
Department of Informatics
Technical University of Munich

TECHNICAL UNIVERSITY OF MUNICH

DEPARTMENT OF INFORMATICS

BACHELOR’S THESIS IN INFORMATICS

QUIC Performance on 10G Links

Kevin Ploch

Technical University of Munich
Department of Informatics

Bachelor’s Thesis in Informatics

QUIC Performance on 10G Links

QUIC Performanz auf 10G Verbindungen

Author: Kevin Ploch
Supervisor: Prof. Dr.-Ing. Georg Carle
Advisor: Benedikt Jaeger,

Johannes Zirngibl

Date: October 15, 2022

I confirm that this Bachelor’s Thesis is my own work and I have documented all sources
and material used.

Garching, October 15, 2022
Location, Date Signature

Abstract

This work aims to shed light on the performance of QUIC and the CPU cost associated
with its components in single-connection scenarios dictated by the congestion avoidance
phase. Fitting to QUICs initial design motivation to improve web performance, many
works focus on the use case of short measurement scenarios, favoring a fast connec-
tion setup. We argue that for QUIC to be usable as the general purpose transport
layer protocol it was recently standardized as, we require more data on longer trans-
fers with handshakes playing less of a role, and where a transport service user would
likely turn to Transmission Control Protocol (TCP). We realized structured, repro-
ducible measurements by extending the QUIC Interop Runner measurement framework
to work for bare-metal experiments on real, physically distinct machines. We found that
in long-duration scenarios, QUIC achieved only half the goodput of TCP+Transport
Layer Security (TLS) when excluding Network Interface Card (NIC) offloading, and
about one-third of it with offloading support for TCP. Both QUIC and TCP transfers
reached 100 % CPU utilization on the server for the core they ran on. When looking at
how QUIC uses its CPU time, we identified packet I/O as the most expensive compo-
nent regarding CPU utilization, followed by crypto operations. Using this approach of a
structured framework based on QUIC interoperability allows for easier, future hardware
measurements in needed areas like flow control, where variables like ACK frequency are
not yet unified by a standard document.

Contents

1 Introduction 1

2 Background 3
2.1 QUIC . 3

2.1.1 Placement in Userspace and on UDP 3
2.1.2 Stream Concept and TCP Head-of-Line blocking 5
2.1.3 Combined Transport Layer and TLS Handshake 5
2.1.4 Flow Control . 6
2.1.5 Implementations . 8

2.2 Metrics . 9
2.2.1 Throughput and Goodput . 9
2.2.2 CPU Utilization . 10

2.3 Hardware Offloading . 11
2.4 Pidstat . 12

3 Measurement Framework Design 13
3.1 QUIC Interop Runner as a Baseline . 13
3.2 Class Structure . 15
3.3 Incorporation Into the Existing Testbed 16
3.4 Standardizing Implementation Definition 17
3.5 Supported QUIC and Environment Settings 18

4 Evaluation 21
4.1 Testbed Introduction . 21
4.2 Baseline . 21
4.3 Comparison to TCP with TLS . 27
4.4 Packet Offloading . 29
4.5 Flow Control . 32
4.6 Crypto . 34

5 Related Work 37

6 Conclusion 39

A Appendix 41
A.1 List of acronyms . 41

Bibliography 43

II

List of Figures

2.1 QUIC and TCP Protocol Stack, from [14]. 4
2.2 Visualization of the Head-of-Line blocking problem with Transmission

Control Protocol (TCP) and QUIC. 4
2.3 A simplified TCP sender sliding window structure, based on [12, Section

3.2]. It stores what sequence numbers have been sent, ACK’d or are able
to be sent. 7

3.1 An interactive matrix with all test results of each QUIC client-server
combination on the Interop Runner project website [34]. 14

3.2 Measurement framework class structure. Repetition of similar testcases
and measurement classes have been omitted. 15

3.3 The testbed’s network topology, showing one management node and a
number of test nodes, the latter of which are orchestrated using Plain
Orchestrating Service (POS). 16

3.4 Testbed Topology used in measurements resulting from the measurement
framework design, explained in Section 3.3. 17

4.1 Hardware host comparison . 22
4.2 Goodput and CPU utilization of QUIC server and client implementation

quiche on ascending link bandwidth values. Link bandwidth values have
been emulated using linux tc tbf [38] on the server Network Interface
Card (NIC). 23

4.3 Goodput and throughput on ascending link bandwidth values. Link
bandwidth values have been emulated using linux tc tbf [38] on the server
NIC. 24

4.4 CPU utilization of different QUIC components for server and client at
different link bandwidths. 10 Gbit/s represents data without activated
Linux traffic control. 25

4.5 Yang et al. [5] QUIC protocol component CPU usage for quant, quicly,
picoquic and mvfst, directly used from [5]. 26

4.6 Goodput and CPU utilization of TCP with Transport Layer Security
(TLS) and QUIC. 28

4.7 Goodput and CPU utilization of QUIC when using different, existing
offloading options. 30

4.8 Goodput and CPU utilization of TCP with TLS when using different,
existing NIC offloading options. 31

4.9 Goodput and CPU utiliation of QUIC with incrementing, per-stream
send and receive window sizes. 32

4.10 Goodput and CPU utilization of AES256 and ChaCha20 in QUIC. . . . 34
4.11 CPU utilization of QUIC components when using AES256 or ChaCha20. 35

IV

List of Tables

2.1 Mean goodput of different QUIC implementations. Measured on solana-
uniswap hostpair (see Section 4.1) with 5 repetitions and a 10 GB filesize.
. 8

4.1 Testbed node hardware specifications. 22
4.2 Link utilization values . 24
4.3 Supplementary information on mean spent time in kernel- and userspace,

and on context switches for QUIC and TCP with TLS. Client numbers
are not true averages but handpicked near-median samples due to missing
tool output. Captured using pidstat (see Section 2.4). 29

Chapter 1

Introduction

With QUICs official standardization in 2021, TCP acquired a strong competitor as a
general-purpose protocol, which addresses strong pain points like the too long TCP+TLS
2-RTT handshake on fresh connection, HTTP/2 unforeseen head-of-line blocking on the
transport layer, among other improvements. These changes, especially the decision of
placing QUIC components in the userspace on top of User Datagram Protocol (UDP),
triggers a need for throughout analysis to be able to decide its suitability as a replace-
ment in many areas. This is why a lot of research has been conducted since QUICs first
draft designs by the IETF started in 2016. Due to the first draft only being declared
as an official internet standard recently in 2021, many works focus on QUIC imple-
mentations based on outdated drafts [1]–[4]. Many works also focus on situations that
favor QUIC with its faster connection setup [3], [5]–[7]. To fullfill its application as a
general-purpose transport layer protocol, we argue that it also needs to be analysed in
longer transfers, dictated by the congestion avoidance phase and minimally impacted
by connection setup. We implemented our measurements after the two requirements
of 1) experiments in environments with no virtualization layers (process virtualization,
hypervisors) and 2) the possibility for comparisons between different QUIC implemen-
tations. The second point is especially important as there are topics like the frequency
of flow control updates and ACK frequency, that are so far not specified in a unifying
standard, which leads to an implementation situation mirroring the wild west. With
the measurement framework of the QUIC Interop Runner [8] we found a good base for
these requirements. We concretely aim to measure the performance in terms of goodput
and the CPU utilization of the different QUIC components in long, single-stream trans-
fers dominated by congestion avoidance, and in different settings considering available
bandwidth, flow control resources, and cipher options.

Chapter 1: Introduction

The rest of this work is structured as follows: Chapter 2 explains the background sur-
rounding the QUIC by shedding some light on the motivation of its creation, how it
differs from TCP and what the situation of current implementations is. We also explain
the metric definition for our conducted measurements and tools used to gain insight
into QUIC processes. In Chapter 3 we show how we conducted our measurements in
an automated, reproducible way, by explaining the design of the used measurement
framework. Additionally, we show the testbed topology used in our measurements.
Chapter 4 reveals the results of five implemented measurements, that show different
aspects of QUICs performance and component behavior in high duration, minimal con-
nection setup impacted transfers. Additionally, we compared it directly to TCP with
TLS in an identical machine and network setup. Chapter 5 shows the most tightly
linked related work, and how our work differs and addressed pain points that impact
the achieved results.

2

Chapter 2

Background

This chapter provides information on QUIC itself and other influences on transport layer
transfers. We also introduce tools that are used for collecting extensive information on
QUIC and processes on Linux systems in general in conducted measurements.

2.1 QUIC

QUIC is a general-purpose, connection-oriented transport layer protocol, recently stan-
dardized by the IETF in May of 2021 [9]–[11], and a direct competitor to TCP. While
TCP has been improved over a long timespan since its first official draft in 1981 [12],
there are certain, deeply rooted design decisions in the protocol itself that leave designers
no other choice but to implement a new transport layer protocol with new fundamental
properties. It is not easy to make a widespread switch to a new transport layer protocol,
as seen in the example of Stream Control Transmission Protocol (SCTP), which could
be attributed to middleboxes having problems with handling new protocols, the fact
that middlebox upgrades are expensive and their providers do not have an incentive to
change this situation. QUIC has succeeded as it is built on top of UDP, effectively being
supported by every device that supports UDP [13, Section 5]. The follwing subsections
aim to reveal differences between TCP and QUIC, and explain the motivations for the
creation of this new protocol.

2.1.1 Placement in Userspace and on UDP
Figure 2.1 reveals a fundamental design decision of QUIC: it is based on the UDP
and implements its components in userspace. Instead of developing applications tradi-
tionally using HTTP and TLS from userspace, then interfacing to TCP in the kernel

Chapter 2: Background

Network

Transport

Application

IP

TCP

TLS

HTTP/2

UDP

QUIC

HTTP/3

Figure 2.1: QUIC and TCP Protocol Stack, from [14].

one TCP connection for all objects

are blocked

TCP
HTTP/2

TCP
HTTP/2

lost

one QUIC stream for each object

only is blocked

QUIC
HTTP/3

QUIC
HTTP/3

lost

Figure 2.2: Visualization of the Head-of-Line blocking problem with TCP and QUIC.

through sockets, QUIC is provided as a userspace library, implementing transport layer
components like flow control, congestion control or ACK tracking in userspace. It then
interfaces to connectionless UDP sockets implemented in the kernel to send segments.
It also directly incorporates TLS 1.3 cryptography, which is an advantage utilized by its
handshake design, later explained in Section 2.1.3. HTTP/3 is the new HTTP version,
needed to delegate stream features present in HTTP/2 to QUIC, which is explained in
more detail in Section 2.1.2. The placement in userspace leads to the advantage of it
being easier to update frequently – updates to TCP in the kernel are relatively slow, as
it has to be included in OS update cycles. A disadvantage lies in performance – we will
explore this point in detail in Section 4.3.

4

2.1 QUIC

2.1.2 Stream Concept and TCP Head-of-Line blocking
Head-of-line blocking is the phenomenon when elements in a queue are blocked by the
first element. To explain how QUIC solved head-of-line blocking at the transport layer
using stream multiplexing, we start off by explaining it at the application layer.

Web traffic based on TCP uses the left protocol stack shown in Figure 2.1. A re-
source requested by an HTTP/2 client is wrapped first in an HTTP/2 header, then
encrypted using TLS, and finally passed to TCP to be transmitted over the network. A
key problem that lead to the development of HTTP/2 is the property, that HTTP/1.0
and HTTP/1.1 communication over a given TCP connection only allowed for one out-
standing file request at a time [15, Section 1]. The protocol simply did not implement
mechanisms to differentiate between data of different requests, and so could only serve
one request after the other. This leads to large delays when serving a big file in front
of a smaller one. HTTP/2 introduced streams by prepending each sent data piece with
a header, which carries a stream identifier to let an HTTP/2 receiver know to which
request this data belongs. The data and such a header together form a unit called frame.
A bidirectional flow of frames with the same stream id then defines a single stream [15].
We thoroughly explain these HTTP/2 naming conventions at this point, as QUIC itself
also uses them. These streams then allow us to multiplex different files into one TCP
connection.

HTTP/2 traffic can now be visualized as in Figure 2.2, where two endpoints establish
one TCP connection to transfer webobjects, each with its own stream. As we can
differentiate between different webobjects through frames, HTTP/2 can now progress
the transfer of multiple files at once by intertwining frames of different streams and
passing them toghether to TCP. TCP splits this incoming data into different segments
of the right size, and proceeds to send them to the other host. Should a segment be lost,
TCP awaits a retransmission before handing any more data to HTTP, as TCP always
delivers data in-order to above layers. Although this loss could only involve frames of
one stream (e.g., red in the figure), it will not pass on segments after the loss (blue
and green) as TCP is not aware of this multiplexing, but only of a generic byte stream
received from upper layers. QUIC solves this problem by introducing streams on the
transport layer, each with in-order delivery, which can be seen in the bottom image of
Figure 2.2. Lost segments of one stream now do not block the progress of other streams,
curating head-of-line blocking at the transport layer.

2.1.3 Combined Transport Layer and TLS Handshake
TCP starts communication off with a three-way handshake, which requires one round-
trip time (RTT). Should a connection also require encryption, the first data TCP

5

Chapter 2: Background

sends kicks off the TLS handshake, which takes two additional RTT, resulting in a
connection establishment requiring 3 RTT [16, Section 7.3]. QUIC combines the typical
three-way and TLS handshake into one overarching handshake, which is not possible
for TCP due to the layer separation of TCP and TLS. TCP is not aware of any upper-
layer logic and simply receives generic bytes to transfer after its handshake. QUIC
achieves a 1-RTT handshake in the general case, as well as a 0-RTT handshake for an
older, cryptographically already established connection which is now being continued
[9, Section 7.1].

2.1.4 Flow Control
As QUIC borrows flow control concepts from TCP, we can explain flow control mecha-
nisms in QUIC by starting off with TCP. With the introduction of the transport layer
in the layered structure of the internet protocol suite, computer networking is able to
distinguish between multiple applications running on one host. This is in practice ac-
complished using port numbers and the port number field in transport layer protocols,
where each application is assigned one or more port numbers for communication on the
network.

This concept of a multi-application system introduces new problems, one being the fact
that each application requires explicit memory for networking tasks like storing state
information. In the case of QUIC and TCP, this takes form as buffers for segments we
are planning to send (send window) and segments we expect to receive (receive win-
dow). Applications are able to place data to be sent in the send buffer, and consume
received data from the according receive buffer. Because operating systems have a lim-
ited amount of memory, applications are given an upper limit on network memory usage
in form of upper limits to these data structures. This protects the machine from both
fast-sending, memory-hungry applications and fast, overpowering senders. Applications
could possibly read receive buffers at a lower rate than compared to incoming data, of
which the opposing sender needs to be notified of.

Figure 2.3 illustrates the structure of a send buffer used by TCP. The send window
is defined as the bytes, identified by sequence numbers, that a sender is allowed to
inject into the network. The left edge of the send window is determined by received
acknowledgments (ACKs) to previously sent bytes. The right edge is determined by
the sum of the position of the left edge and the window size field last signaled by the
receiver. An arriving acknowledgment (ACK) and a steady (not shrinking) window size
offered by the receiver lead to the window progressing (“sliding”) to the right. A TCP
receiver tells its peer about its receive window through the previously mentioned window
field, a 16 bit field in the TCP header (possibly extended to 30 bit using the window

6

2.1 QUIC

... 2 3 4 5 6 ...

Send Window

(offered by Receiver)

Sent and

ACK'd

Sent when

Window moves

Sent and

unACK'd

Able to

Send

Figure 2.3: A simplified TCP sender sliding window structure, based on [12, Section 3.2]. It stores
what sequence numbers have been sent, ACK’d or are able to be sent.

scaling TCP option [17, Section 2]). As every TCP segment contains an acknowledgment
field and a window field [12, Section 3.1], we can potentially adjust the send window
structure at every incoming segment.

An important metric for finding an optimal window size of a connection is the bandwidth-
delay product (BDP), described in Equation (2.1). It is the product of a link’s end-to-
end delay called RTT, and a link’s bottleneck bandwidth (BB), which is the bandwidth
enforced by a path’s most limited machine in form of either a host or a routing and/or
switching device [18, Section 3.3.1].

BDP (bit) = RTT (s) · BB (bit/s) (2.1)

The BDP can be thought of as the number of bits that can be stored in the network
path before the ACK of the first sent byte arrives back at the sender. A sender would
start off sending bytes to the receiver, byte by byte filling up the send window part of
bytes we can send out (Figure 2.3, white fields), until it is exhausted and flow control
prevents us from delivering any more bytes to the sender. If the send window is equal to
the BDP, exactly at this point the first ACK arrives and the send window starts to free
up again, as the right and left edge would move on by one byte. Should the send window
be smaller than the BDP, we would stop sending before the first ACK arrives as the
left edge only then advances, and throughput (more details in Section 2.2.1) therefore
is effectively limited by flow control.

As QUIC manages multiple streams of in-order data, it introduces flow control both per
stream and across a whole connection, which possibly consists of multiple streams, to
an endpoint. A TCP sender determines the current receive window size at the receiver
by observing the window field in the header, where a value of 0 represents a full receive
window. The window field then is a relative offset, as it is added to the value in the last
received acknowledgment field (in terms of Figure 2.3: left edge+signaled window size =

7

Chapter 2: Background

Table 2.1: Mean goodput of different QUIC implementations. Measured on solana-uniswap hostpair
(see Section 4.1) with 5 repetitions and a 10 GB filesize.

Implementation Goodput (Mbit/s) Lang. Author
quiche 2006 Rust Cloudflare
mvfst 891 C++ Facebook
lsquic 857 C LightSpeed Tech

aioquic 55 Python aiortc

right edge). QUIC instead uses an absolute byte offset, off which the highest received
byte offset is subtracted to determine the current receive window. [9, Section 4.1]

receive window size = maximum advertised byte offset − current highest byte offset
(2.2)

This maximum byte offset is advertised in so-called MAX(_STREAM)_DATA frames, where
stream keyword is included to indicate per-stream flow control updates and connection-
wide updates otherwise. QUIC also defines the (STREAM_)DATA_BLOCKED frame, so a
sender can let a receiver know when it would have data to send, but is limited by
flow control. An important discussion is the frequency of said window updates. The
standard merely mentions that implementations should decide how much and how often
to advertise offsets [9, Section 4.2]. Work on the analysis of flow control behavior has
been done, e.g., by Marx et al. [19, Section 3.1]. There ten IETF QUIC implementations
have been compared, and while manual analysis does help for some time, there is no
easy, automatic way of comparing flow control behavior. With the extension of the
measurement framework, it is not far off to add the possibility for tests covering this
need. As a side note, the problem of how frequently to send updates also applies to
ACK frequency [9, Section 13.2.2], but first drafts [20] aim to address this problem for
example by letting a peer advertise its desired ACK frequency.

2.1.5 Implementations
The QUIC working group maintains a list of all known QUIC implementations [21].
It currently contains 25 implementations in various programming languages for IETF
QUIC, which is a direct result of QUICs placement as a userspace library, rather than as
a kernel implementation like TCP. We focused on QUIC implementations with a high
goodput performance, which are written in low-level languages like C or Rust. Table 2.1
shows the result of a simple goodput measurement on two directly connected bare-metal
machines. It gives us a first hint that interpreted languages like Python underperform,
and that quiche, written in Rust by Cloudflare, achieved more than double the mean
goodput of the two C implementations, including one written by Facebook.

8

2.2 Metrics

Additionally to pure performance, we also wanted to consider the current QUIC deploy-
ment situation. The QUIC internet deployment scan by Zirngibl et al. [14], the latest
extensive scan to our knowledge, identified 23 M IPv4 and 300 k IPv6 QUIC endpoints,
among other things by developing a ZMap module for QUIC detection. Consider-
ing their ZMap scan results, they could assign the largest group of IPv4 addresses to
Cloudflare with more than half a million addresses. Google closely follows, in front of
other entities like Akamai and Fastly. Cloudflare claims that they implement HTTP/3
support in their edge network entirely using their own implementation, quiche [22].

While the measurement framework we constructed does support any QUIC implementa-
tion as long as source code access is possible, we will conduct our featured measurements
in this work with quiche, as we see its recent widespread deployment and relatively high
goodput performance.

2.2 Metrics

In order to correctly interpret gathered data, it is essential to have precise metric defi-
nitions. The next sections revise the definitions of metrics used in our measurements.

2.2.1 Throughput and Goodput
In RFC5166 [23] three definitions for throughput are listed, one candidate fitting our
context of a transport layer transfer using QUIC being throughput as the “link uti-
lization or flow rate in bytes per second” [23, Section 2.1.1]. To add to the discussion,
goodput is part of the throughput, but only includes useful traffic, which, for exam-
ple, excludes duplicate segments that are transmitted on the wire, but do not aid in
progressing a transfer, or segment, packet, and frame metadata in form of headers [23].

Another definition of throughput taken from the context of TCP is throughput as the
“amount of data per unit of time that TCP transports when in the TCP Equilibrium
state” from RFC6349 [18, Section 1]. The TCP Equilibrium state refers to the state
TCP is in when increasing throughput in the congestion avoidance phase and reducing
throughput upon a loss event, leading TCP to send at its maximum achievable through-
put while effectively probing for changes in the network [18, Section 1.3]. When we talk
about either throughput or goodput in the following paragraph, we refer to it as the
amount of data in bits or bytes per second that QUIC achieves in its congestion control
equilibrium state. We can apply the TCP Equilibrium state directly to QUIC, as QUIC
implements congestion control similar to TCP but on a per-stream basis. When looking
at QUIC single file transfers, as we are in this work, we effectively spectate a single
QUIC stream, thus leading to a very similar congestion control situation to TCP.

9

Chapter 2: Background

Throughput = Bits sent/received on wire (in bit)
Time (in s) (2.3)

Goodput = Filesize (in bit)
Transfer Duration (in s) (2.4)

Equation (2.3) formulates throughput according to its definition as flow rate or link
utilization. In this work, we use the unit of bits per second (bit/s). We capture it
practically by gathering interface statistics on outgoing or incoming bits per second.

We calculate goodput in our experiments with the measurement framework according
to Equation (2.4). “Filesize” references the size of the transmitted, randomly generated
file. We capture the duration of a transfer by using timestamps before and after the
client downloads the file.

interop.py:_run_test():
1 testcase . _start_time = datetime .now ()
2 ... # Starting the transmission , blocking
3 testcase . _end_time = datetime .now ()

testcases.py:check():
4 time = (self. _end_time - self. _start_time) / timedelta (seconds =1)
5 goodput = (8 * self. FILESIZE) / time / 10**6 # as mbps

Its important to note that we aim to capture the goodput of QUIC in the congestion
control equilibrium state. This leads to several problems we have to keep in mind when
designing measurements, as we only reach the congestion avoidance phase after the con-
nection setup. This includes 1) the slow start phase that congestion control starts with
and 2) the initial QUIC handshake and HTTP/3 request as addressed in Section 2.1.3.
Therefore, it is important to make each transmission long enough to reduce the impact
of the connection startup on the calculated goodput. For the measured throughput, it
is enough to drop the first few throughput samples impacted by the connection startup.

2.2.2 CPU Utilization
We calculate the CPU utilization by adding up the CPU core usage (in %) of all cores the
application uses with all spawned processes and threads. For a single-core application
this results in a value of up to 100 %, but applications using multiple cores at once can
exceed this value. For example, a multiprocessing application that fully utilizes four
CPU cores has a CPU utilization value of 400 %. We capture the CPU utilization using
the tool pidstat, which is further explained in Section 2.4.

10

2.3 Hardware Offloading

2.3 Hardware Offloading

On most modern host systems, workstations and servers alike, NIC offloading techniques
are utilized. NIC offloading in general describes the act of passing certain tasks to the
NIC, which the host CPU would have to compute otherwise. One common theme of the
following described techniques is the idea of letting the network stack process segments
larger than the Path Maximum Transfer Unit (PMTU) (the maximum size in bytes of
an IP packet for a path comprising of multiple links [24]) required by the network path.
By doing this instead of processing multiple smaller segments, it reduces the amount of
network stack operations applied to the packet as there are fewer packets to process in
general and many packets of one transmission would follow similar processing anyway,
e.g., given the same destination tuple in form of IP address and port number [25]. The
following offloading functionalities are available in Linux systems:

Generic Segmentation Offloading (GSO) Used by both TCP and UDP. GSO is
a pure software offload, meaning it can be used without offloading support in the
NIC. It delays segmentation of segments as far as possible when sending, allowing
TCP and UDP to build large packets. The data of these large sk_buffs, which
represent segments in the kernel, is then split over multiple sk_buffs matching
the PMTU. [25], [26]

Generic Receive Offloading (GRO) Used by both TCP and UDP. Being the receive-
side equivalent of GSO, GRO is a software offload that should yield the reassem-
bled, large segments split by GSO on the sender side. [26]

Large Receive Offloading (LRO) Used by TCP. LRO is an offload which aggre-
gates packets of one TCP stream, reducing the number of packets processed by
the CPU. Assembling can be done in the NIC driver or the NIC. [25], [27]

TCP Segmentation Offloading (TSO) Used by TCP. TSO is a hardware offload
that lets TCP send large packets, which are then segmented into PMTU-fitting
chunks and prepended with the necessary TCP, IP and link layer headers in the
NIC. [25]

UDP Fragmentation Offload (UFO) A deprecated offload used by UDP, which al-
lowed the NIC to fragment oversized UDP datagrams into multiple IPv4 frag-
ments. [26] We did not find this offloading option on our testbed NICs, most
likely due to this deprecation. Considering that QUIC makes use of underlying
UDP, this would have been interesting to look at.

11

Chapter 2: Background

2.4 Pidstat

Pidstat [28] is a tool that is able to report statistics on Linux processes by using the
process information pseudo-filesystem /proc [29]. It allows monitoring a process by
PID or name over time by collecting process information in certain intervals. This
also includes the activity of process threads. Useful metrics it can collect include I/O
statistics, used CPU core and usage for every thread/process, the percentage of CPU
time spent in userspace and kernel space, and the amount of voluntary and involuntary
context switches.

To capture the CPU core usage of a process, e.g., quiche, using a string match on its
name (-G flag), and all its threads (-t flag) in a one second intervall we can use the
following.

1 $ pidstat -t -G quiche 1
2 ...
3 06:57:19 PM UID TGID TID %usr % system % guest %wait %CPU CPU Command
4 06:57:20 PM 0 2095 - 51.00 47.00 0.00 0.00 98.00 9 quiche - server
5 06:57:20 PM 0 - 2095 51.00 47.00 0.00 0.00 98.00 9 |__quiche - server
6
7 06:57:20 PM UID TGID TID %usr % system % guest %wait %CPU CPU Command
8 06:57:21 PM 0 2095 - 53.00 46.00 0.00 0.00 99.00 9 quiche - server
9 06:57:21 PM 0 - 2095 53.00 46.00 0.00 0.00 99.00 9 |__quiche - server

10
11 06:57:21 PM UID TGID TID %usr % system % guest %wait %CPU CPU Command
12 06:57:22 PM 0 2095 - 23.00 20.00 0.00 0.00 43.00 9 quiche - server
13 06:57:22 PM 0 - 2095 23.00 20.00 0.00 0.00 43.00 9 |__quiche - server
14
15 Average : UID TGID TID %usr % system % guest %wait %CPU CPU Command
16 Average : 0 2095 - 43.40 44.62 0.00 0.01 88.02 - quiche - server
17 Average : 0 - 2095 43.40 44.62 0.00 0.01 88.02 - |__quiche - server

12

Chapter 3

Measurement Framework Design

A major tenet of this work is easy and fast reproducibility of measured results. This
is achieved by a measurement framework that fixates used client and server implemen-
tations, the state of involved hosts, definitions of the measurements themselves, and
all achieved results. To facilitate these requirements in a structured way, and without
reinventing the wheel, the framework is based on the QUIC Interop Runner [8].

The following sections aim to explain the design of the measurement framework. This
includes the question of why this particular project is a good fit as a starting point as
well the question of how the framework and its components are structured. Further, it
will be also be shown in what unified way QUIC implementations are added and defined
in the measurement framework, and how settings in QUIC and the network environment
are propagated to the test nodes.

3.1 QUIC Interop Runner as a Baseline

With the design decision of leaving QUIC’s code out of the kernel, and supplying it
through userspace libraries it seems to incentivize competing QUIC implementations
[21]. Concrete examples (not necessarily all for the same programming language, but to
illustrate that different actors get involved) include Cloudflare’s quiche [30], LiteSpeed
Tech’s lsquic [31], Facebook’s mvfst [32] or Microsoft’s msquic [33].

The QUIC Interop Runner solves the problem of unknown interoperability by testing im-
plementations against each other. It thus defines a basic framework for defining certain
QUIC implementations, and running tests in a containerized environment. Figure 3.1

Chapter 3: Measurement Framework Design

Figure 3.1: An interactive matrix with all test results of each QUIC client-server combination on the
Interop Runner project website [34].

shows an example output of the result matrix that emerges when every implementation’s
server is observed in different test cases against each implementation’s client.

Our measurement framework used this as a starting point but changed several concepts
to better fit our measurement needs.

The QUIC Interop Runner executes its tests using a containerized environment using
docker [35]. Instead of executing tests in process-virtualized environments, the measure-
ments of our framework are run directly on bare hardware. This should more closely
replicate a regular, real-world use case of QUIC, as process virtualization does impact
application performance [36]. It also reduces the number of variables when trying to
understand the behavior of QUIC implementations.
While container images also have the advantage of a packaged ecosystem regarding the
building and running of applications, Section 3.4 shows how we solved the problem of
building and adding implementations to the measurement framework in a structured
way.

The QUIC Interop Runner executes both client and server on the same machine. Our
framework adaptation is able to execute QUIC client and server implementations on
physically separate machines.

14

3.2 Class Structure

interop

testcases

InteropRunner
- implementations : dict
- servers : [String]
- clients: [String]
- bandwidth: String
- testbed: bool
+ run()
- copy_implementations()
- setup_env()
- check_impl_is_compliant()
- run_testcase()
- run_measurement()
- export_results()

<<abstract>>
TestCase

- www_dir: String
- files: String
- link_bandwidth: String
- client_ip: String
- server_ip: String
+ timeout()
+ www_dir()
+ bandwidth()
- generate_random_file()
- check_files()

<<abstract>>
Measurement

+ repetitions()
+ result()
+ use_perf_client()
+ use_perf_server()
+ use_qlog()

MeasurementGoodput
+ FILESIZE : int = 1·GB
- result : float = 0.0
+ name()
+ abbreviation()
+ desc()
+ get_paths(max_size
: int, host : String)
+ check(client :
String, server : String)
+ result()

TestCaseHandshake

+ name()
+ abbreviation()
+ desc()
+ get_paths(max_size
: int, host : String)
+ check(client : String,
server : String)

tests
1..n

1..n
measurements

Figure 3.2: Measurement framework class structure. Repetition of similar testcases and measurement
classes have been omitted.

3.2 Class Structure

As the framework is based on the QUIC Interop Runner, the class structure is very simi-
lar to the original project. Figure 3.2 shows the UML class diagram of the measurement
framework.

InteropRunner is the central class in the structure as it performs the tests by iterating
on all defined server and client implementations, and orchestrates the tests for each
wanted test case.

The test definitions follow a hierarchical inheritance structure. First, an important
distinction: a “testcase” is a test that results can either succeed or fail, e.g., did the
handshake succeed or not, whereas a “measurement” is a test that can have a range of
numbers as a result, e.g., achieved goodput.
TestCase is a parent class that defines attributes and methods that are useful to
any testcase or measurement. Testcases, like a handshake pass/fail test, directly in-
herit from this class. The Measurement class is a parent class for all measurements
and also inherits from TestCase. In addition to the capabilities of TestCase, it fea-
tures measurement-specific code like the number of repetitions a test should perform
or whether a measurement should be profiled using perf. All measurements inherit
from this measurement parent class. A concrete example would be the Measurement-

15

Chapter 3: Measurement Framework Design

Testnode 1 Testnode 2

Management Node

...
Testnode n

Management Network

Measurement Network

Figure 3.3: The testbed’s network topology, showing one management node and a number of test
nodes, the latter of which are orchestrated using Plain Orchestrating Service (POS).

Goodput class. All testcases and measurements wanted by the user are stored in the
measurements list of the InteropRunner class.

3.3 Incorporation Into the Existing Testbed

As all measurements are conducted in the chair’s testbed, the measurement framework
naturally incorporates the testbed’s orchestration system to solve essential tasks like
the creation of files to transmit, the environment setup for QUIC implementation exe-
cutables or changing operating system settings according to the user’s needs.

The orchestration system of the testbed is Plain Orchestrating Service (POS) [37], a
system which allows running experiments off of a management node, onto test nodes,
which are bare metal machines and free of virtualization technologies. This is accom-
plished by leveraging techniques like Intelligent Platform Management Interface (IPMI)
and Preboot Execution Environment (PXE) in combination with live Operating Sys-
tem (OS) images. POS offers a Representational State Transfer (REST) Appliation
Programming Interface (API) which can be accessed using the python library poslib or
the command line interface pos cli to start orchestrating test nodes from the manage-
ment node.

Figure 3.3 illustrates the network topology of the testbed. One management node is
connected to every test node to 1) orchestrate it using POS and 2) allow manual access
to nodes using ssh. Pairs or groups of test nodes are interconnected, thus providing
links where network measurements can be conducted on.

Due to the existing hierarchy in the testbed, the measurement framework should reside
and be executed on the management node and orchestrate test nodes using the manage-

16

3.4 Standardizing Implementation Definition

Server Client10 Gbit/s

Figure 3.4: Testbed Topology used in measurements resulting from the measurement framework design,
explained in Section 3.3.

ment node’s POS API. As the framework is implemented in the python programming
language it easily integrates POS using the python library poslib.

As QUIC is a transport layer protocol, it is located directly and only on end hosts
involved in data transmissions over a network. Equipped with this fact, the minimal
requirements for conducting measurements with QUIC are two machines with a link
in-between. Figure 3.4 illustrates the network topology used in our measurements.

3.4 Standardizing Implementation Definition

As the QUIC Interop Runner makes use of process virtualization using docker contain-
ers, it has a standardized way of adding, storing and executing implementations by
building implementation-specific container images by the implementation developers.
In this spirit of providing a common way of storing and executing client and server
implementations, we created a way to define implementation builds using pipelines and
a unified server/client execution using run scripts, stored in version control.

The following components are required to add an implementation to the measurement
framework:

build.sh Defines how the implementation is built in the CI/CD pipeline of the repos-
itory. Afterward the implementation is provided as a build artefact which the
measurement framework can download and deploy on the test nodes of the test-
bed.

run-client.sh The run script the framework uses to execute the QUIC client of the
implementation. It is a shell script that receives the parameters for the client in
form of environment variables. The variables it has to handle are directory paths
to save logs at (SSLKEYLOGFILE, QLOGDIR, LOGS), the kind of testcase or measure-
ment that is being executed (TESTCASE) and instructions for the client execution,
like the request in URL form (REQUESTS) and where to save the downloaded file
(DOWNLOADS).

run-server.sh Analog to the client, the server receives its test settings through envi-
ronment variables. Apart from the log-specific variables and the current testcase

17

Chapter 3: Measurement Framework Design

it has to parse the server’s root directory to hand files out from (WWW), the direc-
tory where certificates are stored (CERTS) and where to listen at (IP, PORT) to the
server executable.

setup-env.sh This script fetches the requirements for an implementation. One exam-
ple use case would be to install needed python libraries using pip for a python
implementation.

Using this structure the measurement framework can execute server and client in a
standardized way using environment variables. It does not matter what command line
flags the QUIC implementation developers use in their implementation as the run scripts
parse the test settings to the correct flags for the executable.

3.5 Supported QUIC and Environment Settings

As there are different settings applicable to QUIC, both on the QUIC libraries itselves,
to the operating system, as well as to the surrounding network environment, we split
up the placement of fine-tuning options in the following way.

The currently supported QUIC specific settings are applied directly in the client and
server runscript files, introduced in Section 3.4. This includes options for the specific
congestion control algorithm, or per-stream and connection-wide QUIC flow control lim-
its. This approach requires command-line flags for each of these settings in the server
and client executable, which may need to be patched in should the library not deliver a
suitable example implementation. These settings can then be changed using command-
line flags in the measurement framework execution, otherwise default settings will be
applied. OS settings like TCP and UDP buffer sizes are applied before each measure-
ment by accessing the test nodes directly, and should also be offered as command-line
arguments. Network settings that can be applied at each host are solved in the same
way. Intermediary hardware like routers and switches are currently not supported due
to the structure of the current testbed, which only allows for direct connections between
hosts. While this does limit network settings to solutions applicable to hosts directly,
e.g., manipulating link bandwidths in software with Linux traffic control, support for
network hardware would be possible if ssh is supported.

Currently implemented settings are the following.

• QUIC per-stream and connection-wide send and receive buffers

• link bandwidth using Linux traffic control

• AES hardware offloading

18

3.5 Supported QUIC and Environment Settings

Implementing additional settings, especially when they cover niche settings like only
enabling one single NIC offloading setting, takes effort and time to test and debug on
the side of maintainers. To allow users to quickly and flexibly implement additional
settings, we included the feature of flexible, generic scripts that can be given to the
measurement framework. These can then be executed right before and/or right after a
transmission to set and remove any settings a user might need. To allow these scripts to
be flexible and produce logged results, we export variables like the current log directory
on the machines, or information on the QUIC implementation like what role (client,
server) it currently fulfills. This way scripts can act on specific conditions, like running
a command on the QUIC server-side only and dump any output directly into the log
location of the current measurement execution.

19

Chapter 4

Evaluation

4.1 Testbed Introduction

This section aims to give an introduction to the measurement methodology is conducted
in terms of setup like the testbed and used machines, and to give a first observation how
QUIC transfer performance grows or shrinks according to the hardware capabilities of
different machines.

For the QUIC implementation, we settled for quiche due to reasons explained in Sec-
tion 2.1.5.

For this measurement, we aim to measure QUIC’s goodput of different machine pairs.
In our case, goodput is defined as the amount of time it takes to transfer a file of a
certain size, as explained in more detail in Section 2.2.1. Table 4.1 lists the different
machines used and their corresponding hardware capabilities. Figure 4.1 shows the
measured results. For each host pair, 20 goodput samples were captured, except for
cesis-nida, where we increased the sample size to 30, due to a limited filesystem size, to
counterbalance a shorter transfer duration and increase statistical significance.

Most further experiments were conducted on the solana-uniswap host pair.

4.2 Baseline

As an initial measurement, we establish a baseline, to which we can compare further
results. As metrics, we chose 1) the goodput that QUIC is able to achieve and 2) the
respective CPU utilization of QUIC server and client implementation. The following
detailed measurement description is applicable to subsequent measurements also, unless

Chapter 4: Evaluation

Table 4.1: Testbed node hardware specifications.

Solana,
Uniswap

Litecoin,
Litecoincash

Cesis,
Nida

Elva Valga

CPU
Model

Intel Xeon
E5-1650 v3 @

3.50 GHz

Intel Xeon
D-1518 @
2.20 GHz

Intel Xeon
E5-2640 v2 @

2.00 GHz

Intel Xeon
E5-2620 v3 @

2.40 GHz

Intel Xeon
E5-2630 v4 @

2.20 GHz

Cores per
Socket

6 4 8 6 10

Threads
per Core

2 2 2 2 2

RAM 64 GB 32 GB 32, 16 GB 32 GB 128 GB

AES Of-
floading

yes yes yes yes yes

cesis-nida litecoin-litecoincash elva-valga valga-elva solana-uniswap

Test Nodes (server-client)

0

500

1000

1500

2000

A
ch

ie
v
ed

G
o
o
d
p
u
t

[M
b
it

/
s]

Figure 4.1: Hardware host comparison

otherwise noted. The used QUIC implementation is quiche, running on client- and
server-side, with TCP Cubic as the congestion control algorithm. To identify how
QUIC performs at different link speeds with these two metrics, we aim to consecutively
increase the link bandwidth from 100 Mbit/s up to 3 Gbit/s by applying the Linux
traffic control tool [38] to the server NIC. The network topology consists of two hosts
connected by a single link, visualized in Figure 3.4. For each of the increasing link rate
values, 20 measurement repetitions have been conducted, each lasting longer than 60 s to
reduce the impact of the connection setup, as explained in Section 2.2.1. Furthermore,
all network offloading has been deactivated. Each repetition resulted in one goodput
value, calculated as explained in Section 2.2.1, and several CPU utilization data points,
captured using pidstat [28], pinned to the quiche process with a time interval of one

22

4.2 Baseline

100 300 500 700 1000 1500 2000 2400 3000 no-tc

Available Bandwidth [Mbit/s]

0

500

1000

1500

2000

G
o
o
d
p
u
t

[M
b
it

/
s]

25

50

75

100

C
P

U
U

ti
li
za

ti
o
n

[P
er

ce
n
t]

CPU Utilization Server

CPU Utilization Client

Goodput

Figure 4.2: Goodput and CPU utilization of QUIC server and client implementation quiche on as-
cending link bandwidth values. Link bandwidth values have been emulated using linux tc tbf [38] on
the server NIC.

second. Using this data, CPU utilization is then calculated as explained in Section 2.2.2.
The plotted goodput data points are the arithmetic mean of those 20 repetitions at
each set available bandwidth value, CPU utilization values of all repetitions of one set
available bandwidth value have been fed into a boxplot, with each outer whisker ending
at the 5th and 95th percentile, the box edges and middle representing the 25th, 75th and
50th percentile respectively, and the dots representing the arithmetic mean. The lighty
shaded area around the goodput marks the range of the goodput standard deviation.

Figure 4.2 shows the results of this baseline measurement. We can observe that the
achieved goodput of quiche keeps rising with link bandwidth increase, until the linear
growth stops at around 2000 Mbit/s and achieved goodput settles at around 1650 Mbit/s
to 1700 Mbit/s.

We also added measurements without Linux traffic control enabled, which can be seen
at the “no-tc” label. As its mean goodput is higher than the limit reached with tc, this
shows the cost associated with activated traffic control, in this case on the QUIC server.

To look at the linear growth up to a level of the goodput data points more closely, we
take a look at the link utilization, which we define as the ratio of achieved goodput
to available bandwidth. By calculating it for each available bandwidth value, we can
observe the results in Table 4.2. At available bandwidths below the maximum achieved

23

Chapter 4: Evaluation

100 500 1000 2000 3000

Available Bandwidth [Mbit/s]

100

500

1000

2000

3000

R
a
te

[M
b
it

/
s]

Goodput

Throughput

BW Limit

Figure 4.3: Goodput and throughput on ascending link bandwidth values. Link bandwidth values
have been emulated using linux tc tbf [38] on the server NIC.

Table 4.2: Link utilization values

Link Bandwidth Link Utilization
100 Mbit/s 85 %
500 Mbit/s 80 %

1000 Mbit/s 84 %
1500 Mbit/s 80 %
2000 Mbit/s 77 %
2200 Mbit/s 74 %
2400 Mbit/s 67 %
2600 Mbit/s 63 %

goodput, QUIC utilized the link around 80-85 %. Upon reaching the maximum, this
ratio keeps dropping as the goodput does not rise along with the available bandwidth.

QUIC is able to utilize the link up to 80-85 %, even at 100 Mbit/s, due to the key distinc-
tion of throughput and goodput explained in Section 2.2.1. The underlying NIC may
actually send the packets at the set available bandwidth rate, aka achieve a throughput
of the link bandwidth rate, however as we effectively calculate the goodput, by looking
at how long it takes to transfer a file of a certain size, which includes adding metadata
to the segments, packets, and frames, as well as the time it takes to transmit the bits of
our metadata, we end up with a link utilization value below 100 %. Figure 4.3 illustrates
this difference. We measured the goodput as explained above, as well as the throughput
by capturing the outgoing traffic of the server NIC facing the client. The measurement
setup and methodology in terms of measurement repetitions and transfer duration is

24

4.2 Baseline

Cry
pto

Pac
ke

t I/
O

I/
O

ACK+Reo
rd

eri
ng

Han
dsh

ak
e

Unmat
ch

ed

10

20

30

C
P

U
U

ti
li
za

ti
o
n

[P
er

ce
n
t]

500 Mbit/s

1000 Mbit/s

10 Gbit/s

(a) Server

Cry
pto

Pac
ke

t I/
O

I/
O

ACK+Reo
rd

eri
ng

Han
dsh

ak
e

Unmat
ch

ed

10

20

30 500 Mbit/s

1000 Mbit/s

10 Gbit/s

(b) Client

Figure 4.4: CPU utilization of different QUIC components for server and client at different link
bandwidths. 10 Gbit/s represents data without activated Linux traffic control.

identical to the explanation before. It can be observed that the traffic leaving the NIC
is higher than the calculated goodput, which confirms our goodput calculation in Sec-
tion 2.2.1 of goodput as a subset of the throughput. This means we can conclude that
QUIC was able to fully utilize lower link bandwidths, up to the ceiling when the CPU
core of the server in the transmission was fully utilized.

Returning to Figure 4.2, we can also observe that the CPU utilization on the server and
client rises with increasing link bandwidth rates. It is important to note that quiche
client and server implementations run as single-cored processes, each with one thread
for the transmission. For available bandwidth values up to 2000 Mbit/s, the server
CPU core quiche ran on was not fully saturated with ascending arithmetic mean values
of 50 to 70 %, until 1500 Mbit/s and around 90 % at 2000 Mbit/s. CPU utilization
values above 2000 Mbit/s cap out the server CPU core at 100 %. The quiche client
CPU core was maximally utilized around 75 % at bandwidth values above 2000 Mbit/s.
The fully utilized server CPU core indicates that the quiche goodput stagnation around
1700 Mbit/s is due to a server CPU bottleneck.

Further, we can observe highly varying CPU utilization values around 500 Mbit/s, both
on client and server. Due to the first indication of unusually high usage at this value,
higher than the utilization at 1000 Mbit/s, where we would expect higher values than
at 500 Mbit/s, we added more available bandwidth points around 500 Mbit/s. The
available bandwidth values at 300 and 700 Mbit/s too indicate a pattern of increased
CPU utilization on the server and client side. The following paragraph aims to add
more information to this issue.

Figure 4.4 displays the CPU utilization of the different functions associated with differ-
ent QUIC protocol components. We measured them with a ≈ 60 s transmission duration

25

Chapter 4: Evaluation

crypto

conn. setup/teardown

ACK + pkt ordering
packet I/O

hdr formatting
0

10

20

30

40

50

60
CP

U
 ti

m
e

(%
)

quant
quicly
picoquic
mvfst

crypto

conn. setup/teardown

ACK + pkt ordering
packet I/O

hdr formatting
0

10

20

30

40

50

CP
U

 ti
m

e
(%

)

quant
quicly
picoquic
mvfst

(a) Server

implementa-
language

omply
in

crypto

conn. setup/teardown

ACK + pkt ordering
packet I/O

hdr formatting
0

10

20

30

40

50

60

CP
U

 ti
m

e
(%

)

quant
quicly
picoquic
mvfst

crypto

conn. setup/teardown

ACK + pkt ordering
packet I/O

hdr formatting
0

10

20

30

40

50

CP
U

 ti
m

e
(%

)

quant
quicly
picoquic
mvfst

(b) Client

Figure 4.5: Yang et al. [5] QUIC protocol component CPU usage for quant, quicly, picoquic and mvfst,
directly used from [5].

using quiche, while capturing system activity using perf. The resulting call graph (a
chain of function names that have been executed) was matched to a regex list, and
matches to a certain component were counted. The plotted percentage numbers are
relative to the whole system activity to make results comparable, as the general CPU
utilization of the QUIC process does change as seen in Figure 4.2. We define the different
components of QUIC as the following:

Crypto Functions that surround encryption, e.g., Advanced Encryption Standard (AES),
ChaCha20, Authenticated Encryption with Associated Data (AEAD) or RSA.

Packet I/O Functions that deal with sending and receiving segments. Considering
QUIC, these are UDP read and write operations.

I/O Filesystem I/O and Linux file descriptor activity.

ACK & Reordering Activity of data structures that deal with ACK tracking and
segment reordering.

Handshake Functions dealing with connection establishment.

Unmatched All functions that could not be matched to one of the above.

We start off with QUIC on our 10 Gbit/s link, without Linux tc bandwidth limitations.
On the server, the most predominant part of the CPU time was spent on packet I/O
with 30 %. After it follow crypto functions with a CPU utilization of 10 %, and regular
I/O operations with 5 %. ACK and reordering protocol components used the CPU for
2.5 % of the measurement. QUIC on the client had a slightly higher portion of crypto
function CPU cost, but less cost associated with packet I/O, which was 15 % compared
to the 30 % on the server. The client also used more CPU time on filesystem I/O with
10 %, due to having to write the transmitted file to the disk. The ACK and reordering
cost is similar on server and client.

26

4.3 Comparison to TCP with TLS

Yang et al. [5], visible in Figure 5.5, also created a breakdown of CPU usage of QUIC
server and client for the QUIC implementations quant, quicly, picoquic and Facebook’s
mvfst, all written in C or C++. quant is not really comparable to the other implemen-
tation’s numbers, as in their work it was configured in kernel-bypass mode using netmap
[39], which changes the way packets are processed by for example reducing data copy
costs to the kernel by sharing buffers. In this work we focus on implementations send-
ing packets without any kernel-bypass techniques. The in-kernel implementations were
shown to reach a throughput of around 500 Mbit/s, and 300 Mbit/s with mvfst. These
implementations too had a CPU usage of crypto functions around 10 % to 13 % on the
server and slightly elevated CPU usage of crypto functions on the client, compared to
quiche on the 10 Gbit/s link. The packet I/O CPU usage of quiche is significantly lower,
on both client and server. Overall, the CPU usage relation of the different QUIC compo-
nents, dominated firstly by packet I/O and then crypto, is identical in our measurement
compared to the results of Yang et al.

When reminding ourselves of the baseline Figure 4.2, we noticed that quiche, when
being limited to the area of 500 Mbit/s, had a higher server and client CPU utilization
than at later stages like 1000 Mbit/s. In Figure 5.4, we additionally show the QUIC
component CPU utilization at the link bandwidths of 500 Mbit/s and 1000 Mbit/s. One
anomaly is the ACK and reordering CPU usage of the server at 500 Mbit/s with 15 %.
The range_search() function of the underlying RangeSet data structure, responsible
for ACK range tracking and based on BTreeMap, was triggering a high CPU utilization
at this link bandwidth value of 500 Mbit/s. For higher link bandwidths like 1000 Mbit/s,
which quiche was also able to fully utilize, or even native 10 Gbit/s, the CPU cost asso-
ciated with ACK tracking at the server lowered back down to 5 %. Without debugging
quiche in detail at this link speed, we cannot state the definitive reason for this behavior
at this point.

4.3 Comparison to TCP with TLS

As QUIC provides a secure, connection-oriented transport layer service, it is a direct
competitor to the current, widely adopted TCP+TLS stack. The early development
of QUIC was started by Google to improve user experience, particularly in terms of
the metric page load time [40]. While this web metric is important, and research has
been done on it specifically [3], [4], [7], [41], QUIC is also designed as a general-purpose
transport layer protocol. It thus has to compete against TCP not only on the web,
but also in situations with longer file transfers, which make for example the shorter

27

Chapter 4: Evaluation

tcp+tls quiche

Transport Layer

0

1000

2000

3000

4000
G

o
o
d
p
u
t

[M
b
it

/
s]

25

50

75

100

C
P

U
U

ti
li
za

ti
o
n

[P
er

ce
n
t]

CPU Utilization Server

CPU Utilization Client

Goodput

Figure 4.6: Goodput and CPU utilization of TCP with TLS and QUIC.

handshake a very small part of the overall transfer and puts more emphasis on its
performance in the congestion control avoidance phase.

We aim to measure the goodput performance, as well as the CPU utilization, of QUIC
compared to TCP with TLS on a 60 s+ transfer. We chose nginx (v1.18.0, built with
OpenSSL v1.1.1n) and wget (v1.21) as the TCP webserver and client of choice. They
negotiated an AES256 cipher using TLS 1.3, as did quiche. It can be noted that regard-
ing the transport layer, it is less critical what TCP application is chosen as the socket
interface and the underlying TCP implementation in the kernel are going to be identical
for all applications. QUIC on the other hand is provided as a userspace library, on top
of in-kernel UDP. TCP Cubic was the activated congestion control algorithm. Any kind
of transport layer NIC offloading is once again disabled.

Figure 4.6 shows the result of this measurement. With values closely above 4000 Mbit/s
TCP achieved more than double the goodput of quiche, which achieved about 2000 Mbit/s.
It was effectively able to transfer the same file as quiche in half the time. Identical to
quiche, the server CPU core that nginx ran on bottlenecks the transfer.

The fact that TCP with TLS uses the CPU more efficiently is not groundbreaking
news. The google paper of Langley et al. [42, Section 6.7] observed for Google QUIC, a
pre-IETF-standard version, a 3.5 times higher server CPU utilization at one point, and
reduced it to be 2 times higher after optimizations. They found a high cost of packet I/O,
and so did we. A reason for this cost based on the architecture of QUIC can be made

28

4.4 Packet Offloading

Table 4.3: Supplementary information on mean spent time in kernel- and userspace, and on context
switches for QUIC and TCP with TLS. Client numbers are not true averages but handpicked near-
median samples due to missing tool output. Captured using pidstat (see Section 2.4).

Kernelspace Time
of Total (in %)

Userspace Time
of Total (in %)

TCP+TLS server 71 29
QUIC server 52 48

TCP+TLS client 51 49
QUIC client 42 58

by recognizing QUICs position in the userspace, repeatedly triggering write and read
system calls to the UDP socket to send and receive small enough, MTU sized segments.
Each system call leads to a switch from user mode to kernel mode, giving control to the
system call handler [43, Section 1.6 “System Call”], which proceeds to copy the data
from the userspace buffer to kernelspace [44] before handing it off to its journey down
the protocol stack, ending at a Direct Memory Access (DMA) transfer to the NIC. Each
process switch, or context switch, to the system call handler leads to a swap of register
content, of the memory map in the MMU and to memory cache invalidations, leading
it to be reloaded when entering and exiting the kernel [43, Section 2.4 “Scheduling”]. A
lot of context switches per second can thus require additional CPU time. TCP should
require less such system calls, as it receives a longer bytestream, which it slices into valid
segments itself, in kernelspace. Another argument consists in the fact, that ACKs in
QUIC are encrypted and have to be decrypted to be read, while TCP employs cleartext
acknowledgments [45, Section 7]. Table 4.3 provides supplementary information on the
activity of the TCP and QUIC servers, where we see that the QUIC server spent more
of its time in the userspace compared to TCP.

4.4 Packet Offloading

While the goal of this work is not to extensively analyze the reduction of CPU load
using techniques like custom NIC offloading for QUIC, for example done by Yang et
al. [5], we nevertheless want to show the impact of already existing NIC settings that
suggest a CPU load reduction for host systems. Section 2.3 introduced all network
offloading options seen in this section, options applicable to both TCP and/or UDP.
As QUIC utilizes UDP to encapsulate and send its own QUIC segments, as explained
in Section 2.1.1, we aim to show the impact of offloading techniques applicable to UDP
and therefore, to QUIC.

29

Chapter 4: Evaluation

Off Only GRO Only GSO All On

NIC Offloading Options

0

500

1000

1500

2000

G
o
o
d
p
u
t

[M
b
it

/
s]

Mean: 1983 Mean: 2063 Mean: 2054 Mean: 2066

0

25

50

75

100

C
P

U
U

ti
li
za

ti
o
n

[P
er

ce
n
t]

CPU Utilization Server

CPU Utilization Client

Goodput

Figure 4.7: Goodput and CPU utilization of QUIC when using different, existing offloading options.

Following previous measurement designs, we capture the performance metric goodput
(see Section 2.2.1) under different activated offloading options. We additionally track
the CPU utilization of the core that quiche ran on for both server and client.

Figure 4.7 shows the resulting impact of different UDP offloading options on QUIC.
Goodput mean values have been explicitly noted on the plot itself. When all offloading
options are deactivated, we can see quiche achieving a mean goodput of 1983 Mbit/s.
As seen in previous measurements, the server CPU core quiche was executed on reaches
a utilization of 100 %, while the quiche client CPU core is utilized for around 70 %.

Then we activate only Generic Receive Offloading (GRO), a receive-side software offload
on both server and client at once. We can observe a slight increase in the mean goodput
by 80 Mbit/s, of our 20 goodput measurements in total for each offloading option. The
CPU utilization on server and client side stays constant while observing this slight jump
in mean goodput. It seems unusual to see a higher goodput when activating an offload
supporting the processing of arriving segments, as we know that the bottleneck resides
in sending data segments at the server, indicated by a fully utililized CPU core of the
server in the “Off” setting, and from the baseline plot in Section 4.2. One hypothesis
could be that GRO reduces the strain on the server CPUs processing of the arriving
UDP QUIC ACK segments.

Next, we solely activated GSO, a software offload impacting segmentation when sending
segments. Similar to GRO, GSO increased the mean goodput slightly to 2054 Mbit/s. It
seems plausible that a sender-limited transfer, indicated by a once again fully saturated

30

4.4 Packet Offloading

Off Only GRO Only GSO Only LRO Only TSO All On

NIC Offloading Options

0

1750

3500

5250

7000

G
o
o
d
p
u
t

[M
b
it

/
s]

Mean:4101 Mean:4074 Mean:4084 Mean:3994 Mean:4424 Mean:5745

0

25

50

75

100

C
P

U
U

ti
li
za

ti
o
n

[P
er

ce
n
t]

CPU Utilization Server

CPU Utilization Client

Goodput

Figure 4.8: Goodput and CPU utilization of TCP with TLS when using different, existing NIC
offloading options.

CPU core on the QUIC server, is able to increase goodput by reducing the cost associated
with sending segments. Upon activating both GRO and GSO, we see no further rise in
goodput, compared to the previous, solo activation of each offloading option. It merely
achieved a mean goodput of 2066 Mbit/s, an increase of similar order of significance,
although both solo options increased the mean goodput, but a higher first quartile in
the goodput samples indicates a goodput increase in more samples than when using
GRO or GSO on their own. Nevertheless, the total increase is relatively low and seems
to lie in the fact that both GRO and GSO are software offloads, which do reduce the
burden on the CPU but do not relieve the CPU of the processing altogether.

To be able to better classify the impact of existing offloading techniques, we compare
the previous results to the impact on TCP with TLS transmissions. TLS is added to
have a better comparison, as QUIC enforces the usage of encryption with TLS 1.3.
Figure 4.8 shows the gathered results. We already saw the result of the “Off” setting in
the previous chapter – the server CPU core nginx ran on is fully saturated, and the mean
goodput settles around 4000 Mbit/s. GSO, the software segmentation offload, seems to
have little to no impact on TCP. On the other hand its receive-side equivalent, GRO,
reduced the mean client CPU core utilization by a significant amount by roughly 10 %.
Also, the majority of client CPU utilization samples is grouped around the new mean
CPU utilization value, indicated by the first and third quartile borders of the boxplot.
This is a major reduction compared to the impact GRO had on QUIC.

31

Chapter 4: Evaluation

25 50 75 100 125 150 175 100000

Max. Stream Send/Receive Window Size [KB]

0

500

1000

1500

2000
G

o
o
d
p
u
t

[M
b
it

/
s]

25

50

75

100

C
P

U
U

ti
li
za

ti
o
n

[P
er

ce
n
t]

CPU Utilization Server

CPU Utilization Client

Goodput

Figure 4.9: Goodput and CPU utiliation of QUIC with incrementing, per-stream send and receive
window sizes.

For complete coverage of default network offloading possibilities, we also included the
TCP-specific techniques LRO and TSO, first introduced in Section 2.3. The usage
of LRO exclusively, mysteriously reduced the achieved mean goodput slightly, but also
reduced the client CPU utilization, indicated by the mean and range of the first and third
quartile box edges. TSO on the contrary is the first offloading option to increase the
goodput of TCP by a noticeable amount of roughly 11 %. Additionally, the relationship
of client and server CPU utilization shifted: the client CPU core is now fully utilized,
and the mean server core utilization settles at around 72 %, leading to the client core
bottlenecking the transfer now. This could be accounted to the fact that TSO is a
hardware offload, reducing the CPU burden of sender-side segmentation, which is now
handled by the NIC. The combination of all offloading techniques accessible to TCP
yields an increased mean goodput of 40 %, at 5745 Mbit/s compared to deactivating all
options (“Off”). This additional jump from TSO only to the activation of all options
could be explained by a reduced CPU utilization on the receiving client-side through
GRO and LRO.

4.5 Flow Control

Although QUIC’s flow control is in principle similar to TCP’s, it does employ changes,
like in the protocol definition itself with a different protocol header structure compared
to TCP, or in the way QUIC is delivered – while the IETF drafts define the base
structure and functionality of QUIC, implementations do have room for adjustments in
e.g., flow control receive window update frequency, as explained in Section 2.1.4. This

32

4.5 Flow Control

is quite a new situation, triggered by the design decision of QUIC as a userspace library,
leading to a landscape of QUIC implementations, each with potentially different minor
tuning in topics like flow control. This issue did not arise with TCP, supported by the
fact that each operating system only has one implementation in the kernel.

We aim to observe the impact of incremented per-stream maximum send and receive
windows on 1) the goodput and 2) the server and client CPU utilization. Due to our
focus on single-stream transfers, we exclude the interplay of connection-wide flow control
limits and per-stream flow control limits. Send and receive windows are set to a specific
value both at once. For each window size value, 10 measurement repetitions were
conducted, each resulting in one goodput value and several CPU utilization samples.
All samples of goodput and CPU utilization belonging to one window size value then are
aggregated and, each, fed into boxplots with the same edge definitions as in Section 4.2.

Figure 4.9 shows the changing goodput and CPU utilization on incremented window size,
in form of both send and receive window. Starting off with a situation that is definitely
not limited by flow control, by looking at a window size of 100 MB, or 100 000 kB on the
far right on this x scale, we can see a goodput closely above 2000 Mbit/s as already known
from our baseline measurement in Section 4.2. At 125 kB we can see it reaching our
empirically determined goodput cap of 2000 Mbit/s for the first time. At window sizes
below 125 kB, we see a reduced goodput, which rises from the lowest point, at 12.5 kB
with a mean goodput of 600 Mbit/s, with each incremental window size increase. While
the client CPU utilization stays steady at 70 %, the server CPU utilization is lower with
reduced window sizes, e.g., with 70 % at a window size of 25 kB, and rises up to the
usual 100 % starting at a window size of 125 kB.

At window sizes in the range of 25 kB to 62.5 kB the mean CPU utilization of client and
server sees a slight increase, with a local peak at 37.5 kB. We suspect a data structure
CPU usage increase like in Section 4.2, but cannot confirm it at this moment.

As the measurement framework implements the custom setting of window sizes, it is a
step towards flow control comparisons, which, as stated in Section 2.1.4, can be different
from QUIC implementation to QUIC implementation, and not regulated by a unifying
RFC. Observing the component cost of ACK tracking and flow control under different
window sizes could also form an additional, future experiment over different QUIC
implementations.

33

Chapter 4: Evaluation

AES w/o Offload AES ChaCha20

Crypto Option

0

250

500

750

1000

G
o
o
d
p
u
t

[M
b
it

/
s]

25

50

75

100

C
P

U
U

ti
li
za

ti
o
n

[P
er

ce
n
t]

CPU Utilization Server

CPU Utilization Client

Goodput

Figure 4.10: Goodput and CPU utilization of AES256 and ChaCha20 in QUIC.

4.6 Crypto

The TLS 1.3 specification RFC8446 [46] defines the list of required ciphers
(TLS_AES_128_GCM_SHA256) and recommended ciphers (TLS_AES_256_GCM_SHA384, now
abbreviated with AES256; TLS_CHACHA20_POLY1305_SHA256, now abbreviated with
ChaCha20) ciphers used in QUIC.

We aim to measure the metrics 1) goodput and 2) CPU utilization of client and server of
the ciphers AES256 and ChaCha20 available in quiche. Out of interest we additionally
added the option of AES without hardware support. Instead of the usual host pair, we
measured these results on the litecoin-litecoincash host pair described in Section 4.1.
They have lower CPU frequencies, which should reduce the achieved goodput in the
following results. For each cipher option, 10 measurement repetitions were conducted,
each resulting in one goodput value (defined in Section 2.2.1) and several CPU utiliza-
tion samples (described in Section 2.2.2). All samples of goodput and CPU utilization
belonging to one cipher then are aggregated and, each, is fed into boxplots with the
same edge definitions as in Section 4.2.

Figure 4.10 shows the result of this measurement. We can see similar mean goodput
values for both AES256 and ChaCha20 at 850 Mbit/s, while AES256 without hardware
support lags behind at 630 Mbit/s. The CPU utilization of server and client of AES256
and ChaCha20 reside at a similar level of 75 %. Considering the mean goodput, AES256
with hardware support and ChaCha20 achieve the same result.

34

4.6 Crypto

Cry
pto

Pac
ke

t I/
O

I/
O

ACK+Reo
rd

eri
ng

Han
dsh

ak
e

Unmat
ch

ed

10

20

30

40

C
P

U
U

ti
li
za

ti
o
n

[P
er

ce
n
t]

ChaCha20

AES w/o Offload

AES

(a) Server

Cry
pto

Pac
ke

t I/
O

I/
O

ACK+Reo
rd

eri
ng

Han
dsh

ak
e

Unmat
ch

ed

10

20

30

40 ChaCha20

AES w/o Offload

AES

(b) Client

Figure 4.11: CPU utilization of QUIC components when using AES256 or ChaCha20.

We saw that the general CPU utilization of AES256 and ChaCha20 for server and
client looked very similar, but this does not say anything about how each cipher option
influences the time spent on cryptographic functions in QUIC. For each cipher option a
single 60 s transmission using quiche has been conducted while capturing system activity
using perf. The definition of each QUIC component has been explained in Section 4.2. A
possible improvement would be to calculate a mean CPU utilization of each component
by repeating this measurement multiple times and averaging the results, for even more
reproducible results, nevertheless this also shows the relations of the different QUIC
components.

Figure 4.11 shows the CPU utilization of each QUIC component for AES256, ChaCha20
and AES256 without hardware support. We can observe ChaCha20 and AES256 with-
out hardware support spending a relatively large part of the CPU time on crypto func-
tions, where AES256 without hardware support spends 5 %, on the server, and 8 %,
on the client, more time on functions associated with cryptography than ChaCha20.
ChaCha20 does spend 10 % more CPU time for packet I/O on the server compared to
both AES256 options. AES256 with hardware support on the other hand only spends
a minor fraction of its CPU time on crypto, with about 5 % on server and client. The
reason for this is the hardware support embedded into modern CPUs, which allows the
CPU to offload computation onto special-purpose hardware.

35

Chapter 5

Related Work

Measurement Framework. We based our measurement framework for reproducible
QUIC measurements directly on the QUIC Interop Runner [8]. It is a framework in
which different QUIC client and server implementations communicate with each other
in various tests. Implementations are tested inside several layers of virtualization, as
implementations are provided inside docker containers, with a network environment
simulated using ns-3, all on the same machine. We changed the codebase to suit our
need for bare metal performance, with it now being capable to orchestrate tests between
machines in our testbed. We also added more options for fine-grained behavior of QUIC
implementations, for example by letting the user set flow control variables. Lastly, we
also implemented TCP with TLS into the framework.

QUIC Measurements. Yang et al. [5] compared the QUIC component cost of four
different C/C++ implementations conforming to IETF draft version 27 in a single
connection scenario on a 10 Gbit/s link. They found that the most CPU time was
spent on packet I/O (35-55 %), followed by crypto operations (10-13 %). They also
configured one implementation in kernel-bypass mode using netmap, which then reached
a 10x higher average throughput compared to the rest. We noticed a very small filesize
definition of 50 MB for their tests, which would lead to a transfer duration in the area
of one second. This leads to the connection setup having a relatively large impact on
the throughput result. While they did not perform direct comparisons to TCP, such
a short transfer would seem to favor QUIC and its shorter handshake. It may be true
that such filesizes are realistic on the web, but we argue that for a complete picture of
a general-purpose transport layer protocol, QUIC also has to undergo comparisons in
transfers that are more dictated by the congestion avoidance phase. In their conclusion,
they mention that the performance impact of UDP Generic Segmentation Offloading

Chapter 5: Related Work

(GSO) was not able to be investigated, a topic which we could shed some light on.
Measurements were performed using simple bash scripts. We implemented a more
overarching measurement framework, which is able to conduct a large number of flexible,
reproducible measurements on all QUIC implementations on bare metal. Additionally,
they did mention that they wanted to focus on implementations written in a low-level
language, but did not include the low-level implementation quiche by Cloudflare written
in Rust, which according to internet scan results by Zirngibl et al. may have been the
most widespread QUIC implementation at the creation of this work. We aim to base
our featured measurements on it, also because it achieved the highest goodput in our
tests.

Shreedhar et al. tested QUIC in several web use cases like page visits, cloud stor-
age transfers, and video workloads on the public internet. They found out that QUIC
achieved a higher mean throughput than TCP+TLS for smaller filesizes in Google cloud
storage transfers (< 20 MB) due to the shorter handshake highly impacting the transfer.
For larger filesizes, TCP performed better, and in general, QUIC showed a higher CPU
usage. Their used QUIC implementation was lsquic, which, while being written in C,
in our tests did lag behind the goodput performance of quiche by Cloudflare. Measure-
ments on the public internet are inherently not very reproducible, as the intermediary
paths are not predictable, and also depend on the actual location. While QUIC’s be-
havior in this black box may also have to be tested, we focus our efforts exclusively on
measurements in testbeds, with clear variables. They also did show CPU utilization
in form of flamegraphs, we took it one step further and present the CPU utilization of
each component after assigning functions to specific QUIC functionality. This approach
allows for easier, visual comparisons.

38

Chapter 6

Conclusion

In Chapter 1 we introduced the problem of little information on the performance of
QUIC in settings where a user would likely turn to TCP, like longer file transfers.
These are situations QUIC also has to face as a general-purpose transport layer protocol,
although it was first introduced to improve user experience specifically on the web [40].

We saw that QUIC was able to fill lower bandwidths well, although it did show unex-
pectedly high CPU utilization at certain, low link bandwidth values. The limiting peer
was the QUIC sender, while TCP transfers with NIC offloads proved the client to be the
limiting factor. We learned, that TCP was more than twice as fast as QUIC in transfers
in the one-minute range in terms of goodput, and three times as fast with default NIC
offloading options for both QUIC and TCP. We identified packet I/O (30 %) to be the
biggest factor in the server CPU usage of QUIC, most likely due to the context switch-
ing costs associated with frequent system calls, and the required memory-to-memory
data copy from user to kernelspace. This was followed by the cost of cryptography
operations (10 %) on the server. We argue that a transport layer user aiming to achieve
high throughput on big transfers in terms of filesize is at the moment better advised to
make use of TCP, until packet I/O cost reduction in form of segmentation offloads for
QUIC are available. Work on segmentation or crypto offload is important and has been
started, featuring the works of Yang et al. [5] for crypto offload and Hay et al. [1] for
crypto and segmentation offload.

All these results with varying QUIC and OS variables were obtained in an automated
and reproducible way, by extending the QUIC Interop Runner for use in measurements
without virtualization, on physically distinct machines. As it also allows for direct com-
parisons between different implementations, future work could make use of its capabil-

ities to research the differences in implementations, that are not covered by a unifying
draft, like flow control update frequency or the delay of acknowledgments. For work on
these implementation differences we want to mention [19], [47], [48] for flow control and
ACK frequency algorithm categorization and performance research.

40

Chapter A

Appendix

A.1 List of acronyms

TCP Transmission Control Protocol
UDP User Datagram Protocol
POS Plain Orchestrating Service
IPMI Intelligent Platform Management Interface
PXE Preboot Execution Environment
OS Operating System
REST Representational State Transfer
NIC Network Interface Card
API Appliation Programming Interface
ACK acknowledgment
BDP bandwidth-delay product
RTT round-trip time
BB bottleneck bandwidth
TLS Transport Layer Security
GRO Generic Receive Offloading
GSO Generic Segmentation Offloading
LRO Large Receive Offloading
TSO TCP Segmentation Offloading
UFO UDP Fragmentation Offload
PMTU Path Maximum Transfer Unit
AEAD Authenticated Encryption with Associated Data
AES Advanced Encryption Standard

Chapter A: Appendix

TLS Transport Layer Security
DMA Direct Memory Access
SCTP Stream Control Transmission Protocol

42

Bibliography

[1] J. Hay, M. Machnikowski, G. Bowers, N. Wochtman, J. Muniak, and M. Deval,
“Accelerating QUIC via Hardware Offloads through a Socket Interface”, in The
Technical Conference on Linux Networking (Netdev), 2019.

[2] K. Wolsing, J. Rüth, K. Wehrle, and O. Hohlfeld, “A Performance Perspective
on Web Optimized Protocol Stacks: TCP+TLS+HTTP/2 vs. QUIC”, CoRR,
vol. abs/1906.07415, 2019. arXiv: 1906 . 07415. [Online]. Available: http : / /
arxiv.org/abs/1906.07415.

[3] P. Megyesi, Z. Krämer, and S. Molnár, “How Quick is QUIC?”, in 2016 IEEE
International Conference on Communications (ICC), 2016, pp. 1–6. doi: 10 .
1109/ICC.2016.7510788.

[4] S. Cook, B. Mathieu, P. Truong, and I. Hamchaoui, “QUIC: Better for What and
for Whom?”, in 2017 IEEE International Conference on Communications (ICC),
2017, pp. 1–6. doi: 10.1109/ICC.2017.7997281.

[5] X. Yang, L. Eggert, J. Ott, S. Uhlig, Z. Sun, and G. Antichi, “Making quic quicker
with nic offload”, in Proceedings of the Workshop on the Evolution, Performance,
and Interoperability of QUIC, ser. EPIQ ’20, Virtual Event, USA: Association
for Computing Machinery, 2020, 21–27, isbn: 9781450380478. doi: 10 . 1145 /
3405796.3405827. [Online]. Available: https://doi.org/10.1145/3405796.
3405827.

[6] D. Saif, C. Lung, and A. Matrawy, “An Early Benchmark of Quality of Experience
Between HTTP/2 and HTTP/3 using Lighthouse”, CoRR, vol. abs/2004.01978,
2020. arXiv: 2004.01978. [Online]. Available: https://arxiv.org/abs/2004.
01978.

[7] A. Yu and T. A. Benson, “Dissecting performance of production quic”, in Pro-
ceedings of the Web Conference 2021, ser. WWW ’21, Ljubljana, Slovenia: As-
sociation for Computing Machinery, 2021, 1157–1168, isbn: 9781450383127. doi:
10.1145/3442381.3450103. [Online]. Available: https://doi.org/10.1145/
3442381.3450103.

https://arxiv.org/abs/1906.07415
http://arxiv.org/abs/1906.07415
http://arxiv.org/abs/1906.07415
https://doi.org/10.1109/ICC.2016.7510788
https://doi.org/10.1109/ICC.2016.7510788
https://doi.org/10.1109/ICC.2017.7997281
https://doi.org/10.1145/3405796.3405827
https://doi.org/10.1145/3405796.3405827
https://doi.org/10.1145/3405796.3405827
https://doi.org/10.1145/3405796.3405827
https://arxiv.org/abs/2004.01978
https://arxiv.org/abs/2004.01978
https://arxiv.org/abs/2004.01978
https://doi.org/10.1145/3442381.3450103
https://doi.org/10.1145/3442381.3450103
https://doi.org/10.1145/3442381.3450103

[8] M. Seemann and J. Iyengar, “Automating quic interoperability testing”, in Pro-
ceedings of the Workshop on the Evolution, Performance, and Interoperability of
QUIC, ser. EPIQ ’20, Virtual Event, USA: Association for Computing Machin-
ery, 2020, 8–13, isbn: 9781450380478. doi: 10.1145/3405796.3405826. [Online].
Available: https://doi.org/10.1145/3405796.3405826.

[9] J. Iyengar and M. Thomson, “QUIC: A UDP-Based Multiplexed and Secure Trans-
port”, RFC Editor, RFC 9000, 2021.

[10] M. Thompson and S. Turner, Using TLS to Secure QUIC, RFC 9001, May 2021.
doi: 10.17487/RFC9001. [Online]. Available: https://www.rfc-editor.org/
info/rfc9001.

[11] J. Iyengar and I. Swett, QUIC Loss Detection and Congestion Control, RFC 9002,
May 2021. doi: 10.17487/RFC9002. [Online]. Available: https://www.rfc-
editor.org/info/rfc9002.

[12] J. Postel, “Transmission Control Protocol”, RFC Editor, RFC 793, 1981. doi:
10.17487/RFC0793.

[13] A. Joseph, T. Li, Z. He, Y. Cui, and L. Zhang, “A Comparison between SCTP
and QUIC”, Internet Engineering Task Force, Internet-Draft draft-joseph-quic-
comparison-quic-sctp-00, Mar. 2018, Work in Progress, 24 pp. [Online]. Available:
https://datatracker.ietf.org/doc/draft- joseph- quic- comparison-
quic-sctp/00/.

[14] J. Zirngibl, P. Buschmann, P. Sattler, B. Jaeger, J. Aulbach, and G. Carle, “It’s
over 9000: Analyzing early quic deployments with the standardization on the hori-
zon”, in Proceedings of the 21st ACM Internet Measurement Conference, ser. IMC
’21, Virtual Event: Association for Computing Machinery, 2021, 261–275, isbn:
9781450391290. doi: 10.1145/3487552.3487826. [Online]. Available: https:
//doi-org.eaccess.ub.tum.de/10.1145/3487552.3487826.

[15] M. Belshe, R. Peon, and M. Thomson, “Hypertext Transfer Protocol Version 2
(HTTP/2)”, RFC Editor, RFC 7540, 2015. doi: 10.17487/RFC7540.

[16] T. Dierks and E. Rescorla, The Transport Layer Security (TLS) Protocol Version
1.2, RFC 5246, Aug. 2008. doi: 10.17487/RFC5246. [Online]. Available: https:
//www.rfc-editor.org/info/rfc5246.

[17] V. Jacobson, R. Braden, and D. Borman, TCP Extensions for High Performance,
RFC 1323, May 1992. doi: 10.17487/RFC1323. [Online]. Available: https://
www.rfc-editor.org/rfc/rfc1323.html.

[18] R. Schrage, G. Forget, R. Geib, and B. Constantine, Framework for TCP Through-
put Testing, RFC 6349, Aug. 2011. doi: 10.17487/RFC6349. [Online]. Available:
https://www.rfc-editor.org/info/rfc6349.

44

https://doi.org/10.1145/3405796.3405826
https://doi.org/10.1145/3405796.3405826
https://doi.org/10.17487/RFC9001
https://www.rfc-editor.org/info/rfc9001
https://www.rfc-editor.org/info/rfc9001
https://doi.org/10.17487/RFC9002
https://www.rfc-editor.org/info/rfc9002
https://www.rfc-editor.org/info/rfc9002
https://doi.org/10.17487/RFC0793
https://datatracker.ietf.org/doc/draft-joseph-quic-comparison-quic-sctp/00/
https://datatracker.ietf.org/doc/draft-joseph-quic-comparison-quic-sctp/00/
https://doi.org/10.1145/3487552.3487826
https://doi-org.eaccess.ub.tum.de/10.1145/3487552.3487826
https://doi-org.eaccess.ub.tum.de/10.1145/3487552.3487826
https://doi.org/10.17487/RFC7540
https://doi.org/10.17487/RFC5246
https://www.rfc-editor.org/info/rfc5246
https://www.rfc-editor.org/info/rfc5246
https://doi.org/10.17487/RFC1323
https://www.rfc-editor.org/rfc/rfc1323.html
https://www.rfc-editor.org/rfc/rfc1323.html
https://doi.org/10.17487/RFC6349
https://www.rfc-editor.org/info/rfc6349

[19] R. Marx, J. Herbots, W. Lamotte, and P. Quax, “Same standards, different de-
cisions: A study of quic and http/3 implementation diversity”, in Proceedings
of the Workshop on the Evolution, Performance, and Interoperability of QUIC,
ser. EPIQ ’20, Virtual Event, USA: Association for Computing Machinery, 2020,
14–20, isbn: 9781450380478. doi: 10.1145/3405796.3405828. [Online]. Available:
https://doi-org.eaccess.ub.tum.de/10.1145/3405796.3405828.

[20] J. Iyengar and I. Swett, “QUIC Acknowledgement Frequency”, Internet Engineer-
ing Task Force, Internet-Draft draft-ietf-quic-ack-frequency-02, Jul. 2022, Work
in Progress, 13 pp. [Online]. Available: https://datatracker.ietf.org/doc/
draft-ietf-quic-ack-frequency/02/.

[21] QUIC Working Group Implementations Overview, https://github.com/quicwg/base-
drafts/wiki/Implementations.

[22] A. Ghedini and R. Lalkaka. “HTTP/3: the past, the present, and the future”.
Accessed: 2022-10-14. (), [Online]. Available: https://blog.cloudflare.com/
http3-the-past-present-and-future/.

[23] S. Floyd, Metrics for the Evaluation of Congestion Control Mechanisms, RFC
5166, Mar. 2008. doi: 10.17487/RFC5166. [Online]. Available: https://www.rfc-
editor.org/info/rfc5166.

[24] G. Fairhurst, T. Jones, M. Tüxen, I. Rüngeler, and T. Völker, Packetization
Layer Path MTU Discovery for Datagram Transports, RFC 8899, Sep. 2020. doi:
10.17487/RFC8899. [Online]. Available: https://www.rfc-editor.org/rfc/
rfc8899.

[25] R. Hat. “NIC Offloads”. Accessed: 2022-10-09. (), [Online]. Available: https :
//access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/
html/performance_tuning_guide/network-nic-offloads.

[26] kernel.org. “Segmentation Offloads”. Accessed: 2022-10-09. (), [Online]. Available:
https://www.kernel.org/doc/html/latest/networking/segmentation-
offloads.html.

[27] J. Corbet. “Large Receive Offload”. Accessed: 2022-10-09. (2007), [Online]. Avail-
able: https://lwn.net/Articles/243949/.

[28] S. Godard, Pidstat(1) linux user’s manual, Jul. 2020.
[29] T. L. D. Project. “/proc”. Accessed: 2022-09-06. (), [Online]. Available: https:

//tldp.org/LDP/Linux-Filesystem-Hierarchy/html/proc.html.
[30] Quiche, https://github.com/cloudflare/quiche.
[31] LiteSpeed QUIC, https://github.com/litespeedtech/lsquic.
[32] mvfst, https://github.com/facebookincubator/mvfst.
[33] MsQuic, https://github.com/microsoft/msquic.
[34] QUIC Interop Runner, https://github.com/marten-seemann/quic-interop-runner.

45

https://doi.org/10.1145/3405796.3405828
https://doi-org.eaccess.ub.tum.de/10.1145/3405796.3405828
https://datatracker.ietf.org/doc/draft-ietf-quic-ack-frequency/02/
https://datatracker.ietf.org/doc/draft-ietf-quic-ack-frequency/02/
https://blog.cloudflare.com/http3-the-past-present-and-future/
https://blog.cloudflare.com/http3-the-past-present-and-future/
https://doi.org/10.17487/RFC5166
https://www.rfc-editor.org/info/rfc5166
https://www.rfc-editor.org/info/rfc5166
https://doi.org/10.17487/RFC8899
https://www.rfc-editor.org/rfc/rfc8899
https://www.rfc-editor.org/rfc/rfc8899
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/performance_tuning_guide/network-nic-offloads
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/performance_tuning_guide/network-nic-offloads
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/performance_tuning_guide/network-nic-offloads
https://www.kernel.org/doc/html/latest/networking/segmentation-offloads.html
https://www.kernel.org/doc/html/latest/networking/segmentation-offloads.html
https://lwn.net/Articles/243949/
https://tldp.org/LDP/Linux-Filesystem-Hierarchy/html/proc.html
https://tldp.org/LDP/Linux-Filesystem-Hierarchy/html/proc.html

[35] “Docker”. Accessed: 2022-10-14. (), [Online]. Available: https://www.docker.
com/.

[36] M. T. Chung, N. Quang-Hung, M.-T. Nguyen, and N. Thoai, “Using Docker
in high performance computing applications”, in 2016 IEEE Sixth International
Conference on Communications and Electronics (ICCE), 2016, pp. 52–57. doi:
10.1109/CCE.2016.7562612.

[37] S. Gallenmüller*, D. Scholz*, H. Stubbe, and G. Carle, “The pos Framework: A
Methodology and Toolchain for Reproducible Network Experiments”, in The 17th
International Conference on emerging Networking EXperiments and Technologies
(CoNEXT ’21), Munich, Germany (Virtual Event), Dec. 2021. doi: 10.1145/
3485983.3494841.

[38] B. Huber, Tc(8) linux user’s manual, Dec. 2001.
[39] “netmap”. Accessed: 2022-10-14. (), [Online]. Available: https://github.com/

luigirizzo/netmap.
[40] Google. “QUIC, a multiplexed transport over UDP”. Accessed: 2022-10-14. (),

[Online]. Available: https://www.chromium.org/quic/.
[41] K. Nepomuceno, I. N. d. Oliveira, R. R. Aschoff, et al., “QUIC and TCP: A

Performance Evaluation”, in 2018 IEEE Symposium on Computers and Commu-
nications (ISCC), 2018, pp. 00 045–00 051. doi: 10.1109/ISCC.2018.8538687.

[42] A. Langley, A. Riddoch, A. Wilk, et al., “The QUIC Transport Protocol: De-
sign and Internet-Scale Deployment”, in Proceedings of the Conference of the
ACM Special Interest Group on Data Communication, ser. SIGCOMM ’17, Los
Angeles, CA, USA: Association for Computing Machinery, 2017, 183–196, isbn:
9781450346535. doi: 10.1145/3098822.3098842. [Online]. Available: https:
//doi-org.eaccess.ub.tum.de/10.1145/3098822.3098842.

[43] A. S. Tanenbaum, Modern Operating Systems, Third. Pearson Education Inc.,
2009.

[44] IBM. “Know your TCP system call sequences”. Accessed: 2022-10-14. (2017), [On-
line]. Available: https://developer.ibm.com/articles/au-tcpsystemcalls/.

[45] T. Shreedhar, R. Panda, S. Podanev, and V. Bajpai, “Evaluating QUIC Perfor-
mance over Web, Cloud Storage and Video Workloads”, IEEE Transactions on
Network and Service Management, pp. 1–1, 2021. doi: 10.1109/TNSM.2021.
3134562. [Online]. Available: https://doi.org/10.1109/TNSM.2021.3134562.

[46] E. Rescola, The Transport Layer Security (TLS) Protocol Version 1.3, RFC 8446,
Aug. 2018. doi: 10.17487/RFC8446. [Online]. Available: https://www.rfc-
editor.org/info/rfc8446.

46

https://www.docker.com/
https://www.docker.com/
https://doi.org/10.1109/CCE.2016.7562612
https://doi.org/10.1145/3485983.3494841
https://doi.org/10.1145/3485983.3494841
https://github.com/luigirizzo/netmap
https://github.com/luigirizzo/netmap
https://www.chromium.org/quic/
https://doi.org/10.1109/ISCC.2018.8538687
https://doi.org/10.1145/3098822.3098842
https://doi-org.eaccess.ub.tum.de/10.1145/3098822.3098842
https://doi-org.eaccess.ub.tum.de/10.1145/3098822.3098842
https://developer.ibm.com/articles/au-tcpsystemcalls/
https://doi.org/10.1109/TNSM.2021.3134562
https://doi.org/10.1109/TNSM.2021.3134562
https://doi.org/10.1109/TNSM.2021.3134562
https://doi.org/10.17487/RFC8446
https://www.rfc-editor.org/info/rfc8446
https://www.rfc-editor.org/info/rfc8446

[47] E. Volodina and E. P. Rathgeb, “Flow control in the context of the multiplexed
transport protocol quic”, in 2020 IEEE 45th Conference on Local Computer Net-
works (LCN), 2020, pp. 473–478. doi: 10.1109/LCN48667.2020.9314796.

[48] E. Volodina and E. P. Rathgeb, “Impact of ack scaling policies on quic perfor-
mance”, in 2021 IEEE 46th Conference on Local Computer Networks (LCN), 2021,
pp. 41–48. doi: 10.1109/LCN52139.2021.9524947.

47

https://doi.org/10.1109/LCN48667.2020.9314796
https://doi.org/10.1109/LCN52139.2021.9524947

	Introduction
	Background
	QUIC
	Placement in Userspace and on UDP
	Stream Concept and TCP Head-of-Line blocking
	Combined Transport Layer and TLS Handshake
	Flow Control
	Implementations

	Metrics
	Throughput and Goodput
	CPU Utilization

	Hardware Offloading
	Pidstat

	Measurement Framework Design
	QUIC Interop Runner as a Baseline
	Class Structure
	Incorporation Into the Existing Testbed
	Standardizing Implementation Definition
	Supported QUIC and Environment Settings

	Evaluation
	Testbed Introduction
	Baseline
	Comparison to TCP with TLS
	Packet Offloading
	Flow Control
	Crypto

	Related Work
	Conclusion
	Appendix
	List of acronyms

	Bibliography

