
Chair of Network Architectures and Services
School of Computation, Information, and Technology
Technical University of Munich

TECHNICAL UNIVERSITY OF MUNICH

SCHOOL OF COMPUTATION, INFORMATION, AND TECHNOLOGY

INFORMATICS

MASTER’S THESIS IN INFORMATICS

Analysis of Performance Limitations in QUIC
Implementations

Marcel Kempf

Technical University of Munich
School of Computation, Information, and Technology

Informatics

Master’s Thesis in Informatics

Analysis of Performance Limitations in QUIC
Implementations

Analyse von Leistungseinschränkungen bei
QUIC Implementierungen

Author: Marcel Kempf
Supervisor: Prof. Dr.-Ing. Georg Carle
Advisor: Benedikt Jaeger

Johannes Zirngibl

Date: December 15, 2022

I confirm that this Master’s Thesis is my own work and I have documented all sources
and material used.

Garching, December 15, 2022
Location, Date Signature

Abstract

The QUIC transport protocol, standardized in 2021, aims to provide a secure, reliable,
and fast connection between two endpoints. Despite all its benefits, previous research
has shown that the performance of QUIC is not always as good as expected. The QUIC
implementations are often identified as the cause of its suboptimal performance rather
than any shortcomings in protocol design. However, QUIC implementations have not
yet been analyzed in detail to identify the performance limitations and potential areas
for improvement.

In this thesis, we present a configurable measurement framework to analyze the per-
formance of QUIC implementations. Our analysis reveals that the components packet
IO and crypto are the most CPU-intensive, contributing up to 75 % of the total CPU
utilization on the server. However, only the sending and receiving of packets turned out
to limit performance caused by unused kernel optimizations for more efficient packet
processing. The connection management component is also identified as a performance-
limiting factor. We reveal implementation issues with congestion control algorithms
and shallow buffers as causes for performance problems. The BBR implementation of
LSQUIC achieves less than 40 % of the goodput of CUBIC. In conclusion, our work pro-
vides a deeper understanding of the performance limitations of QUIC implementations
and offers suggestions for improving their performance in future work. By addressing
the issues identified in our study, it may be possible to enhance performance and realize
the full potential of QUIC as a secure, reliable, and fast transport protocol.

Contents

1 Introduction 1
1.1 Goals . 2
1.2 Outline . 3

2 Background 5
2.1 QUIC . 5

2.1.1 Features . 5
2.1.2 Packets and Frames . 6
2.1.3 Acknowledgments . 7

2.2 Performance Analysis . 7
2.2.1 Performance Metrics . 7
2.2.2 Flame Graphs . 8

2.3 Buffers . 8

3 Related Work 11

4 Implementation 13
4.1 Testbed Setup . 13
4.2 QUIC Implementations . 14
4.3 QUIC Interop Runner . 14
4.4 Tools . 15
4.5 Analysis . 17

5 Evaluation 21
5.1 Components . 21
5.2 Connection Management . 23

5.2.1 Congestion Control . 23
5.2.2 Acknowledgments . 26

5.3 Crypto . 28

5.4 Packet IO . 32
5.4.1 Batching . 32
5.4.2 Offloading . 33
5.4.3 Buffers . 33

5.5 Build Optimization . 36

6 Conclusion 39
6.1 Summary . 39
6.2 Future Work . 41

A Appendix 43
A.1 List of Acronyms . 43

Bibliography 45

II

List of Figures

2.1 QUIC and TCP Protocol Stacks for HTTP 6
2.2 Sample Flame Graph . 8
2.3 Overview of Buffers Used During a UDP Connection 9

4.1 Testbed Setup . 13
4.2 Methods for Measuring CPU Utilization 19

5.1 Categorized CPU Usage of Client and Server 22
5.2 Goodput Comparison of CUBIC and BBR 23
5.3 Performance of AES and ChaCha20 Ciphers w/wo AES-NI 30
5.4 CPU Usage of Different Cipher Suites 31
5.5 Performance Influence of UDP Receive Buffer Size 34
5.6 UDP Receive Buffer Drops . 36
5.7 Build Optimizations . 38

List of Tables

4.1 Categorized Perf Output . 18

5.1 CCA’s Compared With Different RTT’s 25
5.2 TLS 1.3 Cipher Suites . 28
5.3 Performance of AES Cipher Suites Depending on AES-NI 30
5.4 ACK’s and Packet Drops for Different CCA’s 36

Chapter 1

Introduction

The Transmission Control Protocol (TCP) was first standardized in 1981 and has been
in use for more than 40 years. TCP uses sequence numbers, flow control, and congestion
control to ensure that data is transmitted without getting reordered, damaged, or lost.
This makes TCP a reliable transport protocol and is the reason why it was chosen for
most applications on the Internet. The Hypertext Transfer Protocol (HTTP) as the
application layer protocol most commonly used for web traffic also relies on TCP until
its version 2, which was the latest version until June 2022. TCP has received changes,
updates, and new features over the years as the Internet and its requirements for trans-
port protocols have evolved. Some issues with TCP in combination with Transport
Layer Security (TLS) for web traffic, such as the costly handshake and the Head-of-Line
blocking problem, have not been addressed over the years, as it would affect backward
compatibility. [1]

The transport protocol QUIC was standardized by the Internet Engineering Task Force
(IETF) in 2021. It was initially designed by Google to provide a solid base for web
traffic with HTTP/3, which it finally became with the standardization of HTTP/3 in
June 2022 [2]. Google aimed to develop a new transport protocol that is faster and
more robust than TCP [3], [4]. QUIC features swift connection establishment, stream
multiplexing, congestion as well as flow control, and built-in security with TLS [5]–[7].
QUIC solves many of the drawbacks of TCP such as the costly handshake. New features,
such as connection migration, were added to QUIC to meet the latest requirements of a
transport protocol. To offer compatibility with existing middleboxes and kernels, QUIC
operates in the user space, on top of the User Datagram Protocol (UDP). This also
allows for a fast development cycle as QUIC can be updated without touching the kernel.

Chapter 1: Introduction

Related work evaluated the performance of QUIC under different network conditions,
partly comparing it with TCP [8]–[11]. It turned out that TCP was able to perform bet-
ter than QUIC in many cases. The common finding is that poor performance is caused
by the implementations rather than the protocol design. Misconfigurations, implemen-
tation design choices, and bugs are considered responsible for the observed performance
issues. The fact that QUIC is implemented in user space and covers features from
transport to application layer gives QUIC implementations a high impact on the overall
performance of connections.
However, large parts of the related work analyze QUIC’s performance only superficially,
comparing different implementations under different network conditions. Additionally,
related work was mainly published before the standardization, analyzing preliminary
implementations of an IETF QUIC draft. At this point, many QUIC implementations
had not yet fully implemented all components.

1.1 Goals

QUIC was developed and introduced as a better alternative to TCP. However, there
are results showing that QUIC performs worse than TCP in certain cases.
The goal of this thesis is to analyze the performance of QUIC implementations in detail,
focusing on the different components of the implementations.

We want to answer the following research questions:

How do we need to design a measurement framework to analyze the perfor-
mance of transport protocols?

To analyze the performance of transport protocols, a measurement environment that
conducts measurements under identical conditions with different implementations is
required. This measurement environment should offer a wide range of capabilities for
collecting metrics and comparing them afterward.
We present a configurable measurement setup to execute experiments in a reproducible
way while being able to modify the environment slightly and collect useful metrics. This
paves the way for standardized approaches to compare different QUIC implementations
or other transport protocols using a unified set of performance metrics.

Which parts of QUIC implementations limit performance the most?

QUIC implementations can be divided into several components, as they perform many
different tasks. By breaking down QUIC implementations into smaller parts and ana-
lyzing them individually, we look for performance limitations from the implementation
side. The impact of different components and discovered limitations on the overall per-

2

1.2 Outline

formance of QUIC connections is evaluated. This in-depth analysis brings us closer to
answering whether QUIC is a viable competitor for TCP.

Which configurations influence the performance of QUIC implementations?

By analyzing bottleneck components, we want to find out which configurations worsen
or improve the performance of QUIC implementations.
We perform measurements with a basic TCP/TLS stack to compare them with measure-
ment results from a QUIC implementation. After identifying performance limitations
in QUIC implementations, we achieve better performance through optimizations where
possible.

1.2 Outline

The following chapter provides basic knowledge about QUIC and performance evalu-
ation of transport protocols. Key aspects of QUIC that are important for subsequent
evaluation are briefly introduced. Related work on QUIC performance analysis, com-
parison of different implementations, and performance evaluation of other protocols are
presented in Chapter 3. Chapter 4 describes the network setup and the framework
used to execute the measurements. The underlying QUIC Interop Runner as well as
additional tools used to collect metrics and evaluate the performance are briefly intro-
duced. In Chapter 5, we present, analyze, and discuss the results of the most relevant
measurements. After clustering QUIC implementations into components, those of most
significant importance for performance are analyzed. Finally, we conclude our results
and outline future work in Chapter 6.

3

Chapter 2

Background

This chapter provides basic knowledge about the QUIC protocol and performance analy-
sis of network protocols. After introducing QUIC’s design and the most important fea-
tures, we shortly describe how QUIC packets are constructed and how acknowledgments
are handled. Section 2.2 introduces metrics for measuring network performance and in-
troduces flame graphs as a tool for analyzing the central processing unit (CPU) usage.
In Section 2.3, we present the buffers involved in a QUIC connection.

2.1 QUIC

QUIC is a general-purpose transport protocol focusing on fast and secure connections,
based on the UDP. It was originally developed by Google and is now standardized by
the IETF in RFC 9000 [5]. The motivation was to replace the TCP/TLS stack used
by the HTTP with a single protocol that is more efficient and secure [3]. The protocol
stacks are compared in Figure 2.1. QUIC uses UDP to achieve backward compatibility
with existing network infrastructure. However, it is connection-oriented, reliable, and
provides flow and congestion control, just like TCP. QUIC implements those transport
features in the user space.

2.1.1 Features
Encryption and Authentication: QUIC uses TLS 1.3 for encryption and authentica-
tion [6]. The whole QUIC packet consisting of the header and payload is authenticated.
After the handshake has been completed, the payload and large parts of the header are
additionally encrypted.

Chapter 2: Background

Network

Transport

Application

IP

TCP

TLS

HTTP/2

UDP

QUIC

HTTP/3

Figure 2.1: QUIC and TCP protocol stacks for HTTP, from [12].

Stream Multiplexing: A stream is a uni- or bidirectional data flow in an existing con-
nection between two endpoints. Multiple QUIC streams can run simultaneously in the
same connection and are independent of each other. One primary reason for stream
multiplexing with independent streams is to avoid Head-of-Line blocking. QUIC frames
of the type STREAM are used to open, close, or send data on a stream. Each STREAM
frame contains a stream identifier, uniquely identifying the stream within a connection
by a 62-bit integer. The offset field in STREAM frames indicates the position of the data
in the stream and is used to reassemble the received data in the correct order.

Congestion and Flow Control: QUIC implements several mechanisms to control the
amount of data sent by the endpoints. These mechanisms are inspired by and adapted
from TCP. RFC 9002 describes how the mechanisms should be implemented in QUIC [7].
A congestion control algorithm similar to TCP’s Reno is described, but other algorithms
can be used as well.

User Space Implementation: QUIC is implemented in user space to allow faster de-
velopment and easy deployment on existing machines. No changes to the kernel are
required to install or update QUIC on a machine. A disadvantage is the lack of kernel
optimizations and the higher amount of context switches, which can lead to performance
issues.

2.1.2 Packets and Frames
QUIC sends packets encapsulated in UDP datagrams. Each QUIC packet consists of a
header and payload. Depending on the packet type, the header can either be a short or
long header. The long header contains special fields only necessary during connection
establishment. After initial connection establishment, the short header is used for all
packets.

6

2.2 Performance Analysis

The payload consists of one or multiple QUIC frames. One frame must always fit into
one QUIC packet. There are different types of frames, e.g., STREAM, ACK, PING, or
NEW_CONNECTION_ID.

2.1.3 Acknowledgments
Acknowledgments in QUIC are sent in ACK frames. A QUIC packet is called ack-eliciting
if it contains at least one frame other than ACK, PADDING, or CONNECTION_CLOSE. While
endpoints acknowledge all received packets, ACK frames are only sent after receiving an
ack-eliciting packet. The max_ack_delay transport parameter defines the maximum
time the receiver is allowed to wait before sending an ACK frame. An ACK frame con-
tains so-called ACK ranges, acknowledging multiple packets at once. According to RFC
9000, determining the acknowledgment frequency is a trade-off and may affect the per-
formance of the protocol [5]. The IETF proposed a new approach to determine the
acknowledgment frequency in a draft for an extension [13].
The performance influence of different ACK frequencies is analyzed further in Sec-
tion 5.2.2.

2.2 Performance Analysis

The performance of a network protocol is often defined as the quality of the service it
provides. In the case of QUIC implementations, we can either evaluate the performance
of the transmission (e.g. throughput) or the performance of the protocol implementation
(e.g. CPU usage). The next section describes the different performance metrics and
how they can be used to evaluate performance.

2.2.1 Performance Metrics
Several metrics can be used to measure transport protocol performance. If the measure-
ment is performed with a web server and a client requesting a whole website consisting
of several files, the page load time (PLT) is often used. It is defined as the time be-
tween the first request and the last response. PLT is especially useful to evaluate user
experience, as it is a metric that users intuitively gather themselves. If the measure-
ment setup does not include transmissions of large files, requests per second is another
interesting metric as it indicates the server’s performance under high load. However, if
the measurement involves the transmission of large files, the throughput is important,
i.e. the amount of data that can be transmitted in a given time. A metric to measure
throughput is packets per second (pps). Since packets do not always have the same size,
using data rate is a more detailed metric. To not consider retransmissions and the size
of data used for connection management, the goodput metric offers a slightly varying

7

Chapter 2: Background

definition. The goodput is the size of the file(s) transferred divided by the time it took
to transfer the data.

To measure the performance of a single application like the server, the CPU usage is
often used. Memory usage can also be measured as a metric for application performance.

2.2.2 Flame Graphs
To find bottlenecks or performance issues in an implementation of a server or client,
a flame graph can be used. A flame graph visualizes the CPU usage in the form of
stack traces in a captured time interval. The graph can be created using a capture that
contains the call stack of the functions executed by the CPU at different timestamps.

Search ic

__sys_sendmsg

entry_SYSCALL_64_after_hwframe

sc..

do_..

iqui..

udp_send_skb
udp_sendmsg

stream_write

a..

swapper

send_packets_out

do_syscall_64

__qdi..

so..

cpuidle_e..

start_kernel

s..

http_server

ip_finis..

__libc_sendmsg

___sy..

epoll_..

_..

do_idle

d..

do_s..

cpuidle_e..
process_connections

new_sy..

mwait_..

____sys_sendmsg

cpu_startup_..

asm..

ietf_full_conn_ci_tick

____..

entry_..
do_sys.. _..

cpu_startup_entry

process_streams_write_events

lsquic_engine_process_conns

sport_packets_out
in..

__sys..
cpuidle_enter_state

shmem_..

__ip_..

ksys_read

f..
proces..

cpuidle_enter
entr..

secondary_startup_64_no_verify

ietf_fu..

lsquic_stream_dispatch_write..

process_p..

write_stream_frame

send_batch
irq..

ud..

do_e..

http_server_on_write

ixg..

asm_..

lsquic_stream_writef

read_handler
lsquic_eng..

__s..

___sys_sendmsg

EV..

a..

frame_std_gen..

intel_idle

lsq..

intel_..

__x6..

net..

lsqui..

frame_hq_gen_read

__dev_q..

E.. stream_dispatch_write_events..

stream_write_to_packets

iqu..

__libc_r..

ip_mak..
ip_send_skb

proces..

_aes..

entry_SYSC..

prog_process_conns

comm..
proces..

mwait_idle_w..

ae..

sock_sendmsg
ls..

[unknown]

vfs_read

event_process_active_single_queue

do_syscal..

__libc_read

stream_write_to_packet_..

ietf_v1_gen_stre..

do_idle

Figure 2.2: A sample flame graph of a LSQUIC server transferring a 10 GiB file in 100 s.

A sample flame graph is shown in Figure 2.2. The data used to create this flame graph
was collected during a transmission of a 10 GiB file with the QUIC implementation
LSQUIC on the server. While the x-axis of a flame graph represents the stack profile
population, the y-axis represents the stack depth. The width of a bar, therefore, repre-
sents the amount of time spent in this specific function (and all functions above). The
color of a bar usually has no specific meaning. We decided to use shades of orange for
all functions running in the kernel and shades of red for all functions running in the
user space.

2.3 Buffers

During the transmission of data, packets are not always processed immediately. Several
buffers at different positions are involved.

8

2.3 Buffers

NIC

TX
Ring

RX
Ring

Network
Driver

UDP
Socket

SNDBUF

RCVBUF

QUIC
Impl.

Kernel

Figure 2.3: Important buffers involved in sending and receiving with UDP sockets. This illustration
is simplified, as NIC internal buffers and the qdisc layers are excluded.

Figure 2.3 shows the buffers involved in the transmission of data. While the upper arrows
show the flow of incoming packets, the lower arrows show the flow of outgoing packets.
For simplification, not all steps and buffers involved are shown in the illustration.
After initial processing, the network interface card (NIC) uses Direct Memory Access
(DMA) to store received packets in the RX ring buffer. DMA is a technique to access the
system memory without the involvement of the CPU. The kernel will now use interrupts
to fetch the received packets from the RX ring buffer. The packets will be processed by
the kernel and the headers of layers 2, 3, and 4 will be removed. The layer 4 payload is
now stored in the socket receive buffer (RCVBUF). The QUIC implementation, reading
data from the socket, will remove and further process the layer 4 payload from the socket
receive buffer. If the RX ring buffer or the socket receive buffer are full, incoming packets
are dropped. [14], [15]
The sending process involves a socket send buffer (SNDBUF) and a TX ring buffer. The
buffers and the involved parts of the transmission act similarly to the receiving process.
One important difference is that no data is dropped if the socket send buffer is full.
In this case, the system call will block or fail until the buffer is not full anymore. By
choosing the size of the socket send buffer accordingly to the available bandwidth and
size of the later buffers involved in sending, the amount of dropped packets during the
sending process is usually low or even zero. [14], [15]
The impact of buffer size on performance, including the effects of both undersized and
oversized buffers, is evaluated in Section 5.4.3.

9

Chapter 3

Related Work

This chapter provides an overview of related work in the field of QUIC and network
performance analysis.

Yang et al. [16] examined different QUIC implementations and analyzed the perfor-
mance of different components. The implementations quant, quicly, picoquic, and mvfst
were used. Their testbed setup consisted of two servers connected with two 10 Gbit/s
links. While Server 1 was running the QUIC server and client, Server 2 was running
a network simulator to simulate different network conditions, e.g. packet loss, latency,
and reordering. Traffic is routed from Server 1 to Server 2 via the first link and back
to Server 1 via the second link. It was explored in detail how network conditions like
packet loss and reordering affect QUIC performance. The performance was measured
by looking at throughput and CPU time. They found that the main bottlenecks are the
kernel network stack, the crypto component of the respective QUIC implementation,
and packet reordering.

A paper by Rochet et al. [9] explores the benefits of tighter coupling of TCP and
TLS when used together. They designed and implemented their own protocol called
TCPLS, which is based on picotls and uses TLS 1.3. Transport features comparable to
QUIC, such as streams, connection migration, and HOL blocking avoidance, have been
implemented through TLS Encrypted Extensions. TCP Fast Open [17] allows a quick
handshake to be achieved in many connections. TCPLS was able to reach a throughput
twice that of quicly, the fastest of the QUIC implementations tested. In their mea-
surements, throughput and packets per second (pps) were used as metrics. The QUIC
implementations mvfst and MsQuic were also evaluated in addition to quicly. The au-

Chapter 3: Related Work

thors found that it is possible to add modern transport features to TCP without also
requiring any changes to the kernel. They claim that TCPLS is a viable alternative to
QUIC, as it performs substantially better than QUIC in their measurements.

Yu et al. [8] conducted a performance analysis of different QUIC production endpoints
hosted by Google, Facebook, and Cloudflare. Their measurements included the transfer
of entire websites from the production endpoints to their client running different QUIC
implementations. They consider the analysis of QUIC performance within testbeds to
be unrepresentative since the kernels are not optimized for QUIC in such cases. The
metrics used are the bytes acknowledged over time, as well as the page load time (PLT).
The introduction of additional packet loss and delay gave them extra insight, as they
were unable to change the server configurations. They concluded that performance
differences are mainly caused by differences in the implementations or server configura-
tions, not by inherent properties of QUIC itself.

A blog post by Marc Richards [18] compares the Linux kernel network stack with a
kernel bypass network stack using Data Plane Development Kit (DPDK), a library to
achieve faster packet processing. He used TCP only; QUIC or UDP were not analyzed.
Several improvements were made to the Linux Kernel’s network stack to achieve better
performance. Performance was measured in requests per second. The results show that
the kernel-bypass network stack outperformed the unoptimized kernel network stack
by a factor of 4.2 and the optimized kernel network stack by a factor of 1.5. He found
several advantages and disadvantages to using both the optimized kernel and the kernel-
bypass network stack.

A paper by Mishra et al. [10] evaluates and compares congestion control of different
QUIC implementations. The QUIC implementations mvfst, chromium, MsQuic, and
quiche were used. They implemented a tool called QUICbench to perform their mea-
surements. They used the kernel implementation of the different congestion control
algorithms as a reference. Their testbed setup consisted of two servers connected with a
1 Gbit/s link. Significant performance differences were found between the different con-
gestion control algorithms in QUIC implementations and the reference implementations.
The authors concluded that the performance is mainly affected by implementation dif-
ferences, not by differences between QUIC and TCP. They also planned to evaluate
more QUIC implementations in the future.

12

Chapter 4

Implementation

This chapter presents the used measurement setup including the testbed, the measure-
ment framework, and the tools used to collect metrics. Additionally, the procedure of
result parsing and postprocessing of the collected logfiles is described.

4.1 Testbed Setup

All measurements were performed in the chair’s testbed on bare metal machines. We
decided not to use any kind of virtualization, containerization, or emulation to avoid any
overhead introduced by the additional layers. All measurements were performed on the
same network topology, consisting of one client, one server, and a management node, as
illustrated in Figure 4.1. The client and server are connected via a 10 Gbit/s link. The
management node is connected to client and server with a link of a separate network
card, allowing the management node to fully control client and server. The management
node uses the Plain Orchestrating Service (POS) [19] to control other nodes. POS can
execute arbitrary commands on other nodes, reboot them, and change the live operating
system.

Client Server

Management

File Download over 10G Link

ssh/rs
ync/p

os ssh/rsync/pos

Figure 4.1: Network topology of our testbed setup.

Chapter 4: Implementation

Both machines are running Debian 11 as a live system not involving any hard disks. If
not stated otherwise, client and server were equipped with an Intel® Xeon® E5-1650 v3
CPU and an Intel® 10G X550T network card.

4.2 QUIC Implementations

We considered different open-source QUIC implementations listed by the IETF QUIC
Working Group [20]. All implementations that are not actively maintained or do not
support the current version of the QUIC protocol were excluded from our choice. As
we are interested in performance measurements, we decided to mainly use LSQUIC,
which is implemented in C and focuses on performance. More advantages of using
LSQUIC are the presence of example implementations for a HTTP client and server
and the continuous development of the library. Support for extensions such as the
delayed ACKs extension [13] and the datagram extension [21] was added soon after the
publication of the corresponding drafts. Zirngibl et al. [12] showed that LSQUIC is also
among the most popular QUIC implementations deployed in May 2021.
To ensure consistency, we use the same version of LSQUIC for all our measurements.
The lsquic commit hash f3657f1 was chosen, as it was the latest at the time this decision
was made.

4.3 QUIC Interop Runner

To execute measurements and collect data, we used the QUIC Interop Runner, a
framework initially developed to run interoperability tests between QUIC implementa-
tions [22]. The QUIC Interop Runner supports multiple test cases, checking the tested
implementation for compliance of functionalities in interoperation, and measurements,
measuring the performance of different server-client pairs.
The original QUIC Interop Runner uses Docker, a software platform for OS-level virtu-
alization. Server and client are run in Docker containers on the same machine. We use
a modified version of the QUIC Interop Runner operating both endpoints on dedicated
hosts. The modified QUIC Interop Runner uses poslib to control the testbed, transfer
files, and execute commands on the testbed hosts [19]. We mainly use the provided
measurement called goodput, in which the client requests a large file from the server
and measures the time it takes to download the file. As a metric for performance, we
primarily use goodput. More metrics are collected with the tools described in the fol-
lowing section.
Using the QUIC Interop Runner has the advantage that our measurements can easily
be reproduced, also with other QUIC implementations.

14

4.4 Tools

Listing 4.1: Sample config.yml for the QUIC Interop Runner
1 testbed: testbed/testbed_uniswap -solana.json
2 server: lsquic
3 client: lsquic
4 test: goodput
5 repetitions: 20
6 filesize: 8192
7 implementation_directory: ./out
8 client_prerunscript:
9 - pre -post -scripts/start -pidstat.sh

10 - pre -post -scripts/run -netstat.sh
11 - pre -post -scripts/set -rcvbuf.sh
12 client_postrunscript:
13 - pre -post -scripts/stop -pidstat.sh
14 - pre -post -scripts/run -netstat.sh
15 - pre -post -scripts/set -buffers -default.sh
16 server_prerunscript:
17 - pre -post -scripts/start -pidstat.sh
18 - pre -post -scripts/run -netstat.sh
19 server_postrunscript:
20 - pre -post -scripts/stop -pidstat.sh
21 - pre -post -scripts/run -netstat.sh
22 client_implementation_params:
23 - CC_ALGO =1
24 - rmem_value =1703936
25 server_implementation_params:
26 - CC_ALGO =1

We extended the QUIC Interop Runner at several points to improve its functionality
for performance measurements. First, we added support for running perf (explained
in the following section) on the server and client. Minor changes were made to sup-
port modified versions from implementations, as we use multiple modified versions of
LSQUIC for our measurements in Sections 5.3 and 5.5. We also added the functionality
to pass variables to the client or server. Additional tools like ethtool and netstat to
collect more metrics were integrated and are available for optional use.
To make the configuration of the QUIC Interop Runner more flexible and measurements
reproducible, we added support for yaml configuration files. A sample configuration file
is shown in Listing 4.1.

4.4 Tools

In this section, we briefly introduce tools used to capture packets, metrics, and statistics
during measurements. Tools to modify the measurement conditions are also described.

Ifstat is a tool to monitor network traffic and report network interface activity. We
use it to log current bandwidth usage of the client’s network interface in both directions

15

Chapter 4: Implementation

every second.

Perf is a Linux profiler, also known as perf_events. It is event-oriented and can cap-
ture performance counters, tracepoints, and hardware events [23]. The perf command
features various subcommands, e.g. perf record to record a profile, perf report to
display a recorded profile, perf script to display the trace output of a captured pro-
file, and perf stat to collect performance counter statistics [24].
We use the perf record and perf script subcommands for this thesis.

Pidstat is a command to monitor running tasks in the Linux kernel [25]. While pidstat
supports various statistics, we use it to monitor the CPU utilization of a process.

Tcpdump is a network packet analyzer. We use it to capture packets on the network inter-
face used for the measurement at our client and save them in a packet capture (PCAP)
file. Together with the encryption keys, this allows us to decrypt the captured packets
for further analysis.

Ethtool is a tool to query network interface statistics and control network driver set-
tings. The number of packets received, transmitted, and dropped is included in the
statistics [26]. Detailed information on queues is also provided. The amount of dropped
packets includes only the ones dropped at the ring buffers shown in Figure 2.3. We use
ethtool to log the detailed statistics of both used network interfaces before and after
transmission.

Netstat is another tool for collecting and displaying network statistics. In compar-
ison to ethtool, netstat provides statistics from the kernel instead of the network
interface [27]. It also provides detailed information on the UDP and TCP connections,
which ethtool and ifstat do not support. We use netstat to count the number of
packet drops in the kernel’s UDP send and receive buffers.

tc is a tool provided by the Linux kernel for managing traffic control settings. It
can shape or schedule outgoing traffic. tc supports the use of various different queueing
disciplines (qdiscs) to manage the traffic [28]. NetEm is used in some measurements to
emulate the characteristics of a wide area network (WAN) to outgoing packets. NetEm
is capable of emulating packet loss, delay, reordering, or limited bandwidth [29]. While
we use NetEm to emulate delay, tbf is used to emulate limited bandwidth as it scales
better with larger bandwidth limits [30].

16

4.5 Analysis

4.5 Analysis

To further analyze the data from measurements, we developed a collection of tools that
refactors the output of the tools we use to collect metrics.
Perf is started before the transmission begins and stopped after the transmission has
been completed, as we do not attach perf to the specific Process Identifier (PID) of
the server or client. Therefore, we trim the perf output to result in a shorter capture,
reaching from the first to the last occurrence of the server or client. We perform this
step to achieve more precise information about the CPU runtime of other processes like
ssh. After this step, we use a pre-made script to collapse the perf output [31]. This step
is necessary to achieve a more readable output and to create flame graphs. The script
converts a list of multiline stacks to one-line semicolon-separated stacks followed by the
sum of all samples of every stack. From this output, we now generate a flame graph.
We use another script to read the output of the QUIC Interop Runner (stored in
result.json) and the output of all tools used to collect metrics during the measure-
ment. The script was initially developed by Kevin Ploch [32] and was extended by us
to support more tools and metrics. The script performs postprocessing steps to the
output files of the different tools and stores all data in a csv file, each line representing
a repetition of a measurement.

One essential part we implemented in the parsing script is the categorization of call
stacks into different components of QUIC implementations. To get a broad overview
of the significance concerning the CPU time of different components, we map each
line of the collapsed stack output from before to a category like CRYPTO or PACKET_IO.
In selecting the different categories, we have followed the categories used by Yang et
al. [16] in their CPU usage breakdown. We decided to add one more category, GENERAL,
to cover all functions that do not fit into the other categories. All functions consid-
ered negligible due to their small contribution to the overall CPU usage are assigned
to this category as well. We also decided to merge the category covering the connec-
tion setup and teardown and the category covering acknowledgments into one category,
CONN_MGMT. Since we wanted to separate the assembly and disassembly of packets, we
have added the new category MARSHALLING. This results in the following categories:
PACKET_IO, IO, CONN_MGMT, CRYPTO, MARSHALLING, and GENERAL. Table 4.1 shows how
our categorization works for a perf output recorded on an LSQUIC server. The first
data row (SUM_SAMPLES) shows the total number of samples in the perf output hav-
ing the LSQUIC server application in the call stack. The second section provides a
brief overview of the different categories and their CPU time. In the third section, the
individual components are broken down further to simplify the search for bottlenecks.

17

Chapter 4: Implementation

Table 4.1: CPU utilization of an LSQUIC server broken down to different parts and functions. The
samples were collected on the LSQUIC server transferring a 8 GiB file to the client. The measurement
was performed 20 times and the samples were summed up.

Category Samples Samples Share
SUM_SAMPLES 265 911 100.00 %

D
ist

rib
ut

io
n

PACKET_IO 160 368 60.31 %
CRYPTO 46 789 17.60 %
IO 27 358 10.29 %
CONN_MGMT 23 731 8.92 %
MARSHALLING 3778 1.42 %
GENERAL 3887 1.46 %

D
et

ai
le

d
D

ist
rib

ut
io

n

PACKET_IO (sendmsg) 101 674 38.24 %
PACKET_IO (recvmsg) 1936 0.73 %
PACKET_IO (asm_common_interrupt) 20 177 7.59 %
PACKET_IO (read from stream) 122 0.05 %
PACKET_IO (write to stream) 24 704 9.29 %
PACKET_IO (function: send_packets_out) 5695 2.14 %
PACKET_IO (IP find next hop) 5877 2.21 %
PACKET_IO (read one packet) 183 0.07 %
CRYPTO (AES) 26 554 9.99 %
CRYPTO (AEAD) 12 882 4.84 %
CRYPTO (encrypt packet) 4968 1.87 %
CRYPTO (decrypt packet) 169 0.06 %
CRYPTO (apply header protection) 1966 0.74 %
CRYPTO (strip header protection) 168 0.06 %
CRYPTO (RSA) 60 0.02 %
CRYPTO (X25519) 22 0.01 %
IO (read) 26 459 9.95 %
IO (write (ksys)) 2 0.00 %
IO (write (fs)) 30 0.01 %
IO (epoll) 783 0.29 %
IO (other) 84 0.03 %
CONN_MGMT (process incoming ack) 7719 2.90 %
CONN_MGMT (other) 16 012 6.02 %
MARSHALLING (process packet) 248 0.09 %
MARSHALLING (parse packet) 368 0.14 %
MARSHALLING (build ack) 105 0.04 %
MARSHALLING (function: sport_packets_out) 3057 1.15 %
GENERAL (process incoming packet) 711 0.27 %
GENERAL (read_handler) 2153 0.81 %
GENERAL (other) 1023 0.38 %

18

4.5 Analysis

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

Bandwidth limit [Gbit/s]

0

20

40

60

80

100
C

P
U

u
ti

li
za

ti
on

[%
]

perf

pidstat

Figure 4.2: CPU utilization of an LSQUIC server determined with perf and pidstat compared for
different bandwidth limits.

To measure the CPU utilization of the complete server and client applications, we
tested two different methods. The first method employes the pidstat tool to sample
the CPU utilization of a running process and record it in a file every second during
runtime. Afterward, the average of all samples is calculated to determine the average
CPU utilization of the process. The second method utilizes the trimmed output of
the perf tool also used for the CPU usage breakdown. To calculate the average CPU
utilization, the number of samples including the server or client application in the call
stack is divided by the total number of samples.

Figure 4.2 presents a comparison of the results obtained using both methods for different
bandwidth limits. While both methods produce comparable and plausible results, the
method using pidstat yields slightly lower values for smaller bandwidths. We observed
that with an increasing CPU utilization value, the deviation between the two methods
decreases. We assume that the bandwidth limit does not affect the deviation between
our two methods, but the CPU utilization value itself.
As no ground truth is available for the CPU utilization, we are unable to tell if the
method using pidstat underestimates the CPU utilization for smaller values or if the
method using perf overestimates the CPU utilization for larger values. We decided to
use the method using pidstat to determine the CPU utilization for further evaluation.
The main reason is that pidstat has significantly less impact on the system during
measurements than perf.

19

Chapter 5

Evaluation

Using the measurement framework described in detail in Chapter 4, we performed mea-
surements with different configurations. We modified the LSQUIC server and client
applications to change between different cipher suites or congestion control algorithms,
for example. In the following sections, we will present the results and look closely at
different parts of QUIC implementations and general performance issues. If not stated
otherwise, all measurements were performed by transmitting a single 8 GiB file from the
server to the client. The bandwidth or delay of the network was not limited for most
measurements. For every measurement, 20 repetitions were performed and the average
was calculated.
We performed a baseline measurement with the previously described setup and with-
out changing anything from the default LSQUIC settings. We achieved a goodput of
1715 ± 908 Mbit/s. The CPU utilization of the client was at 75 ± 9 %, while the server
was at 77±22 %. Especially the standard deviation of the server’s CPU utilization seems
high, which we want to find possible reasons for in the following sections. The standard
deviation of the measured goodput is likewise significantly higher than expected.

5.1 Components

To get a better understanding of the performance of QUIC implementations, we use
perf and our categorization tool described in Chapter 4 to break the CPU usage down
into different categories. An explanation of the decision on the categories used is given
in Section 4.5. In Table 4.1, we provide a detailed overview of the composition of each
category.

Chapter 5: Evaluation

Server Client

7.04%

60.31%
43.0%

10.29%

16.07%

8.92%

17.6%

22.49%

8.07%

MARSHALLING

CRYPTO

CONN MGMT

IO

PACKET IO

GENERAL

Figure 5.1: CPU usage of client and server categorized into the different components.

We use the following categories:

• PACKET_IO: send and receive on socket, stream read/write, receive interrupts

• IO: read and write operations on the filesystem

• CONN_MGMT: send control, acknowledgment processing

• CRYPTO: cryptographic operations, e.g., encryption and decryption

• MARSHALLING: marshalling and unmarshalling of packets

• GENERAL: all remaining function calls that do not fit into the other categories

Figure 5.1 shows the categorized CPU usage of LSQUIC ’s server and client. The per-
centages of the different components are relative to the total CPU utilization of the
LSQUIC binary at the corresponding endpoint. The height of both bars equals 100 % of
the CPU usage. We observed that PACKET_IO is the most time-consuming component
for both LSQUIC ’s server and client, contributing more than 40 % of the total CPU
time on the client and more than 60 % on the server. The second most time-consuming
component is CRYPTO, followed by IO.
Since QUIC performance is often degraded by the CPU (as shown in the following ex-
periments), the components PACKET_IO and CRYPTO are particularly important to focus
on.

22

5.2 Connection Management

LSQUIC TCP/TLS
0

1000

2000

3000

4000

5000
G

o
o
d

p
u

t
[M

b
it

/s
]

CUBIC

BBR

Figure 5.2: CUBIC and BBR goodput comparison for LSQUIC and TCP/TLS stack using nginx and
wget. All four measurements were performed with 20 repetitions.

5.2 Connection Management

Although the connection management is not CPU intensive, it can heavily influence the
performance of a QUIC implementation by controlling the sending rate of the endpoints.
In this section, we will look at the influence on the performance of different congestion
control algorithms and acknowledgment frequencies.

5.2.1 Congestion Control
Since UDP has no congestion control, QUIC implementations provide congestion con-
trol algorithms in the user space. Most QUIC implementations use existing congestion
control algorithms from TCP, as they are predictable and tested for many years [10].
LSQUIC provides support for the loss-based algorithm CUBIC, the model-based algo-
rithm Bottleneck Bandwidth and Round-trip propagation time (BBR), and an adaptive
algorithm that selects the best algorithm based on the round trip time (RTT). By
default, the adaptive algorithm is used, which selects BBR if the RTT is greater than
1.5 ms or CUBIC otherwise.

In the left part of Figure 5.2, the goodput of transmissions with different congestion
control algorithms implemented in lsquic is compared. We performed 20 repetitions for

23

Chapter 5: Evaluation

every configuration.
Each box reaches from the first to the third quartile, while the median is marked by a
line. The mean average is marked by a dot. The upper whisker extends from the upper
edge of the box to the highest datum below 1.5 times the inter-quartile range (IQR).
The lower whisker is positioned similarly below the box. Outliers are marked with a
circle. These settings apply to all following box plots.
It can be seen that the CUBIC implementation in LSQUIC does not only achieve 2.5
times the goodput of BBR but also produces less deviation between the measurements.
The BBR implementation of LSQUIC can also achieve a goodput close to 2 Gbit/s as
the outliers show. However, the average goodput of almost 1 Gbit/s achieved with BBR
is significantly lower than the 2.6 Gbit/s achieved with CUBIC.
When using the adaptive congestion control algorithm, the RTT estimation after con-
nection establishment decides on the congestion control algorithm used. As the RTT
estimation of LSQUIC in our setup was always around the threshold of 1.5 ms, the
adaptive algorithm selected BBR for most of the measurements but sometimes CUBIC.
We identified this as the reason for the high deviation in goodput and CPU utilization
in our baseline measurement.

As the goodput difference between both congestion control algorithms is greater than
1.5 Gbit/s in average, we also compared the performance of the CUBIC and BBR im-
plementations in LSQUIC with the respective implementations in TCP combined with
TLS for encryption. Our TCP/TLS stack uses nginx as server and wget as client
application. The results are shown in the right part of Figure 5.2. It can be seen
that the performance difference between the CUBIC and BBR implementations in our
TCP/TLS stack is much smaller than in LSQUIC. The goodput difference of 40 Mbit/s
is smaller than the standard deviation of both measurements. We can therefore assume
that the TCP implementations of CUBIC and BBR achieve a similar goodput in our
measurement setup. We expect the BBR implementation of LSQUIC to have issues
in the implementation causing the sending rate to be lower than it could be. Mishra
et al. [10] also found that other QUIC implementations have significant performance
differences in their implementations of congestion control algorithms.
Congestion control algorithms, especially BBR, heavily rely on the RTT for calculating
their sending rate. We supposed that the RTT of 1.5 ms in our measurement setup
might be too low for the BBR implementation to work properly. We decided to increase
the RTT by 10 ms using NetEm to emulate a delay on outgoing packets. Since asym-
metric networks can lead to complications, we have added a 5 ms delay for outbound
packets on both the client and the server. We used the following command to apply the
delay:

24

5.2 Connection Management

Listing 5.1: Command used to add delay
1 tc qdisc add dev enp2s0f0 root netem delay 5ms limit 100000

Table 5.1: Goodput and packet drops for different congestion control algorithms with variable client
receive buffer size and RTT. All metrics are average values of 5 repetitions rounded to integers.

Configuration Results
CCA Delaya [ms] BUFb [KiB] Goodput [Mbit/s] Dropsc

BBR 0 208 848 50
BBR 0 1664 904 0
BBR 5 208 643 2 140 772
BBR 5 1664 1798 173
CUBIC 0 208 2621 12 657
CUBIC 0 1664 2770 622
CUBIC 5 208 521 2501
CUBIC 5 1664 1977 1179

a Delay for outgoing packets added at server and client, b Size of the client’s UDP receive buffer
c number of packets dropped by the client’s kernel due to insufficient receive buffer size

The default value for limit is 1000, meaning that a maximum of 1000 packets will be
held back in the queue waiting to get sent [29]. In our first test with delay emulation,
we observed more retransmissions than expected. We calculated the minimal NetEm
buffer size for our network using the following equation:

minimum limit = delay · available bandwidth
packet size

= 5 ms · 10 Gbit/s
1500 B

= 0.005 s · 1 250 000 kB/s
1.5 kB

= 4166, 6

To be on the safe side, we used a limit of 100 000 packets, as we performed measurements
also with more delay and wanted to avoid packet loss caused by delay emulation.

Table 5.1 shows the results of our measurements with delay emulation. Scholz et al. [33]
showed that many retransmissions happen with BBR in combination with shallow
buffers. This is why we decided to perform additional measurements with an increased
receive buffer at the client. The performance influence of buffers is evaluated in more

25

Chapter 5: Evaluation

detail in Section 5.4.3.
The results confirm our assumption that the RTT of 1.5 ms is too low for BBR to work
properly. The calculation of the bandwidth delay product (BDP) and the sending rate
seem to be influenced. The resulting sending rate is low enough to avoid packet drops
at the client’s receive buffer. Increasing the client’s receive buffer does not significantly
increase goodput with BBR, but adding a 5 ms delay to outbound packets on server
and client leads to a doubled goodput of 1798 Mbit/s in average. If a delay of 5 ms is
added at server and client and the client’s receive buffer has the default size of 208 KiB,
more than two million packets are dropped. The resulting retransmission rate of 27 %
on average confirms the findings of Scholz et al. [33].

After reviewing these results, we decided to prefer the CUBIC implementation in future
LSQUIC measurements over the BBR implementation, as it performs better and is more
stable under our default conditions. As the CPU utilization at the server is at 98.7 %
on average, we assume that the server’s CPU is the bottleneck preventing CUBIC to
achieve higher goodput.

5.2.2 Acknowledgments
As already mentioned in RFC 9000 Section 13.2.2 [5], the acknowledgment frequency
is an important factor for the performance of QUIC. The acknowledgment frequency
is defined as the ratio of the number of acknowledgments sent by the client to the
number of packets received by the client. Sending delayed or fewer acknowledgments
can negatively affect performance since the other endpoint needs them to adjust the
congestion window. Sending acknowledgments too often can also negatively affect per-
formance since the packet transmission and processing cost of acknowledgments at both
endpoints increases [5]. Jana Iyengar, a main author of RFC 9000, also found that the
performance of QUIC is significantly decreased by the CPU costs caused by a higher
acknowledgment frequency. This was identified to be a problem, especially in high band-
width networks, where the CPU costs of acknowledgments are higher than the benefits
of a higher acknowledgment frequency [34]. There are several papers analyzing the in-
fluence of different acknowledgment frequencies and strategies for QUIC or transport
protocols in general [35]–[37]. They propose lowering or adjusting the acknowledgment
frequency to achieve better performance in many cases. In this section, we will look at
the influence of acknowledgment frequency on the performance of QUIC.

As it is not possible to change the acknowledgment frequency in LSQUIC without fun-
damentally modifying the source code, we looked at the already present deviation of the
acknowledgment frequency in LSQUIC. We measured the acknowledgment frequency by
counting the number of packets and bytes sent by the client. To ensure the correctness

26

5.2 Connection Management

of this method, we used the pcap files and the TLS encryption keys from our measure-
ments to decrypt the packets. It showed that more than 99.99 % of the packets sent
by the client after the initial handshake contained ACK frames. The remaining packets
were observed especially earlier in connections and contained just a padded PING frame.
We can therefore make the simplifying assumption that all packets the client sends are
acknowledgments.

By default, LSQUIC uses the delayed ACKs extension [13] that is an IETF draft as of
December 7, 2022. This extension adds the functionality for a QUIC client or server to
control the acknowledgment frequency of its peer. The ACK_FREQUENCY frame and the
IMMEDIATE_ACK frames are used to control the acknowledgment policy of the peer.
As LSQUIC provides a way to disable the delayed ACKs extension, we compared the
performance of LSQUIC with and without the extension enabled. As we observed a
significant difference between the acknowledgment frequencies of LSQUIC ’s CUBIC and
BBR implementations, we also compared the performance of both implementations with
and without the extension enabled. For both CUBIC and BBR, the goodput and the
number of packets sent by the client did not change more than by one standard deviation.
The delayed ACKs extension therefore does not seem to influence the performance of
LSQUIC in our measurement setup. We ensured that the delayed ACKs extension was
working by looking at the logs.

After reviewing results from other measurements and looking at the number of packets
sent by the client, we noticed that the acknowledgment frequency is mainly influenced
by the congestion control algorithm used and the network conditions. For the measure-
ments providing data for Table 5.1, we observed acknowledgment frequencies from 1

6
to 1

250 . The client in our measurements with BBR and without delay added sends the
most packets, acknowledging every sixth packet on average. For the measurements with
BBR and delay added, the acknowledgment frequency decreases to approximately 1

200 .
Also when using CUBIC, the acknowledgment frequency changes drastically between
our measurements, as can be observed in Figure 5.5. In the underlying measurements,
the client received around six million packets from the server, resulting in an acknowl-
edgment frequency between 1

40 and 1
250 .

The calculated values from our measurements show that the acknowledgment frequency
fluctuates significantly between different measurements. The acknowledgment frequency
is mainly influenced by the RTT calculated by the endpoints. We were able to observe
a correlation between the acknowledgment frequency and the achieved goodput. Fewer
acknowledgments were usually linked to a higher goodput. The only measurement that
did not follow this pattern was the measurement with BBR and a delay of 5 ms added at
server and client. The reason is probably the unusually high retransmission rate of 27 %

27

Chapter 5: Evaluation

Table 5.2: TLS 1.3 cipher suites supported by QUIC and BoringSSL [38].

IANA ID Cipher Suite QUIC BoringSSL
0x1301 TLS_AES_128_GCM_SHA256 ✓ ✓
0x1302 TLS_AES_256_GCM_SHA384 ✓ ✓
0x1303 TLS_CHACHA20_POLY1305_SHA256 ✓ ✓
0x1304 TLS_AES_128_CCM_SHA256 ✓ ×
0x1305 TLS_AES_128_CCM_8_SHA256 × ×

in this measurement. It can not be determined if a higher acknowledgment frequency
leads to a higher goodput, if fewer acknowledgments are sent when a high goodput is
achieved, or if both are the case. A deeper analysis of the LSQUIC source code showed
that besides the smoothed round trip time (SRTT) and the max_ack_delay (explained
in Chapter 2), no additional factors are seeming considered when queueing an outgoing
acknowledgment.
As the receiving of packets is comparatively expensive for the server, the delayed ACKs
extension has the potential of increasing performance. Especially for high-bandwidth
networks, the acknowledgment frequency should be decreased, as the extension provides
support for this. Depending on the network conditions, the acknowledgment frequency
should be adjusted so that the trade-off between the CPU costs of sending and receiving
acknowledgments and the benefits for connection management is optimized.

5.3 Crypto

QUIC uses TLS for encryption and authentication. The oldest TLS version that should
be supported by QUIC implementations is the current version, TLS 1.3 [6]. In this
section, we will take a closer look at the general impact of crypto on performance as
well as the performance difference between cipher suites.
As QUIC implementations must not use a TLS version older than TLS 1.3, we only
consider cipher suites supported by TLS 1.3. The last of the TLS 1.3 cipher suites
listed in Table 5.2 is incompatible with QUIC. BoringSSL, the crypto library used by
LSQUIC, supports only the first three cipher suites.

The first two cipher suites differ slightly in the parameters used for encryption and
hashing. The third cipher suite uses the ChaCha 20 stream cipher and the Poly1305
message authentication code. In performance measurements, ChaCha20-Poly1305 is
usually faster than AES-GCM, if the CPU does not support Advanced Encryption
Standard New Instructions (AES-NI) [39].
We determined the utilized cipher suite by looking at the ClientHello and ServerHello

28

5.3 Crypto

in CRYPTO frames of the Initial packets during the handshake. The ClientHello con-
tains the list of cipher suites the client supports, in our case the first three cipher suites
listed in Table 5.2. The ServerHello contains the cipher suite the server chose. The
LSQUIC server and client behave as follows: If the client detects support for AES-NI on
its CPU, it signalizes the preference of the AES-GCM cipher suites over the ChaCha20-
Poly1305 cipher suite by ordering the cipher suites as above. If the client does not
detect support for AES-NI, it prefers the ChaCha20-Poly1305 cipher suite by reorder-
ing the cipher suites so that the ChaCha20-Poly1305 cipher suite is the first in the list.
The server chooses the first cipher suite from the list in the ClientHello that it also
supports. If the client’s CPU supports AES-NI, the client only supports AES cipher
suites, and the server does not support AES-NI, it will choose the ChaCha20 cipher
suite.

To determine the performance difference between the cipher suites, we changed the
cipher suites available to the client while constructing the ClientHello message before
building BoringSSL. We used the OpenSSL processor capabilities vector to manually and
temporarily disable AES-NI support. This action is done by setting the environment
variable OPENSSL_ia32cap="~0x200000200000000" [40]. We decided to exclude the
TLS_AES_256_GCM_SHA384 cipher suite from our experiments, as LSQUIC never selected
it during a handshake in our past experiments.

Figure 5.3 shows the performance difference between the cipher suites. Every area with
grey background contains the results of one measurement with 20 repetitions. While
the first box plot in each area shows the goodput with the left y-axis, the second and
third box plot show the CPU utilization of the respective endpoint with the right y-axis.
Both y-axes do not start at zero to better visualize the results.
The highest goodput was achieved with the default configuration of LSQUIC in our
test setup, where the TLS_AES_128_GCM_SHA256 cipher suite is used. The second area
shows that the performance is significantly worse if AES-NI is not available on both
endpoints but server and client still agree on using an AES cipher suite. If the server
or client does not support the TLS_CHACHA20_POLY1305_SHA256 cipher suite, they have
to use an AES cipher suite. Using the TLS_CHACHA20_POLY1305_SHA256 cipher suite if
AES-NI is not available is the better choice, which is how LSQUIC also does it. In this
case, the achieved goodput is only slightly worse than with an AES cipher suite in com-
bination with AES-NI, reaching around 2300 Mbit/s instead of 2600 Mbit/s LSQUIC ’s
http_client and http_server also try to use the TLS_CHACHA20_POLY1305_SHA256
cipher suite if AES-NI is not available.

29

Chapter 5: Evaluation

AES cipher

AES-NI available

AES cipher

AES-NI not available

ChaCha20 cipher
1000

1200

1400

1600

1800

2000

2200

2400

2600

2800

G
o
o
d

p
u

t
[M

b
it

/s
]

55

60

65

70

75

80

85

90

95

100

C
P

U
u

ti
li

za
ti

on
[%

]

Goodput

CPU utilization server

CPU utilization client

Figure 5.3: Performance of TLS_AES_128_GCM_SHA256 and TLS_CHACHA20_POLY1305_SHA256 compared
with and without AES-NI support.

Table 5.3: Performance of TLS_AES_128_GCM_SHA256 with different combinations of AES-NI support
on client and server.

AES-NI on Server AES-NI on Client Goodput [Mbit/s]
✓ ✓ 2596.33 ± 31.28
✓ × 1303.03 ± 31.45
× ✓ 1123.17 ± 11.26
× × 1170.02 ± 8.90

In Table 5.3, the goodput in relation to the presence of AES-NI on client and server is
shown. As expected, the highest goodput of 2596.33 Mbit/s on average was achieved
with AES-NI available on both endpoints.

The goodput is significantly worse if AES-NI is not available at the client, reaching only
1303.03 Mbit/s on average. If AES-NI is not available on both endpoints, the goodput
is decreased further by 130 Mbit/s on average. The reason is that encryption is more
CPU intensive than decryption, as also observed in the next paragraph. The goodput
if AES-NI is not available on the server but available on the client was approximately
50 Mbit/s lower compared to the measurement where both endpoints had no AES-NI

30

5.3 Crypto

23 24 25 26 27 28 29 210

Filesize [MiB]

0

5

10

15

20

25

30

35

40

C
P

U
[%

] Server (ChaCha20)

Server (AES)

Client (ChaCha20)

Client (AES)

Figure 5.4: Contribution of the cryptographic operations to the overall CPU usage of ChaCha20 and
AES ciphers on LSQUIC server and client compared. The file size of the downloaded file was changed
between 8 MiB and 1 GiB. The bandwidth was limited to 100 Mbit/s for all measurements. For each
data point, 20 repetitions were performed.

support. However, the deviation is small enough to consider this as a measurement
inaccuracy and therefore not investigate it further.

Figure 5.4 compares the CPU utilization share for cryptographic operations dependent
on the endpoint and the used cipher. We used perf in combination with our catego-
rization script explained in Section 4.5 to determine the displayed values. The standard
deviation for each data point is visualized with the error band. AES-NI was available
on both endpoints. The file size of the downloaded file was changed between 8 MiB
and 1 GiB to see if the initialization of the cryptographic context has an impact on the
CPU performance. To ensure a minimal transmission duration also with small files, the
bandwidth was limited to 100 Mbit/s for all measurements using the following command:

Listing 5.2: Command used to limit bandwidth to 100 Mbit/s
1 tc qdisc add dev enp2s0f0 root tbf rate 100 mbit latency 50ms burst 1540

It can be seen that the client needs approximately 10 % less of the overall used CPU
time for cryptographic operations than the server. The ChaCha20 cipher is more CPU
consuming than the AES cipher. With a file size of 256 MB, the contribution of the
cryptographic operations to the overall CPU usage of the server is 10 % higher with the
ChaCha20 cipher. This might be a reason for the higher goodput achieved with the

31

Chapter 5: Evaluation

AES cipher, as the server’s CPU is almost fully utilized.
The contribution of the cryptographic operations to the overall CPU usage is nearly
constant for all four combinations of ciphers and endpoints over the changing filesize.
We can therefore also conclude that the initialization of the cryptographic context is
negligible and does not have an impact on CPU utilization.

5.4 Packet IO

The sending and receiving of UDP datagrams is a crucial part of QUIC implementations.
As seen in Figure 5.1, the sending and receiving of datagrams consume a lot of CPU
time. The performance of the packet IO component therefore highly influences the
overall performance of QUIC implementations.

5.4.1 Batching
As there are various system calls to send UDP datagrams, we analyzed which one
LSQUIC is using by default. The results of our perf captures show that LSQUIC uses
the sendmsg() system call. This function call contributes to the overall CPU utilization
of LSQUIC with 38 % on the server and 3 % on the client. The Linux kernel provides an
extension called sendmmsg() that allows sending multiple datagrams in one system call.
The usage of this extension might improve performance but is not used in LSQUIC by
default. The command line option -g for the LSQUIC http_server and http_client
should enable the usage of sendmmsg(). The command line option -j should enable
the usage of recvmmsg(), the counterpart of sendmmsg() for receiving datagrams.
We planned to compare the performance of LSQUIC with and without sendmsg() and
recvmmsg() enabled. Despite encountering issues with the command line options -g
and -j, which caused LSQUIC to fail immediately after the handshake, we remained
determined to find a solution. A deeper analysis showed that the sendmmsg() call
returns an EFAULT error code. This error code indicates that a memory address passed
to the function is invalid. We reported this issue on GitHub but it was not answered
as of December 7, 2022. As the command line options are not mentioned in the official
documentation, we assume that they are no longer supported by LSQUIC.
The performance influence of using sendmmsg() and recvmmsg() in quiche, Cloudflare’s
open-source QUIC implementation, was analyzed by Alessandro Ghedini [41]. He was
able to significantly decrease the number of system calls for sending packets. The
throughput increased by approximately 20 %. We expect a similar performance increase
for LSQUIC.

32

5.4 Packet IO

5.4.2 Offloading
The Linux kernel offers several techniques for offloading tasks to either the network inter-
face or the kernel itself. The most common offloading techniques are TCP Segmentation
Offload (TSO), Large Receive Offload (LRO), Generic Segmentation Offload (GSO), and
Generic Receive Offload (GRO). The first two types are only available for TCP and
therefore not relevant to our measurements. The last two types are available for both
TCP and UDP. [42]
By default, the QUIC implementation is responsible for constructing outgoing packets
by combining one or more QUIC frames. One buffer per packet is created and then
passed to the kernel. The kernel adds the headers for layers 4 and below before sending.
GSO allows the QUIC implementation to pass a buffer too large to fit in one datagram
to the kernel. The large buffer will be split into multiple datagrams as late as possible.
This might be either in the kernel or even in the network interface, depending on the
support of hardware segmentation offload. [41]
In measurements with Cloudflare’s QUIC implementation quiche, Alessandro Ghedini
was able to increase the throughput from approximately 700 Mbit/s to approximately
1300 Mbit/s by enabling GSO [41]. We performed measurements with and without GSO
enabled. The gap between the measured goodput values was 15 Mbit/s and therefore
within the standard deviation of 30 Mbit/s. The reason is that the application is re-
sponsible to add support for sending with GSO and LSQUIC does not support GSO.
We tried to add support for GSO to LSQUIC, which was also tried in the past by Rahul
Jadhav [43]. Due to the complexity of the code constructing and sending packets, we
were not able to add support for GSO to LSQUIC in a reasonable amount of time.
Rahul Jadhav compared the performance of LSQUIC with his GSO supporting version
against the default LSQUIC version with and without batching [43]. He provides only
perf output as a metric, showing that the best performance was achieved with batching
using sendmmsg().

5.4.3 Buffers
As packets can not always be processed immediately, they need to be buffered at multiple
points in the network stack. If the buffers are too small, packets might be dropped.
The size of the buffers can also influence the performance of QUIC implementations, as
congestion control algorithms calculate different sending rates for different buffer sizes.
We took a look at the buffer sizes of the UDP sockets used by LSQUIC. Every UDP
socket has a send buffer and a receive buffer. The UDP receive buffer contains all
datagrams that have been received but have not been processed by LSQUIC yet. Once
it is full, the kernel will discard all incoming packets. The UDP send buffer contains

33

Chapter 5: Evaluation

20
8

41
6

62
4

83
2

10
40

12
48

14
56

16
64

18
72

20
80

10
40

0

20
80

0

Client UDP receive buffer size [KiB]

2600

2625

2650

2675

2700

2725

2750

2775

2800
G

o
o
d

p
u

t
[M

b
it

/s
]

0

25k

50k

75k

100k

125k

150k

175k

200k

P
ac

ke
ts

se
n
t

b
y

cl
ie

n
t

Goodput

Packets sent by client

Figure 5.5: Goodput and amount of packets sent by the client with incrementing UDP receive buffer
on the client. The default size of the UDP receive buffer is 208 KiB.

all datagrams that are waiting to be sent. The functional principles of the buffers are
explained in more detail in Section 2.3.

Since the preparation of a datagram is usually more expensive than the sending of a
datagram, the send buffers do not fill up. The receive buffers instead fill up quickly, as
the sockets are faster in receiving packets than LSQUIC is in processing them. In our
measurements, most of the data is transferred from the server to the client, which is
why we expect that the client socket receive buffer is the first and only buffer that is
likely to reach capacity.

We performed multiple measurements to determine the effect on the performance of
the client’s UDP receive buffer size. In Figure 5.5, the results of the measurements
are shown. We performed 12 measurements with 20 repetitions each. On the x-axis,
the size of the receive buffer in KiB is marked. The default size of the receive buffer
is 208 KiB. The blue line shows the average goodput of the measurements with the
standard deviation as the shaded area. The left y-axis shows a scale for this goodput
line and is limited from 2600 Mbit/s to 2800 Mbit/s to increase the readability of the
goodput change. The orange line shows the average number of packets sent by the
client. The right y-axis provides a scale for the number of packets. We decided to

34

5.4 Packet IO

include the average number of packets sent by the client into the plot, as we observed
a massive change in the values for the different buffer sizes.

It can be seen that the goodput starts to increase with the also increasing UDP receive
buffer size. When doubling the size of the receive buffer, the goodput already increases
by more than 50 Mbit/s on average. It can also be observed that this change in the
size of the receive buffer causes the client to send 30 % fewer packets. When further
increasing the size of the receive buffer, the goodput increases even more. As soon as
the receive buffer has reached five times the size of its initial default value, the goodput
seems to stay constant. The two rightmost data points, increasing the buffer size up
to factor 100 of its initial default value, show that the performance does not increase
further.
A possible explanation for this behavior is that the kernel drops incoming packets if
the receive buffer is full. The tool netstat can provide the amount of dropped packets
because of insufficient UDP receive buffer size. The number of dropped packets for dif-
ferent UDP receive buffer sizes are shown in Figure 5.6. Every box in the plot represents
20 repetitions of a measurement with the respective UDP receive buffer size. It can be
seen that with our default measurement (8 GiB single file transfer over 10 Gbit/s link),
the kernel drops around 12 000 packets in average with the default UDP receive buffer
size. As the server sent 6 000 000 packets on average, approximately 0.2 % of the packets
are lost due to shallow UDP receive buffers. With a UDP receive buffer size of 1664 KiB,
equal to eight times the default size, the kernel drops approximately 1000 packets on
average, causing CUBIC to increase the sending rate and therefore the goodput.
With the presented results, the logical measure to improve performance seems to be
to increase the size of the buffers. A larger buffer requires more memory, but fewer
packets are dropped. However, it should also be noted that the buffer size should not
be made unnecessarily large. Because of the Bufferbloat phenomenon, the performance
can worsen again by too large buffers [44]. The reason for this is the high latency and
jitter, which occurs when packets stay in a buffer for a long time.

As we also observed a high deviation in the number of packets sent by the client with
BBR, we performed a second measurement to compare CUBIC and BBR. The results
are displayed in Table 5.4. While increasing the client’s UDP receive buffer when using
CUBIC leads to fewer acknowledgments from the clients, fewer packet drops at the
client, and a higher goodput, the results for BBR are surprisingly different. Since
BBR is not loss based, the amount of packet drops is significantly smaller with the
default UDP receive buffer size. With an eight times larger buffer size, the number
of packet drops could be reduced to zero. However, the acknowledgment frequency
got slightly higher and the goodput decreased by 17 %. As the measured goodput and

35

Chapter 5: Evaluation

20
8

41
6

62
4

83
2

10
40

12
48

14
56

16
64

18
72

20
80

10
40

0

20
80

0

UDP receive buffer size [KiB]

0

2000

4000

6000

8000

10000

12000

14000
D

ro
p

p
ed

p
ac

ke
ts

Figure 5.6: Amount of packets dropped at the client’s UDP socket receive buffer.

acknowledgment frequency for BBR fluctuate a lot, these results are not very reliable.
Due to a standard deviation between 20 % and 40 %, we assume that the performance
of BBR is not influenced by the UDP receive buffer size in this setup.

5.5 Build Optimization

In this section, we evaluated general performance issues that are not specific to a partic-
ular component. As the CPU utilization of server and client stays close to 100 % during

Table 5.4: ACK’s and packet drops for different congestion control algorithms. All metrics are average
values of 20 repetitions rounded to integers with the standard deviation.

Configuration Results
CCA BUFa [KiB] Goodput [Mbit/s] ACK’sb Dropsc

BBR 208 1089 ± 40% 1 037 814 ± 37% 48 ± 167%
BBR 1664 904 ± 31% 1 178 723 ± 20% 0 ± 0%
CUBIC 208 2607 ± 1% 181 240 ± 7% 11 221 ± 19%
CUBIC 1664 2770 ± 1% 24 143 ± 9% 622 ± 99%

a Size of the UDP receive buffer, b Number of packets sent by the client,
c number of packets dropped by the client’s kernel due to insufficient receive buffer size

36

5.5 Build Optimization

Listing 5.3: LSQUIC default build type.
1 IF("${CMAKE_BUILD_TYPE}" STREQUAL "")
2 SET(CMAKE_BUILD_TYPE Debug)
3 ENDIF()

Listing 5.4: LSQUIC default optimization flags. Commented lines removed.
1 IF(CMAKE_BUILD_TYPE STREQUAL "Debug")
2 SET(MY_CMAKE_FLAGS "${MY_CMAKE_FLAGS}␣-O0␣-g3")
3 [...]
4 ELSE()
5 SET(MY_CMAKE_FLAGS "${MY_CMAKE_FLAGS}␣-O3␣-g0")
6 ENDIF()

our measurements, we identified CPU utilization as a significant factor for performance.
We tried to lower CPU utilization by optimizing the build process to improve overall
performance.
LSQUIC uses the CMake build system and the GNU Compiler Collection (GCC) for
building. We use make version 4.3, CMake version 3.18.4, and GCC version 10.2.1 inside
a Debian 11 Docker container to build LSQUIC.
GCC provides many optimization flags for performance improvement. The overall level
of optimization can be set with the -O flag. Level 0 is used by default and does not
perform any optimizations. The recommended level is 2, which should improve perfor-
mance without increasing the compilation time or binary size too much. The highest
optimization level is 3, which is known to increase the binary size and compilation time.
The increase in the size of the output binary completely depends on the source code.
In our case, the size of LSQUIC ’s http_server increased from 15.2 MB to 20.5 MB
when using -O3. The additional size of the binaries as well as the increased compilation
time are not a problem for our measurements, as we only compile the binaries once
and the larger filesize is still inside the usual limits. Another optimization option is
-march, which enables optimizations for a specific CPU architecture. Using the -march
option can cause a significant performance improvement, depending on the CPU used.
Optimizing for a specific CPU architecture and instruction set causes the binary to be
incompatible with other CPUs. The best performance can be achieved by using the
-march=native option, leading the compiler to optimize for the CPU the binary is
compiled on.
By default, LSQUIC is built with the build type Debug, as shown in Listing 5.3. If the
build type is set to Release (or any value other than Debug), the optimization flag -O3
is used, as shown in Listing 5.4.

37

Chapter 5: Evaluation

None -O3 -O3 -march=haswell

GCC optimizations

2500

2600

2700

2800

2900

3000

3100

G
o
o
d

p
u

t
[M

b
it

/s
]

70

75

80

85

90

95

100

C
P

U
u

ti
li

za
ti

on
[%

]

Goodput

CPU utilization server

CPU utilization client

Figure 5.7: Performance of different build optimization levels compared.

We compared the default build with no optimizations to a build with the optimization
flag -O3 and another build with the -march=native option additionally used. Figure 5.7
shows the results of the measurements. We performed three measurements with 20
repetitions each, one measurement per build. Every area with grey background contains
the results of one measurement, shown in the form of box plots. While the first box plot
shows the goodput with the left y-axis, the second and third box plot shows the CPU
utilization of the respective endpoint with the right y-axis. Both y-axes do not start at
zero to better visualize the results.

As expected, the build with the -O3 flag performs better than the default build without
optimizations. The goodput could be increased by more than 10 %. By using the
-march=native flag, we were able to slightly increase the goodput by roughly another
percent. The CPU utilization of the server is at a constant level of approximately 98 %
for all three builds. The CPU utilization of the client decreases for more optimized
builds. It can be concluded that the server’s CPU is the bottleneck for the performance
of the QUIC connection. The optimized builds enable the server to achieve a higher
goodput while still using the same amount of CPU resources. The optimizations on the
client cause a decrease in CPU utilization.

38

Chapter 6

Conclusion

This chapter summarizes our results and contributions. Additionally, we provide an
outlook for further research and possible future work.

6.1 Summary

Our results can be presented best by answering our research questions:

How do we need to design a measurement framework to analyze the perfor-
mance of transport protocols?

We developed a measurement setup to analyze and compare the performance of QUIC
implementations. The setup is configurable and can be used to execute automated ex-
periments in a reproducible way. By extending the existing open source QUIC Interop
Runner, our measurements can be easily ported to other QUIC implementations. Our
modifications allow for a more detailed analysis with numerous metrics. Using newly in-
tegrated tools and the corresponding logfile parsers, measurement results can be quickly
evaluated and visualized.

Which parts of QUIC implementations limit performance the most?

With our call stack categorization script, we were able to break the CPU usage of QUIC
implementations down to individual components. The most CPU-demanding parts are
the packet IO and crypto components. Although cryptographic operations are CPU
intensive, cryptography is not a performance bottleneck in LSQUIC.
The connection management and packet IO components turned out to be the most
performance-limiting parts in our measurements.

Chapter 6: Conclusion

While congestion control implemented in user space is not as robust as the kernel’s
congestion control, the lack of adaptation of the acknowledgment frequency leads to
additional overhead at both endpoints. The sending and receiving of packets is very
CPU intensive and can be improved by using batching and offloading, which are both
not supported by LSQUIC. Shallow buffers caused by low maximum socket buffer sizes
lead to dropped packets and lower sending rates.

Which configurations influence the performance of QUIC implementations?

We identified that for LSQUIC, significant performance differences are caused by the
choice of the congestion control algorithm. LSQUIC ’s BBR implementation could not
achieve a steady and similarly high goodput as CUBIC in our measurement setup. We
discovered the client’s receive buffer size and the RTT as reasons for this behavior. For
LSQUIC ’s CUBIC implementation, the CPU utilization at the server was the main
bottleneck preventing a higher goodput.
By optimizing the build process of LSQUIC for the target CPU, we could further in-
crease the performance of LSQUIC by more than 10 %. Building LSQUIC with default
parameters causes the compiler to not apply any optimizations.
The default UDP socket receive buffer size of 208 KiB turned out to be too small for
high bandwidth usage. Dropped packets due to a full receive buffer result in the sender
lowering its sending rate. For our measurements, the highest performance could be
achieved with a receive buffer size of approximately 2 MiB.
We have learned that the IETF QUIC standard does not strictly specify how the ac-
knowledgment frequency should be determined for different implementations. Sending
an unnecessarily large number of acknowledgments with high bandwidth leads to ad-
ditional overhead on the server since the server must receive, decrypt, and process the
acknowledgments. We observed a large deviation in the acknowledgment frequency
between our measurements. We identified this behavior as a performance limitation,
especially for high bandwidth networks.
The Linux kernel provides several mechanisms to reduce the CPU usage of packet send-
ing. These include the acceptance of multiple outgoing packets at once (batching) or
the offloading of packet segmentation to the kernel or the NIC. LSQUIC provides a
command line flag to enable batching as it is not used by default. However, the batch-
ing implementation seems deprecated and does not work as expected. LSQUIC does
also not support the offloading of packet segmentation, resulting in a potentially large
performance benefit being missed.

40

6.2 Future Work

As more than 20 open-source QUIC implementations are available, other implementa-
tions could be analyzed in the future. Our framework can be easily used with other
implementations. Most features and tools integrated offer immediate support without
any changes needed. Related work showed that other QUIC implementations also have
performance issues. Further investigation could reveal them and help to improve the
performance.

The acknowledgment frequency turned out to have a considerable impact on the per-
formance of QUIC connections. In all of our measurements, we observed a correlation
between the acknowledgment frequency and the achieved goodput. The acknowledg-
ment frequency is currently not a configurable parameter in LSQUIC but the delayed
ACK’s extension allows the endpoints to influence it. The acknowledgment frequency
could be further investigated to determine how to achieve better performance in com-
bination with the delayed ACK’s extension.

Sending and receiving packets is very costly in terms of performance. Support for
batching and offloading is built into every recent kernel but not used by QUIC im-
plementations like LSQUIC. As explained in Section 5.4, abandoning the use of GSO
or sendmmsg() unnecessarily costs the server a lot of CPU time. To use batching or
offloading, only the source code of the QUIC implementation needs to be changed. In-
tegrating these features into LSQUIC involves major changes to the crucial parts of
its source code, which is beyond the scope of this thesis. Instead, we propose this as
possible future work.

Another interesting topic we did not cover in this thesis is the general performance
improvement by using techniques allowing faster packet processing. We collected in-
formation about combining QUIC with DPDK or eXpress Data Path (XDP). Both
techniques allow for bypassing the kernel’s network stack. Especially the usage of XDP
seems interesting but involves major changes to the QUIC implementation. A proof
of work implementation of LSQUIC with XDP was presented by LiteSpeedTech in
2020 [45]. They achieved a 43 % performance improvement and concluded that com-
bining QUIC with XDP is a promising approach, especially for web servers running
Linux. Microsoft’s QUIC implementation MsQuic claims to stand out from others by
optimizing for high throughput and low latency [46]. They recently published a blog
post on their current progress in integrating XDP with MsQuic [47]. They present fig-
ures showing massive performance improvements with XDP. Microsoft also sees XDP
as a promising approach for QUIC performance and stated to keep investing in MsQuic
with XDP.

41

Chapter A

Appendix

A.1 List of Acronyms

AES-NI Advanced Encryption Standard New Instructions, an instruction set for
x86 CPU’s to improve the speed of AES de- and encryption.

BBR Bottleneck Bandwidth and Round-trip propagation time, a model-based
congestion control algorithm.

BDP bandwidth delay product
CPU central processing unit
DMA Direct Memory Access
DPDK Data Plane Development Kit, a library to achieve faster packet

processing.
GCC GNU Compiler Collection, a compiler for various programming languages.
GRO Generic Receive Offload
GSO Generic Segmentation Offload
HTTP Hypertext Transfer Protocol, an application layer protocol for data

transfer, mostly used for the transmission of web pages.
IETF Internet Engineering Task Force, an open standards organization dealing

with technical development of the Internet.
IQR inter-quartile range
LRO Large Receive Offload
NetEm Network Emulator, a set of features for the Linux command line tool tc

for emulating network conditions.
NIC network interface card, a computer hardware component connecting the

computer to a network.

Chapter A: Appendix

PCAP packet capture, a file format.
PID Process Identifier, a unique number to identify a running process.
PLT page load time, a performance metric.
POS Plain Orchestrating Service, a testbed management system.
pps packets per second, a measure of throughput.
qdisc queueing discipline, a type of queue for egress traffic in the Linux kernel.
RTT round trip time. The time it takes for a signal to travel from sender to

receiver and back.
SRTT smoothed round trip time
tbf token bucket filter, a queueing discipline of the Linux traffic control.
TCP Transmission Control Protocol, a connection-oriented, reliable transport

layer protocol.
TLS Transport Layer Security, a cryptographic protocol.
TSO TCP Segmentation Offload
UDP User Datagram Protocol, a datagram-oriented, unreliable transport layer

protocol.
WAN wide area network
XDP eXpress Data Path, an network packet processor using eBPF.

44

Bibliography

[1] W. Eddy, Transmission Control Protocol (TCP), RFC 9293, Aug. 2022. doi: 10.
17487/RFC9293. [Online]. Available: https://www.rfc- editor.org/info/
rfc9293.

[2] M. Bishop, HTTP/3, RFC 9114, Jun. 2022. doi: 10.17487/RFC9114. [Online].
Available: https://www.rfc-editor.org/info/rfc9114.

[3] J. Roskind, QUIC Versions, https://docs.google.com/document/d/1RNHkx_
VvKWyWg6Lr8SZ-saqsQx7rFV-ev2jRFUoVD34, Accessed: 2022-11-05, 2012.

[4] J. Roskind, Experimenting with QUIC, https://blog.chromium.org/2013/06/
experimenting-with-quic.html, Accessed: 2022-11-26, 2013.

[5] J. Iyengar and M. Thomson, QUIC: A UDP-Based Multiplexed and Secure Trans-
port, RFC 9000, May 2021. doi: 10.17487/RFC9000. [Online]. Available: https:
//www.rfc-editor.org/info/rfc9000.

[6] M. Thomson and S. Turner, Using TLS to Secure QUIC, RFC 9001, May 2021.
doi: 10.17487/RFC9001. [Online]. Available: https://www.rfc-editor.org/
info/rfc9001.

[7] J. Iyengar and I. Swett, QUIC Loss Detection and Congestion Control, RFC 9002,
May 2021. doi: 10.17487/RFC9002. [Online]. Available: https://www.rfc-
editor.org/info/rfc9002.

[8] A. Yu and T. A. Benson, „Dissecting Performance of Production QUIC“, in Pro-
ceedings of the Web Conference 2021, ser. WWW ’21, Ljubljana, Slovenia: As-
sociation for Computing Machinery, 2021, 1157–1168, isbn: 9781450383127. doi:
10.1145/3442381.3450103. [Online]. Available: https://doi.org/10.1145/
3442381.3450103.

[9] F. Rochet, E. Assogba, M. Piraux, K. Edeline, B. Donnet, and O. Bonaventure,
„TCPLS: Modern Transport Services with TCP and TLS“, in Proceedings of the
17th International Conference on Emerging Networking EXperiments and Tech-
nologies, ser. CoNEXT ’21, Virtual Event, Germany: Association for Computing

https://doi.org/10.17487/RFC9293
https://doi.org/10.17487/RFC9293
https://www.rfc-editor.org/info/rfc9293
https://www.rfc-editor.org/info/rfc9293
https://doi.org/10.17487/RFC9114
https://www.rfc-editor.org/info/rfc9114
https://docs.google.com/document/d/1RNHkx_VvKWyWg6Lr8SZ-saqsQx7rFV-ev2jRFUoVD34
https://docs.google.com/document/d/1RNHkx_VvKWyWg6Lr8SZ-saqsQx7rFV-ev2jRFUoVD34
https://blog.chromium.org/2013/06/experimenting-with-quic.html
https://blog.chromium.org/2013/06/experimenting-with-quic.html
https://doi.org/10.17487/RFC9000
https://www.rfc-editor.org/info/rfc9000
https://www.rfc-editor.org/info/rfc9000
https://doi.org/10.17487/RFC9001
https://www.rfc-editor.org/info/rfc9001
https://www.rfc-editor.org/info/rfc9001
https://doi.org/10.17487/RFC9002
https://www.rfc-editor.org/info/rfc9002
https://www.rfc-editor.org/info/rfc9002
https://doi.org/10.1145/3442381.3450103
https://doi.org/10.1145/3442381.3450103
https://doi.org/10.1145/3442381.3450103

Machinery, 2021, 45–59, isbn: 9781450390989. doi: 10.1145/3485983.3494865.
[Online]. Available: https://doi.org/10.1145/3485983.3494865.

[10] A. Mishra, S. Lim, and B. Leong, „Understanding Speciation in QUIC Conges-
tion Control“, in Proceedings of the 22nd ACM Internet Measurement Confer-
ence, ser. IMC ’22, Nice, France: Association for Computing Machinery, 2022,
560–566, isbn: 9781450392594. doi: 10.1145/3517745.3561459. [Online]. Avail-
able: https://doi.org/10.1145/3517745.3561459.

[11] D. Saif, C. Lung, and A. Matrawy, „An Early Benchmark of Quality of Experience
Between HTTP/2 and HTTP/3 using Lighthouse“, CoRR, vol. abs/2004.01978,
2020. arXiv: 2004.01978. [Online]. Available: https://arxiv.org/abs/2004.
01978.

[12] J. Zirngibl, P. Buschmann, P. Sattler, B. Jaeger, J. Aulbach, and G. Carle, „It’s
over 9000: Analyzing early QUIC Deployments with the Standardization on the
Horizon“, in Proceedings of the 2021 Internet Measurement Conference, Virtual
Event, USA: ACM, Nov. 2021. doi: 10.1145/3487552.3487826.

[13] J. Iyengar and I. Swett, „QUIC Acknowledgement Frequency“, Internet Engineer-
ing Task Force, Internet-Draft draft-ietf-quic-ack-frequency-02, Jul. 2022, Work
in Progress, 13 pp. [Online]. Available: https://datatracker.ietf.org/doc/
draft-ietf-quic-ack-frequency/02/.

[14] UDP/TCP/IP Performance Overview, https://sites.ualberta.ca/dept/
chemeng / AIX - 43 / share / man / info / C / a _ doc _ lib / aixbman / prftungd /
udptcpperfov.htm, Accessed: 2022-11-23.

[15] K. Jamshaid, B. Shihada, A. Showail, and P. Levis, „Deflating link buffers in
a wireless mesh network“, Ad Hoc Networks, vol. 16, pp. 266–280, 2014, issn:
1570-8705. doi: 10.1016/j.adhoc.2014.01.002. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S1570870514000134.

[16] X. Yang, L. Eggert, J. Ott, S. Uhlig, Z. Sun, and G. Antichi, „Making QUIC
Quicker With NIC Offload“, in Proceedings of the Workshop on the Evolution,
Performance, and Interoperability of QUIC, ser. EPIQ ’20, Virtual Event, USA:
Association for Computing Machinery, 2020, 21–27, isbn: 9781450380478. doi:
10.1145/3405796.3405827. [Online]. Available: https://doi.org/10.1145/
3405796.3405827.

[17] Y. Cheng, J. Chu, S. Radhakrishnan, and A. Jain, TCP Fast Open, RFC 7413,
Dec. 2014. doi: 10.17487/RFC7413. [Online]. Available: https://www.rfc-
editor.org/info/rfc7413.

[18] M. Richards, Linux Kernel vs DPDK: HTTP Performance Showdown, Blog Post:
https://talawah.io/blog/linux- kernel- vs- dpdk- http- performance-
showdown, Jul. 2022.

46

https://doi.org/10.1145/3485983.3494865
https://doi.org/10.1145/3485983.3494865
https://doi.org/10.1145/3517745.3561459
https://doi.org/10.1145/3517745.3561459
https://arxiv.org/abs/2004.01978
https://arxiv.org/abs/2004.01978
https://arxiv.org/abs/2004.01978
https://doi.org/10.1145/3487552.3487826
https://datatracker.ietf.org/doc/draft-ietf-quic-ack-frequency/02/
https://datatracker.ietf.org/doc/draft-ietf-quic-ack-frequency/02/
https://sites.ualberta.ca/dept/chemeng/AIX-43/share/man/info/C/a_doc_lib/aixbman/prftungd/udptcpperfov.htm
https://sites.ualberta.ca/dept/chemeng/AIX-43/share/man/info/C/a_doc_lib/aixbman/prftungd/udptcpperfov.htm
https://sites.ualberta.ca/dept/chemeng/AIX-43/share/man/info/C/a_doc_lib/aixbman/prftungd/udptcpperfov.htm
https://doi.org/10.1016/j.adhoc.2014.01.002
https://www.sciencedirect.com/science/article/pii/S1570870514000134
https://www.sciencedirect.com/science/article/pii/S1570870514000134
https://doi.org/10.1145/3405796.3405827
https://doi.org/10.1145/3405796.3405827
https://doi.org/10.1145/3405796.3405827
https://doi.org/10.17487/RFC7413
https://www.rfc-editor.org/info/rfc7413
https://www.rfc-editor.org/info/rfc7413
https://talawah.io/blog/linux-kernel-vs-dpdk-http-performance-showdown
https://talawah.io/blog/linux-kernel-vs-dpdk-http-performance-showdown

[19] S. Gallenmüller*, D. Scholz*, H. Stubbe, and G. Carle, „The pos Framework: A
Methodology and Toolchain for Reproducible Network Experiments“, in The 17th
International Conference on emerging Networking EXperiments and Technologies
(CoNEXT ’21), Munich, Germany (Virtual Event), Dec. 2021. doi: 10.1145/
3485983.3494841.

[20] I. Q. W. Group, QUIC Implementations, https://github.com/quicwg/base-
drafts/wiki/Implementations, Accessed: 2022-10-17, 2022.

[21] T. Pauly, E. Kinnear, and D. Schinazi, An Unreliable Datagram Extension to
QUIC, RFC 9221, Mar. 2022. doi: 10.17487/RFC9221. [Online]. Available: https:
//www.rfc-editor.org/info/rfc9221.

[22] M. Seemann, QUIC Interop Runner, https://github.com/marten-seemann/
quic-interop-runner, Accessed: 2022-06-08, 2022.

[23] B. Gregg, Linux perf Examples, https://brendangregg.com/perf.html, Ac-
cessed: 2022-10-13, 2020. [Online]. Available: https://brendangregg.com/perf.
html.

[24] perf (1) — Linux manual page, Accessed: 2022-10-13. [Online]. Available: https:
//man7.org/linux/man-pages/man1/perf.1.html.

[25] pidstat (1) — Linux manual page, Accessed: 2022-12-03. [Online]. Available: https:
//man7.org/linux/man-pages/man1/pidstat.1.html.

[26] ethtool (8) — Linux manual page, Accessed: 2022-12-08. [Online]. Available: https:
//man7.org/linux/man-pages/man8/ethtool.8.html.

[27] netstat (8) — Linux manual page, Accessed: 2022-12-08. [Online]. Available: https:
//man7.org/linux/man-pages/man8/netstat.8.html.

[28] tc (8) — Linux manual page, Accessed: 2022-11-30. [Online]. Available: https:
//man7.org/linux/man-pages/man8/tc.8.html.

[29] tc-netem (8) — Linux manual page, Accessed: 2022-11-30. [Online]. Available:
https://man7.org/linux/man-pages/man8/tc-netem.8.html.

[30] tc-tbf (8) — Linux manual page, Accessed: 2022-11-30. [Online]. Available: https:
//man7.org/linux/man-pages/man8/tc-tbf.8.html.

[31] Brendan Gregg, FlameGraph, https://github.com/brendangregg/FlameGraph,
Accessed: 2022-10-31, 2022.

[32] K. Ploch, „QUIC Performance on 10G Links“, BA thesis, Technical University of
Munich, 2022.

[33] D. Scholz, B. Jaeger, L. Schwaighofer, D. Raumer, F. Geyer, and G. Carle, „To-
wards a Deeper Understanding of TCP BBR Congestion Control“, in IFIP Net-
working 2018, Zurich, Switzerland, May 2018. doi: 10.23919/IFIPNetworking.
2018.8696830.

47

https://doi.org/10.1145/3485983.3494841
https://doi.org/10.1145/3485983.3494841
https://github.com/quicwg/base-drafts/wiki/Implementations
https://github.com/quicwg/base-drafts/wiki/Implementations
https://doi.org/10.17487/RFC9221
https://www.rfc-editor.org/info/rfc9221
https://www.rfc-editor.org/info/rfc9221
https://github.com/marten-seemann/quic-interop-runner
https://github.com/marten-seemann/quic-interop-runner
https://brendangregg.com/perf.html
https://brendangregg.com/perf.html
https://brendangregg.com/perf.html
https://man7.org/linux/man-pages/man1/perf.1.html
https://man7.org/linux/man-pages/man1/perf.1.html
https://man7.org/linux/man-pages/man1/pidstat.1.html
https://man7.org/linux/man-pages/man1/pidstat.1.html
https://man7.org/linux/man-pages/man8/ethtool.8.html
https://man7.org/linux/man-pages/man8/ethtool.8.html
https://man7.org/linux/man-pages/man8/netstat.8.html
https://man7.org/linux/man-pages/man8/netstat.8.html
https://man7.org/linux/man-pages/man8/tc.8.html
https://man7.org/linux/man-pages/man8/tc.8.html
https://man7.org/linux/man-pages/man8/tc-netem.8.html
https://man7.org/linux/man-pages/man8/tc-tbf.8.html
https://man7.org/linux/man-pages/man8/tc-tbf.8.html
https://github.com/brendangregg/FlameGraph
https://doi.org/10.23919/IFIPNetworking.2018.8696830
https://doi.org/10.23919/IFIPNetworking.2018.8696830

[34] J. Iyengar, ACK generation recommendation, https://github.com/quicwg/
base-drafts/issues/3304, Accessed: 2022-11-07.

[35] G. Fairhurst, A. Custura, and T. Jones, „Changing the Default QUIC ACK
Policy“, Internet Engineering Task Force, Internet-Draft draft-fairhurst-quic-ack-
scaling-04, Mar. 2021, Work in Progress, 19 pp. [Online]. Available: https://
datatracker.ietf.org/doc/draft-fairhurst-quic-ack-scaling/04/.

[36] A. Custura, T. Jones, and G. Fairhurst, „Rethinking ACKs at the Transport
Layer“, in IFIP Networking 2020, 2020, pp. 731–736.

[37] E. Volodina and E. P. Rathgeb, „Impact of ACK Scaling Policies on QUIC Per-
formance“, in 2021 IEEE 46th Conference on Local Computer Networks (LCN),
2021, pp. 41–48. doi: 10.1109/LCN52139.2021.9524947.

[38] Google, BoringSSL, https://github.com/google/boringssl, Accessed: 2022-
10-28, 2022.

[39] Y. Nir and A. Langley, ChaCha20 and Poly1305 for IETF Protocols, RFC 8439,
Jun. 2018. doi: 10.17487/RFC8439. [Online]. Available: https://www.rfc-
editor.org/info/rfc8439.

[40] OPENSSL ia32cap - manual page, Accessed: 2022-11-07. [Online]. Available: https:
//www.openssl.org/docs/manmaster/man3/OPENSSL_ia32cap.html.

[41] A. Ghedini, Accelerating UDP packet transmission for QUIC, Blog Post: https:
//blog.cloudflare.com/accelerating- udp- packet- transmission- for-
quic/, Jan. 2020.

[42] NIC Offloads, https : / / access . redhat . com / documentation / en - us / red _
hat_enterprise_linux/6/html/performance_tuning_guide/network-nic-
offloads, Accessed: 2022-11-28.

[43] R. Jadhav, UDP GSO Support, https://github.com/litespeedtech/lsquic/
pull/135, Accessed: 2022-11-27.

[44] R. Pan, P. Natarajan, C. Piglione, et al., „PIE: A lightweight control scheme to
address the bufferbloat problem“, in 2013 IEEE 14th International Conference
on High Performance Switching and Routing (HPSR), 2013, pp. 148–155. doi:
10.1109/HPSR.2013.6602305.

[45] R. Perper, Performance Comparison of QUIC with UDP and XDP, Blog Post:
https://blog.litespeedtech.com/2020/06/01/performance-comparison-
quic-udp-xdp/, Jun. 2020.

[46] Microsoft, MsQuic, https://github.com/microsoft/msquic, Accessed: 2022-
12-01, 2022.

[47] Y. Huang, Balance Performance in MsQuic and XDP, Blog Post: https : / /
techcommunity.microsoft.com/t5/networking-blog/balance-performance-
in-msquic-and-xdp/ba-p/3627665, Sep. 2022.

48

https://github.com/quicwg/base-drafts/issues/3304
https://github.com/quicwg/base-drafts/issues/3304
https://datatracker.ietf.org/doc/draft-fairhurst-quic-ack-scaling/04/
https://datatracker.ietf.org/doc/draft-fairhurst-quic-ack-scaling/04/
https://doi.org/10.1109/LCN52139.2021.9524947
https://github.com/google/boringssl
https://doi.org/10.17487/RFC8439
https://www.rfc-editor.org/info/rfc8439
https://www.rfc-editor.org/info/rfc8439
https://www.openssl.org/docs/manmaster/man3/OPENSSL_ia32cap.html
https://www.openssl.org/docs/manmaster/man3/OPENSSL_ia32cap.html
https://blog.cloudflare.com/accelerating-udp-packet-transmission-for-quic/
https://blog.cloudflare.com/accelerating-udp-packet-transmission-for-quic/
https://blog.cloudflare.com/accelerating-udp-packet-transmission-for-quic/
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/performance_tuning_guide/network-nic-offloads
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/performance_tuning_guide/network-nic-offloads
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/performance_tuning_guide/network-nic-offloads
https://github.com/litespeedtech/lsquic/pull/135
https://github.com/litespeedtech/lsquic/pull/135
https://doi.org/10.1109/HPSR.2013.6602305
https://blog.litespeedtech.com/2020/06/01/performance-comparison-quic-udp-xdp/
https://blog.litespeedtech.com/2020/06/01/performance-comparison-quic-udp-xdp/
https://github.com/microsoft/msquic
https://techcommunity.microsoft.com/t5/networking-blog/balance-performance-in-msquic-and-xdp/ba-p/3627665
https://techcommunity.microsoft.com/t5/networking-blog/balance-performance-in-msquic-and-xdp/ba-p/3627665
https://techcommunity.microsoft.com/t5/networking-blog/balance-performance-in-msquic-and-xdp/ba-p/3627665

	Introduction
	Goals
	Outline

	Background
	QUIC
	Features
	Packets and Frames
	Acknowledgments

	Performance Analysis
	Performance Metrics
	Flame Graphs

	Buffers

	Related Work
	Implementation
	Testbed Setup
	QUIC Implementations
	QUIC Interop Runner
	Tools
	Analysis

	Evaluation
	Components
	Connection Management
	Congestion Control
	Acknowledgments

	Crypto
	Packet IO
	Batching
	Offloading
	Buffers

	Build Optimization

	Conclusion
	Summary
	Future Work

	Appendix
	List of Acronyms

	Bibliography

