas fee in the transaction. We conjecture this limit is hard-coded to prevent a

1 Generating 10,000 TPS with Diablo-v2 costs less than 8 USD/hour on AWS.
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Figure 7.5: Throughput and latency with a workload between 810 TPS and 900 TPS

rich adversary from slowing down or completely stopping the blockchain by executing
compute intensive tasks in smart contracts. Interestingly, the three blockchains able
to execute the DApp use the geth implementation of the Ethereum Virtual Machine
(EVM), which comes with no hard limit on the gas budget of a transaction. Over these
three blockchains, Quorum has the highest throughput of 622 TPS which is close to the
average workload, while the two other blockchains, Avalanche and Ethereum, have a
throughput lower than 169 TPS.

Availability despite load peaks
We measure the availability of a blockchain as its ability to commit submitted trans-
actions in a timely manner even when stressed with load peaks. A blockchain is more
available when it handles more intense bursts of transactions with low latency and
without dropping any transaction. This property is desirable for a blockchain to handle
realistic workloads where users are likely to send many transactions to the blockchain
at the same time and expect to receive a confirmation from the blockchain within a
reasonable delay. To measure the availability of the blockchains, we first deployed each
blockchain in the consortium configuration (see Table 7.1) and then generates short
bursts of transactions of varying intensities, extracted from the Exchange DApp / Nas-
daq workload. In particular, we use Diablo-v2 to send buy transactions at the same
rate as the trade rate during the Nasdaq opening for 3 companies: Google, Microsoft,
and Apple. Finally, we measure the proportion of dropped transactions and the latencies
of committed transactions.

Figure 7.6 shows the cumulative distribution function (CDF) of the transaction latencies
for all blockchains under three workloads, with a peak load of 800 tx (Google), 4,000 tx
(Microsoft), or 10,000 tx (Apple) followed by a low workload. Over the tree workloads,
only Quorum commits all the transactions. Specifically, when stressed with the Apple
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workload, which consists of an initial load peak of 10,000 transactions during the first
second, Quorum commits all transactions, among which 91% of the transactions are
committed with a latency of 8 seconds or less. Interestingly, Quorum commits its
transactions with similar latencies of 7 seconds or less when stressed with lower load
peaks. Quorum uses IBFT, a deterministic BFT consensus that was historically designed
to never drop a client request. We conjecture that this design choice is still present in
the Quorum blockchain, as we already mentioned before.

The other blockchain based on a deterministic BFT consensus, Diem, only commits
75% of the transactions, all of them in less than 30 seconds. Diem drops transactions
during the load peak because of the limited size of the mempool on each blockchain
node. While this dropping mechanism prevents Diem from committing all transactions
during high load peaks, it also makes it less prone to completely collapse during constant
loads, as opposed to Quorum. Algorand and Solana also drop transactions, as shown by
their CDF plateauing at 77% and 52% of committed transactions, respectively, whereas
Avalanche and Ethereum keep committing transactions until the end of the experiment.
While it takes up to 162 seconds for Avalanche to commit some of the transactions,
this blockchain manages to commit 90% of the submitted transactions. Despite its low
throughput, Avalanche is the second blockchain to commit the most transactions.

As opposed to the Apple workload, the Google workload presents an initial load peak of
800 transactions during the first second. As a result, all the blockchains commit more
than 97% of the Google workload transactions. In addition, all the blockchains but
Ethereum commit all the Google workload transactions in less than 14 seconds, while
Ethereum does it in 118 seconds. The Microsoft workload has a moderate load peak of
4,000 transactions during the first second. On this workload, while all blockchains but
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Ethereum commit all transactions, they take more time to do so, with the exception of
Quorum, which commits all of its transactions with a latency of 7 seconds. Specifically,
Solana has its maximum latency rising from 1 second for the Google workload to 59
seconds, while Algorand, Avalanche, and Diem have their maximum latency going from
10-14 seconds to 22-37 seconds. On the Microsoft workload, Ethereum commits only
64% of the transactions.

Discussion
Next, we summarize the key results of the evaluation. While the realistic DApp eval-
uation reveals that current blockchains are not yet ready to deliver the same perfor-
mance as centralized infrastructures to provide common services, the in depth analysis
of blockchains’ performance shows that some blockchains fulfill some of their promises
and identifies key factors of performance.

First, it appears that a blockchain using eventual consistency, like Solana, scales more
easily to networks with many nodes. A decent throughput is also achieved by Quo-
rum, a blockchain based on long studied consensus protocols but which also benefits
from modern engineering techniques. More importantly, two blockchains, Diem and
Avalanche, fail at using more challenging configurations most likely because they sim-
ply do not consider these configurations as a use case: high RTT networks for Diem
and large hardware resources for Avalanche.

Second, the two blockchains using BFT consensus protocols, namely Quorum and Diem,
are the most impacted by constantly high workloads. The Algorand, Avalanche, and
Solana blockchains, which use either probabilistic or deterministic consensus protocols,
maintain a non negligible throughput when stressed with high constant workloads.

Third, Quorum and Diem, the least robust blockchains in the face of peak loads, are also
the blockchains committing the largest portion of transactions under reasonable delay.
This seems to indicate that there is a tradeoff between robustness and availability.

Lastly, only the three blockchains using the geth implementation of the EVM,
Avalanche, Ethereum, and Quorum, execute smart contracts with complex and com-
putationally demanding logic. The other blockchains having a virtual machine with a
hard limit on the computational cost of a transaction are unable to provide complex
services.

52



7.2 Results

0

25

50

75

100

T
h

ro
u

gh
p

u
t

(T
P

S
)

Number of isles, number of switches

2, 1

2, 2

4, 2

4, 3

4, 4 6, 3 6, 4

Ethereum Avalanche Diem Algorand Quorum Solana
0

30
60
90

120

L
at

en
cy

(s
)

Figure 7.7: Throughput and latency, 100 TPS workload, varied number of isles and switches

7.2.2 iLab
With the local testbed, we focus on finer-grained small-scale experiments which look
into how the network scales when the number of blockchain nodes is increased and how
the network delay affects the performance of the protocols.

Inter-switch Communication
As we have two isles connected to a single switch, we have multiple possible configu-
rations with the experiments involving two, four, or six isles. With two isles, they can
either be connected to a single switch or be connected to two different switches. With
four isles, two switches can be fully utilized, or there can be a partial utilization of three
or four switches. With six isles, either three or four switches can be used. All of these
configurations may affect the performance of the blockchain network.

In the next experiments, we send a constant workload of native transfer transactions
over 2 minutes to the blockchain network.

Figure 7.7 shows the throughput and latency for each blockchain when stressed with a
workload of 100 TPS. We can see that for all of the protocols, the measured throughput
stays consistent and is not affected by possible delays added by the switches. For
Ethereum, we see a slight decrease in the median latency as we scale up the number of
blockchain nodes.

Next, we experiment with the same setups and a workload of 1,000 TPS in Figure 7.8.
Here we start to notice a significant variance in results compared to the previous experi-
ment. First, Avalanche fails to handle the workload, and the latency for the transactions
the network manages to commit jumps from 7 seconds to 53 seconds, which is a 7.6 times
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Figure 7.8: Throughput and latency, 1,000 TPS workload, varied number of isles and switches
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Figure 7.9: Throughput and latency, 10,000 TPS workload, varied number of isles and switches

increase in the average latency. We also notice that the maximum latency of commit-
ted transactions in Quorum starts to depend on the number of nodes. We previously
noticed such behavior on a larger scale with Hyperledger Iroha [35].

Lastly, in Figure 7.9, we present the results of the experiments with the same setups and
a workload of 10,000 TPS. Here, Solana shows the best results with regard to handling
a very high workload.

Overall, we make a conclusion that the number of switches does not affect our mea-
surements in a noticeable way and proceed to use the configuration with the minimal
number of switches in the next experiments.
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Figure 7.10: Throughput and latency, 100 TPS workload, varied number of isles

Isle scalability
To evaluate the scalability of the blockchain protocols in terms of the size of the network,
we create networks of sizes 5 (1 isle), 10 (2 isles), 20 (4 isles), 30 (6 isles), and 35 (7
isles). We fully utilize the testbed, as it consists of 45 machines in total. We stress the
network with the constant workload of native transfer transactions over 2 minutes with
a varied rate.

In Figure 7.10, we compare the latency and the throughput of each protocol under
the constant workload of 100 TPS. We again note that the measured throughput stays
consistent between the different sizes of the network for all the blockchains. With
Ethereum, we notice a pattern that the median latency tends to become smaller as
the network size increases. We cannot increase the size of the network to observe
the behavior further. However, the decrease becomes smaller with each network size
increase.

Figure 7.11 shows the latency and the throughput for the blockchain protocols under
test with the 1,000 TPS workload. The maximum observed latency in Quorum tends to
increase with the size of the network. However, at the same time, the throughput does
not have a noticeable impact.

We display the latency and the throughput of all the tested protocols in 7 configurations
under a workload of 10,000 TPS in Figure 7.12. We observe an increase in the through-
put in Solana as we use 20 nodes. This behavior can be explained by the fact that
Solana uses the available processing power of the machines, and its performance scales
with the available hardware. For Algorand, we reached its announced peak through-
put in the experiment. For Diem, the relatively poor performance compared to Solana

55



Chapter 7: Evaluation

0

250

500

750

1000

T
h

ro
u

gh
p

u
t

(T
P

S
)

Number of isles

1 2 4 6 7

Ethereum Avalanche Diem Algorand Quorum Solana
0

30
60
90

120

L
at

en
cy

(s
)

Figure 7.11: Throughput and latency, 1,000 TPS workload, varied number of isles
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Figure 7.12: Throughput and latency, 10,000 TPS workload, varied number of isles
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Added 0 50 100 150 200 250 300
Measured 1.13814 49.758 99.663 149.689 199.73 249.782 299.727

Table 7.2: Added and average measured RTT (ms) between the isles
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Figure 7.13: Throughput and latency, 100 TPS workload, varied delay between the isles

can also be explained by the experiment limitation regarding the number of available
accounts.

Emulated latency
To evaluate the tolerance against network delays and simulate a real-world geo-
distributed environment, we use a network of 35 machines, 7 isles in total. Each of
the isles represents a separate location with a fixed delay to other locations. For sim-
plicity, we use equal delay values for all the isles. We experiment with delays of 50, 100,
150, 200, 250, and 300 milliseconds.

In Table 7.2, we compare the added and measured RTT between the isles in the testbed
to verify that the changes we did with tc are correctly applied in the whole network.
We see the measured values slightly below the target value because we subtracted the
baseline RTT from the added value as we were making the changes.

In Figure 7.13, we compare the throughput and the latency of the protocols under test
with 100 TPS workload, and varied added delay between the isles. We can notice that
the performance of Algorand and Quorum stays consistent regardless of the added delay.
For Solana, the median latency increases from 12.01 to 14.53 milliseconds. The impor-
tant observation is that the Diem performance drops significantly with the added delay,
and the throughput decreases by more than 50%. We can infer from the observation
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Figure 7.14: Throughput and latency, 1,000 TPS workload, varied delay between the isles
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Figure 7.15: Throughput and latency, 10,000 TPS workload, varied delay between the isles

that the protocol was optimized for low-latency setups and is not suitable for real-world
networks in the current state.

We display the latency and the throughput for all the tested protocols with 1,000 TPS
workload in Figure 7.14. Compared to the previous workload, we see that the through-
put of Quorum is halved as we add even 50 millisecond delay between the isles. At
the same time, the latency stays the same for the different delay settings. For Diem,
we see the same behavior of decreased throughput and increased latency. For the other
protocols, the performance stays consistent with the increase of the delay in the network.

Figure 7.15 shows the throughput and the latency measures for the protocols under the
10,000 TPS workload. As before, Ethereum and Avalanche show minimal throughput,
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and Quorum fails to handle the provided workload. We notice the same performance
drop for Diem. Solana and Algorand show consistent performance regardless of the
added delay.

7.3 Result Comparison

For the comparison of the results of the evaluation in AWS and iLab environments,
we use the results of Sections 7.2.1, Scalability and deployment, and 7.2.2, Emulated
latency with 1,000 TPS workload of native transfer transactions. The corresponding
results are displayed in Figures 7.3 and 7.14. As we see in both figures, for the low-
latency setups, as datacenter or testnet, Diem reaches its maximum throughput given
the provided workload. On the other hand, when we increase the latency between the
nodes and use geographically distributed regions as in devnet or community, we observe
a significant drop in the throughput of Diem. The results correspond to the experiments
with the increased latency in the iLab environment. As for the other blockchains, such as
Algorand or Solana, they are optimized for the public networks and increased latencies,
and therefore we don’t see the drop in throughput, as shown in the figures for AWS and
iLab environments.

7.4 Limitations

In this section, we look at the different aspects of the evaluation which can be taken
into account in order to increase the depth of understanding of the blockchain protocols.
While we performed an extensive set of tests in various environments, there are still more
factors and variables that can be changed and which can affect the performance of the
protocols.

First, we performed the experiments using the default system configurations supplied
by the image provider. However, blockchain protocols like Solana recommend1 different
operating system tuning, such as increasing the size of UDP buffers, as Solana uses UDP
for communication, or increasing the limit of memory mapped files. Such tweaks can
significantly improve the performance of the protocol but should be examined separately
for each protocol.

Second, protocols such as Algorand have different node types which have different modes
of operation. Algorand separates relay nodes and participation nodes, where relay nodes

1 https://docs.solana.com/running-validator/validator-start#linux.
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are responsible for communication in the network, and participation nodes participate
in consensus. In our deployment scenario, we ran both a relay and a participation node
on each machine. Such topology can be suboptimal and not exactly represent a typical
deployment. Instead, the Algorand main network can be analyzed, and such topology
can be replicated in a private deployment for the performance evaluation.

Third, in our measurements, we calculate the throughput based on the transactions
sent by Diablo. We store the hashes of the transactions and compare them to the
hashes received in the block subscription or the query for the individual transaction. If
the hashes match, we store the commit time of the specific transactions. Such metric
only accounts for the transactions generated by Diablo. However, the Solana protocol
includes voting transactions into the blocks, meaning that the calculated throughput
can be higher if those transactions are included.

Another important point is that while we used the dynamic fee interface for Avalanche,
we still observed that some transactions were dropped due to the insufficient fees spec-
ified in the transactions. There are multiple possible approaches to solve this issue. On
the one hand, we tried to calculate the transaction fees online during the experiment run
using the data provided by the blockchain network. It is possible that the approach was
not perfect, and therefore the calculation logic can be reviewed and improved. On the
other hand, it might be possible to specify static fees in the Avalanche configuration so
that they do not provide overhead for the experiment, allowing only to benchmark the
raw transaction processing performance. Also, while we experimented with C-Chain, it
is important to measure the performance of X-Chain as well.

Lastly, the differences in the cloud environment and the lab testbed do not allow strict
comparison of the metrics. Due to the hardware differences, we can only look at the
tendencies and the order of change, but not the exact numbers.
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Conclusion

In this section, we summarize the work done in the thesis. We go into detail about how
we addressed the research questions defined in Chapter 1. Additionally, we propose the
directions for future work and how Diablo-v2 and Minion can be extended.

8.1 Summary

We were faced with the problem that the existing blockchain benchmark frameworks do
not provide the ability to compare different protocols with real-world workload traces,
making it hard for the application developers to choose the right solution for their use
case and to evaluate the claims of the white papers. Furthermore, the currently present
benchmark tools do not provide a universal deployment solution for local and cloud
environments.

In order to solve the problem, we designed and implemented Diablo-v2, a blockchain
benchmark framework, which extends the original Diablo prototype. In order to derive
a generic architecture, we analyzed 6 state-of-the-art blockchain protocols, covering
different aspects of their APIs. Diablo-v2 features a flexible workload definition syntax
that accounts for different network topologies and the hardware of the machines running
the benchmark.

We implemented Minion, the tool which allows deployment and orchestration of the
blockchain networks and Diablo-v2. While Minion allows allocating the machines on
Amazon Web Services, we extended it to support Plain Orchestrating Service, which is
used at the local testbed at the Chair of Network Architectures and Services.
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Lastly, we carried on an extensive evaluation of the blockchain protocols on Amazon
Web Services and the local testbed using Diablo-v2. Using it both in the cloud setting
with up to 200 geographically distributed machines and on a local testbed with the 6
blockchain protocols has shown that we addressed the requirements of the framework
being generic, extensible, and easy to use.

8.2 Research Questions

In this section, we reiterate the answers to the research questions that we initially
defined.

Which architecture would cover the protocol differences while being easy to
use and maintainable?
Analyzing the Diablo prototype, we have seen that there are different factors that should
be taken into account when designing a generic blockchain benchmarking framework,
such as generating the workload and signing the transactions in particular. We reduced
the prototype interface for Ethereum, which had 15 methods, to a concise interface with
4 methods which allowed us to integrate 4 different APIs. The strict specification of
the API allows the developers not to overcomplicate their client implementation for a
target protocol. The final interface design is described in Section 5.1.3.

How to distribute and scale the transaction load in the framework?
Diablo prototype has shown that simple workload definitions only provide basic func-
tionality and cover a limited number of use cases. The workload definition derived in
the thesis explicitly specifies blockchain endpoints and workload generator locations,
which allows to easily control the communication patterns between Diablo-v2 and
the blockchain network. Furthermore, the specification enables defining the generated
workload individually for every workload generator, which creates a possibility to use
machines with different hardware specifications. We show the workload file schema in
Section 6.1.1.

What metrics are relevant across different blockchain protocols?
In Section 7.2, we showed that metrics such as transaction latency and throughput
and the ratio of committed to submitted transactions could already provide significant
insight into the performance of different blockchain protocols. For example, by analyzing
the results of synthetic and realistic workload traces, we were able to make conclusions
about the causes of specific protocol behaviors. We can conclude that BFT protocols
are highly impacted by high workloads and that probabilistic protocols show better
scalability when the number of clients is increased.
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What are the differences between the local and the globally distributed test
environments?
On the one hand, geo-distributed cloud providers allow experimenting with different
hardware, having flexibility regarding the number of virtual CPUs and amount of RAM.
Services such as AWS have data centers across the globe, which makes it possible to carry
out experiments with realistic network conditions and background traffic spread across
multiple continents. Local test environments, on the other hand, provide full control
over the network conditions. Both environments play an important role in evaluating
blockchain protocols, as they show different aspects of systems under test. We discuss
the benefits and drawbacks of both environments in Section 4.2, and later show that we
can compare the results from the environments in Section 7.3.

8.3 Future Work

While we focused on transaction-related metrics in the thesis, such as throughput, la-
tency, and the ratio of committed transactions to submitted transactions, there are other
important metrics that can help to compare different blockchain protocol implementa-
tions. Metrics such as network bandwidth, CPU, and disk usage can provide insight
into how efficient is a particular implementation. These metrics can help to estimate
the costs of maintaining a blockchain network over a long period of time. Moreover,
blockchain users also perform reads on the network, in addition to transactional work-
load. Query performance might differ depending on when a particular value was written
into the ledger. The generic architecture of Diablo-v2 and Minion allows the tools to
be extended to support these metrics. The code to create queries has to be implemented
Diablo-v2, similarly to how the transaction creation is currently implemented. Min-
ion can be used to install the required software to collect CPU and disk metrics, run
the tools along the blockchain binaries, and collect the metrics after the experiment
execution.

Another aspect that can be studied is network partitioning. Partitioning is defined as the
loss of connectivity between the different nodes of the blockchain network. Partitioning
can affect aspects such as safety and liveness. From the safety perspective, the network
can fork, meaning that the nodes start maintaining different versions of the ledger. Or
the network can stop accepting transactions completely and fail to continue the normal
operation after the network connectivity is restored, meaning that liveness property is
violated. Here, netem also can be used to block communication between the different
machines in the network.
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As mentioned in Section 7.4, we used Algorand network topology where every physical
machine had both relay and non-relay nodes running. Such a setup may not exactly
replicate a real-world network and may create additional load on the network and the
machines. Experiments can be done where only a subset of machines run the relay
nodes responsible for communication routing. The other mentioned limitations can be
resolved as well by conducting additional research.
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