
Department of Informatics
Technical University of Munich

TECHNICAL UNIVERSITY OF MUNICH

DEPARTMENT OF INFORMATICS

MASTER’S THESIS IN INFORMATICS

Analysis of Practical Permissionless PoS-based Consensus

Christian Kilb





Technical University of Munich
Department of Informatics

Master’s Thesis in Informatics

Analysis of Practical Permissionless PoS-based
Consensus

Analyse von Praktischem Zulassungsfreiem
PoS-basiertem Konsensus

Author: Christian Kilb
Supervisor: Prof. Dr.-Ing. Georg Carle
Advisor: Richard von Seck, M. Sc.

Filip Rezabek, M. Sc.

Date: January 15, 2022





I confirm that this Master’s Thesis is my own work and I have documented all sources
and material used.

Garching, January 15, 2022
Location, Date Signature





Abstract

In presence of the increasing demand for more energy-efficient alternatives to Proof-of-Work
consensus in the context of blockchain, Proof-of-Stake is a popular and promising consensus
approach alternative. While Proof-of-Stake has theoretical advantages, evaluations of concrete
implementations are sparse in practice. An exemplary Proof-of-Stake blockchain with real
monetary transactions is Algorand. It comes with a new Byzantine Agreement consensus
protocol and aims to provide decentralization, scalability and security at the same time and
thereby solving the blockchain trilemma. This thesis contributes a practical analysis of the
Algorand Proof-of-Stake realization. Specifically, the Algorand network infrastructure and
consensus operation are evaluated. Based on a review of core aspects of the Algorand blockchain,
a measurement system is designed and implemented with an own Algorand node at its core that is
used for data collection. The practical evaluation of Algorand shows that the goals of performance,
scalability and security can be considered fulfilled. However, the goal of decentralization is only
achieved partially due to open issues with the Algorand reward model and relay core network.
An exploration of solution ideas shows there is potential for improvement.





Zusammenfassung

In Gegenwart von steigendem Interesse an energieeffizienten Alternativen zu Proof-of-Work-
Konsensus im Kontext von Blockchain ist Proof-of-Stake ein populärer und vielversprechender
Ansatz. Während Proof-of-Stake theoretische Vorteil bietet, gibt es nur wenige Untersuchungen
von konkreten Implementierungen in der Praxis. Eine exemplarische Proof-of-Stake-Blockchain
mit realen Geldtransaktionen ist Algorand. Mittels eines neuartigen Byzantine-Agreement-
Konsensus-Protokolls beabsichtigt Algorand die Ziele Dezentralisierung, Skalierbarkeit und
Sicherheit gleichzeitig zu erfüllen und damit das Blockchain-Trilemma zu lösen. Diese Masterarbeit
leistet als Beitrag eine praktische Analyse der Proof-of-Stake-Implementierung von Algorand.
Im Spezifischen werden die Netzwerkinfrastruktur und der Konsensus-Betrieb von Algorand
evaluiert. Basierend auf einer Untersuchung von Kernaspekten der Algorand-Blockchain wird ein
Messsystem entworfen und implementiert. Zentraler Baustein dieses Systems ist ein Algorand
Knoten, welcher zur Datensammlung verwendet wird. Die Evaluierung von Algorand in der
Praxis zeigt, dass die Ziele Performanz, Skalierbarkeit und Sicherheit als erfüllt betrachtet werden
können. Das Ziel von Dezentralisierung ist jedoch nur teilweise erfüllt auf Grund derzeit ungelöster
Probleme im Hinblick auf das Belohnungsmodell und Basiskommunikationsnetz von Algorand.
Eine Erkundung von Lösungsansätzen zeigt, dass weiterhin Potenzial zur Verbesserung existiert.





Acknowledgments

I would like to thank Prof. Dr.-Ing. Georg Carle for giving me once again the opportunity to
write my thesis at the chair of network architectures and services. My gratitude also goes to my
advisors Richard and Filip. Thanks to Richard for guiding me through my thesis yet another
time and thanks to Filip for providing a third perspective. The continuous feedback was very
helpful. I did enjoy the thesis journey and found the topic very interesting.





Contents

1 Introduction 1

2 Background 3
2.1 Blockchain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Proof-of-Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.3 Proof-of-Stake . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.3.1 Taxonomy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3.2 Popular Implementations . . . . . . . . . . . . . . . . . . . . . . 5

2.4 Algorand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4.1 Gossip Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4.2 Consensus Mechanism . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4.3 Reward Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4.4 Protocol Upgrades . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Analysis 13
3.1 Algorand Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1.1 Decentralization . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.1.2 Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.1.3 Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.1.4 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.1.5 Rewards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.1.6 Evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 Algorand Node Data Sources . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2.1 Network Log Events . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2.2 Agreement Log Events . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2.3 Heartbeat Log Events . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3 Algorand Relay Nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3.1 Relay vs. Client Nodes . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3.2 Broadcast Mechanism . . . . . . . . . . . . . . . . . . . . . . . . 22



3.3.3 HTTP Headers Exchanged in Handshake . . . . . . . . . . . . . 23
3.4 Open Algorand Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.4.1 Design Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.4.2 Software Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.5 Consensus Participation Rewards . . . . . . . . . . . . . . . . . . . . . . 27
3.6 Relay Decentralization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.6.1 Relay Incentives . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.6.2 Sybil Protection Idea: Minimum Relay Stake . . . . . . . . . . . 30
3.6.3 Reward Assignment with Path Proofs . . . . . . . . . . . . . . . 31
3.6.4 Related Work about Incentive Mechanisms . . . . . . . . . . . . 35

4 Design 37
4.1 Observable Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2 Measurement Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2.1 Client Measurements . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.2.2 Relay Measurements . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.3 Localnet Possibilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5 Implementation 43
5.1 Node Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.2 Node Configuration File Settings . . . . . . . . . . . . . . . . . . . . . . 44
5.3 Peer Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.4 Node Source Code Extensions . . . . . . . . . . . . . . . . . . . . . . . . 45
5.5 Observed Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.6 Database Schema . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.7 Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6 Evaluation 53
6.1 Relay Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.1.1 Relay Host Organizations . . . . . . . . . . . . . . . . . . . . . . 53
6.1.2 Relay Countries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.1.3 Relay Runner Pilot Program . . . . . . . . . . . . . . . . . . . . 56

6.2 Gossip Network Performance . . . . . . . . . . . . . . . . . . . . . . . . 62
6.2.1 Normal Measurement Results . . . . . . . . . . . . . . . . . . . . 62
6.2.2 Targeted Measurement Results . . . . . . . . . . . . . . . . . . . 63
6.2.3 Scalability Modeling . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.3 Connection Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6.4 Network Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.5 Consensus Voting Committees . . . . . . . . . . . . . . . . . . . . . . . . 72

II



6.5.1 Committee Sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
6.5.2 Committee Unanimity . . . . . . . . . . . . . . . . . . . . . . . . 74
6.5.3 Voter Power Distribution . . . . . . . . . . . . . . . . . . . . . . 75

6.6 Algorand Evaluation Summary . . . . . . . . . . . . . . . . . . . . . . . 78

7 Related Work 81

8 Future Work 85

9 Conclusion 87

List of Figures 89

List of Tables 91

Bibliography 93

III





Chapter 1

Introduction

Blockchains are the foundation of cryptocurrencies. A cryptographically linked list of
blocks, each containing a set of transactions, represents a public ledger. In a distributed
permissionless blockchain system, a decentralized set of participants operate nodes,
propose blocks and validate them. To find distributed agreement on the ledger state
and new blocks, an appropriate consensus protocol is needed. Proof-of-Work is the
original approach for permissionless cryptocurrencies to agree on new blocks. It was
introduced by Bitcoin [1] and involves solving computationally expensive puzzles. Due
to the high energy usage, demand for alternatives has arisen, with Proof-of-Stake being
the most popular one. In Proof-of-Stake, the power of participants in the network is
proportional to their amount of owned stake instead of their owned computing resources.
Popular Proof-of-Stake approaches are Ethereum 2 [2] and Cardano [3]. Concepts that
are commonly found in such approaches are stake bonding and delegation. That means,
participation in the consensus protocol can require to lock in tokens or delegate the
token power to another party. Algorand [4] is another Proof-of-Stake blockchain that
avoids these restrictions. Additionally, it aims at solving the “blockchain trilemma” of
unifying the three properties decentralization, scalability and security.

While Proof-of-Stake consensus offers advantages in theory, analysis results of concrete
blockchain realizations are sparse. The goal of this thesis therefore is to analyze one
specific Proof-of-Stake implementation in practice: the one of Algorand. Main objectives
are to research the consensus protocol operation and infrastructure of Algorand in order
to understand how the theoretical advantages of Proof-of-Stake translate into practice.
The Algorand blockchain aims to provide as main features decentralization, security,
scalability and performance. In this thesis, a subset of these measurable Algorand goals
is analyzed. Additionally, existing challenges are identified and solution ideas explored.



Chapter 1: Introduction

The research questions to be addressed with this thesis are:

RQ1 To what extent have the ideas proposed by Algorand been put into practice?

RQ2 In a practical Algorand node setup, do the experimental observations match the
performance, scalability and security expectations set by Algorand?

RQ3 What open issues can be identified when evaluating the Proof-of-Stake realization
of Algorand?

In order to answer these questions, core aspects of the Algorand Proof-of-Stake imple-
mentation must be understood first. Reviewed for example are the general goals of
Algorand, the structure and dynamic of the Algorand network, the exchanged messages
and the message propagation mechanism. By setting up and operating an own Algorand
node, data about the Algorand network and consensus operation can be collected and
evaluated. A combination of these practical observations with the theory of Algorand
then allows to draw conclusions about the posed research questions.

The thesis is structured in the following way: First, background information is given in
Chapter 2 about blockchain, Proof-of-Work, Proof-of-Stake and Algorand. Then, the
Proof-of-Stake realization of Algorand is analyzed in various ways in Chapter 3. Algorand
goals are outlined, measurable data is identified, open Algorand issues are discussed and
possible solution approaches presented. In Chapter 4, a measurement setup is designed
with an own Algorand node at its core. Details about its implementation are given in
Chapter 5. The collected data is evaluated in the subsequent Chapter 6. At the end
of the thesis, related work and future work is outlined in Chapter 7 and 8 respectively
before the conclusion is drawn in the last Chapter 9.

2



Chapter 2

Background

This chapter first gives an overview of the background on blockchains and Proof-of-Work
consensus. It then elaborates on Proof-of-Stake and describes popular implementations.
Finally, a more in-depth background is given about the Algorand blockchain.

2.1 Blockchain

Blockchains are the foundation of cryptocurrencies, where they are used as distributed
public ledger [5]. A blockchain is a cryptographically linked list of blocks, each containing
a list of transactions. Block headers contain the hash of the previous block, a combined
transaction list hash in form of a Merkle tree [6] root hash and other block metadata. A
decentralized blockchain data structure is operated by a set of nodes participating in
the blockchain. They keep track of the blockchain, verify the validity of transactions
and blocks and can participate in the periodic formation of new blocks. The way nodes
agree on these new blocks is defined by the consensus protocol that the blockchain uses.
A concept of distributed agreement on the ledger state is central to the security of the
system and protects against double spending of currency.

2.2 Proof-of-Work

Proof-of-Work is the consensus approach used in the first blockchain Bitcoin [1], which was
introduced in 2008, and has since seen widespread adoption in other blockchains. In this
model, proposers of new blocks have to solve computationally expensive cryptographic
puzzles. So called miners compete in the production of new blocks. The first miner
to find a new valid block by solving the computational puzzle is then rewarded with



Chapter 2: Background

tokens. This gives participants influence on the blockchain in proportion to their invested
computational resources.

With this Proof-of-Work approach, a new block at the end of the blockchain is not
immediately final. It could be annulled, if the chain forks before that new block and
the network pursues the competing chain fork that does not contain the one block. As
forks could always occur, blocks never reach a truly final state. However, the probability
that a block stays valid and can be effectively treated as final increases with each
new block appended to the corresponding fork of the chain. In case of forks in the
blockchain, the network chooses to follow the longest chain, e.g. the one with most
invested computing power 1. Next to blockchains with probabilistic Proof-of-Work
consensus finality, blockchains with immediate block finality are also possible by utilizing
a Byzantine fault-tolerant consensus protocol [7].

Due to its high computational cost, Proof-of-Work has been criticized for its high energy
usage and has created a demand for other blockchain consensus protocols. As of 4th
November 2021, Bitcoin is estimated to consume between 48 TWh and 186 TWh of
energy per year, which equals the energy consumption of entire countries [8].

2.3 Proof-of-Stake

Proof-of-Stake is an alternative consensus approach that is gaining popularity [9, 5]. The
concept was introduced in 2012 by the cryptocurrency Peercoin [10]. In Proof-of-Stake,
the influence of users on the blockchain is directly proportional to their monetary stake in
the system. Voting power on new blocks therefore scales with the owned amount of that
cryptocurrency. As no cryptographic puzzles have to be solved in Proof-of-Stake, the
energy cost is much lower. A lower computational cost can also lead to lower transaction
fees. Typical problems that Proof-of-Stake models have to solve are the Nothing-at-stake
problem and Sybil attacks. As consensus participation does not come with significant
computational costs, participants could vote for multiple competing blocks in the same
round. This could lead to multiple blockchain forks to be supported simultaneously,
which is undesirable. Possible solutions for this problem are a penalty mechanism or
a non-fork guarantee. Similarly, due to low computational costs, an attacker could
create multiple Sybil identities and participate with them in the consensus protocol. The
mechanism should therefore be designed in such a way that an attacker cannot gain an
undesirable advantage by operating multiple identities.

1 https://ethereum.org/en/developers/docs/consensus-mechanisms/ (Accessed: 2021-11-05)

4

https://ethereum.org/en/developers/docs/consensus-mechanisms/


2.3 Proof-of-Stake

2.3.1 Taxonomy
The creators of the Algorand blockchain identify three subtypes of Proof-of-Stake
blockchain approaches 1. In the Bonded Proof-of-Stake approach, consensus protocol
participants are required to lock in some of their tokens as collateral. A penalty
mechanism then discourages undesirable or malicious behavior in the protocol. The
Delegated Proof-of-Stake approach features a more centralized voting process. Users
delegate their voting power to a smaller subset of participants. These delegates then
vote on behalf of the users. In the Pure Proof-of-Stake model, every user is given the
ability to participate in the consensus protocol without having to lock in their tokens or
delegate their votes. Algorand classifies itself as Pure Proof-of-Stake blockchain.

2.3.2 Popular Implementations
As of 26th October 2021, the most popular Proof-of-Stake implementations in terms
of market capitalization are Ethereum 2, Cardano, Polkadot, Avalanche and Algorand,
according to Coinbase [11].

Ethereum 2
Ethereum [2, 12] is a Proof-of-Work blockchain launched in 2015 that is currently in
a multi-step process of transitioning to a Proof-of-Stake consensus mechanism. The
consensus protocol of Ethereum 2 follows a Bonded Proof-of-Stake model. Users have to
lock in some of their stake to be able to participate in the protocol as validators. New
blocks are proposed and verified by randomly chosen validators. Good behavior in the
network is incentivized by rewarding validators as well as with a slashing mechanism,
which causes users to lose their locked in stake if malicious behavior is detected. The
protocol is secure if more than two thirds of stake is controlled by honest users. In the
long term, the Ethereum 2 blockchain is planned to consist of multiple shard chains and
a coordinating beacon chain to further increase the performance and scalability of the
network.

Cardano
Cardano [3] is a Proof-of-Stake blockchain launched in 2017 that uses a consensus
protocol called Ouroboros. It follows a Delegated Proof-of-Stake model. Users delegate
their stake to stake pools in order to indirectly participate in the consensus protocol.
Stake pools participate in the consensus with the corresponding combined stake. Stake
pools are randomly chosen to generate new blocks based on the amount of total stake

1 https://www.algorand.com/technology/pure-proof-of-stake (Accessed: 2021-10-24)

5

https://www.algorand.com/technology/pure-proof-of-stake


Chapter 2: Background

in their pool. In exchange, the pool operators as well as the pool members are given
rewards to incentivize participation. For security, Cardano requires that at least 51 %
of stake is controlled by honest users. As stake pool operation comes with significant
technical requirements, the blockchain is only decentralized in a limited way.

Polkadot
Polkadot [13] is a blockchain launched in 2020 that focuses on interoperability with
other blockchains for cross-chain token and assert transfer. Similar to Ethereum 2,
Polkadot pursues a multi-chain sharding approach with one main Relay Chain and
multiple parachains. They classify their consensus protocol as Nominated Proof-of-Stake,
which can be seen as a mix of Delegated and Bonded Proof-of-Stake. Users in the
network can take on the role of a validator or nominator. Validators operate nodes and
actively participate in the consensus protocol. Nominators elect and support validators.
A validator forms a validator pool together with the corresponding nominators. Both
validators and nominators are required to lock in some of their stake as collateral to
participate in the protocol. Consensus participation yields rewards in return. Misbehavior
is penalized with a slashing mechanism, which causes validators as well as supporting
nominators to lose their stake. The amount of rewards a validator pool receives is
independent of its associated stake. The motivation behind this incentive strategy is to
increase the decentralization of the network. A minimum stake requirement for validator
pools helps at protecting against Sybil attacks. The protocol is secure if more than two
thirds of elected validators are honest.

Avalanche
Avalanche [14, 15] is a Proof-of-Stake blockchain launched in 2020 with a unique consensus
approach based on metastability. The protocol is leaderless and operates without block
proposers. Instead, every participant or validator maintains their local view of which
transactions to accept or reject. To align their transaction acceptance decision with
the network, a random sub-sample of other validators is queried and asked for their
opinion. Participants then adopt the majority opinion of the corresponding responses.
This process repeats multiple times and converges to a certain preference until an
opinion-threshold is reached, at which point the transaction acceptance decision is
treated as final. To protect the network against Sybil attacks, validator nodes have a
minimum stake requirement. Additionally, the amount of stake of a validator influences
the probability of being queried by others, so that high-stake validators are queried more
often. Validators are also required to lock in some of their stake. “Sufficiently correct
and responsive” validators are then rewarded for their participation. There is however
no slashing mechanism that causes stake loss in case of misbehavior. Users are also able

6



2.4 Algorand

to participate in the protocol indirectly by becoming a delegator. Delegators lock in
some of their tokens to support a validator node and receive a portion of the validator
rewards in exchange. In total, Avalanche can be seen as lightly Bonded Proof-of-Stake
approach, as tokens need to be locked in, but without the risk of losing them due to
a penalty mechanism. The Avalanche protocol includes a tunable security parameter.
In its current configuration, Avalanche is supposed to tolerate attacker powers of up to
80 % at a negligible probability of failure.

2.4 Algorand

Algorand [16, 4] is a cryptocurrency that implements a Proof-of-Stake consensus algo-
rithm. It is being developed at the Massachusetts Institute of Technology since 2017 and
launched in 2019. Algorand comes with a new Byzantine Agreement consensus protocol
and aims to solve the “blockchain trilemma” of unifying the three properties decentral-
ization, scalability and security. In its current operation, the blockchain handles around
1 million transactions per day and confirms new blocks as final within 5 seconds [17].

2.4.1 Gossip Network
The Algorand blockchain is run by a distributed set of Algorand nodes that connect to
each other to form a peer-to-peer overlay gossip network [18]. Over this network, the
peers exchange gossip messages with broadcasts. A specific subset of nodes called relay
nodes build the core of the gossip network. Their main purpose is to relay gossip messages
and to help other nodes to join and synchronize with the network. The remaining nodes
are non-relay nodes, which are also referred to as client nodes in this thesis. Relay nodes
connect to other relay nodes and accept incoming connections from other nodes. Client
nodes only connect to relay nodes. Figure 2.1 visualizes the Algorand network structure
in a simplified way with a set of relay nodes (R) and client nodes (C). By default, each
node currently maintains 4 outgoing connections to different relay peers. The list of
domain names and IP addresses of these relay nodes is publicly available via DNS as
SRV records. This relay node list is used by the nodes to know to which relay peers they
can connect to. Currently, the Algorand corporation controls the corresponding DNS
zone and therefore has control over which node is allowed to be a relay node.

The Algorand blockchain gossip network that processes transactions with real monetary
value is called MainNet. This main network is however not the only one. There is also
an Algorand test blockchain in the so called TestNet. There, blockchain applications can
be tested before deploying them to the MainNet. The TestNet has its own set of relay
nodes, but otherwise operates similarly to the main network. New Algorand protocol

7



Chapter 2: Background

R

R

R

R

R

C
C

C
C

Figure 2.1: Algorand network structure (simplified)

versions are tested in yet another network: the BetaNet. It is also possible to operate
private networks with an own set of relay nodes which are independent of the official set
of relay nodes. The foundation of each network is the initial genesis block, in which the
initial Algo token distribution is specified.

2.4.2 Consensus Mechanism
Algorand implements a decentralized Byzantine Agreement Proof-of-Stake consensus
protocol [19, 16, 20]. It assumes that the supermajority of stake (> 2/3) is controlled
by honest users. In exchange, it guarantees partition tolerance and safety, such that if
honest users come to an agreement, they all agree on the same value with overwhelming
probability. Forks can therefore occur only with negligible probability. In case of
network partitioning, the protocol assures asynchronous safety and is able to recover
from partitions. Liveness is guaranteed if the network is not partitioned and honest
messages are received by other honest users within some bounded delay.

In the context of the Algorand blockchain, the consensus protocol is used to agree on
the next block. Each round in the protocol produces a new block. At the beginning of a
round, proposals for new blocks are being made as first step of the round. Afterwards,
the users vote on the proposals in two subsequent voting steps. Proposals and votes are
broadcasted over the gossip network. In the soft vote step, the proposals made in the

8



2.4 Algorand

first step are narrowed down to the one proposal with highest priority. The priorities
of proposals are pseudo-random values derived from the proposal messages and are
protected against manipulation by an attacker. In the subsequent cert vote step, that
one proposal is then confirmed as the accepted proposal and becomes a new block. For
each vote to be successful, a supermajority of around 75 % must be reached. If the
vote for a new block was unsuccessful, another attempt is started as new round period.
Rounds therefore consist of one or more periods and periods consist of the described
proposal and voting steps.

To assure scalability of the protocol, only a subset of all users is eligible to propose
new blocks and vote on the proposals in each round. The set of eligible users is called
the committee. After each step in the protocol, the committee changes and a new
pseudo-random subset of users is selected to be on the committee for the next step. This
assures decentralization of the protocol.

In each step, the users can check for themselves whether they have been selected as
committee member without network interaction. That way, the members stay unknown
to the network until they have submitted their proposals or cast their votes. This
self-selection approach prevents targeted attacks against the committee. To implement
this idea, the cryptographic concept of Verifiable Random Functions (VRFs) [21] is
used. Given a publicly known sortition seed value and the user’s private key, a user
can check their committee membership and compute a proof for it. Should the user be
part of the committee and send a consensus message, this proof would be sent alongside
the message. When other users receive a proposal or vote, they are able to verify the
committee membership proof, using the public seed and the public key of the sender.
The pseudo-random proof data is also used to assign priorities to each proposal. Users
can find the sortition seed in the block of the previous round. Block proposers advance
this seed value pseudo-randomly by deriving a new seed from the previous seed, the
round number and their private key.

The probability for a user to be selected as committee member is proportional to the
stake owned by that user. Members of the committee however do not all have the same
voting power by default. The weight of a proposal or vote is yet another output of the
cryptographic sortition mechanism. Vote weights are expressed in the same unit as stake
and specify which portion of own stake is eligible for voting. Higher stake therefore
translates into a higher expected voting power.

The expected size of the committee, which is the expected amount of total sub-stake
eligible for voting, and the voting majority threshold are hard-coded values that have
been mathematically calculated with probability theory. The probability to be selected

9



Chapter 2: Background

as committee member is dynamically adjusted each round based on the current amount
of participating online stake. More online stake in circulation leads to a lower selection
probability in order to meet the expected committee size number on average. The
actual committee size in each round is therefore a probabilistic value. The developer
documentation [18] is inaccurate in their description of this mechanism, as they suggest
in one place that the voting threshold was a dynamic value: “[...] the network uses the
online/offline status of an account to calculate block vote thresholds” 1.

In order to participate in the consensus protocol, one has to own stake and operate an
Algorand node. The node has to run in participation mode, which requires the creation
of a participation key and its registration with the network. A node can be configured to
vote on behalf of multiple accounts by registering one participation key for each account.
Committee membership checks and vote transmissions are then handled separately for
each account.

2.4.3 Reward Model
In Algorand’s current reward model, all regular wallet accounts with a stake of at least 1
Algo regularly receive rewards in proportion to their stake [22, 18, 20]. This gives new
users an incentive to join Algorand. Whether they participate in the consensus protocol
or run a client or relay node does not influence their gained rewards in any way.

Algorand accounts can be in three different on-chain states. The default state is Offline,
which indicates the account is not participating in the consensus protocol but is still
eligible for rewards. Should the account participate in the consensus protocol, it is in
the Online state, where it is also eligible for rewards. Next to these two regular account
states, there is the NotParticipating state, in which the account does not participate
in the consensus protocol and is also not eligible for rewards. The special FeeSink and
RewardsPool accounts maintain this NotParticipating state for example. Accounts can
choose to enter the NotParticipating state, but cannot exit it.

Two special Algorand addresses exist that are used in the reward model. The FeeSink
receives all transaction fees. This transfer of fees to the sink address happens implicitly
and automatically whenever the blockchain is extended by a new block. The other special
Algorand account is the RewardsPool. From this pool, token rewards are distributed
to all the regular accounts as specified and implemented by the reward distribution
protocol. The RewardsPool cannot make ordinary transactions.

1 https://developer.algorand.org/docs/run-a-node/participate/ (Accessed: 2021-10-25)

10

https://developer.algorand.org/docs/run-a-node/participate/


2.4 Algorand

The FeeSink can only make transactions to the RewardsPool. When looking at the
transactions made from the FeeSink however on the Algorand Blockchain Explorer [17],
no outgoing transactions from the FeeSink ever occurred. Additionally, the amount
of Algos in the FeeSink seems to match the total amount of transaction fees of all
historic transactions. There is also no automatic transfer between these two accounts
implemented. The transaction fees collected by the FeeSink are therefore effectively taken
out of circulation. It can be assumed that Algorand controls the FeeSink account and
did not yet choose to add these fees back into circulation, which is however inconsistent
with the source code comment “The RewardsPool accepts periodic injections from the
FeeSink [...]” [20].

Instead, the RewardsPool is populated every 500 k blocks with newly minted Algos 1 by
the Algorand Foundation. Over the course of the next 500 k blocks, the tokens in the
RewardsPool are linearly distributed as rewards. A reward rate variable is calculated
that specifies how many MicroAlgos should be distributed as rewards on average per
block to all eligible accounts. Wallets with higher stake receive a proportional higher
amount of rewards. As optimization, the received rewards are not actually added to
the account until the account is updated, for example due to a transaction from or to
this account. This means that there are no automatic rewards on the pending rewards.
To receive the maximum amount of rewards, it is therefore necessary to assure regular
account updates, with empty transactions for example. When calculating the frequency
of such updates, the transaction fees have to be taken into account. With this reward
distribution model, performance takes priority over usability when looking at the reward
maximization strategy.

Figure 2.2 visualizes the current reward model and its flow of Algorand tokens.

2.4.4 Protocol Upgrades
The Algorand blockchain features a consensus protocol upgrade mechanism to enable
modifications to the protocol itself [20]. While Algorand Inc. develops their Algorand
node software and designs and implements changes to the protocol specification, the
decision to accept protocol changes is a decentralized one. Similar to how the participation
nodes vote on new blocks, they also vote on protocol upgrades directly on-chain.

Every block proposer has the ability to propose a new protocol version and start a voting
period, unless one is already ongoing. In the voting period, subsequent proposers vote
either in favor or against the proposed version. Every new block therefore represents one

1Algos minted at genesis, controlled by Algorand, but not in circulation so far

11



Chapter 2: Background

RewardsPool

"Newly Minted"
Tokens

FeeSink

Ordinary 
Accounts

Figure 2.2: Current Algorand reward model

protocol version vote. The voting period is currently set to 10 k blocks, which is around
12 h real time with a block time of around 4.4 s. For the vote to be successful, 90 % of
votes must be in favor of the change. If the vote was successful, a transition period of up
to one week starts that allows nodes to apply the protocol changes before they become
active. After the voting period has concluded, a new protocol upgrade proposal with
subsequent voting period can be made by any proposer.

Operators of Algorand nodes signal their support of protocol changes by upgrading the
Algorand software that is running on their nodes. The node software votes in favor of
protocol changes if it implements the proposed protocol specification. Node operators
should be aware that if they configure automatic Algorand software upgrades, they will
by default vote in favor of new protocol versions.

12



Chapter 3

Analysis

This chapter first gives an overview of the goals of the Algorand blockchain, so that the
progress of Algorand towards certain goals can be evaluated later. For the purpose of
effective measurements, it then describes which Algorand node data sources are available
for evaluation and how relay nodes work specifically. Based off a review of the Algorand
design properties and source code, a first set of core issues is identified. Finally, solution
ideas for these issues are presented and explored.

3.1 Algorand Goals

On their websites (as of 19th October 2021) [4, 22], Algorand describes the general
capabilities and goals of their blockchain.

Algorand claims to be the “[...] first blockchain platform to solve the trilemma of
decentralization, scalability, and security” 1.

3.1.1 Decentralization
The Algorand blockchain is intended to be decentralized both on network as well as
consensus level. It is described as “[...] entirely decentralized, which means there is
no powerful central authority or single point of control” 2. On consensus level, the
permissionless Proof-of-Stake consensus protocol allows users to join the system and
participate with modest hardware resources and low computational costs. On network

1 https://www.algorand.com/technology/algorand-network-architecture

2 https://www.algorand.com/technology/technical-advantages

https://www.algorand.com/technology/algorand-network-architecture
https://www.algorand.com/technology/technical-advantages


Chapter 3: Analysis

level, decentralization is achieved by maintaining a diverse set of node operators with
different backgrounds and geo-locations. Algorand promises that “[a]ny user is free to
register as a relay or participation node” 1. While the blockchain is advertised as “truly
decentralized network”, Algorand hints at this goal not being reached yet with the phrase
“path to decentralization” 2. This is confirmed on another website of Algorand 3, where
their plan of “responsible decentralization” is outlined.

3.1.2 Security
The Algorand blockchain needs to provide defense against attackers on consensus level
as well as network level. Algorand’s Byzantine Agreement consensus protocol guarantees
security as long as more than two thirds of stake is controlled by honest users. The
random, self-selected and initially secret consensus committee design offers protection
against targeted attacks. The protocol is able to tolerate and recover from network
partitions. As the Algorand source code follows the open source development model, it
can be independently verified.

3.1.3 Scalability
Scalability is important on the network level and consensus level. Over time, more nodes
might join the network, more users choose to participate in the consensus protocol and
the frequency of transactions could increase. The consensus committee approach with
a limited number of self-selected participants in the committees assures scalability on
the consensus protocol level. An efficient gossip network communication model enables
scalability on the network level.

3.1.4 Performance
New transactions are confirmed by the Algorand blockchain within a few seconds. The
non-fork property of the Algorand protocol allows new blocks to be finalized quickly.
The relay nodes in the gossip network provide a performant core to the network so that
consensus messages are propagated quickly and efficiently to participating peers. The
Proof-of-Stake nature of the protocol keeps the computational costs low, thus offering a
energy-efficient blockchain solution.

1 https://www.algorand.com/technology/core-blockchain-innovation

2 https://www.algorand.com/technology/algorand-protocol

3 https://algorand.foundation/algorand-protocol/network

14

https://www.algorand.com/technology/core-blockchain-innovation
https://www.algorand.com/technology/algorand-protocol
https://algorand.foundation/algorand-protocol/network


3.2 Algorand Node Data Sources

3.1.5 Rewards
Owning stake is currently incentivized by Algorand with financial rewards so that new
users join the blockchain 1. While not explicitly mentioned in the rewards section of the
Algorand website, a proper reward model for consensus participation and node operation
can be seen as desireable implicit goal of the Algorand blockchain, as it is necessary for
the long-term stability of the system and has a great effect on its decentralization.

3.1.6 Evolution
Modifications to the protocol and therefore a long-term evolution of the system are
enabled by a protocol upgrade voting mechanism.

3.2 Algorand Node Data Sources

In order to perform measurements with an Algorand node and evaluate the gossip
network, the available data sources must be understood first. A running Algorand node
process produces data in multiple ways.

The most information about the node internals can be gained from the main log file
called node.log. This log gives insights about the peer connections, consensus operation,
network performance and more.

The Algorand carpenter tool is able to read the log file and visualize the progress of
the consensus operation. It provides live information about consensus events such as the
acceptance of a proposal or a reached voting committee threshold.

Algorand nodes also produce telemetry events. Node operators can choose to automat-
ically send the telemetry data to Algorand on an opt-in basis. Telemetry events can
also be redirected to an own telemetry server or to the main node.log file. Common
telemetry events are peer connection change events and node heartbeats.

A local Algorand node can additionally be queried actively over a REST API, which is
enabled by default. This API 2 mainly provides on-chain information such as Algorand
accounts or blocks, but can also be used to post new transactions. The performance of
this API can be enhanced with an optional indexer, which would make use of a connected
database.

1 https://www.algorand.com/technology/algorand-protocol

2 https://developer.algorand.org/docs/reference/rest-apis/algod/v2/ (Accessed: 2021-10-31)

15

https://www.algorand.com/technology/algorand-protocol
https://developer.algorand.org/docs/reference/rest-apis/algod/v2/


Chapter 3: Analysis

As most insights about network and consensus operation can be gained from the main
node.log file, it is the data source of central interest. The Algorand node log file provides
detailed live information about node internals, node status changes, peer connection
changes, consensus agreement progress and network performance. Each log entry is
formatted as JSON and accompanied by a timestamp. The level of detail can further be
increased by adjusting the log level in the node settings file.

3.2.1 Network Log Events
Out of the network change log events, ConnectPeer and DisconnectPeer events are the
most relevant. They are generated each time a new outgoing or incoming peer connection
is established or an existing connection is terminated. Outgoing connections are created
between the local node and relay nodes. Incoming connections from other client or relay
nodes to the local node can occur only when running in relay mode.

An example ConnectPeer log entry is shown in Listing 3.1. It contains network details
about the newly connected peer such as IP address, host name and port. It also specifies
whether the new connection is an incoming or outgoing one. The instance name of the
peer can be observed as well.

Listing 3.1: Example ConnectPeer log entry
1 {
2 " details ": {
3 " Address ": "34.126.180.253" ,
4 " HostName ": "b768f568 -affc -43d0 -bd38 -2 d5b0a54eaa4 :sing -alg -testrelay -2.

prod. purestake .tech",
5 " Incoming ": false ,
6 " InstanceName ": "g2/ tVQo0Po5Y2wni ",
7 " Endpoint ": " singaporeg -algorand -test -2. algorand - testnet . network :4161"
8 },
9 "file ": " telemetry .go",

10 " function ": " github .com/ algorand /go - algorand / logging .(* telemetryState ).
logTelemetry ",

11 " instanceName ": " VDXe4dsfQmWTJHDL ",
12 " level ": "info",
13 "line ": 212 ,
14 "msg ": "/ Network / ConnectPeer ",
15 "name ": ":4161" ,
16 " session ": "",
17 "time ": "2021 -07 -10 T19 :37:16.293571+02:00"
18 }

DisconnectPeer log entries contain similar network address information. An example
is shown in Listing 3.2. Additionally, a reason for the disconnect is given.

Listing 3.2: Example DisconnectPeer log entry
1 {
2 " details ": {
3 " Address ": "34.127.77.138" ,

16



3.2 Algorand Node Data Sources

4 " HostName ": "110524 a6 -55e2 -44f0 -9b99 - e2dff81819f8 :org -alg -testrelay -1.
prod. purestake .tech",

5 " Incoming ": false ,
6 " InstanceName ": " Q0qSM49fAu + wMF29 ",
7 " Endpoint ": "oregong -algorand -test -1. algorand - testnet . network :4161" ,
8 " MessageDelay ": 592246872 ,
9 " Reason ": " LeastPerformingPeer "

10 },
11 "file ": " telemetry .go",
12 " function ": " github .com/ algorand /go - algorand / logging .(* telemetryState ).

logTelemetry ",
13 " instanceName ": " VDXe4dsfQmWTJHDL ",
14 " level ": "info",
15 "line ": 212 ,
16 "msg ": "/ Network / DisconnectPeer ",
17 "name ": ":4161" ,
18 " session ": "",
19 "time ": "2021 -07 -10 T19 :37:15.746036+02:00"
20 }

The full list of disconnect reasons can be found in the Algorand source code file
network/wsPeer.go [20]. An understanding of these reasons is achieved by explor-
ing the source code in more detail. Table 3.1 explains the different disconnect reasons.
Most disconnect types are associated with read or write errors and timeouts. An
intentional node shutdown or restart results in a DisconnectRequest reason.

Reason Explanation
DisconnectRequest Other peer disconnects intentionally
BadData Malformed peer message received
ReadError Receiving message from peer failed
WriteError Sending message to peer failed
IdleConnection No communication with peer for some time

(currently 5min)
SlowConnection Outgoing message transmission takes too

long (currently 25sec)
DisconnectStaleWrite Outgoing message transmission not initiated

in time (currently 25sec)
CliqueResolving Random outgoing peer disconnected if agree-

ment protocol did not make progress for
some time (currently 5min)

LeastPerformingPeer Periodic disconnect of slowest outgoing peer
(according to relative message delay)

Table 3.1: Peer disconnect reasons [20]

The LeastPerformingPeer disconnect reason stands out. It is associated with a
peer performance monitoring mechanism. This is implemented in the source file
network/connPerfMon.go [20]. An Algorand node continuously monitors the network

17



Chapter 3: Analysis

performance of outgoing peer connections. Around every 5 min, the currently least
performing peer is disconnected and replaced with a new random peer. The purpose of
this mechanism is to optimize the peer connections over time.

The deciding performance metric is the relative message delay of incoming messages
from the monitored outgoing connections. Under ideal network conditions, each gossip
message such as votes or transactions is received from each outgoing connection once.
The node tracks the timestamps of when certain messages have been received from each
peer. The difference of the message arrival time and the time that message has been
received first is then taken as relative message delay. Aggregated over many gossip
messages within the monitoring time span of around 5 min, each outgoing peer is assigned
a total message delay performance metric. The least performing peer to be disconnected
is then the one with highest aggregated message delay. After the peer replacement,
a new monitoring cycle is started. From the perspective of the disconnected peer, a
DisconnectRequest reason can be observed.

When running a node in relay mode, only a subset of outgoing peers is subject to
this performance monitoring and peer replacement mechanism. Half of the outgoing
connections are excluded from the mechanism and stay connected independent of their
performance. The peer to disconnect is instead chosen from the list of non-persistent
peers. A reason for this special relay node behavior could not be found in the source
code or developer documentation.

The least performing peer network performance monitor of the node also periodically
produces log entries that contain the recently observed performance metrics of the
outgoing peers. Available as information are the relative message delay values and the
first message percentages by outgoing peer.

3.2.2 Agreement Log Events
Consensus protocol progress is logged in form of agreement events. For example, the start
and conclusion of rounds is logged as RoundStart and RoundConcluded event. Most
agreement log entry types are related to consensus proposal, block and vote messages.
These messages trigger multiple log events while being processed by the node. Certain
error conditions are logged as well, such as a StepTimeout. The complete list of agreement
log entry types can be found in the source file logging/logspec/agreement.go [20].

Whenever a new proposal, soft or cert vote message is received, it is checked and processed
in multiple ways before being accepted. During the vote processing, the vote is associated
with a node-internal state that specifies the processing progress. When reaching certain
internal states, corresponding log entries are generated. The processing flow is visualized

18



3.2 Algorand Node Data Sources

in Figure 3.1. Internal vote events are written in italic font, triggered log events in
brackets. Votes start in the state votePresent. A first series of checks determine whether
the vote should be filtered out, in which case a ProposalRejected or VoteRejected log
message would be generated. Filtered out are for example messages that are duplicates
or are too old. If the vote is malformed or fails cryptographic verification, it is rejected
as well. Only if it passes all checks, the vote is accepted and a ProposalAccepted or
VoteAccepted log message is created. In case the vote causes a protocol threshold to be
reached, a corresponding ThresholdReached event is generated.

votePresent

voteVerified

voteFiltered
[ProposalRejected]

[VoteRejected]

voteMalformed
[ProposalRejected]

[VoteRejected]

proposalAccepted
[ProposalAccepted]

voteAccepted
[VoteAccepted]

(soft|cert|next)Threshold
[ThresholdReached]

Figure 3.1: Node-internal vote processing events and associated log message types

Received block messages progress through a similar processing system. The corresponding
flow is visualized in Figure 3.2. Block messages start in the payloadPresent state. The
block first passes through a set of initial checks before either reaching the pipelined state
or being rejected. It is also cryptographically verified. On success, it is accepted and a
BlockAssembled log event is generated. The committable state is reached by the block
of the current round that receives a threshold of votes.

The agreement message processing event log entries contain information about the sender
of the message in form of an on-chain address and specify the block hash associated with

19



Chapter 3: Analysis

payloadPresent

payloadPipelined
[BlockPipelined]

payloadVerified

payloadAccepted
[BlockAssembled]

payloadRejected
[BlockRejected]

payloadMalformed
[BlockRejected]

proposalCommittable
[BlockCommittable]

Figure 3.2: Node-internal block payload processing events and associated log message types

the message. Round, period and step numbers are also given for both the local node
state and the message state. Soft and cert vote log entries also include the corresponding
vote weights. An example VoteAccepted log entry is shown is Listing 3.3.

Listing 3.3: Example VoteAccepted log entry
1 {
2 " Context ": " Agreement ",
3 "Hash ": " WUVGHUQFNTBHMO5NTK2RV33IZVKKRUTMJ26OUTTCGSEPGVVLLQIA ",
4 " ObjectPeriod ": 0,
5 " ObjectRound ": 13937454 ,
6 " ObjectStep ": 1,
7 " Period ": 0,
8 " Round ": 13937454 ,
9 " Sender ": " UXRF2ESMUPBVTPUWYN33ESMQ2MKSYO73C52PQ24UIHZOALJJBROUKRQV5M ",

10 "Step ": 1,
11 "Type ": " VoteAccepted ",
12 " Weight ": 1,
13 " WeightTotal ": 128 ,
14 "file ": " trace .go",
15 " function ": " github .com/ algorand /go - algorand / agreement .(* tracer ).

logVoteTrackerResult ",
16 " level ": "info",
17 "line ": 477 ,
18 "msg ": "vote accepted for {{} 0 4

H5UNRBJ2Q6JENAXQ6HNTGKLKINP4J4VTQBEPK5F3I6RDICMZBPGNH6KD4
WUVGHUQFNTBHMO5NTK2RV33IZVKKRUTMJ26OUTTCGSEPGVVLLQIA

20



3.3 Algorand Relay Nodes

BFG6RADPDMCVBNMB4IE4WJ5B2RBZN44OXLXWZTJ57AM2ZVGBKZFQ } at (13937454 , 0, 1)
",

19 "time ": "2021 -05 -21 T09 :23:24.846864 Z"
20 }

3.2.3 Heartbeat Log Events
Another notable log entry type is the node Heartbeat. Every 10 min, a node produces
a heartbeat telemetry event. It contains a long list of metrics in form of key-value pairs
related to node and network performance as well as information about the running
node software version. The performance metrics are aggregated values collected by the
node since its startup. Especially useful for the analysis of the gossip network are the
values that specify the number of messages and bytes sent and received grouped by
gossip message type. An example key-value pair set for these network metrics is given in
Listing 3.4.

Listing 3.4: Example Heartbeat network metrics
1 " algod_network_message_received_AV ": "13215558" ,
2 " algod_network_message_received_PP ": "779915" ,
3 " algod_network_message_received_TX ": "1182020" ,
4 " algod_network_message_received_total ": "15272967" ,
5 " algod_network_message_sent_AV ": "9905150" ,
6 " algod_network_message_sent_PP ": "564436" ,
7 " algod_network_message_sent_TX ": "884998" ,
8 " algod_network_message_sent_total ": "11392192" ,
9 " algod_network_received_bytes_AV ": "8320815240" ,

10 " algod_network_received_bytes_PP ": "1719914857" ,
11 " algod_network_received_bytes_TX ": "348390632" ,
12 " algod_network_received_bytes_total ": "10711543000" ,
13 " algod_network_sent_bytes_AV ": "6236672604" ,
14 " algod_network_sent_bytes_PP ": "1233936608" ,
15 " algod_network_sent_bytes_TX ": "257718815" ,
16 " algod_network_sent_bytes_total ": "7730577400" ,

3.3 Algorand Relay Nodes

As of 5th November 2021, 101 Mainnet and 8 Testnet relay nodes are listed in the
official Algorand DNS relay records. Relay nodes are enumerated in form of SRV records
managed by Algorand and can be listed with the Linux console commands shown in
Listing 3.5.

Listing 3.5: Relay list fetch command
1 dig -t SRV _algobootstrap ._tcp. mainnet . algorand . network
2 dig -t SRV _algobootstrap ._tcp. testnet . algorand . network

21



Chapter 3: Analysis

3.3.1 Relay vs. Client Nodes
Relay and client nodes only differ in their behavior minimally. Basically, relay nodes
are just client nodes that additionally accept incoming peer connections and forward
messages. While both client and relay nodes could participate in the consensus protocol
in theory, Algorand recommends only client nodes to do so 1. No specific reason is
given, but it can be suspected that security concerns are a motivation behind this
recommendation. Network addresses of relay nodes are publicly available, which makes
relays more susceptible to attacks.

A node is configured to operate as relay node by specifying a NetAddress in the node
configuration options. This causes the node to listen for and accept incoming peer
connections on the given address and port. Relay mode also implies the configuration
options Archival, EnableLedgerService and EnableBlockService. As a result of
these options, the relay node stores all blocks since genesis locally and allows other peers
to query for blocks and catchpoints. The forwarding of gossip messages is another core
functionality enabled by relay mode. Gossip messages are relayed to other peers with a
broadcast mechanism.

More subtle behavior changes are triggered by relay mode as well. For example, relay
nodes subscribe to special gossip messages of type CompactCertSig by informing incom-
ing peers of this interest. Additionally, the least performing peer evaluation mechanism
performs slightly differently.

3.3.2 Broadcast Mechanism
If a message is scheduled for broadcast, it is by default sent to all other connected
peers. In case the message is one that was received from another connected peer and
scheduled for relaying, it would not get sent back to the sender peer, but forwarded
to all other connected peers. The broadcast mechanism is implemented in such a way
that certain peers take priority over other peers, so that the prioritized peers would
be the first recipients of the broadcasted message. In a broadcast, the message is first
sent over outgoing relay peer connections and to peers that are connected and declared
as PriorityPeers in the node configuration. The order in which the other incoming
peers receive the broadcast message depends on their prioWeight, which equals the
value of their on-chain Algorand accounts. When a node connects to a peer and has a
participation key configured, this key (or the one with largest stake in case of multiple
keys) is used in a challenge-response mechanism to proof the account value of the node

1 https://developer.algorand.org/docs/run-a-node/setup/types/ (Accessed: 2021-11-13)

22

https://developer.algorand.org/docs/run-a-node/setup/types/


3.3 Algorand Relay Nodes

to the other peer. Broadcast messages are sent to incoming peers with larger stake
first. Incoming peers which do not announce their account values, either because they
do not participate in the consensus or they disabled this with the configuration option
AnnounceParticipationKey, therefore receive the broadcasted message last. There is
an additional configuration option BroadcastConnectionsLimit, which is disabled by
default, to set a maximum number of peers that receive the broadcast.

Should the configuration option EnableOutgoingNetworkMessageFiltering be enabled,
which it is by default, an interactive filtering mechanism is activated that reduces the
load on the network by reducing unnecessary duplicate transmissions of large messages.
When a node receives a message from one peer with length equal to or greater than a
threshold value (currently 5000 B), it notifies the other peers with a broadcast about
the hash of this message. The other peers then temporarily remember this hash value.
Before sending a large message, the other peers compare the hash value of the message
with the set of filter hashes. If there is a match, the message is not sent out to the peer,
as that would be an unnecessary duplicate transmission.

Nodes similarly keep track of the hashes of vote and transaction messages that they
have received recently. Should they detect an already seen incoming vote or transaction
message, it would be dropped and not processed further.

Malformed, old and unverified transaction, proposal and vote messages are not relayed
by nodes. The same applies to duplicate and equivocated votes, so that only one vote is
relayed per consensus participant per consensus step.

Additionally, the propagation of proposal votes and blocks is optimized with a proposal
priority mechanism. The priority of a proposal is derived from its sortition hash. The
proposal with lowest sortition hash value has the highest priority and is expected to be
the “winner” of the round period. When relaying proposal vote messages, it is therefore
only necessary to forward proposals with a priority higher than all previously seen
proposal vote priorities of that period. Proposal votes with a lower priority are dropped
instead of relayed. The proposal priority mechanism impacts the transmission of block
messages as well, as only the ones associated with the currently highest priority proposal
votes are accepted and relayed. This reduces the amount of unnecessary transmissions
of comparably large block messages and saves bandwidth, as lower priority blocks are
not in a position to “win” the round period.

3.3.3 HTTP Headers Exchanged in Handshake
During the connection establishment of peers, a series of HTTP headers is exchanged.
Some of these might be interesting to collect and analyze.

23



Chapter 3: Analysis

UserAgentHeader: When a node connects to a relay node with the intention of joining
the gossip network, it transmits its user agent string to the relay. An example user agent
is “algod/2.8 (dev; commit=9bd17e9f; 0) linux(amd64)”. It contains Algorand software
version, operating system and processor information.

GenesisHeader: During the handshake, the connecting node and the relay compare
their Algorand network identifier, which is “mainnet-v1.0” in case of the Mainnet. This
prevents for example a Testnet node from accidentally connecting to a Mainnet node.
While the relay transmits its network identifier in form of the genesis header, the
connecting node includes that information as HTTP path variable.

NodeRandomHeader: To make sure that a node does not accidentally connect to itself, a
header with a random 10 B long encoded value is exchanged in both connection directions.
The random value is determined during the node start and stays constant while the
node is running. The connection attempt fails if both nodes sent the same random value
to each other.

ProtocolVersionHeader: To allow nodes to check whether they are compatible with
each other on a protocol level, they exchange their gossip protocol version in both ways.
The current protocol version number is 2.1.

ProtocolAcceptVersionHeader: The connecting client announces to the relay a list
of supported gossip protocol versions. Version 2.1 is the only currently supported one.
Nodes verify during the handshake whether their protocol versions are compatible.

InstanceNameHeader: Each node is associated with an instance name identifier string.
Instance names are shortened hash values and are derived from the node data directory
path and a node- or machine-wide consistent globally unique identifier. Instance names
can be used to differentiate multiple nodes that are operating with the same public IP
address. Nodes exchange their instance name in both directions. The header is not
transmitted if telemetry, either to Algorand or to the local log, is deactivated.

TelemetryIDHeader: Nodes exchange their telemetry globally unique identifier in both
ways. The instance name header is partially derived from this value. The telemetry
identifier header is not transmitted if telemetry, either to Algorand or to the local log, is
deactivated. The header value can be used for logging purposes.

24



3.4 Open Algorand Issues

AddressHeader: An address header is exchanged in both directions during the node
handshake. Regular client nodes leave their address header empty. Relay nodes specify
their address there, as configured in the node configuration file fields PublicAddress
or NetAddress. Neither client node nor relay node currently make direct use of this
address header.

PriorityChallengeHeader: Nodes participating in the consensus protocol can an-
nounce their stake to their outgoing relay peers. Relays can then assign nodes with
higher stake a higher broadcast priority, so that they receive messages slightly earlier.
The participating node is requested by the relay to proof its stake during the connection
establishment. The priority challenge header contains a challenge from the relay in form
of a 32 B encoded string that the participating node has to sign.

3.4 Open Algorand Issues

The analysis of Algorand made two core design issues and a small set of technical issues
apparent.

3.4.1 Design Issues
During the analysis of the Algorand blockchain, the relay admission and the reward
model stood out as main issues of Algorand.

Relay Admission: Currently, the list of relay nodes is distributed as DNS SRV records.
The corresponding DNS zone is controlled by Algorand. They can decide which relays
are admitted and under which conditions. This centralized relay control contradicts the
original goal of Algorand to provide full decentralization.

While the relays listed in the SRV records are officially labeled as bootstrap nodes and
node operators have the ability to specify custom relay addresses, the default bootstrap
relays still build the core of the network. During the research, no alternate public relay
list became apparent, so most nodes are expected to use the default relays.

In the short term and while growing the Algorand ecosystem, it might be a valid approach
to maintain central control over the relay nodes to assure a performant and stable core
network. In the long term however, the relay admission should probably be a more
decentralized process.

Reward Model: Another main open problem of Algorand is the lack of a long-term
reward model. In its current model, owning stake is rewarded as well as relay node

25



Chapter 3: Analysis

operation, but not consensus participation. The rewards are supplied by Algorand with
tokens they allocated at genesis for this purpose 1.

In 2022, Algorand is planning to replace passive stake rewards with governance rewards 2.
The community governance program allows stake owners to lock in tokens in order to
gain the ability to voice their opinion as part of a voting committee regarding general
ecosystem and policy questions of Algorand.

There are currently no apparent long-term plans for consensus participation rewards.
Similarly, it is unknown if or how Algorand wants to decentralize the reward distribution
for relay node operators. Both of these points are however essential for a stable and
decentralized blockchain in the long-term.

3.4.2 Software Issues
During the research of Algorand’s implementation on source code level, some technical
issues with the official Algorand software have been identified.

Software Dependencies: Currently, the Algorand software is built with an unsup-
ported version of the Go programming language. Go is used in version 1.14 3, which is
unsupported since 16th February 2021 with the release of Go 1.16 4. Using unsupported
dependencies is a security risk, as the outdated software might be left in a vulnerable
state.

Signed Releases: The security of Algorand software releases and deployments could
be improved with signed releases. Providing SHA checksums and GPG signatures
would allow users to verify the downloaded software. Automatic upgrades could be
integrity-protected in a similar way. Without signed releases, users have to trust that
the server they downloaded the software from did not tamper with the binaries.

Reproducible Builds: Making the official Algorand software builds reproducible
would allow users to verify that the distributed binaries match the official source code.
If the checksums of self-compiled binaries differ from the official ones, users cannot be
sure that the source code has not been tampered with in case of the official binaries.

1 https://algorand.foundation/governance/algo-dynamics (Accessed: 2021-11-10)
2 https://algorand.foundation/gov-faq (Accessed: 2021-11-10)
3 https://github.com/algorand/go-algorand/blob/master/go.mod (Accessed: 2021-10-21)
4 https://golang.org/doc/devel/release#policy (Accessed: 2021-10-21)

26

https://algorand.foundation/governance/algo-dynamics
https://algorand.foundation/gov-faq
https://github.com/algorand/go-algorand/blob/master/go.mod
https://golang.org/doc/devel/release#policy


3.5 Consensus Participation Rewards

Source Code Quality: The Algorand source code could be polished with the help of
appropriate development tools. Currently, warnings generated by Go tools and advanced
development environments are sometimes ignored. As warnings can potentially translate
into runtime errors, these should be addressed. Using an automatic typo checker could
also increase the source code quality. Defining a maximum source code line length would
furthermore increase the readability.

3.5 Consensus Participation Rewards

Currently, there is no direct monetary motivation to participate in the consensus protocol.
Operating a participating node does not yield any on-chain rewards. Stakeholders are
indirectly motivated to participate due to the desire to maintain a supermajority of
honest voters for the sake of protocol liveness. Would only conspiring malicious actors
participate, transactions could be denied arbitrarily, as these actors would be able to
decide which transactions to include in new blocks proposed and voted on by them.

Stakeholders should however be actively motivated to participate in the protocol with
monetary rewards. Nodes are able to prove their participation by being chosen as
committee member and broadcasting a proposal or vote into the network. Past committee
members can only be verified through on-chain information. Only “winning” block
proposals and votes from the cert vote step are available on-chain. Limiting participation
rewards to proposers of “winning” blocks and certification voters enables a seamless
integration into the blockchain catchup mechanism. New nodes need to be able to verify
and apply reward distributions of past rounds when synchronizing the blockchain. The
complete participation reward solution idea is therefore to reward the proposer of the
“winning” block and the certification voters each round with a portion of the transaction
fees from that round. Alternatively, the rewards could also come from the RewardsPool
account instead of directly from the transaction fees.

3.6 Relay Decentralization

Decentralization of relay nodes refers to decentralizing the decision of who is allowed to
operate a relay node. Currently, Algorand Inc. controls the list of relay nodes through
DNS records. Decentralizing control would require moving away from such DNS records,
as they are controlled by one party.

One goal in the decentralization of relay nodes is the protection against Sybil attacks.
These can occur if creating many relays is somewhat free. Therefore, creating a relay
must be associated with some cost.

27



Chapter 3: Analysis

Ideally, relay nodes should also fulfill a certain performance level. Currently, Algorand
nodes already monitor the performance of their relays and frequently replace the connec-
tion to the relay with least performance. Because of this mechanism, it might not be
necessary to enforce a certain minimum relay performance.

One additional problem that needs to be addressed is bootstrapping new nodes into
the network. New nodes first have to learn the network address of at least one peer.
Currently, this is realized with a DNS query to the SRV relay records. Algorand nodes
also need to be able to synchronize with the network, learn about old blocks as well as
the current state of the blockchain. Relay nodes currently operate in archival mode and
serve the full blockchain to peers to help them join and synchronize with the network.

In a decentralized relay setup, new nodes should not have to rely on certain DNS records
to find initial peers. Algorand Inc. could continue operating their SRV list, but nodes
should have the ability to choose different bootstrapping peers. The feature to choose
specific peers already exists, so this subproblem can be considered solved.

Regarding the catchup, if any node could register itself as relay node, there would be no
immediate guarantee that these nodes indeed operate in archival mode and serve the
whole blockchain. A peer would only learn about the lack of catchup data when actively
querying for such data. Should a peer get into such a situation where a relay node is not
able to provide catchup data, the peer could disconnect such a relay and re-attempt the
query with another relay. Another possibility is for certain parties, such as Algorand
Inc., to operate dedicated archival servers as fallback mechanism in case no reliable relay
can be found immediately.

3.6.1 Relay Incentives
Another main requirement in the decentralization of relays is an appropriate incentive
model. Operators of relay nodes should be compensated for their expenses. Otherwise,
there would only be little motivation to run a relay node. Currently, Algorand Inc.
contracts relay runners and rewards them with “newly minted” tokens. At some point in
the future, all tokens will be in circulation and the transaction fees will have to somehow
translate into relay runner rewards. This raises the question of who will be eligible for
how much relay rewards. Some minimum requirements will have to be defined for a node
to count as relay node. The main purpose of relay nodes it to relay messages to other
nodes. Those in control of the reward distribution need to be able to evaluate whether
relay nodes indeed fulfilled this purpose. Currently, Algorand Inc. receives telemetry
data from nodes that allows them to evaluate the operation of relay nodes. Based on
telemetry performance metrics, a judgement about the amount of earned rewards can

28



3.6 Relay Decentralization

be made. Reliable nodes with consistent high performance deserve more rewards. Fully
decentralizing such a relay reward mechanism is a challenge. When designing a solution
to this problem, an appropriate catchup mechanism has to be included to allow new
nodes to verify past relay reward distributions.

Distributed Relay Performance Monitoring
Relay nodes cannot provide direct proof about their performance to the network. Teleme-
try data from the relays themselves is not trustworthy. Nodes could directly proof that
they have received certain messages, but not that they have relayed them. Directly
connected peers have the ability to monitor the performance of connected relays. This
feature is already implemented and actively used for another purpose, but could be
reused here. Each peer could publish the monitored performance of its relays in some
way, for example by gossiping it through the network. Every peer would then have
the ability to make an educated performance evaluation of relays that are not directly
connected by aggregating the different performance perspectives. For this approach to
work, nodes must not be incentivized to lie about the performance of their neighbors.
Performance gossip messages would have to be signed by the monitoring peer to prevent
manipulation by relay nodes. Participation keys could be used to create such signatures
and also assign the performance data a weight. Such weight is important to prevent
Sybil attacks. Without weight, a spam of performance messages can manipulate the
perceived performance of certain nodes. When aggregating received performance data,
observations by high-stake nodes could be assigned a higher level of trustworthiness. A
disadvantage of such a performance data sharing mechanism is a decrease in network
level privacy, as participation keys could be more easily associated with network location.
If a client node publishes a list of connected relays associated with their on-chain identity,
an attacker would learn that they need to target these specific relays if they want to
attack that identity. As security measure, nodes might only want to publish a subset
of the full connected relay list to maintain at least one secret relay connection. An
implementation of this mechanism should also consider that relay nodes are motivated
not to relay messages that disapprove of the own performance. Since nodes maintain
connections to multiple peers at the same time, relays cannot easily censor bad messages
about themselves.

Reward Assignment
How relay rewards have been distributed over time is information that needs to be part of
the blockchain in order to allow new nodes to reproduce and verify this assignment during
their catchup. If performance data was stored on-chain, rewards could be implicitly
assigned each block. Another approach would be to store the reward assignment as special

29



Chapter 3: Analysis

transaction in the block. The proposer of a new block would then have to include such
a transaction to form a valid block. Either way, during the execution of the consensus
protocol steps, the voters must be able to validate the relay reward assignment. They
must check whether the proposed distribution matches the decentralized performance
metrics.

One idea is that the proposer of a new block is given the responsibility of assigning the
relay rewards of that round. If the proposer could do this without restrictions, they would
just be motivated to assign the rewards to themselves. The proposer could therefore be
required to include the signed performance metrics that they have received from other
peers in order to justify their chosen reward assignment. The voters could then verify this
assignment. This approach has two problems though. First, the proposer could leave out
certain relays from the rewards list to assign more rewards to the included relays. Second,
nodes would be motivated to conspire and lie about each others performance metrics
during the decentralized performance evaluation part. Validators cannot easily tell
which claimed performance level is the accurate one. Nodes could claim that colluding
peers have outstanding performance while others have a poor one. Associating each
performance claim with the observer’s stake weight probably does not provide sufficient
performance confidence. Such weight system would allow high-stake actors to conspire
to allocate a great portion of relay rewards for themselves.

3.6.2 Sybil Protection Idea: Minimum Relay Stake
Next to the incentive mechanism, the protection against Sybil attacks is left as one main
open problem. One possible idea to prevent Sybil attacks is to require relay nodes to
be associated with some minimum amount of stake. Creating more relays would then
require ownership of proportionally more stake. Peers would verify the stake associations
of the relays.

A realization of this idea needs to assure the same stake cannot be used to operate
multiple relays at the same time. This would be possible if the stake was verified during
the connection attempt by asking for a stake proof, as multiple relays could then use the
same stake proof with different clients. Stake therefore has to be strongly associated
with a specific node. This association could for example be saved in the blockchain itself.

It should also not be possible to easily rotate the same stake over multiple nodes,
depending on how the verification mechanism works. Imagine the following scenario:
A client connects to relay R1 and verifies the stake requirement successfully. Then R1
rotates its stake to R2 and modifies the association of the relay stake. Now the same
client could connect to R2 successfully as well. The client could however check if the two

30



3.6 Relay Decentralization

relays stakes are the same and then reject the second connection attempt. But what if
R1 rotated its stake to another relay R3 instead. The client would not immediately learn
about this change unless it frequently verifies the stake association of actively connected
relays. However, if the stake association was stored in the blockchain itself, the client
would learn about changes to relay stakes each round and can immediately react to
them, e.g. by disconnecting relays that lost their relay status.

Example relay creation:

1. Acquire a minimum of x Algos

2. Configure node

3. Associate this minimum stake with the own node address (e.g. with an on-chain
transaction, similar to account status changes)

Example connection attempt:

1. Learn about relay addresses (e.g. by looking at new on-chain relay info)

2. Verify that the address is currently associated with a minimum relay stake

3. Connect to relay

The relay stake association could be implemented on-chain similarly to participation
status information. Each on-chain address can be in an online or offline state. Similarly,
each on-chain address could carry an extra field that contains the network address of
the associated relay node. To achieve relay status, the account would then only need to
maintain some minimum stake.

The stored network address should be a combination of IP address and port instead
of domain name and port. The problem with domain names is that they can be easily
rotated and pointed to other IP addresses. That would violate the strong association
between on-chain address and relay node.

3.6.3 Reward Assignment with Path Proofs
If the decision over the relay reward assignment was in the hands of the block proposers,
they could be required to provide some proof to the subsequent voters of the same
round so they can reproduce the chosen reward assignment and comprehend its fairness.
One new concept that could be introduced for this are path proofs. Gossip messages
could be associated with the path they take through the network. Each node along the
path would add their signature to the gossip message as proof they were part of the
path. Client nodes that receive gossip messages could then see which relay nodes were

31



Chapter 3: Analysis

involved in the forwarding process. If the client node was chosen as block proposer in a
certain round, they can use this routing data to infer the relay nodes they assign the
relay rewards of the round to. The block proposal gossip message could then include the
necessary path proofs, so voters can validate the assignment.

As concrete example, imagine some client creates a new transaction and is about to send
it to its peers. Before doing so, it adds the corresponding next hop IP address to each of
the transaction messages and signs these with the own participation key. As next hop
relay node, the claimed next hop IP address would first be checked by comparing it with
the own IP address. Then, the relay extends the existing path proof with the subsequent
next hop IP address and signs the whole path chain with its participation key. When
relaying the transaction, the path proof is included as attachment to the transaction
message. The whole signed forwarding concept recursively continues until all nodes in
the network have seen the transaction. Every node then knows which path through the
network the transactions have taken in the form of a sequence of signed IP addresses.

Figure 3.3 shows an example message flow of a transaction with attached path proof
data from one client to another client via two relays. The proof chain data consists of a
sequence of node identities and a list of corresponding signatures. Each hop adds one
identity and one signature to the proof data.

C1 R1 R2 C2

TX
Sig1 := SigC1(TX , R1)

TX
Sig1, R1
Sig2 := SigR1(Sig1, R2)

TX
Sig1, R1
Sig2, R2
Sig3 := SigR2(Sig2, C2)

Figure 3.3: Path proof chain example

The reward assignment could then be managed in the following way: Each round, a
portion of the transaction fees of this round is available for distribution as relay rewards.
The block proposer is given the power to assign these rewards to relay nodes as special
transaction in the proposed block. To prevent the proposer from assigning all rewards
to a colluding relay node, the proposer is mandated to back up their assignment with
path proofs. For example, each transaction added to the proposed block could be
required to be associated with a matching path proof. Each relay node in the path
proof is then eligible for rewards. Including more transactions in the block increases the
total transaction fees of the block and therefore the distributed relay rewards. Even
when colluding with a relay node, the block proposer is incentivized to include many
transactions in the block to increase the available rewards. At the same time however,
other relay nodes are also added to the rewards list and receive rewards, which is a

32



3.6 Relay Decentralization

positive side effect for the fairness of the distribution, as the proposer is incentivized
to reward not only colluding relays but implicitly also unassociated relays. The actual
distribution of relay rewards could then be derived from the included path proofs. Each
relay could receive rewards in proportion to how often their IP address appears in the
path proofs of a block proposal. Alternatively, a portion of fees of one transaction could
directly translate into rewards for only the relays on the path of that transaction, instead
of first aggregating all fees and relays and then distributing the rewards. Either way, the
proposer cannot arbitrarily influence the reward distribution, but has to base it on a set
of path proofs.

With a default fanout factor of 4, the block proposer receives each transaction 4 times
and has therefore 4 path proofs to choose from. To incentivize relays to offer good
performance, the proposer should choose the path proof of the first received transaction
message out of the 4. The message latency measurement mechanism can be used once
again here to track the best paths and reward the relays along these paths accordingly.

Next to transaction message path proofs, proposals, votes or other gossip messages could
also be associated with such proof mechanism. This might however not be necessary.
Relay nodes would still be incentivized to forward messages besides transactions due to
the least performing peer performance evaluation mechanism. Should a relay forward
only transactions, peers would detect the absence of other messages in the form of
an infinite message latency and would then disconnect the not performing relay. The
relay however desires to maintain many connections so they are included in as many
transaction path proofs as possible to increase the probability of earning rewards.

While the path proofs would not have to be part of the blockchain, the gossip network
bandwidth requirements would increase. First of all, the transaction message size would
increase, as the path proof would be included as attachment. Second, the block proposal
message size would increase, as it would have to include path proofs of the finalized
transactions. As optimization for the block message size, path proofs could maybe only
mandated for a portion of the transactions. This would however create more room for
cherry-picking transaction path proofs to optimize relay collusion profits.

Another aspect to consider with path proofs is network privacy. If message paths were
known to the nodes, the network topology and the location of peers in the network
would be more exposed.

With the outlined design, relay nodes would also be at least partially motivated to help
other node synchronize and catchup with the network, since synchronized transactions
can be associated with a path proof. Should the new client then start participating in
the consensus and become a block proposer, the helping relay node would be included in

33



Chapter 3: Analysis

the relay list of the transaction path proofs and receive rewards. The bandwidth cost
of bootstrapping a client with the full blockchain might however not be worth these
potential rewards, so another incentive for serving the full chain might be needed.

Path Proof Idea Problems and Improvements
Path proofs as described above are not actually fully able to provide proof about which
relays forwarded a certain message. The sender of a message is able to attest the first
hop. The receiver at the end of the relay chain is able to attest the last hop and can learn
the first hop with an appropriate signature from the sender. What happens between
relay nodes in the middle of the forwarding chain is however not clearly visible to the
receiver at the end. Two consecutive relay nodes in the chain could collude and add an
arbitrary amount of other colluding relays to the middle of the path signature chain,
even if the message was not forwarded by the added relays. By adding more colluding
nodes to the path, a greater fraction of rewards can be claimed if the message gets
chosen as path proof eligible for rewards.

In the example shown in Figure 3.4, imagine that relay nodes R1, R3 and R4 cooperate
for profit. Now a transaction propagates from C1 to C2 over different paths. Relays R3
and R4 could then claim that Path2 consists of the relay sequence R3, R1, R4 by using
a copy of the participation key of cooperating relay R1, even though R1 is not actually
on the path. Should the client at the end of the path then become block proposer and
choose Path2 as the path eligible for rewards, R1 would be in the included rewards list.

R4

C2

C1

R1

R2

R3

R6

R5Path3

Path2

Path1

Path1

Path1

Path2

Path2

Path3

Path3

Figure 3.4: Gossip network path alternatives example

Since only the first and last relay hop of a message can be verified by the proposer, only
those two relays of the chain could be made eligible for rewards. A proposer could then

34



3.6 Relay Decentralization

still collude with one of its neighboring relays and always prefer paths including that
relay instead of the other neighbors, but would still be required to also reward relays at
the other end of the path. Those relays would be less likely in a colluding relationship
with the proposer due to their distance.

Path Proof Concept in Existing Research
In 2018, Ersoy, Ren, Erkin, and Lagendijk [23] already developed a very similar version of
the previously described path proof reward mechanism. In their approach, intermediate
relay nodes are eligible for rewards. They attempt to solve the intermediate node Sybil
attack outlined above by letting the block proposer choose to reward the shortest paths.
A transaction message for example is received multiple times by the block proposer. The
path eligible for rewards would then be the shortest one. This motivates the intermediate
nodes to refrain from performing a path-lengthening Sybil attack.

Block proposers do however not have the ability to proof that a certain path is the
shortest they have seen. They therefore could choose to reward a longer path if that one
includes more conspiring peers than the other paths. The lack of shortest-path proof
also makes the Sybil attack possible again. Two connected and conspiring relays could
collude with the block proposer and launch a Sybil attack that is then intentionally
approved by the block proposer to increase the portion of gained rewards.

Rewarding the shortest path may also set suboptimal performance incentives, as the
shortest path is not necessarily the fastest path.

3.6.4 Related Work about Incentive Mechanisms
Another blockchain peer-to-peer network incentive approach was discussed by He, Li,
Cheng, Liu, Yang, and Sun in 2018 [24]. In their model, relay nodes are rewarded by the
initial sender of the message if they can prove the message has reached its destination.
Each node provides a signed but pending micro payment to their successor node on the
path to the target node. Nodes send back signed acknowledgements to their predecessor
nodes on the path in exchange. Relays can then claim their pending rewards by proving
message delivery with the signed acknowledgements. The described incentive mechanism
however requires that each message has a known destination, thus making the model
not directly applicable to the broadcast-based gossip network of Algorand.

In general, incentive mechanisms for peer-to-peer networks can be classified as payment-
based or reputation-based [24, 25]. In payment-based schemes, providing services in the
network is financially rewarded by the users or some other entity. This is for example
the case in the current relay reward model of Algorand and the own proposed Algorand
incentive strategies. Reputation-based incentive designs are an alternative approach.

35



Chapter 3: Analysis

There, users in the network keep track of some reputation values of other users. The
provided service level can then be set relative to the reputation of the user, so that high
reputation leads to high received service level. Reputation can be earned by following
certain behavioral rules of the network. A problem with a reputation-based approach is
that any service operation costs are not covered with financial rewards. Users in the
network just invest resources to provide services to each other for mutual benefit, which
can be enough motivation by itself.

36



Chapter 4

Design

With the achieved understanding of how relevant aspects of an Algorand node are
implemented, a measurement plan can be derived. This chapter first summarizes, which
information is available when operating a client or relay node. Then the measurement
approach and the core components of the measurement system are explained.

4.1 Observable Metrics

Based on the review of design and implementation of Algorand, a set of measurable
metrics can be identified.

Operating a client node gives access to the Algorand network. Gossip messages that
are broadcasted through the network can be observed such as proposals, votes and
transactions. The gossip network performance can be evaluated from the client’s
perspective. A client node also provides insights about the consensus operation, even
when not actively participating in the consensus protocol. Client nodes can furthermore
be used to analyze relay nodes by connecting directly to them and observing the network,
for example in terms of relay performance. Relay host information can be derived from
the public relay list as well such as the geographical location of nodes or any hosting
organizations.

In order to evaluate the relay core network in more detail, it is necessary to operate a
public relay node that is listed in the official relay records. By maintaining a relay node
with incoming connections from clients and other relays, a first hand perspective on
the core network can be gained and peer connectivity behavior and relay performance
requirements can be evaluated. As client nodes only connect to relay nodes and are



Chapter 4: Design

otherwise invisible in the network, operating a public relay would enable an analysis of
active client nodes in the Algorand network. For example, the activity of clients, their
network locations and their user agents could be evaluated.

More information can be learnt from incoming peer connections than from outgoing
ones. The UserAgentHeader of incoming peers is for example available for analysis.

Should the incoming peer participate in the consensus, then the peer priority challenge
response mechanism, unless disabled by the peer, can detect this and information about
the peer’s participation key and stake can be learnt.

Incoming peers can apparently not be identified with certainty as node operating in relay
mode. Receiving gossip messages with a variety of sender addresses is a relay indicator,
however. Presence of the peer’s IP address in the SRV records is another relay indicator.

Multiple incoming connections from different nodes running on the same IP address can
be differentiated by the InstanceNameHeader.

4.2 Measurement Approach

To gain access to the outlined observable metrics, the initial plan is to setup and operate
a client as well as a public relay node for both Mainnet and Testnet. The relay node
would run continuously and passively collect data. The client node would be pointed to
specific relays in turn to measure them one by one.

4.2.1 Client Measurements
Algorand client nodes only maintain outgoing connections to other relay nodes. The
Mainnet and Testnet relay peers listed in the SRV DNS records can be measured with a
client node.

In a targeted measurement setup, the local client node would be configured to connect
to exactly one of the relays for some time. During the measurement, metrics such as
network performance and other data can be observed in the client log file that provide
insights about the measured relay peer. After the measurement time has elapsed, the
node would be reconfigured to connect to another relay peer. The components of the
client measurement setup and their interactions are visualized in Figure 4.1.

A measurement controller first fetches the list of relays from the Algorand DNS SRV
records. It then points the local client node to one of the listed relays. The client
node connects to this relay peer and no other peer to avoid interference. The controller
makes a note of the measurement in a database. During the measurement, the client

38



4.2 Measurement Approach

Client Node

Relay Peer

Measurement Controller

DNS SRV Records

Log File Log Processor

Database

Analysis Queriesconnect to

point to relay

fetch

write

read

note measurement

collect data

perform

Figure 4.1: Client measurement setup

node produces measurement data as part of a log file. After some time, the controller
rotates the current relay target, so that all relays are measured one by one over time.
A log processor reads the log file, extracts relevant measurement data and stores that
in a database. In the end, the collected data in the database can be evaluated with
appropriate analysis queries.

Next to targeted measurements, the local Mainnet and Testnet client nodes can also be
measured during normal operation in a similar fashion. During such normal operation,
the client nodes are not directed to connect to one or multiple specific peers.

4.2.2 Relay Measurements
A relay node maintains incoming peer connections from client nodes and other relays in
addition to the outgoing connections to other relays. Other Mainnet and Testnet clients
can therefore only be measured with a relay node that is listed in the SRV DNS records.

To setup and operate a public relay node, it is therefore necessary to be added to these
SRV records controlled by Algorand. On their website, they claim that “[a]ny user is free
to register as a relay or participation node” 1. This sets the expectation that everyone is
able to setup a relay node and simply have the address added to the relay records.

1 https://www.algorand.com/technology/core-blockchain-innovation (Accessed: 2021-11-12)

39

https://www.algorand.com/technology/core-blockchain-innovation


Chapter 4: Design

In summer 2021, Algorand started a relay runner pilot program to invite more organiza-
tions and individuals to join the Mainnet relay network 1,2. Relay node applicants were
however required to meet certain conditions. From a technical point, significant hard-
ware requirements were mandated to assure the node offers a high level of performance.
Additionally, a reliable service level was expected. Relay nodes were also required to
enable telemetry and keep the running Algorand software up to date. Finally, signing a
matching legal contract was given as necessity for joining the relay network.

While these conditions did not fulfill the expectations of “[a]ny user is free to register
as a relay or participation node”, an application to join the Mainnet relay network was
still pursued with the intent of performing measurements and collecting data with the
relay node. Unfortunately, the contract conditions were found to be too restrictive, as
collected data would be labeled as confidential and rendered unusable for evaluation.

The unsuccessful negotiations with Algorand void the plan of operating a relay node
and investigating the gossip network from the perspective of a relay node. Therefore,
the focus is put onto data that can be measured with a client node.

4.3 Localnet Possibilities

The Algorand software supports the creation and operation of a private local Algorand
network. A localnet consists of a user-defined number of relay and client nodes and
genesis information that specifies the initial stake distribution and consensus participation
state. A running localnet is a private blockchain similar to the Algorand Mainnet and
Testnet. A private localnet is especially useful for experiments with Algorand that are
independent of the real Algorand blockchain.

For example, scalability aspects of Algorand can be investigated by running local networks
with various node counts. With a fixed amount of relays and an increasing amount of
clients, the scalability complexity of Algorand with regards to the client count could be
researched in practice. Similarly, the impact of stake distribution across clients on the
network could be analyzed by manually specifying appropriate initial stake distributions,
for example perfectly equal or with only a small set of powerful voters.

1 https://algorand.foundation/news/community-relay-node-running-pilot (Accessed: 2021-11-
12)

2 https://algorand.foundation/relay-node-runner-pilot-faq (Accessed: 2021-11-12)

40

https://algorand.foundation/news/community-relay-node-running-pilot
https://algorand.foundation/relay-node-runner-pilot-faq


4.3 Localnet Possibilities

When setting up a localnet, enough hardware resources must be provided to support
all the running local nodes or the localnet liveness can decrease and impact experiment
results negatively. For small local networks, a single machine might be sufficient. For
larger ones, a distributed node setup might be necessary.

While a localnet setup with non-trivial experiments would provide some additional
insights on the scalability of Algorand, in the context of this thesis it is left as future
work due to time constraints.

41





Chapter 5

Implementation

The designed measurement system is implemented on a Linux machine. As programming
language, Python is used for the measurement orchestration and Rust for performant
node log data processing. The collected data is stored in a PostgreSQL database.

5.1 Node Setup

The Algorand node measurement system is set up on a Linux virtual machine running
Debian. The machine is equipped with 8 vCPU, 128 GB RAM, a 2 TB SSD and a
1 Gbit/s duplex network link.

On this machine, four Algorand nodes have been installed: one client node and one relay
node for both Mainnet and Testnet. Client nodes are more lightweight than relay nodes,
as they do not have to maintain a full archival copy of the blockchain. The configured
relay nodes are not listed in the public relay SRV records, so no other peers actively
connect to these nodes, but they still operate in relay mode.

The synchronization of the Mainnet node in archival mode took 10 days. In that time,
15.1 m blocks have been fetched from the network at a bandwidth of around 4 Mbit/s.
643 CPU hours were used for the synchronization. Once completed, 560 GB of disk
space was occupied by the Mainnet blockchain.

With 40 h of real time, synchronizing the Testnet archival node was significantly faster.
14.7 m blocks were downloaded at a bandwidth of around 15 Mbit/s, using a total of 160
CPU hours. After the synchronization, the Testnet blockchain consumed 200 GB of disk
space.



Chapter 5: Implementation

5.2 Node Configuration File Settings

The installed Algorand nodes operate with configuration file settings that are slightly
different from the default settings. For all installed nodes, the logging verbosity is
increased and the log file path modified for optimal interaction with the log processing
service. For the local relay nodes, a NetAddress is specified to enable the relay mode
and so that the nodes are reachable by other peers, given the firewall allows the incoming
connections. For targeted measurements with local client nodes, the DNS and peer
phonebook settings are modified. All other configuration options are left in their default
state.

5.3 Peer Control

When performing targeted measurements, a mechanism is needed to point the node to a
specific relay in some way. There are multiple possibilities to achieve this goal, some
directly supported by an Algorand node.

Peer phonebook configuration file: The most straightforward way of pointing
a node to a certain relay is to list that relay as sole peer in the phonebook.json
configuration file. When a node process is started, it reads this peer phonebook file and
initializes the internal relay list with the given peer addresses. To make sure this custom
list is not overwritten with relay addresses fetched from the DNS SRV records, the
DNSBootstrapID configuration option must be set to an empty string. That way, the node
will only connect to peers listed in the custom phonebook. In a targeted measurement
setup, this phonebook would only contain one relay address. A disadvantage of this peer
control approach is that the node needs to be restarted for phonebook changes to take
effect, which might not be a problem for targeted measurements.

Source code patch: Another idea would be to patch the peer selection strategy at
Algorand source code level and then run a modified node binary version. This approach
would be the most flexible, as the code can be modified arbitrarily. In the context of
relay operation, running a node with modified sources might however not be possible.

DNS interception: By default, the list of relays is fetched from the DNS SRV records.
By intercepting and manipulating the DNS response to only list the desired relays, peer
control could be achieved. This would require the by default enabled DNSSEC to be
deactivated in the node configuration options. One helpful configuration option in this
approach is DNSBootstrapID, which is set to “<network>.algorand.network” by default.

44



5.4 Node Source Code Extensions

By operating a custom DNS zone, e.g. “algorand.internal”, and replacing the default
search domain, SRV requests initiated by the node could be redirected to an own DNS
server. The custom zone could then be configured to only return the desired relays.

Intentional disconnects or restarts: The last peer control idea is the most dis-
ruptive. The node could be forced to connect to new peers by disconnecting existing
peers on the network level or by restarting the node entirely. One problem with this
approach is the randomness of peer selection, as no specific new relay peer could be
guaranteed. Additionally, intentionally disconnecting peers or restarting the node would
have a negative effect on the performance metrics of the node. This might especially be
a problem in the context of relay operation.

Various details about the peer replacement behavior of a node are also relevant for
the peer control problem: The GossipFanout configuration option can be used to
influence the number of outgoing peer connections. Currently, a node-internal network
management thread checks every minute if outgoing relay peers disconnected or are to be
disconnected and replaces them with new random relay peers. Depending on the chosen
peer control solution, this delay needs to be taken into account. A peer that just got
disconnected can be immediately chosen as the replacement peer. A node maintains at
most one outgoing connection to a specific peer. The node internal list of known relays
is replaced completely whenever the node performs the periodic SRV record fetch, unless
disabled with the appropriate configuration file setting. Periodic disconnects based on
the least performing peer evaluation mechanism are not triggered if the GossipFanout
peer number is not reached.

The peer phonebook approach is the chosen peer control strategy for targeted measure-
ments. It is a directly supported feature and frequent node restarts with a client node
are not as problematic as with a relay node.

5.4 Node Source Code Extensions

Should more node internal data be desired than available through the default log
messages, the node source code could be patched and a modified binary version could
be deployed locally. Two of such source code modifications have been implemented.

The node heartbeat event provides periodic node metrics as log entry. To extend the
amount of provided heartbeat metrics, a CustomHeartbeat log event is introduced that
is logged alongside the default heartbeat event. A custom heartbeat currently only
contains a network_big_message_received_total metric. Big messages are defined
as messages with a size of at least 5 kB, which is equal to the message size threshold

45



Chapter 5: Implementation

that triggers MessageSkip gossip responses as explained in the broadcast mechanism
analysis section.

Gossip messages include information about the sender in form of an on-chain account
address. Network address information is however not included by gossip messages.
On-chain participation addresses are not publicly mapped to network addresses or vice
versa either. This makes tracking the origin of messages on IP level difficult. What can
be tracked however is from which neighboring peer certain messages are received. For
this, log entries regarding consensus proposals and votes are extended by a PeerAddress
field, which specifies the IP address of the corresponding neighbor peer.

5.5 Observed Metrics

Algorand nodes produce a large amount of insightful logging information. A relevant
subset of log entry types are extracted by the implemented log processing service and
forwarded to the database. In summary, the following log entries are collected:

• Peer connect and disconnect events

• Votes

• Heartbeats

• Relative performance metrics about outgoing peers

• Local node start and stop events

• User agents of incoming peers

Relay addresses are collected as well, but directly from the DNS SRV records and not
from the node log files. The exact details about the extracted log data and its storage
format are explained in the following section about the database schema.

5.6 Database Schema

The collected measurement data is stored in a database. PostgreSQL 13 is used as
database system.

Each local Algorand node is assigned a unique node id. The assignment between node
identifiers and custom human readable node names is saved in the database table
node_names, as shown in Table 5.1.

Observed peer connection events are stored in the peer_connects table. These events
are associated with a specific local node as well as a timestamp and include network

46



5.6 Database Schema

Field Type

node_id smallint
node_name text

Table 5.1: Table node_names

address information about the connected peer. User agent strings are also stored if
provided by the peer. The concrete table format is shown in Table 5.2.

Field Type

id bigint
node_id smallint
log_time timestamptz
address text
host_name text
incoming boolean
instance_name text
endpoint text
user_agent text

Table 5.2: Table peer_connects

Peer disconnect events are saved in a separate peer_disconnects table, but in a format
similar to the connect events. Information about why disconnects occurred is also
available. Table 5.3 lists the concrete disconnect table fields.

Node heartbeat telemetry events contain a long list of mostly performance-related metrics
that have been collected and aggregated since the start of the node. Due to the extensive
nature of the heartbeat metrics, they are stored as JSON in the heartbeats Table 5.4.
This metrics field contains key-value pairs, mapping metric names to metric values.
The custom field indicates whether the stored heartbeat refers to the default heartbeat
event or the custom heartbeat event which is associated with a different set of metric
key-value pairs.

Nodes continuously monitor and compare the network performance of their outgoing
relay peers so that the least performing relay can be periodically replaced. The relative
message delay is the deciding factor in that mechanism. Nodes expect to receive each
transaction for example from each of their outgoing relays. When receiving a transaction
for the first time, they start a timer and measure the delay until that transaction is
received from the other peers as well. Over time, each relay is then associated with an
aggregated delay value. Nodes also observe from which of the relays they receive certain

47



Chapter 5: Implementation

Field Type

id bigint
node_id smallint
log_time timestamptz
address text
host_name text
incoming boolean
instance_name text
endpoint text
reason text
message_delay bigint

Table 5.3: Table peer_disconnects

Field Type

id bigint
node_id smallint
log_time timestamptz
metrics jsonb
custom boolean

Table 5.4: Table heartbeats

messages first most often. After staying connected to a set of relays for some time, the
node can tell that for example x percent of messages have been seen first from relay
node n. These first message percentages are extracted from the log file alongside the
message delays and stored in the monitored_latencies Table 5.5.

Field Type

id bigint
node_id smallint
log_time timestamptz
endpoint text
message_delay bigint
first_msg_percentage smallint

Table 5.5: Table monitored_latencies

The measurement controller makes note of measurements in the measurement_info
Table 5.6. Measurements are associated with their time frame and a text tag to
differentiate measurements of different types. A tag can for example include information
about the measured Algorand network and whether the local node was running in normal

48



5.6 Database Schema

operation or was targeted to a certain relay. In case of targeted measurements, the host
and port of the peer is also stored in the measurement_info table.

Field Type

id bigint
measurement_tag text
node_id smallint
start_time timestamptz
stop_time timestamptz
peer_host text
peer_port integer

Table 5.6: Table measurement_info

The votes Table 5.7 stores the observed proposal and agreement votes. Each vote is
associated with its consensus round, period and step as well as the voted-for block hash,
the voter address and the weight of the vote. In case of a patched node binary, the
network address of the neighboring peer the vote was received from is also available
as data point. Due to the relatively high frequency of incoming votes, measures have
been taken to optimize the space usage of the votes table. Specifically, the voted-on
block hash, the voter address and the peer address are only stored as shorter reference
pointers in the votes table.

Field Type

id bigint
node_id smallint
log_time timestamptz
round int
period smallint
step smallint
vote_id bigint
voter_id bigint
weight int
peer_id int

Table 5.7: Table votes

The voted-on block hashes and voter on-chain addresses are stored in the voting_strings
Table 5.8 instead. There, these voting strings are saved in a deduplicated format for
storage space efficiency.

49



Chapter 5: Implementation

Field Type

id bigint
string text

Table 5.8: Table voting_strings

Similarly, the vote peer network addresses are deduplicated in the peer_addresses
Table 5.9.

Field Type

id int
address text

Table 5.9: Table peer_addresses

The list of relay nodes is periodically fetched from the corresponding DNS zone managed
by Algorand. Should new relays be found on that list, they would be added to the locally
maintained list of known relay nodes in form of the srv_relays Table 5.10. Each relay
is associated with an Algorand network name, host and port information as well as a
timestamp of when the relay was first and last seen in the SRV records.

Field Type

id bigint
network text
relay_host text
relay_port integer
first_seen timestamptz
last_seen timestamptz

Table 5.10: Table srv_relays

5.7 Services

The implemented system consists of a variety of systemd services. They depend on other
services such as postgresql.service and postfix.service.

Measures have been taken to increase the security of the system by applying systemd
confinement options to the custom services. By following the principle of least privilege
and limiting the permissions of the services, the attack surface is reduced. For example,
network access has been restricted for services that are not supposed to interact with the

50



5.7 Services

network. Additionally, write access to the file system has been greatly restricted to only
necessary files and directories. Access to privileged operations has also been limited.

algorand@.service: The algorand service wraps each of the various local Algorand
node processes in a service. This improves the node administration and enhances the
security of the system by allowing the described confinement options to take effect.
Since Algorand nodes are internet-facing applications in the case of relay nodes, this is
especially relevant.

measurement-controller.service: The main objective of the measurement controller
is to point the local client nodes that are used for measuring to certain relay peers that
should be measured. Both the Algorand Mainnet and Testnet relay nodes are scanned
in parallel with corresponding local client nodes. The measurement controller supports
two types of measurements: targeted and normal. In a targeted measurement, the client
node is pointed to exactly one specific relay peer, so that it only maintains a network
connection with that peer. In a normal measurement, the client decides for itself to
which peers and to how many peers it connects to, as if it was running normally without
interference. The measurement results for these two scenarios can then be evaluated
separately. The duration of measurements is set to one hour. The measurement controller
continuously performs measurements. Once one relay peer has been measured for one
hour, the controller points the client node to the next peer. The controller also alternates
between targeted and normal measurements, so that every five targeted ones are followed
by one normal one. The list of existing relay peers is fetched from DNS periodically. In
its choice of the next peer to measure, the controller tries to prioritize peers have not
yet been measured so often. A list of performed measurements is stored in the database
for reference, associated with their time frames and the measured peers.

node-log-processor.service: One core part of the Algorand node analysis system
is the node log processing service. Its task is to read the log files, extract and parse
relevant entries and forward them to the database. It is implemented in the Rust
programming language to achieve a high performance level. An asynchronous multi-
threaded program design allows it to process the log files of all locally running Algorand
nodes simultaneously. Log files and log entries of each node are processed sequentially
to make the service crash-tolerant and provide consistency guarantees. After a restart
or crash, the service is able to check the latest entry timestamp in the database and
continue processing log entries with more recent timestamps. That way, no log entries
are skipped or added to the database twice. To increase the efficiency of the sequential
processing pipeline, queries are batched before being sent to the database. The log

51



Chapter 5: Implementation

processing service is not only able to process existing log files, but also offers a live
processing functionality, which enables it to read new entries as soon as they are written
by the node. This allows the service to run continuously and stay up-to-date with the
logs.

srv-record-importer.service / *.timer: Once a day, the SRV record importer
fetches the current list of relay nodes in the Mainnet and Testnet from DNS. In the local
database, a list of known relay nodes is stored. Each entry is associated with the host
name, port and a timestamp of when the relay was first seen. The SRV record importer
compares the fetched relay list with the local relay list and then adds any new relays to
the database. Old entries are preserved, even if no longer present in the DNS records.
The local list of relay nodes can be used to observe which relay nodes are approved and
added over time by Algorand.

node-update-checker.service / *.timer: The node update checker service runs
daily and compares the current local Algorand software release version with the newest
version. If an update is available, an email notification is sent to the administrator(s).
Updates are not applied automatically to give time to review the release notes and check
for incompatibilities with the custom fork of Algorand.

db-backup.service / *.timer: The database backup service is triggered every two
days. It creates a backup of the database and deletes the oldest backup if the maximum
backup count has been surpassed.

status-email@.service: The status email notification service informs the adminis-
trator(s) about failures of the other services above via email. It includes information
about which service failed and why by adding a portion of the service log to the mail.
The service makes use of a Postfix mail client installed on the system.

52



Chapter 6

Evaluation

The implemented system is used to evaluate the Algorand network in practice in multiple
ways. The relay core network is one central aspect of interest, especially its state of
decentralization and performance level. Evaluated as well is the traffic in the Algorand
gossip network, the occurring message types, their sizes and occurrence frequencies.
Observations are made regarding the performance of the network, its stability and
security. Another point of focus are the voting committees at the center of the Algorand
consensus protocol. The structure of these committees is analyzed, specifically the
number of participants, the voting unanimity level and the committee power distribution.
Based on the evaluation results, conclusions about the Proof-of-Stake realization of
Algorand can be drawn and posed research questions answered.

6.1 Relay Domains

As of 28th October 2021, the Algorand relay SRV DNS records list 101 Mainnet and 8
Testnet relay domains. To evaluate this list, the relay domains are first resolved to their
IP addresses with regular DNS queries. Next, the third-party web service ipinfo.io [26]
is consulted to map the relay IP addresses to autonomous system host organizations and
countries. The resulting relay IP information dataset is then evaluated in the following.

6.1.1 Relay Host Organizations
Figure 6.1 and Table 6.1 show, how Mainnet relays are distributed among autonomous
system host organizations. The vast majority of relays are running on cloud services.
45 of 101 relays are hosted by Amazon and 22 by Google. Two thirds of relays are
running on just these two cloud providers. Considering the aspect of decentralization,



Chapter 6: Evaluation

this distribution is suboptimal. The next two most popular used cloud services are
Cloudflare and OVH, with 4 and 3 relays, respectively. The remaining 27 relays are well
distributed among 24 host organizations.

Amazon.com, Inc.
44.6%

Google LLC

20.8%Cloudflare, Inc.

4.0%OVH SAS
3.0%The Constant Company, LLC 2.0%

DigitalOcean, LLC 2.0%
FIBERNET Corp. 2.0%

Others

21.8%

Figure 6.1: Mainnet relay organizations pie chart

Most relays are hosted by Amazon. To estimate how expensive it is to run a relay node,
the technical relay requirements given by Algorand 1 are entered into the Amazon Web
Services pricing calculator [27]. The minimum machine requirements are given as: 8
vCPU, 16 GB RAM, a 1 TB SSD, a 1 Gbit/s network duplex link and 5 TB of monthly
outbound traffic. A matching Amazon EC2 instance located in Germany and reserved for
one year is estimated to cost 690 USD per month. Network traffic makes up a majority
of these costs.

Most of the Testnet relay nodes, 5 out of 8, are running on the Google cloud. The
remaining relays are hosted by Amazon, China Unicom and Cloudflare. This distribution
is shown in Figure 6.2 and Table 6.2.

Considering the majority of relays in Mainnet and Testnet are hosted by only two
providers, the Algorand relay core network is only decentralized in a limited way.

1 https://algorand.foundation/news/community-relay-node-running-pilot (Accessed: 2021-11-
09)

54

https://algorand.foundation/news/community-relay-node-running-pilot


6.1 Relay Domains

Google LLC
62.5%

Amazon.com, Inc.
12.5%

CHINA UNICOM China169 Backbone
12.5%

Cloudflare, Inc.

12.5%

Figure 6.2: Testnet relay organizations pie chart

6.1.2 Relay Countries
Figure 6.3 visualizes how Mainnet relay nodes are distributed over the world. Darker
country colors represent a large amount of located relays. Countries with light colors
contain less relays. Uncolored countries are associated with no relays.

Table 6.3 shows the country distribution for Mainnet relays. One third of relays are
located in the United States. Singapore and Ireland host 12 % of relays, respectively. 9
relays are located in Canada and Japan each. In total, around 75 % of Mainnet relays are
hosted in 5 countries. The remaining 25 % of relays are distributed among 14 countries.

The 8 Testnet relay nodes are located in 4 countries. This is shown in Figure 6.4 and
Table 6.4. Once again, the most present country are the United States.

Algorand relays are distributed over many different countries, which has a positive effect
for the decentralization of the system.

55



Chapter 6: Evaluation

Figure 6.3: Mainnet relay locations world map

6.1.3 Relay Runner Pilot Program
As part of the relay runner pilot program, a set of new relays were admitted to Mainnet 1.
In Algorand’s announcement, they counted 20 new relays.

To evaluate the added relays in more detail, a look at the SRV records is taken. The
implemented measurement system fetches the current list of relays from the Algorand
DNS SRV records once a day. Listed relay domain names are stored in the database
together with a timestamp.

As baseline for the analysis, the relay list from before the pilot program is taken. 98
relays were listed on DNS level in the middle of September 2021. The first new relay
domains were added on 29th September. In total, 21 new relay records have been added
until 13th November. Additionally, 10 domains were removed from the list in that time
frame. On 19th November, a total 109 Mainnet relay domains were listed in the records.

These numbers do not fully match the official ones specified by Algorand. 21 instead of
20 new domains were found. A larger number of relays is in principle positive. However,

1 https://algorand.foundation/news/new-algorand-relay-node-running-pilot-now-live (Ac-
cessed: 2021-11-19)

56

https://algorand.foundation/news/new-algorand-relay-node-running-pilot-now-live


6.1 Relay Domains

Figure 6.4: Testnet relay locations world map

10 other domains were removed at the same time. Therefore, the total number of relays
effectively only increased by 11.

Details about the 21 newly observed relays are listed in Table 6.5. There, each new relay
is mapped to their canonical domain name, reduced to the second level domain, as well
as the corresponding hosting organization and country. The organizations and countries
appear to be fairly mixed, which has a positive effect on decentralization. One notable
exception to this is the relatively high occurrence of the United States as country. The
evaluation also shows that the resolved domain “probsttech.com” appears twice. This
indicates that one program applicant joined the network with two relay nodes. Algorand
might only count these two entries once, which would align the number of observed new
relays with the announced number of 20. In their announcement, Algorand also outlined
the geographical distribution of the new nodes. The countries listed in the table do not
fully align with the official location description. For example, Australia is listed in the
announcement, but is not part of the table. A possible explanation for this difference is
that the used geolocation resolution service from the third party ipinfo.io [26] did not
pinpoint the location of the given IP addresses with full accuracy.

While many individual parties might operate their own relay node, the central control
of Algorand regarding the admission of relays greatly limits the decentralization of the

57



Chapter 6: Evaluation

core network. The relay runner pilot program is described by Algorand as “[...] the first
step on the path to bring Relay Nodes to the same level of full decentralisation as the
Algorand blockchain’s consensus participation nodes” 1.

1 https://algorand.foundation/news/new-algorand-relay-node-running-pilot-now-live (Ac-
cessed: 2021-11-26)

58

https://algorand.foundation/news/new-algorand-relay-node-running-pilot-now-live


6.1 Relay Domains

Host organization Relay count
Amazon.com, Inc. 45
Google LLC 21
Cloudflare, Inc. 4
OVH SAS 3
The Constant Company, LLC 2
DigitalOcean, LLC 2
FIBERNET Corp. 2
Digiweb ltd 1
GigeNET 1
Isomedia, Inc. 1
IUCC - Israel InterUniversity Computation Center 1
Jisc Services Limited 1
LANSOFT DATA SRL 1
Linode, LLC 1
Massachusetts Institute of Technology 1
Microsoft Corporation 1
ScaleMatrix 1
SimplerCloud Pte Ltd 1
SUNY at Stony Brook 1
SWITCH 1
Tencent Building, Kejizhongyi Avenue 1
University of California at Berkeley 1
University of Waterloo 1
BroadbandONE, LLC 1
China Education and Research Network Center 1
CHINA UNICOM China169 Backbone 1
Comintech Corp 1
Consortium GARR 1
Cox Communications Inc. 1

Table 6.1: Mainnet relay host organizations distribution

Host organization Relay count
Google LLC 5
Amazon.com, Inc. 1
CHINA UNICOM China169 Backbone 1
Cloudflare, Inc. 1

Table 6.2: Testnet relay host organizations distribution

59



Chapter 6: Evaluation

Country Relay count
United States 33
Singapore 12
Ireland 12
Canada 9
Japan 9
Germany 5
Netherlands 5
Northern Ireland 3
Belgium 2
China 2
South Africa 1
Switzerland 1
Israel 1
India 1
Italy 1
Romania 1
Thailand 1
Taiwan 1
Australia 1

Table 6.3: Mainnet relay country distribution

Country Relay count
United States 3
Northern Ireland 2
Singapore 2
China 1

Table 6.4: Testnet relay country distribution

60



6.1 Relay Domains

Reduced relay domain Host organization Country
bixin.com Cox Communications Inc. United States
algorand-mainnet.network Tencent Building, Kejizhongyi Avenue Thailand
bdnodes.net Google LLC United States
algorand-mainnet.network Amazon.com, Inc. Singapore
a-wallet.net Linode, LLC Japan
anodezero.com OVH SAS Canada
node-ops.com The Constant Company, LLC United States
algo.sysolnet.com GigeNET United States
algorand-mainnet.network LANSOFT DATA SRL Romania
tesseractops.io Datacamp Limited Brazil
algorand-mainnet.network The Constant Company, LLC United States
probsttech.com FIBERNET Corp. United States
probsttech.com FIBERNET Corp. United States
soton.ac.uk Jisc Services Limited Northern Ireland
algorand-mainnet.network FOP Samoilenko Igor Olegovich Ukraine
blockaffinity.com DigitalOcean, LLC India
bdnodes.net Amazon.com, Inc. Japan
sofia-relay.com Neterra Ltd. Bulgaria
algorand-mainnet.network Aruba S.p.A. Italy
hypernetlabs.io Cloudflare, Inc. United States
nighthawkapps.com Oracle Corporation Canada

Table 6.5: Relay runner program domain additions

61



Chapter 6: Evaluation

6.2 Gossip Network Performance

The measurements performed with the local client Mainnet and Testnet nodes are used
to analyze the performance of the Algorand gossip network as a whole and of individual
relay nodes. Measurements are separated into normal and targeted ones. Observing
a node during its operation in its default state is labeled as normal measurement. To
evaluate individual relays, the local client is instructed to connect to only specific relays
one at a time. These are called targeted measurements.

During a measurement, metrics regarding the exchanged gossip messages are collected.
Available for analysis are for example the type of gossip message, the message sizes,
bandwidths and message rates. The results of the targeted measurements also enable a
relay performance comparison.

6.2.1 Normal Measurement Results
Over a duration of around 6 weeks, 200 normal one hour long Mainnet measurements
have been conducted with the client node. In this time, around 174 m gossip messages
were received in total. This corresponds to around 115 GB of data. The incoming average
bandwidth resolves to 1.53 Mbit/s. 291 gossip messages were received per second on
average. The vast majority of received messages are of type AgreementVote, MessageDi-
gestSkip and Txn. Table 6.6 shows the statistics of received gossip messages by message
type. ProposalPayload messages are received less often, but still frequently. Other
message types are only encountered more rarely, by at least two orders of magnitude.

The most frequently received messages are votes with a message rate of 125/s. Message
skip requests are observed almost as often with a message rate of 111/s. Half as frequently
(51/s), transactions are received. Around 2 proposed blocks are encountered per second.
The other observed message types are related to the startup and catchup of nodes. They
are therefore received only infrequently.

Messages that contain block information are the largest observed messages. They contain
around 30 kB of block data on average. Votes and transactions are medium sized gossip
messages, with around 600 B in size. Other message types are only a few dozen bytes
small on average.

One surprising measurement result is the unexpectedly high rate of message skip requests.
If a relay node receives a large message with a size of at least 5 kB, it informs its
neighboring peers about the digest of this message as part of a skip request. The
neighbors can then save bandwidth by skipping a duplicate transmission of the large
message. The gossip network statistics observed with the local client node show that

62



6.2 Gossip Network Performance

proposal payloads are the only frequent messages that exceed an average message size
of 5 kB. However, these are received at a rate that is around 50 times lower than the
one of skip requests. Relay nodes apparently receive large messages at a much higher
rate than the local client. A reason for this could not be identified with just the client
measurement data. A closer look at the data additionally showed that the unusually
high rate of skip requests is not an effect local to certain relay nodes but can be observed
across the whole network with some variance. To identify the cause for this behavior it
might be necessary to operate an own relay node.

Msg
tag

Total
msg

received

Total
bytes

received

Avg msg
received
per sec

Avg bytes
per msg

AV 75 349 223 47 459 338 592 125.476 630
MS 66 939 231 2 275 933 854 111.471 34
TX 30 855 760 18 613 410 897 51.383 603
PP 1 436 231 46 051 960 081 2.392 32 065
TS 15 724 454 064 528 0.026 28 877
MI 3005 141 235 0.005 47
UE 473 32 637 0.001 69
VB 26 674 681 0.000 25 949

Table 6.6: Mainnet normal measurement statistics about received gossip messages

Similar to the Mainnet, the Testnet has also been measured. 200 normal measurements
were conducted over a time span of 6 weeks. The gossip network activity in the Testnet
was found to be much smaller than in the Mainnet. 46 m messages were received in total
with an aggregated size of 31 GB. The incoming bandwidth aggregates to 424 kbit/s
with a message rate of 76/s. The detailed statistics grouped by message type are shown
in Table 6.7. The number of block proposals per second is similar to the one of Mainnet.
However, the voting frequency is less than half in comparison. Message sizes by message
type are also very similar with the exception of block proposals. As the amount of
transactions received in Testnet is around five times smaller, the sizes of block messages
are lower by a similar factor.

6.2.2 Targeted Measurement Results
1089 targeted one hour long Mainnet measurements have been performed over a time
span of two months. In this time, around 253 m gossip messages were received in
total, combining to 176 GB of data. The message sizes by gossip message type are
unsurprisingly very similar to the results of the normal measurements. As the local
client node was only connected to one specific relay node in the context of targeted

63



Chapter 6: Evaluation

Msg
tag

Total
msg

received

Total
bytes

received

Avg msg
received
per sec

Avg bytes
per msg

AV 28 665 159 18 048 236 652 47.745 630
MS 9 900 874 336 629 716 16.491 34
TX 5 390 300 3 249 880 363 8.978 603
PP 1 604 153 9 269 381 533 2.672 5778
TS 63 886 871 955 039 0.106 13 649
MI 2991 140 577 0.005 47
UE 21 1449 0.000 69

Table 6.7: Testnet normal measurement statistics about received gossip messages

measurements instead four nodes in the case of normal measurements, the message rates
are comparably lower by a factor of four. Detailed statistics are shown in Table 6.8.

Msg
tag

Total
msg

received

Total
bytes

received

Avg msg
received
per sec

Avg bytes
per msg

MS 109 919 911 3 737 276 974 33.618 34
AV 99 100 538 62 418 951 436 30.309 630
TX 40 772 554 24 216 084 251 12.470 594
PP 2 289 873 73 144 355 195 0.700 31 943
TS 802 392 13 376 501 813 0.245 16 671
UE 2040 140 760 0.001 69
MI 1198 56 306 0.000 47
VB 147 3 732 932 0.000 25 394

Table 6.8: Mainnet targeted measurement statistics about received gossip messages

Similar results can be seen in Table 6.9 for the 1461 Testnet targeted measurements.

In contrast to normal relay measurements, targeted ones directly enable a performance
comparison of the measured relays. As deciding comparison metric, the average received
bandwidth is used.

Ordered by performance, the relay comparison results for Mainnet are plotted in Fig-
ure 6.5. The evaluation shows that the vast majority of the measured relays provide a
quite similar bandwidth of around 500 kbit/s. Some outliers can be observed both on
the top and bottom. Only less than 10 % of relays provided a rather low performance
level.

64



6.2 Gossip Network Performance

Msg
tag

Total
msg

received

Total
bytes

received

Avg msg
received
per sec

Avg bytes
per msg

AV 52 348 864 32 960 073 096 11.936 630
MS 13 285 220 451 697 480 3.029 34
TX 7 930 259 4 498 754 154 1.808 567
PP 3 033 650 14 600 291 227 0.692 4813
TS 384 922 4 906 327 228 0.088 12 746
MI 1503 70 641 0.000 47

Table 6.9: Testnet targeted measurement statistics about received gossip messages

The results for the Testnet relays, visualized in Figure 6.6, show a very consistent level
performance for all relays. They provided a bandwidth of around 100 to 110 kbit/s.

0 20 40 60 80 100 120
Relays

0

100

200

300

400

500

600

700

Av
g 

re
ce

iv
ed

 b
an

dw
id

th
 [k

bi
t/s

]

Figure 6.5: Mainnet relay performance comparison

In summary, the performance of relays can be described as quite consistent. Client nodes
currently need to handle traffic of around 1.5 Mbit/s in Mainnet, which does not appear
as a high node resource requirement. The goal of low barrier client operation without
high-speed network link can be seen as fulfilled.

6.2.3 Scalability Modeling
To draw more conclusions about the scalability of the Algorand gossip network, core
aspects of it are modeled. Based on derived formulas regarding different theoretical
network metrics, the scalability of gossip message broadcasts can be analyzed.

65



Chapter 6: Evaluation

1 2 3 4 5 6 7 8
Relays

100

102

104

106

108

110

112

Av
g 

re
ce

iv
ed

 b
an

dw
id

th
 [k

bi
t/s

]

Figure 6.6: Testnet relay performance comparison

The gossip network consists of a relay core network and clients that are connected to
this core network. The network can be modeled as a graph. The total number of nodes
in the network is given by:

|N | = |Clients|+ |Relays| (6.1)

The node fanout factor, which is equal to 4 by default, specifies the outgoing node
degree degout(n) of node n. The total amount of edges in the network can be calculated
with:

|E| = fanout · |N | (6.2)

The incoming node degree degin(n) for client nodes n is 0. The incoming degree for relay
nodes is a probabilistic value and depends on the number of clients and relays in the
network. Every edge in the network, which can connect either a client node or a relay
node with another relay node, increments the total incoming node degree of the network
by one. Every relay node consumes a fraction of this total degree. For a sufficiently
large network, the average incoming relay node degree can then be calculated with:

avg(degin(n)) = |E|
|Relays|

= fanout · |N |
|Relays|

(6.3)

66



6.2 Gossip Network Performance

The average degree of relay nodes is therefore:

avg(deg(n)) = degout(n) + avg(degin(n)) (6.4)

= fanout + fanout · |N |
|Relays|

(6.5)

Vote Broadcasts
A vote message is first sent by the voting client to its neighboring relay peers. The relays
then forward the message to all other peers. Relays forward the same vote only a single
time and ignore any received duplicates. This continues recursively until all nodes in
the network have seen the vote, assuming a perfectly synchronous and honest network.
The vote touches each link between peers at least once during its broadcast. Each link
between client and relay node observes the vote exactly once, as the clients do not relay
any messages back to other connected relays. In the core relay network, the vote message
can travel over the same link more than one time. This can be the case if two relays
simultaneously inform each other about a certain vote. When a relay node receives the
vote for the first time, it forwards it to all other peers. This causes traffic on deg(n)− 1
neighboring edges. To calculate the total amount of edges the vote is sent across, the
average relay degree minus one is multiplied by the number of relay nodes. The initial
message transfer from the voting client to its peers has to be added separately. A single
vote therefore results in a total amount of vote message transmissions across the whole
network of:

count(msg) = fanout + |Relays| · (avg(deg(n))− 1) (6.6)

= fanout + |Relays| · (fanout + fanout · |N |
|Relays|

− 1) (6.7)

When taking the size of the vote message into account, count(msg) · size(msg) bytes
total network load is generated across the whole network by a single vote. Each relay
node sends (deg(n)− 1) · size(msg) vote bytes to its peers. Each client node except the
voting client receives fanout · size(msg) bytes. The incoming number of bytes to relay
nodes is once again a probabilistic value that depends on the number of incoming peers.

To calculate the required bandwidth per node, the network load in bytes per vote has to
be combined with the frequency of vote messages. The vote frequency depends on the
average round time and the number of voting peers. In an ideal scenario, the protocol
executes voting steps 0 through 2 exactly one time before completing the round. When
looking at the traffic generated by a specific voting step, the committee size and the
stake distribution has to be considered. Each participating client node votes on behalf of

67



Chapter 6: Evaluation

one or multiple accounts. Each account can be randomly chosen as committee member
with a chance proportional to their stake. The number of votes in one step is equal to
the number of committee members in that step. The committee nodes are responsible
for generating the initial vote traffic of that specific step. The committee size, which is
different for each of the three voting steps and is expressed in the unit of stake tokens, is
an upper bound for the number of committee members. This bound is reached if all for
voting eligible tokens are owned by different accounts. The corresponding lower bound
for the committee size is 1, which is met if all eligible tokens are owned by the same
account. To calculate the average voter count per step, information about how stake is
distributed among participating accounts is necessary. This data is in theory publicly
available on the Algorand blockchain. With that information, the traffic generated by
each relay node n in a single voting step can be estimated with:

vote_traffic(n, step) (6.8)
= count(committee_members(step)) · (deg(n)− 1) · size(msg) (6.9)
≈ count(committee_members(step)) · (degout(n) + avg(degin(n))− 1) · size(msg)

(6.10)

= count(committee_members(step)) · (fanout + fanout · |N |
|Relays|

− 1) · size(msg)

(6.11)

= count(committee_members(step))

· (fanout + fanout · (1 + |Clients|
|Relays|

)− 1) · size(msg) (6.12)

= count(committee_members(step)) · fanout

· (2 + |Clients|
|Relays|

− 1
fanout

) · size(msg) (6.13)

This formula shows that the vote traffic scales with linear complexity in four factors:
the number of voters in the committee, the fanout factor, the number of client nodes in
the network and the vote message size. As the number of voters is bounded and the
fanout and message size factors can be treated as constants, the vote traffic generated
by each relay node effectively scales linearly with the total number of client nodes in the
network. An increase in the number of relays in contrast lowers the vote traffic per relay,
as clients are more distributed among the relays.

68



6.2 Gossip Network Performance

Evaluating the vote traffic formula for the soft and cert voting steps and aggregating
the result produces the outgoing vote traffic per relay for one round:

round_vote_traffic(n) =
2∑

step = 1
vote_traffic(n, step) (6.14)

Finally, this number can be combined with the average round duration to estimate the
total outgoing voting network bandwidth for one relay per round:

outgoing_voting_bandwidth(n) = round_vote_traffic(n)
avg(round_duration) (6.15)

In summary, a linear scalability with the number of clients appears as decent network
property. More clients do cause an increased network load on relay nodes, but only in
linear proportion.

Proposal Broadcast
Proposals take on the form of two separate messages: a small proposal vote and a large
block message. Compared to regular vote messages, proposals are subject to additional
filter mechanisms: the proposal priority mechanism and the special filter messages of type
message skip. These aspects make modeling the proposal broadcast more challenging.

At the start of a round, the proposal committee assembles new blocks and starts
transmitting the small proposal votes that contain the block hashes followed by the
actual blocks as separate message. Proposal votes are forwarded in the network similarly
to regular votes. They however compete with each other due to the priority mechanism.
A proposal vote is only forwarded by a relay if the relay has not already seen another
proposal with higher priority. If a relay sees the proposal with highest priority first,
it will not forward any other proposals in that round. In the other extreme case, the
relay sees the proposal with lowest priority first, followed by the one with second lowest
priority, and so on until it has seen and forwarded all proposal votes of that round.
The actual number of relayed proposals is a partially random value and depends on
the structure of the relay network, the location of the proposing clients and message
latencies. This makes it difficult to formalize an equation for the average number of
relayed proposals.

As the actual block messages are larger than the proposal announcements, they propagate
slower through the network and use more bandwidth. Blocks are also affected by
the proposal priority mechanism. They are only forwarded if the relay has seen the
corresponding proposal vote and no other proposal with higher priority. Additionally,

69



Chapter 6: Evaluation

block transmissions are also optimized by the message skip filter mechanism. Whenever
a node receives a large enough block, it notifies its peers about the hash of the block
message. These neighboring peers then avoid sending the same block to the peer that
sent the filter request message. In the optimal case, the block message with highest
priority is only received once by each node. If all nodes learn about the highest priority
proposal before the first block is sent, only the winning block is propagating through
the network. Creating a model for the block propagation is challenging due to the many
unpredictable latency variables and the unknown network structure.

However, some conclusions about the scalability of proposal broadcasts can still be drawn.
First, proposal traffic does not scale worse than linear regarding the factor of client node
count. Without the proposal broadcast optimizations, transmissions of proposals behave
similarly to those of regular votes. And votes were shown to scale linearly with the
number of client nodes. Second, the size of proposals is an additional factor and not a
constant as in the case of votes. Proposal block messages scale linearly with the number
of transactions in the block. An increased transaction frequency leads to an increase in
proposal traffic size.

6.3 Connection Stability

The stability of gossip connections is one performance factor of the Algorand network.
Stable connections with relay nodes are a sign of a reliable network. Algorand nodes
usually maintain their connections with other performant peers consistently. The least
performing peer evaluation mechanism however causes a node to replace the slowest peer
periodically. Other than that, peers only disconnect each other in error cases or if they
are intentionally stopped or restarted.

To evaluate the stability of the relay network, all disconnects are observed between the
local nodes running in relay mode and the outgoing relay peers. For each disconnect,
its reason is tracked. In Table 6.10, the observed disconnect reason distribution for
Mainnet is displayed. 97 % of disconnects can be attributed to the least performing peer
replacement mechanism, which periodically triggers around every 5 min independent of
whether there are errors or other stability problems. In only one case, the connection
was cut because the remote peer shut down. Some form of connection problem was the
reason for the other disconnects. Assuming a performance evaluation based disconnect
every 5 min, these other unstable kinds of disconnects are encountered around every
2 h 42 min. For the Testnet, a very similar disconnect reason distribution can be observed
in Table 6.11. As nodes maintain multiple relay connections at the same time, periodic

70



6.4 Network Security

disconnects due to performance or infrequent disconnects due to errors or other problems
are unproblematic. In total, the relay connections appear quite stable.

Disconnect reason Count Percentage
LeastPerformingPeer 26 821 96.87 %
ReadError 616 2.22 %
DisconnectStaleWrite 122 0.44 %
SlowConnection 115 0.42 %
WriteError 6 0.02 %
IdleConnection 5 0.02 %
DisconnectRequest 1 0.00 %
CliqueResolving 1 0.00 %

Table 6.10: Mainnet disconnect reasons

Disconnect reason Count Percentage
LeastPerformingPeer 25 450 97.04 %
ReadError 410 1.56 %
SlowConnection 229 0.87 %
DisconnectStaleWrite 95 0.36 %
WriteError 37 0.14 %
DisconnectRequest 4 0.02 %
CliqueResolving 1 0.00 %

Table 6.11: Testnet disconnect reasons

6.4 Network Security

During the research of the Algorand implementation, some observations about its network
security have been made. They are described in the following, grouped by their associated
security goal.

Confidentiality: Gossip messages are exchanged between nodes unencrypted. Their
contents are therefore exposed to network observers along their message paths. While
exchanged messages are usually intended to be available to the whole network, certain
metadata such as user agent or stake information in message headers could be worth
protecting. Support for TLS is implemented in theory and requires the configuration of
TLS certificates by relay operators, but its usage in practice could not be observed.

Integrity & Authenticity: A lack of TLS encryption does not directly affect the
integrity and authenticity of core consensus messages. Proposals, votes and transactions

71



Chapter 6: Evaluation

are cryptographically signed separately with corresponding participation or wallet keys.
However, not all gossip messages are protected with a signature. An attacker with
favorable network position can therefore still inject for example forged message skip
requests, possibly causing a disruption or disconnects in the network.

Availability: Algorand relay nodes validate every message before forwarding them to
other peers. This validation mechanism protects the network from amplification flooding
attacks, as malicious messages would be directly dropped at the first relay hop. When
receiving a malformed message from a peer, that peer is immediately disconnected. If
a message is a duplicate or no longer relevant for other reasons, it is just filtered and
not forwarded. A rate limiting mechanism further reduces the impact of connection
attempts from the same source with high frequency. In case of an ongoing denial of
service attack caused by network overload, the priority peer mechanism additionally
attempts to forward messages at least to connected outgoing relays and high-stake clients.
With all these mechanisms in place, the security goal of availability has been extensively
addressed.

Privacy: The IP addresses of relay nodes are publicly available through DNS. The ones
of clients however are only known to the directly connected relays and not to the whole
network. Additionally, Algorand has access to client information through relay node
telemetry messages. Gossip messages can transmit on-chain addresses of participants
through the network, but not IP addresses. As stake is usually associated with client
nodes and not relays, the privacy of client IP addresses leads to an increase of stake
security. Possible non-relay attackers are unable to easily locate and target client nodes.
Additionally, client nodes operate without open ports, which further increases their
security.

6.5 Consensus Voting Committees

The committees are a central part of the Algorand consensus protocol. They are
responsible for proposing and voting on new blocks. To evaluate these committees, all
accepted votes observed by the local nodes running in relay mode were collected over a
time period of 8 weeks from September to November 2021.

This time period covers around 1 m rounds of the Algorand protocol. Around 3 m distinct
committees were observed. As the protocol consists of the three main steps of proposal
vote, soft vote and cert vote, this number aligns with the round count. In the 1 m rounds,
over 3 m individual block proposal votes were observed. In the Mainnet, 473 distinct
consensus participants could be identified. In contrast, 33 distinct voters were found

72



6.5 Consensus Voting Committees

in the Testnet. The participants were responsible for 149 m Mainnet and 56 m Testnet
votes in total. Table 6.12 summarizes these general committee metrics.

Metric Mainnet Testnet
Distinct rounds 1 071 726 1 107 844
Distinct committees 3 214 811 3 322 989
Distinct votes 149 235 060 56 184 437
Distinct voters 473 33
Distinct proposals 3 471 844 3 351 644

Table 6.12: General observed voting committee metrics

In an ideal case, the three main committees immediately find consensus about a new
block in one protocol period. Should there be insufficient agreement, a subsequent period
in the same round would be initiated to find consensus. In the 1 m observed Mainnet
rounds, more than one period was required to determine a new block in only 45 cases.
In the Testnet, all observed rounds completed in one period. These numbers signal a
very high level of protocol liveness.

Due to the way Algorand nodes are implemented and optimized, not all issued proposals
and votes are necessarily observed. For example, the proposal broadcast optimization
causes relay nodes to drop low priority proposals. Other committee votes are collected
by a node only until a threshold is reached. More votes could then still exist in the
network, but the node is already able to advance its protocol state and no longer collects
older votes. The votes evaluated are therefore the ones observed and collected by the
node with the given active optimizations.

6.5.1 Committee Sizes
In each step of the consensus protocol, certain participants are chosen as committee
members to propose or vote for new blocks. With enough votes for one proposal in one
step, the protocol reaches a threshold and advances to the subsequent step and might
certify a new block successfully. The number of participants in these committees is not
a fixed value, but a probabilistic one. It depends on the economic distribution of stake,
the amount of stake participating in the protocol and also on randomness.

An evaluation of the number of observed voters in each committee provides a first
impression of the decentralization of the consensus committees. On average in Mainnet,
3 block proposals are observed per protocol period. More proposals might actually be
issued but filtered out due to the proposal broadcast optimization mechanism. Soft
committees consist of around 80 voters. In case of cert committees, 85 voters are

73



Chapter 6: Evaluation

responsible for the certification decision of new blocks on average. In rare cases where
more than one period is necessary to find consensus and finalize a block, between around
67 and 85 voters transition the protocol to a subsequent round period. The evaluation
details can be found in Table 6.13.

Protocol step Avg voter count
0 (propose) 3.2
1 (soft) 79.7
2 (cert) 85.2
3 (next) 85.2
4 (next) 67.0

Table 6.13: Mainnet observed voting committee sizes

For the Testnet, 3 block proposals are observed per period, similar to the Mainnet. The
observed committee participant counts for the soft and cert step are lower in comparison.
Respectively, 27 and 21 voters were involved in these voting steps. Next committees
were not observed in the Testnet. Table 6.14 summarizes these results.

Protocol step Avg voter count
0 (propose) 3.0
1 (soft) 27.0
2 (cert) 20.7

Table 6.14: Testnet observed voting committee sizes

With 473 individual Mainnet and 33 Testnet voters observed in total, a sizeable subset
of participants is chosen in voting committees, which is important for the security and
decentralization of the consensus protocol.

6.5.2 Committee Unanimity
A consensus voting step is successful if one voting option receives a supermajority of total
vote weight. The more unanimous the vote results are, the more stable the consensus
progress. Should multiple voting options frequently compete with each other, liveness
and performance of the protocol decreases, as thresholds are reached slower or maybe
not at all. One possible reason for a suboptimal unanimity ratio is a disturbance on
relay network level. Should proposals or votes not be propagated properly, nodes may
not receive them in time and vote for a competing option instead. Attackers could also
try to negatively influence the unanimity level by intentionally voting for a competing
option.

74



6.5 Consensus Voting Committees

An evaluation of the observed voting committees shows that the Algorand network
maintains a near perfect unanimity level. Table 6.15 and Table 6.16 list the average
voting step unanimity ratios for Mainnet and Testnet respectively. Soft and cert step
committees complete fully unanimous. The presence of next votes in the Mainnet signals
that in rare cases more than one protocol period was needed to find consensus about a
new block. In these next vote committees, some voting uncertainty could be discovered,
even though the unanimity ratio was still very high.

Protocol step Avg unanimity ratio
1 (soft) 1
2 (cert) 1
3 (next) 0.968
4 (next) 1

Table 6.15: Mainnet voting committee unanimity

Protocol step Avg unanimity ratio
1 (soft) 1
2 (cert) 1

Table 6.16: Testnet voting committee unanimity

With the observed high unanimity ratios, a high liveness can be attributed to the
consensus operation.

6.5.3 Voter Power Distribution
The expected voting power of a participant is proportional to their stake. In consensus
committees, voting power is expressed as vote weight. A proposal counts as accepted by
a committee if enough voters vote for the proposal, so that their combined vote weight
surpasses a hard-coded threshold weight. Maintaining a large amount of stake increases
not only the probability of being chosen as committee member but also the expected
weight of the own vote.

In order to evaluate the distribution and decentralization of voting power, the observed
consensus participants with most power are determined. First, an aggregated vote weight
value is calculated for each observed voter. The resulting individual weights are then
put into proportion with the total weight of all observed committees. This produces a
fractional voting power value for each consensus participant. By ordering the list by
power, the most powerful voters are identified. Table 6.17 shows the relative voting
power of the 10 voters in Mainnet with highest aggregated weight. The most influential

75



Chapter 6: Evaluation

voter maintains around 5 % of total observed voting power. The participants on rank 2
to 4 carry a power fraction of around 3 % each.

Voter weight Total weight fraction
210 749 753 0.048 713
147 065 588 0.033 993
124 843 389 0.028 857
122 786 363 0.028 381
121 432 199 0.028 068
101 994 357 0.023 575
83 795 978 0.019 369
83 319 399 0.019 259
82 981 171 0.019 180
82 961 396 0.019 176

Table 6.17: Mainnet top voters by total weight

The results show that there is no single powerful active voter that would be able to
consistently control voting committees. A group of powerful voters would have to
collude to reach a significant level of influence. In order to evaluate this in more detail,
cumulative power values of the top voters are calculated. Figure 6.7 visualizes the power
curve for Mainnet. The top 20 voters maintain a cumulative voting power of around
45 %. Combining the power of the top 40 voters yields a cumulative power of over 70 %.
In total, 99 % of power can be attributed to less than 100 consensus participants.

0 20 40 60 80
Top n voters with most power

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e 

vo
tin

g 
po

we
r

Figure 6.7: Mainnet cumulative voting power of top voters

76



6.5 Consensus Voting Committees

The same evaluation is also performed on the measurement results from the Testnet.
There, a more equal power distribution can be observed, but less participants in total.
The top 10 voters maintain a power ratio of 4.5 % each. Table 6.18 shows the details.

Voter weight Total weight fraction
201 069 510 0.045 014
201 065 050 0.045 013
201 064 352 0.045 013
201 060 618 0.045 012
201 059 420 0.045 012
201 048 982 0.045 009
201 047 177 0.045 009
201 035 697 0.045 006
200 740 471 0.044 940
200 697 206 0.044 931

Table 6.18: Testnet top voters by total weight

The cumulative power curve has a more linear shape compared to Mainnet. The Testnet
power curve is visualized in Figure 6.8. The top 15 participants wield a combined voting
power of around 66 %. In total, only 27 voters are observed in the Testnet.

0 5 10 15 20 25
Top n voters with most power

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e 

vo
tin

g 
po

we
r

Figure 6.8: Testnet cumulative voting power of top voters

In summary, no single voter participates in the consensus protocol with significant power.
However, a group of powerful voters could collude to disturb the liveness of the protocol.

77



Chapter 6: Evaluation

As such a group would own a significant amount of stake, it would be unwise to risk
devaluing their stake by negatively influencing the system.

6.6 Algorand Evaluation Summary

Based on the evaluation of Algorand in this thesis, the posed research questions can
be answered. An evaluation summary is given regarding the extent the Algorand goals
performance, scalability, decentralization and security have been put into practice. The
identified main open issues and current goal progress of Algorand are described. Finally,
the state of the “blockchain trilemma” is evaluated and the attempt of Algorand to solve
it.

Performance: The Algorand network appears performant and stable. An operation of
a client node is possible with modest hardware resources. Quite consistent performance
of the relay core network is assured by Algorand with the help of contract clauses and
matching financial rewards. Various message filtering mechanism assist at maintaining
gossip network performance. On consensus level, a high amount of protocol liveness
can be observed. Consensus committees find agreement about new blocks quickly and
unanimously.

Scalability: Algorand achieves scalability with Proof-of-Stake committees at the
core of the consensus protocol. Only a limited subset of users actively participate in
a committee each round. In combination with the self-selection mechanism, only a
low amount of communication is necessary. The broadcast-based message forwarding
dominates the scalability complexity of Algorand. A linear scaling of network load can
be identified when increasing the number of client nodes.

Decentralization: The Proof-of-Stake protocol enables Algorand to achieve full de-
centralization on consensus level. The absence of stake lock in and mandatory stake
delegation keeps the barrier to actively participate in the protocol with a client low.
Decentralization could be observed in practice, as the evaluation of voting committee
sizes and power distributions shows. On the other hand, Algorand on network level was
shown to be only partially decentralized. While relay nodes are found to be diversely
distributed among countries, the majority of relays are hosted on the same two cloud
providers. Additionally, Algorand maintains centralized control over the admission of
new relays to the core network. A lack of a proper long-term reward model further limits
the current decentralization of Algorand. The evaluation results of Algorand in practice
contradict the claim of Algorand to be entirely decentralized without central authority.

78



6.6 Algorand Evaluation Summary

Security: Signatures of proposals, votes and transactions are the main security feature
of the Algorand blockchain. On network level, Algorand implements a variety of
mechanisms to assure a high degree of availability. A consistent use of TLS could further
improve the confidentiality and authenticity of gossip network communication. The
non-public nature of client node identities provides client privacy on the network layer.
Some network data is only available to relay operators and Algorand.

Main Open Issues: The reward model and the relay admission scheme were identified
as main open issues of Algorand. Rewards for relay nodes are currently managed directly
by Algorand. Consensus participation is not directly rewarded at all. Algorand wields
too much power over the relay core network for it to be considered fully decentralized.
A couple of technical issues have been identified as well during the research of Algorand,
such as outdated dependencies or the lack of signatures for released binaries. In this
thesis, some solution ideas for the outlined core issues were explored. The problem of
fully decentralized relays, consensus participation rewards and a reward model for relays
based on path proofs were discussed.

Goal Progress: Algorand does manage to fulfill most of its goals, but not all of them.
It can be observed that there is an intention to come closer to these goals. With
the introduction of the governance program and the phasing out of stake rewards, an
evolution of the reward model can be seen. A long-term reward model for consensus
participation and relay node operation however has yet to be presented. The relay runner
pilot program shows effort of Algorand to slowly increase the level of decentralization in
the relay core network. If or how Algorand fully decentralizes the relay admission is yet
to be seen. For the time being, Algorand appears to desire to maintain some level of
control to assure a stable and growing ecosystem.

“Blockchain Trilemma” State: The Algorand marketing material claims that the
blockchain properties decentralization, scalability and security have been unified and the
“blockchain trilemma” has been solved. The evaluation of Algorand however showed that
the property of decentralization is achieved only in a limited way. While the Algorand
Proof-of-Stake consensus protocol itself might be fully decentralized, the open issues
found in the reward model and relay core network make the surrounding blockchain
platform only partially decentralized. Until these points are addressed, the blockchain
trilemma cannot be considered solved.

79





Chapter 7

Related Work

Some related work about Algorand exists that mainly addresses security aspects of
Algorand. One paper investigated the participation reward model of Algorand.

Related work regarding Algorand:

• In 2019, Fooladgar, Manshaei, Jadliwala, and Rahman [28] created a game-theoretic
model of Algorand, identified issues with current reward distribution model and
proposed a better reward scheme. This scheme however still featured the Algorand
Foundation as central rewards authority, which does not align with the blockchain
trilemma goal of fully decentralizing the network.

• In 2019, Conti, Gangwal, and Todero [29] presented a DDoS-like flooding attack
on Algorand nodes that takes advantage of proposal message validation complexity.
As a sidenote, they also pointed out that relay nodes are prone to Sybil attacks as
an attacker could create many relay nodes for free and nodes do not consider the
relay’s stake when connecting. Algorand’s current implementation does not seem
to be affected by these attacks. Proposal messages are split into proposal vote and
actual block messages. The large blocks are only considered if an earlier matching
proposal vote has been validated successfully. The relay Sybil attack is currently
prevented by allowing only certain nodes to be relay nodes. When decentralizing
relays more in the future, Algorand will have to address this attack possibility in
their design.

• In 2020, Liu investigated the Algorand consensus algorithm in their Master’s
thesis [30]. They built an Algorand simulator in Python that runs the consensus
protocol. With this, they simulated an Algorand network and evaluated scalability



Chapter 7: Related Work

and security properties of the protocol. When configuring delay parameters in
their simulator, they used performance metrics from Bitcoin as reference. Their
evaluation results suggest that the round completion time of the Algorand protocol
scales well with an increasing number of participating nodes. When adding up to
20 % dishonest voters to the simulation, only a small increase in block time was
observed.

• In 2020, Alturki, Chen, Luchangco, Moore, Palmskog, Peña, and Roşu [31] created
an Algorand protocol model in the Coq proof assistant and proved asynchronous
safety of the protocol which guarantees that two different blocks cannot be certified
in the same round.

• In 2021, Bartoletti, Bracciali, Lepore, Scalas, and Zunino [32] created a formal
model of Algorand’s stateless smart contracts that allows reasoning on the security
of smart contracts.

In more general related work about Proof-of-Stake, Algorand has been mentioned and
compared to other Proof-of-Stake approaches. Some theoretical challenges to Proof-of-
Stake, such as decentralization incentives and issues with forking, have been addressed
in research.

Related work regarding Proof-of-Stake:

• In 2019, Nguyen, Hoang, Nguyen, Niyato, Nguyen, and Dutkiewicz [9] compared
the Proof-of-Stake consensus of Ouroboros, Chains-of-Activity, Casper, Algorand
and Tendermint regarding their protocol mechanism, incentives, security and
performance. They then presented Proof-of-Stake applications in vehicle blockchain
networks. Finally, they analyzed Proof-of-Stake stake pooling and its effect on
decentralization with game theory.

• In 2019, Brown-Cohen, Narayanan, Psomas, and Weinberg [33] described security
problems and design challenges of longest-chain Proof-of-Stake protocols that arise
from the Nothing-at-Stake problem.

• In 2020, Baldimtsi, Madathil, Scafuro, and Zhou [34] attempted to decouple
user identities from Proof-of-Stake lottery mechanisms to improve privacy. They
described an ideal anonymous lottery function that applies to the Ouroboros
Proof-of-Stake approach, but not Algorand.

Performance metrics of blockchains have been defined and evaluated in research, both
for Proof-of-Work and Proof-of-Stake approaches. However, an in-depth evaluation of
the Algorand blockchain is lacking.

82



Related work regarding blockchain performance evaluation:

• In 2018, Zheng, Zheng, Luo, Chen, and Liu [35] defined a series of blockchain
performance metrics such as transactions per second and transaction confirmation
latency. They also developed a blockchain monitoring framework that is able to
analyze various metrics from log files and evaluated Ethereum with it.

• In 2018, The Linux Foundation [36] defined basic blockchain performance evaluation
terms and metrics in context of Hyperledger. They also outlined test environment
considerations, e.g. concerning the network model and the workload.

• In 2020, Lepore, Ceria, Visconti, Rao, Shah, and Zanolini [5] provided a general
comparison of node scalability of Proof-of-Work and Proof-of-Stake blockchains and
throughput in terms of transactions per second as well as transaction confirmation
latency.

83





Chapter 8

Future Work

The analysis of Proof-of-Stake in practice can be continued in various ways.

Specifically to Algorand, the decentralization of stake could be evaluated. This is a
relevant aspect because stake translates to power in Proof-of-Stake blockchains. The
distribution of stake among wallet addresses is a publicly accessible information directly
stored in the blockchain. The actors with most individual stake could be identified
and their relative power in the network evaluated. Additionally it would be interesting
to analyze how much power the creators of Algorand currently maintain, as they
allocated a significant amount of stake to themselves in the genesis block that they use
to influence the growth of the Algorand ecosystem. A large amount of stake gives actors
a proportionally large participation power in the consensus committees that propose
and vote on new blocks. The evaluation chapter of this thesis already analyzed the
voter power distribution of actors actively participating in the consensus protocol with
their stake. Not all stake in circulation is necessarily associated with a client node for
consensus participation purposes. Therefore, an evaluation of distribution of circulating
stake would complement the analysis of distribution of participating stake.

Another part of Algorand that could be subjected to further analysis is the relay core
network. In this thesis, the relay network could only be evaluated from the outside with
a client node. Relay domains, locations, hosting organizations and provided bandwidth
have been analyzed. For a direct first-hand evaluation, operating an own relay node
would be necessary. Connectivity behavior of incoming peers and relay performance
metrics and requirements as well as relay operating cost could then be evaluated in more
detail. Information about client nodes could be learnt such as their amount of associated
stake, their geographical locations and their user agent header values. More insights



Chapter 8: Future Work

could be gained about the gossip messages exchanged in the core network. As relay
nodes are more exposed in the network, possible unusual or malicious network activity
could also be observed better.

On a larger scale, the Proof-of-Stake approach by Algorand can be compared in more
detail with other Proof-of-Stake implementations, some of which have been outlined in
the background chapter. Similar measurement setups can be created for these other
blockchains. Resulting measurement data would then allow for an in-depth comparison
between the different approaches in practice regarding aspects such as performance,
decentralization and security. Interesting to analyze would be how these other Proof-of-
Stake implementations attempt to solve the core issues identified in Algorand and in
turn which points are solved by Algorand better than by the competitors. As extension,
a broader comparison with Proof-of-Work is also possible, for example regarding the
energy usage.

86



Chapter 9

Conclusion

This thesis analyzed permissionless Proof-of-Stake consensus in practice at the example of
the Algorand blockchain. Based on a review of core aspects of Algorand, a measurement
setup with an own Algorand node was designed and implemented in order to observe and
evaluate the Algorand network and consensus operation in practice. Using the evaluation
results, it was possible to analyze to what extent Algorand manages to fulfill their goals
in practice. Additionally, some main open issues of Algorand could be identified and
corresponding solution ideas explored.

For the Algorand Mainnet, the following main numeric results have been observed:
Two thirds of relays are hosted by two organizations. 75 % of relays can be mapped to
5 countries. Regarding the consensus operation, 30 distinct votes were observed per
second. Voting committees consisted of around 80 participants on average. In almost all
cases, committees came to an unanimous agreement. The most influential consensus
participant maintained a consensus power of 5 %.

Algorand appears to fulfill most of its goals in practice, specifically the core goals of
performance, scalability and security. However, the goal of decentralization is only
fulfilled partially. The open issues identified with the reward model and relay admission
system are the reasons for this conclusion. While a long-term plan to address these points
has not yet been presented, an intention to come closer to the goal of decentralization
can be observed. An exploration of own solution ideas for these aspects shows that there
is potential for such improvement. However, the development of a fair, secure and fully
decentralized relay reward model poses a challenge. Until these points are addressed, the
“blockchain trilemma” of unifying full decentralization, scalability and security cannot
be considered solved by Algorand.



Chapter 9: Conclusion

Nevertheless, the Algorand blockchain is a practical Proof-of-Stake consensus imple-
mentation with real monetary transactions that has a series of desirable properties.
While it has not yet reached its full potential, Algorand can be considered a qualitative
Proof-of-Stake realization.

88



List of Figures

2.1 Algorand network structure (simplified) . . . . . . . . . . . . . . . . . . 8
2.2 Current Algorand reward model . . . . . . . . . . . . . . . . . . . . . . . 12

3.1 Node-internal vote processing events and associated log message types . 19
3.2 Node-internal block payload processing events and associated log message

types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3 Path proof chain example . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.4 Gossip network path alternatives example . . . . . . . . . . . . . . . . . 34

4.1 Client measurement setup . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6.1 Mainnet relay organizations pie chart . . . . . . . . . . . . . . . . . . . . 54
6.2 Testnet relay organizations pie chart . . . . . . . . . . . . . . . . . . . . 55
6.3 Mainnet relay locations world map . . . . . . . . . . . . . . . . . . . . . 56
6.4 Testnet relay locations world map . . . . . . . . . . . . . . . . . . . . . 57
6.5 Mainnet relay performance comparison . . . . . . . . . . . . . . . . . . . 65
6.6 Testnet relay performance comparison . . . . . . . . . . . . . . . . . . . 66
6.7 Mainnet cumulative voting power of top voters . . . . . . . . . . . . . . 76
6.8 Testnet cumulative voting power of top voters . . . . . . . . . . . . . . . 77





List of Tables

3.1 Peer disconnect reasons [20] . . . . . . . . . . . . . . . . . . . . . . . . . 17

5.1 Table node_names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.2 Table peer_connects . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.3 Table peer_disconnects . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.4 Table heartbeats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.5 Table monitored_latencies . . . . . . . . . . . . . . . . . . . . . . . . 48
5.6 Table measurement_info . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.7 Table votes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.8 Table voting_strings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.9 Table peer_addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.10 Table srv_relays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6.1 Mainnet relay host organizations distribution . . . . . . . . . . . . . . . 59
6.2 Testnet relay host organizations distribution . . . . . . . . . . . . . . . . 59
6.3 Mainnet relay country distribution . . . . . . . . . . . . . . . . . . . . . 60
6.4 Testnet relay country distribution . . . . . . . . . . . . . . . . . . . . . . 60
6.5 Relay runner program domain additions . . . . . . . . . . . . . . . . . . 61
6.6 Mainnet normal measurement statistics about received gossip messages . 63
6.7 Testnet normal measurement statistics about received gossip messages . 64
6.8 Mainnet targeted measurement statistics about received gossip messages 64
6.9 Testnet targeted measurement statistics about received gossip messages 65
6.10 Mainnet disconnect reasons . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.11 Testnet disconnect reasons . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.12 General observed voting committee metrics . . . . . . . . . . . . . . . . 73
6.13 Mainnet observed voting committee sizes . . . . . . . . . . . . . . . . . 74
6.14 Testnet observed voting committee sizes . . . . . . . . . . . . . . . . . . 74
6.15 Mainnet voting committee unanimity . . . . . . . . . . . . . . . . . . . . 75
6.16 Testnet voting committee unanimity . . . . . . . . . . . . . . . . . . . . 75



Chapter 9: List of Tables

6.17 Mainnet top voters by total weight . . . . . . . . . . . . . . . . . . . . . 76
6.18 Testnet top voters by total weight . . . . . . . . . . . . . . . . . . . . . 77

92



Bibliography

[1] Satoshi Nakamoto, Bitcoin: A Peer-to-Peer Electronic Cash System,
https://bitcoin.org/bitcoin.pdf, [Accessed: 2021-06-05], 2008.

[2] Ethereum Foundation, ethereum.org, https://ethereum.org/, [Accessed:
2021-10-26], 2021.

[3] Cardano, cardano.org, https://cardano.org/, [Accessed: 2021-10-26], 2021.
[4] Algorand, algorand.com, https://www.algorand.com/, [Accessed: 2021-06-05],

2021.
[5] C. Lepore, M. Ceria, A. Visconti, U. P. Rao, K. A. Shah, and L. Zanolini, “A

Survey on Blockchain Consensus with a Performance Comparison of PoW, PoS
and Pure PoS”, Mathematics, vol. 8, no. 10, 2020, issn: 2227-7390. doi:
10.3390/math8101782. [Online]. Available:
https://www.mdpi.com/2227-7390/8/10/1782.

[6] R. C. Merkle, “A Digital Signature Based on a Conventional Encryption
Function”, in Advances in Cryptology — CRYPTO ’87, C. Pomerance, Ed.,
Berlin, Heidelberg: Springer Berlin Heidelberg, 1988, pp. 369–378, isbn:
978-3-540-48184-3.

[7] M. Vukolić, “The Quest for Scalable Blockchain Fabric: Proof-of-Work vs. BFT
Replication”, in Open Problems in Network Security, J. Camenisch and
D. Kesdoğan, Eds., Cham: Springer International Publishing, 2016, pp. 112–125,
isbn: 978-3-319-39028-4.

[8] A. de Vries, Bitcoin Energy Consumption Index,
https://digiconomist.net/bitcoin-energy-consumption, [Accessed:
2021-11-04], 2021.

[9] C. T. Nguyen, D. T. Hoang, D. N. Nguyen, D. Niyato, H. T. Nguyen, and
E. Dutkiewicz, “Proof-of-Stake Consensus Mechanisms for Future Blockchain
Networks: Fundamentals, Applications and Opportunities”, IEEE Access, vol. 7,
pp. 85 727–85 745, 2019. doi: 10.1109/ACCESS.2019.2925010.

https://bitcoin.org/bitcoin.pdf
https://ethereum.org/
https://cardano.org/
https://www.algorand.com/
https://doi.org/10.3390/math8101782
https://www.mdpi.com/2227-7390/8/10/1782
https://digiconomist.net/bitcoin-energy-consumption
https://doi.org/10.1109/ACCESS.2019.2925010


[10] Sunny King and Scott Nadal, PPCoin: Peer-to-Peer Crypto-Currency with
Proof-of-Stake,
https://www.peercoin.net/whitepapers/peercoin-paper.pdf, [Accessed:
2021-06-05], 2012.

[11] Coinbase, coinbase, https://www.coinbase.com/, [Accessed: 2021-10-26], 2021.
[12] Ethereum, Ethereum Proof-of-Stake Consensus Specifications,

https://github.com/ethereum/consensus-specs, [Accessed: 2021-10-26],
2021.

[13] Web3 Foundation, Polkadot, https://polkadot.network/, [Accessed:
2021-10-27], 2021.

[14] Avalanche, avax.network, https://www.avax.network/, [Accessed: 2021-10-28],
2021.

[15] Team Rocket, M. Yin, K. Sekniqi, R. van Renesse, and E. G. Sirer, Scalable and
Probabilistic Leaderless BFT Consensus through Metastability, 2020. arXiv:
1906.08936 [cs.DC].

[16] Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and N. Zeldovich, “Algorand: Scaling
Byzantine Agreements for Cryptocurrencies”, in Proceedings of the 26th
Symposium on Operating Systems Principles, ser. SOSP ’17, Shanghai, China:
Association for Computing Machinery, 2017, 51–68, isbn: 9781450350853. doi:
10.1145/3132747.3132757. [Online]. Available:
https://doi.org/10.1145/3132747.3132757.

[17] Rand Labs, AlgoExplorer - Algorand Blockchain Explorer,
https://algoexplorer.io/, [Accessed: 2021-06-05], 2021.

[18] Algorand Inc., Algorand Developer Docs,
https://developer.algorand.org/docs/, [Accessed: 2021-09-14], 2021.

[19] J. Chen, S. Gorbunov, S. Micali, and G. Vlachos, Algorand Agreement: Super Fast
and Partition Resilient Byzantine Agreement, Cryptology ePrint Archive, Report
2018/377, https://eprint.iacr.org/2018/377, 2018.

[20] Algorand Inc., go-algorand, https://github.com/algorand/go-algorand,
[Accessed: 2021-07-10], 2021.

[21] S. Micali, S. Vadhan, and M. Rabin, “Verifiable Random Functions”, in
Proceedings of the 40th Annual Symposium on Foundations of Computer Science,
ser. FOCS ’99, USA: IEEE Computer Society, 1999, p. 120, isbn: 0769504094.

[22] Algorand Foundation Ltd., Algorand Foundation,
https://algorand.foundation/, [Accessed: 2021-09-15], 2021.

[23] O. Ersoy, Z. Ren, Z. Erkin, and R. L. Lagendijk, “Transaction Propagation on
Permissionless Blockchains: Incentive and Routing Mechanisms”, in 2018 Crypto

94

https://www.peercoin.net/whitepapers/peercoin-paper.pdf
https://www.coinbase.com/
https://github.com/ethereum/consensus-specs
https://polkadot.network/
https://www.avax.network/
https://arxiv.org/abs/1906.08936
https://doi.org/10.1145/3132747.3132757
https://doi.org/10.1145/3132747.3132757
https://algoexplorer.io/
https://developer.algorand.org/docs/
https://eprint.iacr.org/2018/377
https://github.com/algorand/go-algorand
https://algorand.foundation/


Valley Conference on Blockchain Technology (CVCBT), 2018, pp. 20–30. doi:
10.1109/CVCBT.2018.00008.

[24] Y. He, H. Li, X. Cheng, Y. Liu, C. Yang, and L. Sun, “A Blockchain Based
Truthful Incentive Mechanism for Distributed P2P Applications”, IEEE Access,
vol. 6, pp. 27 324–27 335, 2018. doi: 10.1109/ACCESS.2018.2821705.

[25] R. von Seck, “Incentives for Participation in Anonymising Networks”, Master’s
thesis, Technical University of Munich, 2018.

[26] ipinfo.io, ipinfo.io, https://ipinfo.io/, [Accessed: 2021-10-28], 2021.
[27] Amazon Web Services, Inc., AWS Pricing Calculator,

https://calculator.aws/, [Accessed: 2021-11-09], 2021.
[28] M. Fooladgar, M. H. Manshaei, M. Jadliwala, and M. A. Rahman, “On Incentive

Compatible Role-based Reward Distribution in Algorand”, 2019. arXiv:
1911.03356 [cs.CR]. [Online]. Available: https://arxiv.org/abs/1911.03356.

[29] M. Conti, A. Gangwal, and M. Todero, Blockchain Trilemma Solver Algorand has
Dilemma over Undecidable Messages, 2019. arXiv: 1901.10019 [cs.CR]. [Online].
Available: https://arxiv.org/abs/1901.10019.

[30] Y. Liu, “Investigating Byzantine Agreement Consensus Algorithm of Algorand”,
Master’s thesis, University of Technology Sydney, 2020.

[31] M. A. Alturki, J. Chen, V. Luchangco, B. Moore, K. Palmskog, L. Peña, and
G. Roşu, “Towards a Verified Model of the Algorand Consensus Protocol in Coq”,
Formal Methods. FM 2019 International Workshops, 362–367, 2020, issn:
1611-3349. doi: 10.1007/978-3-030-54994-7_27. [Online]. Available:
https://dx.doi.org/10.1007/978-3-030-54994-7_27.

[32] M. Bartoletti, A. Bracciali, C. Lepore, A. Scalas, and R. Zunino, A formal model
of Algorand smart contracts, 2021. arXiv: 2009.12140 [cs.CR]. [Online].
Available: https://arxiv.org/abs/2009.12140.

[33] J. Brown-Cohen, A. Narayanan, A. Psomas, and S. M. Weinberg, “Formal
Barriers to Longest-Chain Proof-of-Stake Protocols”, in Proceedings of the 2019
ACM Conference on Economics and Computation, ser. EC ’19, Phoenix, AZ, USA:
Association for Computing Machinery, 2019, 459–473, isbn: 9781450367929. doi:
10.1145/3328526.3329567. [Online]. Available:
https://doi.org/10.1145/3328526.3329567.

[34] F. Baldimtsi, V. Madathil, A. Scafuro, and L. Zhou, “Anonymous Lottery In The
Proof-of-Stake Setting”, in 2020 IEEE 33rd Computer Security Foundations
Symposium (CSF), 2020, pp. 318–333. doi: 10.1109/CSF49147.2020.00030.

[35] P. Zheng, Z. Zheng, X. Luo, X. Chen, and X. Liu, “A Detailed and Real-Time
Performance Monitoring Framework for Blockchain Systems”, in 2018

95

https://doi.org/10.1109/CVCBT.2018.00008
https://doi.org/10.1109/ACCESS.2018.2821705
https://ipinfo.io/
https://calculator.aws/
https://arxiv.org/abs/1911.03356
https://arxiv.org/abs/1911.03356
https://arxiv.org/abs/1901.10019
https://arxiv.org/abs/1901.10019
https://doi.org/10.1007/978-3-030-54994-7_27
https://dx.doi.org/10.1007/978-3-030-54994-7_27
https://arxiv.org/abs/2009.12140
https://arxiv.org/abs/2009.12140
https://doi.org/10.1145/3328526.3329567
https://doi.org/10.1145/3328526.3329567
https://doi.org/10.1109/CSF49147.2020.00030


IEEE/ACM 40th International Conference on Software Engineering: Software
Engineering in Practice Track (ICSE-SEIP), 2018, pp. 134–143.

[36] The Linux Foundation, Hyperledger Blockchain Performance Metrics,
https://www.hyperledger.org/learn/publications/blockchain-
performance-metrics, [Accessed: 2021-06-12], 2018.

96

https://www.hyperledger.org/learn/publications/blockchain-performance-metrics
https://www.hyperledger.org/learn/publications/blockchain-performance-metrics

	Introduction
	Background
	Blockchain
	Proof-of-Work
	Proof-of-Stake
	Taxonomy
	Popular Implementations

	Algorand
	Gossip Network
	Consensus Mechanism
	Reward Model
	Protocol Upgrades


	Analysis
	Algorand Goals
	Decentralization
	Security
	Scalability
	Performance
	Rewards
	Evolution

	Algorand Node Data Sources
	Network Log Events
	Agreement Log Events
	Heartbeat Log Events

	Algorand Relay Nodes
	Relay vs. Client Nodes
	Broadcast Mechanism
	HTTP Headers Exchanged in Handshake

	Open Algorand Issues
	Design Issues
	Software Issues

	Consensus Participation Rewards
	Relay Decentralization
	Relay Incentives
	Sybil Protection Idea: Minimum Relay Stake
	Reward Assignment with Path Proofs
	Related Work about Incentive Mechanisms


	Design
	Observable Metrics
	Measurement Approach
	Client Measurements
	Relay Measurements

	Localnet Possibilities

	Implementation
	Node Setup
	Node Configuration File Settings
	Peer Control
	Node Source Code Extensions
	Observed Metrics
	Database Schema
	Services

	Evaluation
	Relay Domains
	Relay Host Organizations
	Relay Countries
	Relay Runner Pilot Program

	Gossip Network Performance
	Normal Measurement Results
	Targeted Measurement Results
	Scalability Modeling

	Connection Stability
	Network Security
	Consensus Voting Committees
	Committee Sizes
	Committee Unanimity
	Voter Power Distribution

	Algorand Evaluation Summary

	Related Work
	Future Work
	Conclusion
	List of Figures
	List of Tables
	Bibliography

