
Department of Informatics
Technical University of Munich

TECHNICAL UNIVERSITY OF MUNICH

DEPARTMENT OF INFORMATICS

MASTER’S THESIS IN INFORMATICS

Prediction of TCP Performance Metrics Using Deep Graph
Neural Networks

Lars Schwegmann

Technical University of Munich
Department of Informatics

Master’s Thesis in Informatics

Prediction of TCP Performance Metrics Using
Deep Graph Neural Networks

Vorhersage von TCP Performanz Metriken unter
Verwendung von Deep Graph Neural Networks

Author: Lars Schwegmann
Supervisor: Prof. Dr.-Ing. Georg Carle
Advisor: Benedikt Jaeger, M. Sc.

Max Helm, M. Sc.

Date: May 15, 2022

I confirm that this Master’s Thesis is my own work and I have documented all sources
and material used.

Garching, May 15, 2022
Location, Date Signature

Abstract

The prediction of Transmission Control Protocol (TCP) performance metrics can be a
very powerful tool for the optimization of networks for certain characteristics such as
the throughput of a certain TCP flow. However, such metrics are difficult to predict as
multiple TCP flows in larger networks tend to behave chaotically. It has been shown that
the recently emerged field of Gated Graph Neural Networks (GGNNs) can be successfully
applied for the prediction of metrics in computer networks.

This thesis shows that GGNNs can be sucessfully utlized for the prediction of mean
TCP flow Round-Trip Times (RTTs) and mean flow rates resulting in a best case mean
absolute relative error of 1.66 % for RTT and 9.57 % for flow rate prediction against a
test dataset. A model for predicting queue utilization is provided as well, resulting in a
mean absolute error of 0.8 % for the best case scenario. Modeling individual interfaces
instead of only modeling network nodes in the graph representations is shown to improve
model accuracy by an order of magnitude. Graph representations with additional
path ordering nodes are found to improve model performance for queue utilization and
flow rate predictions, while not making much of a difference in RTT predictions. The
generalization of the models to larger network sizes is found to be somewhat limited in
accuracy, as significantly longer path lengths compared to the training data cause larger
errors.

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Research questions . 2

1.2.1 Effects of different graph representations 2
1.2.2 Ability to generalize to larger topology sizes 2
1.2.3 Effects of feature choice on model performance 2

2 Background 3
2.1 Machine Learning fundamentals . 3
2.2 Graph Neural Networks . 4
2.3 Gated Graph Neural Networks . 7

2.3.1 Gated Recurrent Units . 7
2.3.2 Long Short-Term Memory Cells 9
2.3.3 Message passing and learning in GGNNs 12

2.4 GGNNs for computer networks . 12

3 Related work 17
3.1 SVR approach by Mirza et al. 17
3.2 Delay modeling by Mestres et al. 18
3.3 DeepComNet: GGNN approach by Geyer 18
3.4 RouteNet: GGNN approach by Rusek et al. 19
3.5 GGNN RouteNet-Erlang by Galmés et al. 20

4 Approach 21
4.1 Overview of the training pipeline . 21
4.2 Prediction metrics . 22
4.3 Graph representations . 22

4.3.1 Graph representation 1 . 22
4.3.2 Graph representation 2 . 22

4.3.3 Graph representation 3 . 22

5 Implementation 25
5.1 Topology generation . 25
5.2 Topology simulation . 27
5.3 Graph Representation mapping . 29
5.4 Training . 30
5.5 Machine Learning model architecture . 32

5.5.1 GatedGraphConv . 32
5.5.2 ResGatedGraphConv . 33

5.6 Validation and evaluation . 33

6 Evaluation 35
6.1 Simulation and training setup . 35

6.1.1 Generated topologies . 35
6.1.2 Distribution of simulation results 37

6.2 Trained models and results . 39
6.2.1 Comparison of graph representations 41
6.2.2 Generalization to larger network sizes 49
6.2.3 Generalization to different queue sizes 50
6.2.4 Analysis of feature importance 53

6.3 Summary of evaluation results . 54

7 Conclusion and future work 57
7.1 Conclusion . 57
7.2 Future work . 58

A Appendix 61
A.1 Example JSON topology file . 61
A.2 List of acronyms . 63

Bibliography 65

II

List of Figures

2.1 Example graph and a corresponding encoding network. Figure adapted
from Scarselliet al. [7] . 6

2.2 Visualization of a single iteration of state propagation for the graph from
Figure 2.1a. Figure adapted from Geyer [4] 6

2.3 Inner structure of a GRU cell . 8
2.4 Inner structure of an LSTM cell . 10
2.5 Example network topology . 13
2.6 Example Graph Representation and matrix form 14

4.1 Graph Representation 2 of example topology from Figure 2.5 23
4.2 Graph Representation 3 of example topology from Figure 2.5 24

6.1 Cum. histogram of the number of nodes in the topo. by dataset 37
6.2 Cum. histogram of path lengths of flows by dataset 37
6.3 Cum. histograms of mean simulated flow RTTs of flows by dataset . . . 38
6.4 Cum. histograms of mean simulated flow bandwidths by dataset 38
6.5 Cum. histograms of mean queue utilization per interface by dataset . . 38
6.6 Comparison of the absolute relative errors of RTT / flow rate prediction

separated by dataset and GR. Boxes represent the first quartile and third
quartile, orange lines represent the median / second quartile. The vertical
axis is scaled logarithmically. 41

6.7 Scatter plots of RTT prediction of D2 - D5, all trained using D1 44
6.8 Scatter plots of flow rate prediction of D2 - D5, all trained using D1 . . 45
6.9 Scatter plots of queue util. prediction of D2 - D5, trained using D1, 90th

percentile removed . 48
6.10 Scatter plots of prediction of D3 RTT using D1, GR 1, different minmax

bounds . 50
6.11 Scatter plots of prediction of D3 RTT using D1, GR 2, different minmax

bounds . 51

6.12 Visualization of prediction error of D3 RTT using model D1, GR 1 . . . 51
6.13 Comparison of absolute relative prediction error of RTTs using models

obtained using D6 (Updated) and D1 (Original). Boxes indicate first and
third quartile, orange lines mark the median/second quartile 53

IV

List of Tables

2.1 Attributes of the example network topology from Figure 2.5 14

5.1 Input parameters for topology generation script 26
5.2 Input parameters for neural network training script 31

6.1 Generated datasets and the parameters used to generate them 36
6.2 Mean absolute relative errors for predictions of mean flow RTT and flow

rate using different datasets by models trained using D1 and GRs 1 - 3 . 42
6.3 Mean absolute errors for predictions of mean queue utilization in percent

using different datasets by models trained using D1 and GRs 1 and 2 . . 42

Chapter 1

Introduction

1.1 Motivation

The ability to predict Transmission Control Protocol (TCP) flow performance metrics,
such as throughput, latency, and loss, can be very useful for optimizing networks for
certain goals. Due to many factors which can influence a flows performance, TCP flows
tend to act almost chaotically and these metrics become very hard to predict once
multiple flows are involved. Factors which might influence a TCP flow usually include
the layout of the network topology and its links, the TCP congestion control strategies
which are in use, the other flows present on the network and the queues at the hosts
which the flow traverses.

There have been attempts to formalize the behaviour of certain TCP algorithms. The
most notable example is probably the approach by Padhye et al. [1], in which they
model the TCP Reno steady-state send rate as a function of loss rate and Round-Trip
Time (RTT). However, these analytical approaches fail to model complete networks
with multiple flows and congestion strategies interacting with each other.

In order to obtain predictions with a high enough accuracy for a whole network, one
must usually resort to discrete event network simulators or actually building a testing
setup with real hardware. Both of these approaches do not allow for changing things
and reiterating quickly though. Because discrete event netwok simulators such as ns3 [2]
or OMNet++ [3] actually simulate each packet passing through the network the process
usually cannot be parallelized. As such, discrete event network simulation becomes
inviable for optimization purposes once the networks to be simulated reach a certain size
or the flows reach a certain throughput (since higher throughput usually means more

Chapter 1: Introduction

packets). As shown by Geyer [4], it is possible to acquire sufficiently accurate prediction
results with significantly less computational overhead per iteration using methods from
the fairly recent field of Gated Graph Neural Networks (GGNNs).

1.2 Research questions

In the following subsections, research questions are proposed which this thesis aims to
find an answer to.

1.2.1 Effects of different graph representations
The first research question concerns how different ways to represent the network topology
in the Machine Learning (ML) model affect the model’s accuracy. The network topology
layout and the information about the flows, queues, etc. have to be mapped to a graph in
order for a Graph Neural Network (GNN) to be able to process the information. There
are many different ways to represent these networks, and a central goal of this thesis is to
find out which kind of representations work well and which do not. Detailed information
on how these graph representations are created can be found in Section 4.3.

1.2.2 Ability to generalize to larger topology sizes
Another interesting aspect is the accuracy of the ML model when it is confronted with
data it has not encountered before. Especially interesting for the problem of TCP
performance prediction is the ability of the model to scale to larger topology sizes it
was not trained with, as larger topologies would take longer to simulate in a traditional
discrete event network simulator. The generalization in regards to other properties of
the network is also interesting to consider. For example, it could be tested how well a
ML model adapts to changes in queue sizes.

1.2.3 Effects of feature choice on model performance
Finally, feature importance is a very interesting topic to investigate. Concretely, the
goal is to find out which features affect the model’s accuracy and if so, by what amount.
Another aspect would be finding out which features are most important depending on
the predicted metric. For example, does including the queue size in the model’s features
make the same difference for both bandwidth and RTT prediction?

2

Chapter 2

Background

In this chapter, we give a general overview over the basics of Machine Learning as well as
an introduction to Gated Graph Neural Networks and their applications for predicting
metrics in computer networks.

2.1 Machine Learning fundamentals

ML describes the general process of “learning” a function from data. This is useful for
tasks where it would be tedious or simply impossible to write a program for solving said
tasks, because no well-defined algorithm for solving the task exists. Prominent examples
for such machine learning use-cases include image classification, speech recognition and
object detection tasks. Instead of implementing a program which solves the task directly,
one implements a so-called learning algorithm. The learning algorithm trains the ML
model using a training dataset of example data points. A training example consists of
features. Depending on the task, these datasets are collected or generated beforehand [5].

ML algorithms can be divided into three broad categories: supervised, unsupervised and
reinforcement learning algorithms. Unsupervised learning algorithms are only exposed to
the dataset itself with the intent to learn information about the structure and probability
distribution of the dataset. Supervised learning algorithms on the other hand are given
an expected result for each example data point called label and are expected to learn the
mapping from the dataset to the given labels. Reinforcement learning algorithms differ
from both supervised and unsupervised learning algorithms, as they try to maximize a
reward function instead of trying to find the structure of the dataset, but are not given
any expected results like in supervised learning algorithms [5][6].

Chapter 2: Background

In the following sections, we will focus on supervised learning methods as that is what we
require for the models presented later in this thesis. We will also focus only on so-called
regression tasks, which means that we want an ML model to predict numerical values, or
in other words, have the learning algorithm learn a function f : Rn → Rm which maps
the input features to a vector of numerical output values [5].

In supervised learning algorithms, the accuracy of the model is usually judged using an
error function based on the expected and actual output of the model. This function is
sometimes referred to as criterion. The criterion can be chosen freely, and thus, can be
considered part of the model’s hyperparameters. Hyperparameters influence the learning
process, but are not part of the function the model learns. Instead, they can be thought
of as settings, which influence how the model learns [5].

2.2 Graph Neural Networks

For many applications, including the field of computer networks, it makes sense to
represent data as graph structures. However, due to the architecture of traditional
neural networks, the graph cannot be fed into a neural network as is. Instead, it needs
to be transformed into a simpler matrix representation. This preprocessing usually does
not preserve the relationships of nodes in the graph structure. Since this relationship
information is essentially lost, these ML models usually do not generalize well to other
topology layouts [7][8].

GNNs were first proposed by Gori et al. [9] as an extension to Recurrent Neural Networks
(RNNs) in 2005 in order to get rid of these preprocessing steps. They propose a solution
which encodes the structure of the input graph in the neural network itself. The more
recent work by Scarselli et al. [7] goes into more detail and is used as primary reference
material for this section.

In the following, undirected graphs G = (N , E) with nodes n ∈ N and edges e ∈ E are
considered. Please note that the GNN architecture, as proposed by Scarselli et al. [7],
is also applicable to directed graphs, but is not considered here for simplicity reasons.
Edges can be denoted by the pair of nodes they are connected to, as in e = (n, n′). Nodes
and edges may also hold information (features) in the form of labels denoted by ln ∈ L
and l(n,n′) ∈ L. The set of direct neighbouring nodes of nodes n ∈ N is denoted by ne[n].
The set of edges containing nodes n ∈ N is denoted by co[n].

Graphs are typically used to model relationships between certain entities. In order to
model these connections in the neural network, Scarselli et al. [7] propose that each node
n should maintain a state hn which is influenced by the neighbouring nodes’ and edges’

4

2.2 Graph Neural Networks

states and features. This influence is modeled by the local transition function fw which
is used to combine the neighbouring states and features to compute the local state hn [7].

hn = fw(ln, lne[n], hne[n]) (2.1)

This state propagation, also called neural message passing in the context of GNNs, is
done iteratively until a fixed point is reached. Convergence is assured if fw is chosen
so that the global transitioning function Fw of the entire network is a contraction map.
This is possible because of Banach’s fixed point theorem, which states that a unique
solution always exists and that Fw will always converge to that fixpoint, no matter the
given input values [7].

The output vector on of each node can be calculated after reaching this fixed point using
the local output function gw, which takes the state hn and the features ln of node n as
inputs.

on = gw(hn, ln) (2.2)

Scarselli et al. [7] suggest that, in practice, it makes sense to reformulate Equation 2.1 as
a sum of the terms for each incoming edge as follows:

hn =
∑

u∈ne[n]
fw(ln, l(n,u), hu, lu) (2.3)

The function fw can be implemented either by a simple linear relationship or by a
Feed-Forward Neural Network (FFNN). gw is usually implemented as a multilayered
FFNN. Both functions are parameterized with weights and biases, which can be learned
by training the network [7].

Using the original graph structure, an RNN is built using fw and the labels/features of
the input graph. As shown, for example, in Figure 2.1, the graph’s nodes are replaced
by units implementing fw and gw. These units store the current state of their respective
node hn(t) for the current timestep t and calculate hn(t + 1) when activated. The
resulting RNN is called encoding network [7]. The relationship between the state of a
node and its previous state can be formulated as follows:

hn(t + 1) = fw(ln, lco[n], hne[n](t), lne[n]) (2.4)

This encoding network in the form of an RNN can be unrolled to a FFNN where the
same RNN forms a sequence and each instance represents another message passing

5

6

l1

l2l3

l4

l(1,2)l(1,3)

l(2,3)

l(1,4)

(a) Example graph

fw

fwfw

fw

h1(t)

h2(t)h3(t)

h4(t)

l1, l(1,2), l(1,3), . . .

l2, l(1,2), l(2,3), . . .l3, l(1,3), l(2,3), . . .

l4, l(1,4), . . .

gw

l1

o1

gw

l2

o2

gw

l3

o3

gw

l4

o4

(b) Example encoding network

Figure 2.1: Example graph and a corresponding encoding network. Figure adapted from Scarselli et al. [7]

h
(t−1)
1

h
(t−1)
2

h
(t−1)
3

h
(t−1)
4

h
(t)
1

h
(t)
2

h
(t)
3

h
(t)
4

h
(t)
1 = fw(l1, l(1,2), l(1,3), l(1,4), h

(t−1)
2 , h

(t−1)
3 , h

(t−1)
4 , l2, l3, l4)

h
(t)
2 = fw(l2, l(1,2), l(2,3), h

(t−1)
1 , h

(t−1)
3 , l1, l3)

h
(t)
3 = fw(l3, l(1,3), l(2,3), h

(t−1)
1 , h

(t−1)
2 , l1, l2)

h
(t)
4 = fw(l4, l(1,4), h

(t−1)
1 , l1)

Figure 2.2: Visualization of a single iteration of state propagation for the graph from Figure 2.1a.
Figure adapted from Geyer [4]

2.3 Gated Graph Neural Networks

timestep. Figure 2.2 shows how this message passing works for the given example graph
from Figure 2.1a for a single unrolled timestep. The state vector h

(t)
n is usually referred

to as hidden state in RNNs [7][4].

Scarselli et al. [7] show that the resulting RNN is differentiable from end to end, and thus
the network can be trained using a standard gradient-descent based training strategy.
For this, the node states hn are updated iteratively until a fixed point is reached. Then,
a gradient can be computed and the weights can be updated by backpropagation. This
is done using the Almeida-Pineda algorithm for backpropagation in RNNs, as outlined
by Scarselli et al. The necessity for the contraction map property of Fw may limit the
expressiveness of the model [10].

2.3 Gated Graph Neural Networks

Gated Graph Neural Networks (GGNNs) extend the framework of GNNs laid out by
Gori et al. [9] and Scarselli et al. [7]. They were first introduced by Li et al. [10] and
provide ways for the neurons in the network to have internal memory, essentially allowing
the neurons to selectively hold on to their state from previous iterations. This is achieved
using previous work by Cho et al. [11] on so-called Gated Recurrent Unit (GRU) cells.

2.3.1 Gated Recurrent Units
GRUs were proposed in order to allow RNNs to selectively remember and forget informa-
tion about sequences. The following subsection is a summary of the work of Cho et al. [11]
with the terms adjusted to GGNNs by Li et al. [10].

In the context of GNNs, you can think of the GRUs to replace the local transitioning
function fw introduced in Section 2.2. The GRU cell of each node in the encoding
network processes the input from the surrounding nodes a

(t)
n and the hidden state of

the previous iteration h
(t−1)
n of the node and computes the new hidden state h

(t)
n of the

current iteration. Note that one could still add pre- or postprocessing functions in the
form of additional neurons before or after the GRU respectively. This is not considered
here for the sake of simplicity though.

Figure 2.3 shows the inner workings of a GRU cell as a flow diagram. The inputs
(previous hidden state h

(t−1)
n , input state a

(t)
n) are shown on the left and the output (new

hidden state h
(t)
n) is shown on the right.

7

Chapter 2: Background

h
(t−1)
n h

(t)
n

a
(t)
n

+ σ

+ σ

⊙ +

1− ⊙

⊙ +

tanh

Update Gate

Reset Gate

z
(t)
n 1 − z

(t)
n

r
(t)
n

h̃
(t)
n

Figure 2.3: Inner structure of a GRU cell

The basic propagation model works as follows: First, A is defined to be the adjacency
matrix of the graph, and An to be the adjacency column vector corresponding to node
n ∈ N . With this, the input state vector of the GRU cell can be defined as

a(t)
n = An

[
h

(t−1)
1 . . . h

(t−1)
|N |

]⊤
+ ba (2.5)

which is essentially a vector that combines all the neighbouring hidden state vectors from
the previous timestep and adds an additional bias ba. The GRU consists of two main
logical function blocks called reset gate r

(t)
n and update gate z

(t)
n . They are implemented

as follows:
r(t)

n = σ(Wra(t)
n + Urh(t−1)

n + br) (2.6)

z(t)
n = σ(Wza(t)

n + Uzh(t−1)
n + bz) (2.7)

Here, Wr, Wz, Ur and Uz are learnable weight matrices, br and bz are learnable biases and
σ is the logistic sigmoid function σ(x) = 1

1+e−x which is used to fix the range of results
to [0, 1]. Intuitively, the update gate output vector determines how much information of
the previous iteration is passed along into the state of the current iteration. The reset
gate output vector determines what and how much information gets discarded from the
previous hidden state. The actual discarding is done in the following calculation for the
intermediate hidden state h̃

(t)
n

h̃(t)
n = tanh(Wa(t)

n + U(r(t)
n ⊙ h(t−1)

n) + b) (2.8)

8

2.3 Gated Graph Neural Networks

with W and U being more learnable weight matrices, b being another learnable bias and
⊙ being the Hadamard product (element-wise matrix multiplication). If an element in
r

(t)
n is learned to be close to zero, the respective element in h

(t−1)
n is “forgotten”. The

tanh function is used on the resulting vector to fix the values to the interval [−1, 1] [10].
h̃

(t)
n is then fed into the following equation for the final output hidden state h

(t)
n

h(t)
n = (1 − z(t)

n) ⊙ h(t−1)
n + z(t)

n ⊙ h̃(t)
n (2.9)

Here, the update gate output z
(t)
n determines what information of the intermediate

hidden state h̃
(t)
n and the previous hidden state h

(t−1)
n is passed along to the output

h
(t)
n . The output vector on of the node can be calculated after the RNN iterations using

Equation 2.2 [10].

For the first iteration, the nodes’ hidden state vectors h
(0)
n are intialized to contain values

from their respective node label vectors ln. Since one might want the hidden state vector
to be larger than the label vectors, the remaining rows are padded with zeros:

h(0)
n =

[
l⊤v , 0

]⊤
(2.10)

or the input features are passed through a FFNN with an output size equal to that of
the hidden state vector [10][4].

2.3.2 Long Short-Term Memory Cells
Long Short-Term Memory (LSTM) cells are a slightly different approach for memory cells
in neural networks. They were fist proposed by Hochreiter et al. in 1997 [12]. In GGNNs,
they can replace the GRU memory cell introduced in Section 2.3.1. The following is a
summary of the work by Hochreiter et al. [12], with the terms adjusted for GGNN by
Geyer [4].

Compared to GRU cells, LSTM cells are a bit more complex, as they have an additional
gate called output gate. However, Geyer [4] has found that LSTM cells can produce
better results in certain situation when modeling computer networks.

The inner strucure of an LSTM cell is shown in Figure 2.4. On the left side, the cell
takes the previous cell state c

(t−1)
n , the previous hidden state h

(t−1)
n and the input from

the surrounding nodes a
(t)
n as inputs. The outputs, namely the new cell state c

(t)
n and

the new hidden state h
(t)
n , are shown on the right side of the cell.

9

Chapter 2: Background

c
(t−1)
n c

(t)
n

h
(t)
n

a
(t)
n

h
(t−1)
n

+

σ

⊙

σ tanh

⊙

+

σ ⊙

tanh
Forget
Gate f

(t)
n

Input Gate Output Gate

i
(t)
n g

(t)
n

o
(t)
n

Figure 2.4: Inner structure of an LSTM cell

Due to a different inner structure, the propagation model differes quite a bit compared
to the GRU cell. Again, A is defined to be the adjacency matrix of the graph, and An is
defined to be the column vector from A corresponding to node n ∈ N . The input state
for timestep t can be defined as

a(t)
n = An

[
h

(t−1)
1 . . . h

(t−1)
|N |

]⊤
+ ba (2.11)

The LSTM cell consists of three function blocks, the input gate i
(t)
n , the forget gate f

(t)
n ,

and the output gate o
(t)
n . The forget gate decides what information from the previous

cell state c
(t−1)
n is “forgotten”. It is implemented using the following equation:

f (t)
n = σ(Wf a(t)

n + Uf h(t−1)
n + bf) (2.12)

Here, Wf and Uf are learnable weights and bf is a learnable bias. As shown in the
diagram, the vector f

(t)
n is multiplied element-wise with the previous cell state c

(t)
n . A

value close to zero in f
(t)
n leads to the value in c

(t)
n to be discarded [4].

10

2.3 Gated Graph Neural Networks

Next is the input gate, shown in the blue box in the diagram. First, the vector i
(t)
n is

computed, using the following, similiarly looking equation:

i(t)
n = σ(Wia

(t)
n + Uih

(t−1)
n + bi) (2.13)

with weights Wi and Ui and bias bi. This vector is used to determine which values
of the input are going to be used to update the new cell state. They are multiplied
element-wise with the vector

g(t)
n = tanh(Wga(t)

n + Ugh(t−1)
n + bg) (2.14)

which can be viewed as an update candidate vector calculated from the previous hidden
state and cell input. This equation is also weighted with weights Wg and Ug and biased
with bg.

The new cell state c
(t)
n is obtained by adding the previous cell state (with some values

already discarded by the forget gate) to the output of the input gate:

c(t)
n = c(t−1)

n ⊙ f (t)
n + g(t)

n ⊙ i(t)
n (2.15)

Finally, the output gate transforms the input and previous hidden state once more using
yet another set of weights Wo, Uo and bias bo

o(t)
n = tanh(Woa(t)

n + Uoh(t−1)
n + bo) (2.16)

to obtain o
(t)
n , which determines which values from c

(t)
n are output to the new hidden

state h
(t)
n . For this, o

(t)
n is multiplied element-wise with the tanh of c

(t)
n :

h(t)
n = tanh(c(t)

n) ⊙ o(t)
n (2.17)

In summary, LSTM cells differ from GRU cells in their gating logic. They also store an
additional cell state vector c

(t)
n in between iterations, making them a bit more complicated

to implement. Although differently implemented, both GRU and LSTM cells both aim
to solve the same problem, namely helping the network to selectively remember or forget
information passing through the nodes.

11

Chapter 2: Background

2.3.3 Message passing and learning in GGNNs
In order to calculate the output vector on for each node n, a fixed amount of message
passing iterations is done instead of iterating until a fixed point is reached. This allows
the use of gradient-based training methods commonly used in FFNN. The number of
iterations to unroll affects the model’s accuracy and can be chosen freely. However, one
has to keep in mind that an unroll count which is too small in relation to the input
graph will result in poor accuracy, while an unroll count which is too high will result in
poor training and inference performance [4].

2.4 GGNNs for computer networks

The previously introduced GGNNs can be applied to learn arbitrary functions on graphs.
As stated in Chapter 1, this thesis’ aim lies in the prediction of the performance of TCP
flows in arbitrary computer networks. Problems on computer networks can be modeled
as graph problems, as was shown by Geyer [4]. The following is largely based on their
previous work.

For the ML model, the network topology is transformed into a graph which not only
models the original structure of the topology, but also adds additional nodes and edges
specific to the modeled problem. We call these transformed versions of the original
network graphs Graph Representations (GRs) [4].

To illustrate how such a transformation works, consider the example network topology
shown in Figure 2.5. Here, a computer network consisting of three routers, six servers
and three unidirectional flows is shown. Note that the flows all start and end at servers.
In addition to the topology, information about attributes of the links and flows between
nodes in the network as shown in Table 2.1 is known. Using this information, a possible
GR can be constructed, as depicted in Figure 2.6a. This is only one of many possible
ways to represent the input computer network and the accompanying attributes. This
specific representation only models the sending network interfaces of the servers and
routers, which the flows are passing through. The interface nodes hold information
about the links they are connected to, such as bandwidth and delay. They are in turn
connected to flow nodes, which hold the measured flow information, such as the flow
rate.

Note that there are two differing node types in this GR, flow nodes and interface nodes.
One could add more node types to the graph if it is deemed useful for the desired GR.
The nodes from the computer network which no flow traverses have been omitted, e.g.

12

2.4 GGNNs for computer networks

F1

F2

L6

L7

L1

L2

L3

L4

L5

R1

R2

R3

S1

S2

S3

S4

S5

Server

Router

Figure 2.5: Example network topology

the sending interface node for S3, as they would not be connected to any flow node
anyways.

This GR can then be used for constructing the actual GGNN. For this task, the nodes’
feature vectors ln are all constructed to be the same length. The node type can be
one-hot encoded, in our case using only two columns since we only have two possible
node types. In Figure 2.6b, the corresponding node feature vectors are shown as a matrix,
with each row corresponding to one node in the GR. In this example, we encode flow
nodes with node type [1 0]⊤ and interface nodes with node type [0 1]⊤. The following
entries in each row are all encoded features of said nodes. More specifically, the entries
can be read from left to right as node type, flow rate, flow RTT, link bandwidth and link
delay. The first two rows correspond to the two flow nodes F1 and F2 and all following
nodes are the interface nodes ordered by their associated link node number. For example,
row three shows node IR1S1 from the GR.

Each node feature vector has the same size, while the specific node type determines
which features in the node have meaning. Note that all of the entries in the matrix are
scaled so that the values all have the same order of magnitude. This can be done using
min-max normalization for example, as was done here:

x ∈ S, minmax(x, S) = x − min(S)
max(S) − min(S) (2.18)

Using minmax normalization results in all values being mapped to a number between
zero and one. Other normalization functions could be used as well, e.g. log(1 + x).

13

14

Flow Flow Rate RTT

F1 10 Mbit/s 30 ms
F2 20 Mbit/s 18 ms

(a) Measured flow attributes

Link Bandwidth Delay

L1 30 Mbit/s 5 ms
L2 20 Mbit/s 2 ms
L3 50 Mbit/s 5 ms
L4 10 Mbit/s 3 ms
L5 20 Mbit/s 1 ms
L6 50 Mbit/s 4 ms
L7 10 Mbit/s 5 ms

(b) Link attributes

Table 2.1: Attributes of the example network topology from Figure 2.5

IR1S2

IR1S1
IR2R1

IR3R2

IS4R2

IS5R3

F1

F2

Flow
Nodes

Interface
Nodes

(a) Example network Graph Representation

1 0 0 1 0.00 0.00
1 0 1 0 0.00 0.00
0 1 0 0 0.50 1.00
0 1 0 0 0.25 0.25
0 1 0 0 0.00 0.50
0 1 0 0 0.25 0.00
0 1 0 0 1.00 0.75
0 1 0 0 0.00 1.00

#Features

#
N

odes

Node
Types

Node
Attributes

One
Node

(b) Example Graph Representation matrix form

Figure 2.6: Example Graph Representation and matrix form

2.4 GGNNs for computer networks

Using this or any other Graph Representation, a GGNN can be constructed as explained
in Section 2.3.

15

Chapter 3

Related work

Over the years, many different approaches for the prediction of TCP flows have been
proposed. In this chapter, we will give a brief overview of a few selected approaches
which are relevant to this thesis.

3.1 SVR approach by Mirza et al.

The oldest of the listed related approaches was proposed by Mirza et al. in 2010 [13]. They
apply a Support Vector Regression (SVR) ML algorithm to predict the throughput of
TCP flows and compare the results against history-based TCP performance estimation.
However, they do not approach this problem with the goal of being able to optimize a
complete network topology, but rather from a perspective of selecting the best possible
path for a flow in a fixed network. This approach yields flow throughput predictions,
which are accurate to 10 % of the actual value 87 % of the time for bulk TCP transfers
(steadily sending as much data as possible) [13]. These bulk TCP transfers are of special
interest in regards to this thesis.

As stated, this approach uses SVR instead of GNNs for learning the TCP performance
metrics. Due to this, the metrics Mirza et al. take into account for training are limited
to available bandwidth for the flow, queueing delays and packet loss and do not consider
the topology layout directly. They obtain their training data using a physical experiment
setup similiar to a dumbbell topology, with artificially generated background traffic and
delay emulation. In this topology, they do both active and passive measurements of said
metrics. Active measurements are done before measuring the actual flow throughput using
specialized software while passive measurements are conducted during the throughput

Chapter 3: Related work

measurement. The passive measurements are done at the bottleneck link using detailed
packet traces [13].

The previously stated accuracy is reached using oracular passive measurements (passive
measurements of the complete path) of queueing delays and represents the best case
scenario. They show that having the available bandwidth in the feature vector does
not alter the accuracy in a meaningful way when using this oracular path measurement.
Practical passive and active path measurements in the feature vector yield worse results,
only predicting the throughput within a 10 % error margin 53 % and 51 % of the time,
respectively [13].

3.2 Delay modeling by Mestres et al.

Mestres et al. [14] approach the problem of delay modeling in computer networks using
ML. They focus on the optimization of networks for certain parameters, just like this
thesis. However, they only explore the general viability of ML for this purpose and use
traditional ML algorithms, namely FFNNs. Only three topology layouts are considered:
A unidirectional ring, a star and a scale-free topology layout. Their training data is
generated by OmNET++, a discrete event network simulator. The models are always
trained on a single topology layout, as the layout cannot be fed into the network like in
a GNN. The only feature the model receives as input is a traffic matrix with ingress and
egress traffic for each node in the network, while the output vector is traind to contain
the average end-to-end delay for each flow. Unfortunately, concrete measurements or
accuracies with test datasets are not provided by Mestres et al. Only the learning error
for the different topologies is given, which is not useful for talking about generalization
of the model [14].

3.3 DeepComNet: GGNN approach by Geyer

Geyer [4] proposes a framework for network performance evaluation using deep GGNNs.
They introduced the approach forming the basis of this thesis’ ML model. The GGNN
model and computer network graph representation is described in detail in Section
2.4. In the paper, Geyer introduces the concept of GGNN for computer networks and
applies it to two use cases: Prediction of TCP flow bandwidths and prediction of User
Datagram Protocol (UDP) flow end-to-end latencies. They implement three different
GNN models: a GGNN using GRU cells, a GGNN using LSTM cells and a GNN with a
simple RNN architecture. The evaluation of their TCP performance prediction is most
interesting in regards to this thesis. For this, they randomly generated network topologies

18

3.4 RouteNet: GGNN approach by Rusek et al.

of daisy-chained ethernet switches, then attached a random number of nodes to these
switches and added flows with random node pairs to the network. The networks were
simulated using ns-2 (predecessor of ns-3 [2]). The graph representation was modeled
like the following: Each TCP flow is encoded as two nodes, one for the data flowing from
source to destination, and one for the TCP ACK segments flowing from the destination
back to the source. These nodes are then connected to queue nodes modeling the queues
of the nodes on the flow’s path [4].

The results are then compared to SVR (comparable to approach by Mirza et al. [13]
from Section 3.1) and FFNN approaches using high level input features. In the TCP
evaluation, then GGNN-LSTM model perfoms best with a median relative error below
1 % [4]. In the TCP use-case, the GNN approaches all outperform both the SVR and
FFNN approaches [4]. Geyer also shows that GGNN with GRU or LSTM memory cells
positively impact the prediction performance. They find that an increase in the graph
size increases the Mean Percentage Error (MPE) in the TCP use case, and that a larger
number of unrolled loops in the GGNN yielded a lower relative error. In their evaluation,
the effect has diminishing returns for more than 12 unrolled loops, as more unrolled
loops lead to longer training and inference times [4].

3.4 RouteNet: GGNN approach by Rusek et al.

The RouteNet paper, published in 2020 by Rusek et al. [8], poposes a GNN approach to
predict Key Performance Indicators (KPIs) of arbitrary networks, such as delay, jitter,
and packet loss. It is an improved version of their previous implementation [15] and aims
to provide an accurate but lightweight alternative to computational network simulators.
Compared to other approaches like that of Geyer, RouteNet represents paths in the
network as ordered sequences of links. The computer network is modeled only by these
two sets of links and paths, where the link states are depending on the state of all paths
traversing the link, and vice versa. In order to resolve this circular dependency, they
rely on the repeated message passing in order to reach a fixpoint. They show, that
when trained with various topologies ranging from 12 nodes to 50 nodes along with
sample data obtained using OmNET++, the model yields a high prediction accuracy
(MPE=15.4 % in the worst case) with data it was not trained with. Rusek et al. also
provide a use case example by implementing a network optimizer using RouteNet for
Software-defined Networking (SDN), which uses the KPI predictions from RouteNet to
minimize the mean end-to-end delay of paths [8].

19

Chapter 3: Related work

3.5 GGNN RouteNet-Erlang by Galmés et al.

RouteNet-Erlang (RouteNet-E) by Galmés et al. [16] can be viewed as a further improve-
ment of the RouteNet paper introduced in Section 3.4. The overall premise and goal
of RouteNet-E are still in line with those of RouteNet, but the model architecture was
altered. The network is modeled as a set of links, queues and flows. The model follows
three priciples: The state of flows is affected by the queues and links it passes over, the
state of queues is affected by the flows passing over them, and the state of links is affected
by the state of the queues at the output of the link and the queueing scheduling policy.
Using this model, the network topology is transformed into the RouteNet-E input graph
with the three given node types. Just like in RouteNet, these circular dependencies are
resolved using multiple message passing iterations, although in this case, each iteration
has three steps instead of two due to the additional dependency [8][16].

RouteNet-E is also trained using data obtained from the network simulator OmNET++.
Galmés et al. evaluate RouteNet-E under two main aspects: The models ability to
accurately predict the networks KPIs with different traffic models and the models
accuracy under various different queueing strategies. Both times, the model output is
compared to the results of a Queueing Theory (QT) approach. As expected, RouteNet-E
outperforms the QT approach in both evalutations. In the worst case for RouteNet-E in
the traffic model evaluation, the autocorellated exponential traffic model, RouteNet-E
still achieves a mean absolute relative error of 11.95 % in jitter prediction, compared to
74.38 % with the QT approach [16].

20

Chapter 4

Approach

The following chapter outlines the approach to answer the research questions proposed
in Section 1.2.

4.1 Overview of the training pipeline

Before training any ML model, one first needs data that the model can be trained
with. It was decided to go with a discrete event network simulator, namely the ns-3 [2]
simulator instead of building actual network topologies and measuring real world data.
This decision was made for the following reasons: Firstly, the results produced by ns-3 are
reproducible and unaffected by potential disturbing factors present in actual hardware
testbeds. Secondly, ns-3 does not constrain the topologies in terms of their size (only
the compute resources and time do) whereas a physical testbed would. Finally, the data
generation can be parallelized by running multiple simulations in parallel and does not
require manual recabling of hardware, greatly increasing the speed at which the training
data can be generated.

The results of these simulations can then be passed through a parser, which takes the
simulated network topology and simulation results and transforms them into a graph
representation with additional nodes to model the TCP flows. There are multiple ways
to model these representations. These are discussed in more detail in Section 4.3.

The graph representation can then be used to train a GGNN. For this, a framework
developed at the chair for training GGNNs in combination with the popular PyTorch
framework is used. After training, the model can be evaluated for accuracy using a
dataset unknown to the model.

Chapter 4: Approach

For the implementation details of the training pipeline, please refer to Chapter 5.

4.2 Prediction metrics

It was decided to focus on the prediction of mean TCP flow rates, mean TCP RTTs and
mean queue utilizations over the duration of the entire simulation, since these metrics
are relatively easy to obtain using the simulator. However, the training pipeline and
framework utilized in this thesis should allow for other metrics to be explored, such as
loss for example.

4.3 Graph representations

In order to compare the performance of the ML model with different GRs, a selection of
different meaningful representations was made. Due to a limitation in the ML model
implementation, the GRs only ever include a single predicted feature (see Section 5.3
for details) at a time. However, they could of course be constructed to hold multiple
predicted features in theory. They are introduced in the following subsections.

4.3.1 Graph representation 1
The first GR’s basic structure was already introduced in Section 2.4. For this represen-
tation, the sending interfaces of each node in the network is modeled along with a single
flow node for each flow. The flow nodes have connecting edges to all sending interfaces
which the flow passes over. They have the used TCP congestion control algorithm and,
if necessary, the predicted attribute (mean flow rate or mean flow RTT) as features. The
interface nodes hold information about the link (link bandwidth, link delay) and the
maximum queue size of the sending interface. They also hold the mean queue utilization,
if predicted. For a visual representation, see Figure 2.6a.

4.3.2 Graph representation 2
The second GR is built on the same idea as GR 1, but adds dedicated path nodes between
the flow nodes and the interface nodes. These path nodes hold an integer representing
the index of the connected interface node in the route of the flow, thus modeling the
flow’s direction. See Figure 4.1 for a visual representation of the transformed example
topology from Figure 2.5.

4.3.3 Graph representation 3
The third Graph Representation takes a slightly different approach. It also has flow
nodes just like GRs 1 and 2, but instead of interface nodes, which are modeling the

22

4.3 Graph representations

IR1S2

IR1S1
IR2R1

IR3R2

IS4R2

IS5R3

F1

F2

P1

P2

P3
P4

P1

P2

P3

Flow
Nodes

Interface
Nodes

Path
Nodes

Figure 4.1: Graph Representation 2 of example topology from Figure 2.5

sending interfaces and the associated links, the network nodes are simply added to the
GR as is. No individual sending interfaces are modeled, but the nodes as a whole. This
means, that flow nodes are connected to the same network node in the GR, even if
they do not pass over the same interface. In order to still be able to model the link
properties, link nodes are added between the network nodes with the link’s attributes
that are held by the interface nodes in GRs 1 and 2. Because the interface nodes are not
modeled separately, the queue utilization cannot be predicted using this GR, as multiple
queues would have to share a single node. Figure 4.2 shows a visual representation of
the transformed example topology from Figure 2.5.

23

24

NR1

NR2

NR3

NS1

NS2

NS4

NS5

L

L

L
L

L

L

F1

F2

Flow
Nodes

Network
Nodes

Link
Nodes

Figure 4.2: Graph Representation 3 of example topology from Figure 2.5

Chapter 5

Implementation

The workflow for training the neural network consists of four basic steps: The topology
generation, the network simulation, the transformation of simulation results into GRs,
and the actual training. This chapter gives an in-depth look at how these components
were implemented.

5.1 Topology generation

The first step in the training pipeline is the generation of toplogies. Topologies are
generated based on input parameters and output to a JSON file with a fixed structure.
For an example file of a small network topology, see Listing A.1.

The input parameters are listed and described in Table 5.1. Internally, we differentiate
between routers and servers. Flows are always established between two servers, and the
routers are the interconnecting nodes between servers. A server is always connected to a
single router, while routers can be connected to many routers and servers. Note that
this differentiation is only done during the topology generation step. The output file (see
Listing A.1) does not differentiate between servers or routers. Instead, they are listed as
nodes and share the same numerical identifier space.

In order to simplify the simulation process, we decided to only generate tree-like networks
for the scope of this thesis. The reason for this decision was, that in a tree, there is only a
single route between two nodes. This allowed us to make use of the simulator’s automatic
static routing component without having to assign IP addresses at the generator stage.
The route, which each flow traverses, is required in order to generate the GRs. If the
flow could traverse multiple routes, the routing tables in the simulation would have

Chapter 5: Implementation

Parameter Default Value Description

routers_min 5 Minimum amount of routers in the topology
routers_max 12 Maximum amount of routers in the topology
flows_min 1 Minimum amount of flows in the network
flows_max 10 Maximum amount of flow in the network
link_bandwidth_min 10 Minimum link bandwidth in Mbit/s
link_bandwidth_max 100 Maximum link bandwidth in Mbit/s
link_bandwidth_fixed None Bandwidth in Mbit/s for all links, if set
link_bandwidth_step 10 Steps between bandwidth choices in Mbit/s
link_delay_min 1 Minimum link delay in ms
link_delay_max 50 Minimum link delay in ms
link_delay_fixed None Link delay in ms for all nodes, if set
link_delay_step 1 Steps between link delays in ms
queue_size_min 0 Minimum queue size in kB
queue_size_max 125 Minimum queue size in kB
queue_size_fixed None Queue size in kB for all nodes, if set
queue_size_step 1 Steps between queue sizes in kB
sim_runtime 60 Simulation duration in seconds

Table 5.1: Input parameters for topology generation script

to be manually filled to match the route proposed by the topology generation script.
The framework could later be extended to include routing information in the generated
topology, allowing arbitrary topologies to be simulated.

The topology generation algorithm works as follows: First, a random amount of routers
between routers_min and routers_max are added to the topology. Note that all
random numbers are chosen from a uniform probability distribution. Each router is
assigned a node id in ascending order, and a queue_size in kB (either a random in-
teger between queue_size_min and queue_size_max or fixed_queue_size). Then,
links are added to form a random tree. For this, a random sequence of router node
ids of length len(routers) - 2 is generated. This sequence can be interpreted as
a Prüfer sequence, which uniquely describes a tree. Using the Prüfer sequence, the
links between the router nodes are added. Each link is assigned a random band-
width between link_bandwidth_min and link_bandwidth_max or a fixed bandwidth
of links_fixed_bandwidth. Note that the bandwidth is chosen in fixed steps. For
example, with the defaults from Table 5.1, the generator would choose from the following
set of possible bandwidths: {10 Mbit/s, 20 Mbit/s, 30 Mbit/s, . . . , 100 Mbit/s}. In the

26

5.2 Topology simulation

next step, a random number of flows between flows_min and flows_max is chosen. For
each flow, two server nodes are added to the topology. The routers, to which they are
connected, are chosen randomly while ensuring that they are not connected to the same
router. The TCP implementation and the queue size of the server nodes are also chosen
at random, and the links’ attributes are as well.

Finally, the route for each flow is calculated using Djikstra’s shortest path algorithm
and stored in the flow objects. While calculating the routes, the traversed routers are
marked as visited. Afterwards, all routers and links which are not traversed by at least
a single flow are eliminated from the topology. Finally, the node ids are cleaned in order
to accomodate for any eliminated routers and links. Then, the topology information is
serialized to a JSON file and written to disk.

The output file contains three major lists with which the topology can be constructed:
the list of nodes in the network, the list of links, and the list of flows between the nodes.
It also contains the simulation duration in seconds, and a representation of the network
in the GraphViz [17] format for debugging and visualization purposes.

5.2 Topology simulation

For the simulation component, we decided to use ns-3 [2], a discrete event network
simulator, because it ships with implementations for the most common TCP congestion
control algorithms and has extensive documentation available.

The simulation component works as follows. First, the topology JSON file is parsed
and the network nodes are instantiated. In ns-3, every component of a network is a
subclass of the ns-3 Node type. Since ns-3 does not differentiate between routers and
servers, the topology description file from the generator does not to either. These Nodes
can have multiple ns-3 Devices attached to them. Devices in ns-3 can be thought of as
network interfaces and can be of different types. For example, ns-3 provides devices for
Carrier-Sense Multiple Access (CSMA) links, wireless links and Point-to-Point links using
the Point-to-Point Protocol (PPP). It was decided to use the latter for the simulation,
as the links from the topology generator only ever connect two nodes.

After creating the nodes, the nodes are connected using the links from the topology
description, with their bandwith, delay and queue sizes set accordingly. After setting up
the links, ns-3’s Ipv4GlobalRoutingHelper is invoked to assign static IPv4 addresses
to all interfaces and populate the nodes’ routing tables.

Then, the flows are created. This is done by installing Applications on the ns-3 nodes.
Luckily, ns-3 already has prebuilt application that fit the required use case, namely the

27

Chapter 5: Implementation

TcpBulkSendApplication and the PacketSink. The former sends as many bytes as pos-
sible to a specified destination address while the latter simply accepts incoming segments
and discards them. Since the PacketSink is setup to use a TCP socket for listening,
the PacketSink sends TCP ACK messages back to the TcpBulkSendApplication. The
bulk-send application can also be customized to send a specified amount of data or to
send only for a specified duration.

Finally, in order to obtain results from the simulation, ns-3’s tracing functionality is
utilized. Tracing makes it possible to subscribe to certain value changes, for example
the RTT estimation of the TCP implementation, by supplying a callback function.
The simulation program can operate in a verbose and a non-verbose mode. In the
verbose mode, all collected metrics are written to a CSV file with a timestamp from
the simulation. This is especially useful for debugging and plotting the values. The
non-verbose output only aggregates the metrics for use in the simulation output file in
order to save disk space. Since the simulations are deterministic, a simulation can be
re-run at any time. A dedicated plotting and analysis script was also created in parallel
to the simulation program, allowing the user to plot the data obtained from verbose
simulations. There is also a script which plots information about an entire dataset of
multiple simulations to check how different metrics in the dataset are distributed.

After the simulation has commenced, the traces of interest are aggregated. For example,
for each flow, the average flow rate and RTT are computed. These aggregated values
are then written to a new output JSON file, which contains the original topology input
JSON in addition to these results.

It was found that simulation durations of 60 s provide a good balance between actual
simulation runtime and the usefulness of the generated data for training. The simulation
runtime scales linearly with the amount of events the simulator needs to process. Thus,
longer simulation durations and higher throughputs in the simulated network increase
the simulation runtime. It was decided to select a default value of 10 flows for the
topology generation flows_max parameter and 100 Mbit/s as the default parameter
for link_bandwidth_max, as this leads to reasonable simulation runtimes of around
10–20 min per topology on a testbed system. This allows us to generate enough data for
training in a day on a system with 64 threads.

All steps leading up to this point were usually run on a testbed node with high CPU
compute capabilities. Both the training data generation and simulation were parallelized
using GNU parallel [18], which automatically assigns jobs to idle CPU cores.

Though ns-3 includes many different TCP implementations, we decided to limit our
topologies to only include TCP Cubic and TCP Reno as valid implementations. Origi-

28

5.3 Graph Representation mapping

nally, it was planned to include TCP Vegas and TCP BBR as well. After inspection of
the simulation results, it was decided to discard these simulations, as both TCP Vegas
and TCP BBR behaved in an unpredictable manner in the simulator when in the same
network with multiple flows. The simulator sometimes even reported the flows to have a
higher bandwidth or smaller RTT than physically possible in the given network.

5.3 Graph Representation mapping

As discussed in Section 2.4, the data needs to be converted into a graph representation
before training. A framework for training GGNNs using PyTorch and PyTorch-Geometric,
an extension of PyTorch for graph-based machine learning, already existed, which was
reused and adapted the existing code for this thesis. The existing framework provides a
Parser class, which can be subclassed. Different subclasses can then generate different
GRs.

To create a new GR, the Parser class is subclassed and its process_data function is
overriden. This function has a data object parameter, which contains the results from
the simulation, decoded to a Python dictionary. It is expected to return a NetworkX
graph. NetworkX is a Python library for working with graph structures and allows
embedding information in nodes and edges of the graph. These node and edge attributes
are used to embed the node features of the network, including the ones to be predicted.
The available attributes are supplied to the parser on instantiation. This attribute
definition dictionary contains how the attribute is encoded (one-hot encoding vs scalar),
a flag indicating whether the attribute shall be predicted, a masking list which is later
used in the loss calculation to ignore non predicted attributes, and a normalization
function with which all values of that attribute are normalized. At the time of writing,
the existing framework does not yet support predicting different metrics at the same
time. For example, it is currently not possible to train a single model which predicts
both the TCP flow rate and TCP flow RTT at the same time. Instead, two models
would have to be trained to predict both metrics. This is due to a limitation in the mask
processing for the loss function, which could be resolved as future work. In practice, it
is only a minor issue though, as training the model and inference does not take a long
time for the topologies explored later on in Chapter 6 and the same simulation data can
be used.

As discussed in Section 2.4, a decision was made to use minmax normalization. For this,
a small script iterates over the whole dataset and gathers the minimum and maximum
values for each features and writes them to an additional JSON file. This file can

29

Chapter 5: Implementation

be passed to the parser script as well, which can then use it for the normalizing the
attributes.

After obtaining the graph representation as a NetworkX graph, the graph2matrix
function can be called on the parser. This function is implemented in the Parser
superclass and is the same for all GRs. It takes the NetworkX graph and transforms
it into a PyTorch tensor akin to the matrix representation described in Section 2.4
and Figure 2.6b. The input and output features are stored in separate tensors, and a
mask tensor containing the masking information is created as well. These tensors and
metadata, such as the original NetworkX nodelist and node count, are encapsulated
in a PyTorch Data object, which can be exported to a file using the NumPy npz file
encoding format. The exporting process is completely handled by PyTorch.

5.4 Training

Because the framework was designed to construct GGNNs from npz files output by the
Parser class from the previous section, minimal adjustments were required to make
training work with the GRs used for this thesis.

Since PyTorch can utilize GPU compute resources to accelerate the training process,
dedicated GPU testbed nodes were used for most trainings. The models we trained
were fairly small when compared to the installed GPUs VRAM (3 GB compared to
around 12 GB for most testbed GPUs), so it was decided to utilize a tool called Neural
Network Intelligence (NNI) [19], which offers parameterized hyperparameter tuning and
parallelized training on the same and even multiple GPUs (if present).

The script which instantiates and then trains the neural network is parameterized as
well. The input parameters and their description can be found in Table 5.2.

The training script works as follows: First, the dataset is loaded. This is done using the
PyTorch DataLoader class, which loads the npz files into memory and converts them
back to PyTorch Data objects. The model itself is also instantiated, with the model
class being chosen from mutiple different implementations. At the time of writing, two
model architectures have been implemented: The GGNN model class implements the GRU
approach from [4] and the ResGGNN class implements a GGNN using residual GRUs.

Then the dataset is split into a training and a validation dataset, with the ratio taken
from the train-test-split parameter (see Table 5.2). The model is trained for the
specified amount of epochs. After each epoch, the model is evaluated using the validation
dataset from the split, and a MPE is calculated. This is done to obtain a metric which is
comparable between different training runs even when different loss functions are used.

30

31

Parameter Default Value Description

seed 1 Seed used by RNG
dataset None Folder containing dataset npz files
epochs 15 Number of epochs to train
learning-rate 5 × 10−4 Learning Rate (LR) of Adam optimizer
weight-decay 0 Weight decay rate of Adam optimizer
lr-scheduler-factor 5 × 10−4 LR scheduler factor for Adam optimizer
dropout 0.5 Dropout used between linear layers
dropout-gru 0 Dropout used between GRUs
train-test-split 0.75 Fraction of dataset used for training
batch-size 16 dataset size of each batch
hidden-size 64 Size of the hidden states in the network
nunroll 10 Number of loops to unroll in the GGNN
num-features None Number of feature columns in the training data’s x
num-classes None Number of feature columns in the training data’s y
regression Not set Flag indicating whether a reggression shall be trained
device cuda Choice between cuda or cpu
gradient-clipping inf Value at which to clip the gradient
model-architecture None Choice between architectures, e.g. GRU or LSTM
linear-layer-input None Adds a linear layer before the memory cell if set
num-layers 1 Number of memory cell layers
nni None Flag that activates NNI framework integration
loss-function MSELoss Choice of Loss function from PyTorch
last-layer-sigmoid None Adds a sigmoid normalization after the last layer if set
minmax None Supply a minmax JavaScript Object Notation (JSON) file for denormalization

Table 5.2: Input parameters for neural network training script

Chapter 5: Implementation

When the training is finished, the model is written to an output directory. When NNI is
used, the model is not saved, as that would take up very large amounts of disk space
very quickly. Instead, the model can be retrained by setting all the hyperparameters
obtained from the NNI tuner using the training script input parameters.

5.5 Machine Learning model architecture

The framework developed at the chair was built with modularity in mind and allows
the use of different architectures of GGNNs. At the time of writing, two different model
architectures have been integrated into the framework: the GGNN architecture and the
ResGGNN architecture. Both architectures are implemented in the form of two different
Python classes, each being a subclass of the MemoryCell class, which in turn is a subclass
of the PyTorch Module class. The Module is provided by PyTorch and provides the
basic building blocks for constructing a Neural Network (NN). Subclasses of Module,
including the ones presented below, override the forward() function, which, as the name
suggests, is called on every foward pass of the NN.

5.5.1 GatedGraphConv

The GGNN class implements a model architecture closely resembling the ML model
presented in Section 2.3. It uses the GatedGraphConv class provided by PyTorch-
Geometric, which implements the PyTorch-Geometric MessagePassing interface. The
MessagePassing interface is meant to model the message passing behaviour of GNNs
where data from neighbouring nodes, and optionally edges, is aggregated. The GatedGraphConv
class implements the GGNN cells with GRU cells for cell memory described in Section
2.3 and [10]. It also adds a few layers before and after the GatedGraphConv layers,
depending on the NN configuration. If linear_layer_input is activated (see Table
5.2), a linear layer (torch.nn.Linear), a leaky Rectified Linear Unit (ReLU) layer
(torch.nn.LeakyReLU), and a dropout layer (torch.nn.Dropout) with the parameter
dropout from Table 5.2 are added to the network before the GatedGraphConv layers.
As this is added in the MemoryCell class, these first layers are the same for the ResGGNN
class.

After that follows a combination of a GatedGraphConv layer and a sequence of a Layer-
Norm (torch.nn.LayerNorm), leaky ReLU and dropout layers repeated by num_layers
(see Table 5.2). The GatedGraphConv layer is initialized with the nunroll parameter,
which indicates how many iterations of the message passing to unroll (See Section 2.3.3
for reference).

32

5.6 Validation and evaluation

After the GatedGraphConv cell, a linear layer, a leaky ReLU layer, a dropout layer with
dropout, and another linear layer are added. Finally, the output vector is passed through
the logistical simgoid function if last_layer_sigmoid is set.

5.5.2 ResGatedGraphConv

The ResGGNN class has the same conditional linear input layers and output layers as the
GGNN model class, as they both inherit those from MemoryCell. But in contrast to GGNN,
ResGGNN uses the ResGatedGraphConv module provided by PyTorch-Geometric, which
implements a residual GGNN as proposed in [20]. This architecture was not used for
this thesis.

5.6 Validation and evaluation

In order to properly judge an ML model’s accuracy, it is usually of interest to run it with
samples it has not been trained or validated with before. These samples can be generated
using the same steps as the samples used for training by simply adjusting the parameters
of the topology generation. For the analysis of the results, scripts were created which
take a folder or a single graph representation and a trained model as an input, predict the
metrics using said model and then compute and plot the difference between the expected
and the actual results. Possible metrics and plots of interest, which the framework can
generate, include scatter plots of the expected and the predicted datapoints. These plots
can also group datapoints based on other metrics, such as the TCP algorithm in use
or the topology size in order to highlight possible causes of prediction errors. Other
metrics, such as the relative error of predictions, is also calculated and plotted.

33

Chapter 6

Evaluation

In this chapter, different variations of the ML model are compared and evaluated for
accuracy. Answers to the research questions stated in Section 1.2 are proposed.

6.1 Simulation and training setup

The following evaluation was done using the scripts and programs introduced in Chapter
5. For training, we generated multiple datasets with different parameters for topology
size, flow count, queue sizes, etc. We utilized a script which generates, and afterwards,
simulates a given amount of network topologies on a testbed node in parallel, in order
to take advantage of high core counts. Since GNU parallel [18] was utilized, the amount
of parallel simulations was automatically adjusted to the available compute resources.
The simulations were run on a server with 64 threads.

6.1.1 Generated topologies
In total, 6 simulation batches were run in order to generate datasets for training and
evaluation purposes. The parameters used to generate each dataset are listed in Table
6.1. For detailed documentation of default values and what each parameter is used for,
please refer to Table 5.1.

Datasets D1 and D2 were used as a baseline for training and evaluation. Both were
generated using the default parameters of the generator script. The resulting topologies
are fairly small, with a maximum of 22 nodes per topology. The number of nodes in the
topology depends on the randomly chosen number of routers and flows in the topology,
as servers are added based on those two factors (refer to Section 5.1 for details). D3 was
generated with the same parameters as D1 and D2, except for parameters concerning

Chapter 6: Evaluation

Parameter D1 & D2 D3 D4 D5 D6 Unit

Dataset Size 5000 5000 5000 5000 5000 −
routers_min 5 15 5 5 5 −
routers_max 12 25 12 12 12 −
flows_min 1 5 1 1 1 −
flows_max 10 15 10 10 10 −
link_bandwidth_min 10 10 10 10 10 Mbit/s
link_bandwidth_max 100 100 100 100 100 Mbit/s
link_bandwidth_step 10 10 10 10 10 Mbit/s
link_delay_min 1 1 1 1 1 ms
link_delay_min 50 50 50 50 50 ms
link_delay_min 1 1 1 1 1 ms
queue_size_min − − 50 − 10 kB
queue_size_max − − 200 − 200 kB
queue_size_step − − 1 − 1 kB
queue_size_fixed 125 125 − 25 − kB
sim_runtime 60 60 60 60 60 s

Table 6.1: Generated datasets and the parameters used to generate them

the router and flow generation, in order to generate a dataset with larger topology sizes.
The parameters of D4 and D6 were chosen to include a range of queue sizes and D5 was
modeled to have a fixed but smaller queue size compared to D1 and D2.

Generating and simulating a 5000 topology dataset like D1 and D2 on aforementioned
32 core CPU nodes took around 5 h, while a dataset with larger topologies like D3 took
9 h.

In Figure 6.1, the distributions of the number of nodes (servers and routers) per topology
are visualized for each dataset. As expected, all datasets except for D3 more or less share
the same distribution with a minimum of 4 and a maximum of 22 nodes per topology.
D3 has a minimum of 4 and a maximum of 47 nodes per topology.

Figure 6.2 shows a cumulative histogram of the path lengths of flows in the topologies of
each dataset. Again, all datasets except for D3 share a similiar distribution, with an
average path length of around 4.7 traversed nodes. Due to the larger topolgies in D3, the
average path length is around 6.6 nodes here, with a maximum path length of 20 nodes.

36

6.1 Simulation and training setup

10 20 30 40 50
Number of Nodes

0.0

0.2

0.4

0.6

0.8

1.0 D1
D2
D3
D4
D5
D6

Figure 6.1: Cum. histogram of the number of nodes in the topo. by dataset

0 5 10 15 20
Pathlength

0.0

0.2

0.4

0.6

0.8

1.0 D1
D2
D3
D4
D5
D6

Figure 6.2: Cum. histogram of path lengths of flows by dataset

6.1.2 Distribution of simulation results
The datasets were all simulated on a testbed using ns-3 version 3.35 and the simulation
program described in Section 5.2.

The resulting metrics from the simulation are plotted by dataset in Figures 6.3, 6.4
and 6.5. Figure 6.3 shows a cumulative histogram of the mean flow RTTs over each
simulation runtime. As expected, the mean RTTs are larger in the dataset with larger
topologies, and thus, longer path lengths. D1, D2, D4 and D6 share are very similiar
distribution of mean RTTs, all capping around the 750 ms mark. The distribution of
mean RTTs in D5 is slightly shifted to the left compared to D1, D2, D4 and D6, meaning
the RTTs are a bit shorter. This makes sense, as the shorter queue buffers in D4 lead to

37

38

0 250 500 750 1000 1250 1500 1750
Mean Flow RTT, [ms]

0.0

0.2

0.4

0.6

0.8

1.0 D1
D2
D3
D4
D5
D6

Figure 6.3: Cum. histograms of mean simulated flow RTTs of flows by dataset

0 10 20 30 40 50 60 70 80 90
Mean Flow Rate, [Mbit/s]

0.0

0.2

0.4

0.6

0.8

1.0 D1
D2
D3
D4
D5
D6

Figure 6.4: Cum. histograms of mean simulated flow bandwidths by dataset

0 20 40 60 80 100
Mean Queue Utilization, %

0.0

0.2

0.4

0.6

0.8

1.0 D1
D2
D3
D4
D5
D6

Figure 6.5: Cum. histograms of mean queue utilization per interface by dataset

6.2 Trained models and results

reduced queueing delays. Looking at Figure 6.4, the mean TCP flow rates in D3 and D5
are also significantly smaller than in the D1, D2 and D4 due to the higher path lengths
and shorter queue sizes, respectively.

The maximum mean flow rate of D5 (45.3 Mbit/s) is also reduced compared to the maxi-
mum flow rates of the other datasets, even D3, ranging from 59.7 Mbit/s to 74.2 Mbit/s.
There is also a noticable spike at the 10 Mbit/s mark and a smaller spike at the 20 Mbit/s
mark in all histograms except for D5. These are due to link_bandwidth_min and
link_bandwidth_step being set to 10 Mbit/s each, and probably produced by a large
number of flows where this smallest possible link bandwidth constitutes the bottleneck
link of the flows.

Figure 6.5 shows cumulative histograms of the mean queue utilization expressed in
percent separated by dataset. The mean queue utilizations are measured at each sending
interface in the simulation over the course of the entire simulation. Overall, the mean
queue utilizations are somewhat low across all datasets, with the average mean queue
utilization lying around 3 % to 4 % for D1, D2, D3, D4 and D6. Only D5 has an even
lower average mean queue utilization of 1.3 % and a maximum mean queue utilization of
only 67 % compared to maxima of around 81 % for all other datasets. The reason for
this is, that every flow only ever has a single bottleneck link. The other queues on the
flows’ paths stay mostly empty, leading to many interfaces with low queue utilization.

6.2 Trained models and results

In order to evaluate the GGNN ML model for answering the research questions presented
in Section 1.2, parsers for the GGNN framework for the different GRs presented in
Chapter 4 were implemented. Since the framework does not allow for predicting multiple
metrics simultaniously, three parsers were created for each GR, except for GR 3. GR 3
is not suitable for learning queue utilization as it embeds no dedicated interface nodes
to track queue utilization with. Thus, it was omitted for the queue utilization metric.

Then, a model was trained with data generated using D1 and each parser, creating a
total of eight models created using D1 (3 GRs × 2 flow metrics + 2 GRs × 1 interface
metric). The training for each model was done using NNI (see Chapter 5 for details)
with 300 trials for hyperparameter tuning per model.

The training was done on a testbed node with an 8 core / 16 thread Intel Xeon E5-2620
v4 CPU and 4 Nvidia GTX 1080 Ti GPUs. The training was parallelized with up to
24 trials running in parallel across all 4 GPUs. Running more trainings simultaniously
was not possible due to memory constraints both on the CPU and GPU side. Each

39

Chapter 6: Evaluation

NNI trial took between 7 min and 15 min, depending on the model. For each model, the
best performing of the 300 trial models was selected and retrained using the obtained
hyperparameters in order to obtain the PyTorch model for inference use. An inference
and plotting script was used which performs inference for a given dataset using the given
model and outputs the results to both CSV files and plots (see Section 5.6 for details).
The inference script manages to process the data of a single dataset (5000 topologies) in
12–20 s, depending on the model and topology size in use. These metrics were obtained
on the same system the models were trained on.

In Figures 6.7, 6.8 and 6.9, the results of mean flow RTT, mean flow rate and mean
queue utilization predictions by the models created from D1 for datasets D2 through
D5 are visualized as scatter plots, where each point represents a single metric predicted
using the respective model. The horizontal axis of the scatter plots corresponds to
the value reported by the model, while the vertical axis corresponds to the expected
value obtained by simulation. The dashed diagonal gray line represents the theoretical
optimum, where the prediction exactly equals the expected value. The points are also
colorized differently in the scatter plots of flow rate and flow RTT depending on the
TCP congestion control algorithm employed by the flow corresponding to the datapoint
in order to highlight possible differences in prediction accuracy. Each row of graphs
corresponds to a single dataset, while each column of graphs corresponds to one GR. If
a datapoint is above the diagonal, it means that the value predicted by the model was
too low. Likewise, if a point is below the diagonal, it means the value predicted by the
model was too high.

Figure 6.6 shows the absolute relative error for all combinations from Figures 6.7 and
6.8, while Table 6.2 shows the mean absolute relative error for all combinations. The
absolute relative error is calculated in the following way:

ϵ = |y − y′|
y

(6.1)

with ϵ being the absolute relative error, y being the expected value and y′ being the
predicted value.

40

6.2 Trained models and results

D
2,

G
R

-1
D

2,
G

R
-2

D
2,

G
R

-3
D

3,
G

R
-1

D
3,

G
R

-2
D

3,
G

R
-3

D
4,

G
R

-1
D

4,
G

R
-2

D
4,

G
R

-3
D

5,
G

R
-1

D
5,

G
R

-2
D

5,
G

R
-3

10−2

10−1

100

R
el

at
iv

e
A

bs
ol

ut
e

Er
ro

r

(a) RTT

D
2,

G
R

-1
D

2,
G

R
-2

D
2,

G
R

-3
D

3,
G

R
-1

D
3,

G
R

-2
D

3,
G

R
-3

D
4,

G
R

-1
D

4,
G

R
-2

D
4,

G
R

-3
D

5,
G

R
-1

D
5,

G
R

-2
D

5,
G

R
-3

10−2

10−1

100

R
el

at
iv

e
A

bs
ol

ut
e

Er
ro

r
(b) Flow rate

Figure 6.6: Comparison of the absolute relative errors of RTT / flow rate prediction separated by
dataset and GR. Boxes represent the first quartile and third quartile, orange lines represent the median
/ second quartile. The vertical axis is scaled logarithmically.

Since the mean queue utilization was sometimes zero and very often near zero in the
datasets, a relative error does not make much sense for comparing the accuracy, as
otherwise tiny differences can result in verly large relative error values, while an expected
value of zero even causes division by zero issues. We decided to use the absolute error

ϵ = |y − y′| (6.2)

for comparing the queue utilization results instead.

Table 6.3 shows the mean absolute error for all combinations from Figure 6.9. Note that
these are not to be confused with relative errors (like in Table 6.2), but that the unit
of the mean queue utilization is percent. For example, the 1.4 % mean absolute error
for D2 and GR 1 means, that on average, the error when predicting D2 with the GR 1
model is about ± 1.4 %.

6.2.1 Comparison of graph representations
The following paragraphs present and analyze the results from the performed model
evaluation and explain the scatterplots from Figures 6.7, 6.8 and 6.9 in detail.

Round-Trip Time
D2 represents optimal conditions for models trained using D1, as they more or less
share the same distributions of topology size, bottleneck bandwidths, etc. Looking at
the three scatter plots for the RTT prediction of flows in D2 (Figures 6.7a, 6.7b, 6.7c)

41

Chapter 6: Evaluation

GR 1 GR 2 GR 3

D2 1.66 % 1.68 % 7.85 %
D3 2.30 % 2.61 % 8.60 %
D4 4.40 % 4.37 % 8.10 %
D5 10.08 % 9.73 % 7.18 %

(a) RTT

GR 1 GR 2 GR 3

D2 9.69 % 9.57 % 45.49 %
D3 25.28 % 21.55 % 90.76 %
D4 16.69 % 16.19 % 47.85 %
D5 83.84 % 81.48 % 108.70 %

(b) Flow rate

Table 6.2: Mean absolute relative errors for predictions of mean flow RTT and flow rate using different
datasets by models trained using D1 and GRs 1 - 3

GR 1 GR 2

D2 1.40 % 0.80 %
D3 0.90 % 0.80 %
D4 1.80 % 1.50 %
D5 2.60 % 2.80 %

Table 6.3: Mean absolute errors for predictions of mean queue utilization in percent using different
datasets by models trained using D1 and GRs 1 and 2

and the associated absolute relative error plots in Figure 6.6a, one can see that GRs
1 and 2 perform significantly better than GR 3. The mean absolute relative error lies
at 1.66 % and 1.68 % for GRs 1 and 2 and at 7.85 % for GR 3. Here, GR 1 performs
best, predicting metrics which are accurate to 5 % of the actual value 94.9 % of the time
and accurate to 10 % of the actual value 98.9 % of the time. The scatter plots 6.7a
and 6.7b show that the models with GR 1 and GR 2 perform better for lower RTTs,
while no significant difference between TCP Cubic and TCP Reno can be found in this
case. This makes sense, as both algorithms are loss based and should behave similiarly
in this scenario. The model using GR 3 shows a significant offset above the optimum
line (values are predicted too low) and an overall wider spread from the optimum line.
This probably happens, because of the way the interfaces are rerpresented in GR 3.
When multiple flows traverse the same network node on different interfaces, the model
using GR 3 will not be able to differ and predict lower RTTs, although the flows do not
interfere with each other. This leads to overall higher predicted RTTs.

In the next row of scatter plots (Figures 6.7d, 6.7e, 6.7f), the results for applying the
model to D3 are plotted. Again, GR 1 performed best with a mean absolute relative
error of 2.30 % compared to 2.61 % and 8.60 % for GRs 2 and 3, respectively. However,
this error gets significantly larger in the range above 750 ms. When looking only at
datapoints where the expected value is larger than 750 ms, the mean absolute relative

42

6.2 Trained models and results

errors increase to 8.38 %, 17.39 % and 20.2 % for GRs 1, 2 and 3. The reason for this
is, that the model was trained using the D1 dataset, which caps out at mean RTTs
of around 750 ms, leading to predictions which are too low, as the model has never
encountered RTTs this high. The plot for GR 2 shows a harder cutoff than the one for
GR 1. This can be explained with the model’s hyperparameters, as the NNI tuner chose
to set last_layer_sigmoid for the GR 2 model, while leaving it unset for the GR 1
model. The sigmoid function caps its output to a value between 0 and 1, thus limiting
the values the model can predict to the normalization maximum. As we will show later
in Section 6.2.3, the graph looks a lot more like the one with GR 1 when adjusting the
model’s minmax bounds.

The models applied to D4 yield a mean absolute relative error of 4.40 %, 4.37 % and
8.10 % for GRs 1, 2 and 3, respectively. Overall, all three GRs perform slightly worse
for D4 than for D2, as is to be expected due to non static queue sizes which the model
was not trained with. When looking at the scatter plots (Figures 6.7g, 6.7h, 6.7i), a
notably larger spread is visible. Also, the spread is slightly larger for TCP Cubic flows.
Considering that the model was not trained with varying queue sizes, the model performs
surprisingly well for the D4 dataset.

Finally, the results from applying the model to D5 result in a mean absolute relative
error of 10.08 %, 9.73 % and 7.18 % for GR 1, 2 and 3, respectively. Curiously, this is
the only dataset where the model trained with GR 3 performs better than both other
compared GRs, even if only by a small amount. The scatter plots for the results from
the models trained using GR 1 and 2 (Figures 6.7j and 6.7k) also show a distinct amount
of datapoints offset below the diagonal (predicted value is too high), which is not present
in the scatter plot for GR 3 (Figure 6.7l). These results are also somewhat expected, as
the model has never encountered fixed very small queue sizes before, and thus, can’t
generalize well in this regard.

The difference in mean absolute percentage error between the two different TCP con-
gestion control algorithms is less than 2 % for all dataset combinations, except for D5,
where the difference reaches 4.8 %. Here, TCP Reno flows’ RTTs are predicted more
accurately. Otherwise, the differences between the two TCP algorithms are insignificant.

Flow rate
The TCP flow rate predictions of dataset D2 with the models obtained using D1 and
the three GRs are vastly different in terms of accuracy from their RTT counterparts.
Here, the mean absolute relative error for the best case scenario (D2, GR 1) is 9.57 %
for GR 2. With this model (GR 1), the flow rates in D2 are predicted accurate to 5 %
of the expected value 54.4 % of the time and accurate to 10 % of the expected value

43

0 500 1000 1500

Predicted value, ms

0

500

1000

1500

A
ct

ua
lv

al
ue

,m
s

Cubic
Reno

(a) D2, Mean RTT, GR 1

0 500 1000 1500

Predicted value, ms

0

500

1000

1500

A
ct

ua
lv

al
ue

,m
s

(b) D2, Mean RTT, GR 2

0 500 1000 1500

Predicted value, ms

0

500

1000

1500

A
ct

ua
lv

al
ue

,m
s

(c) D2, Mean RTT, GR 3

0 500 1000 1500

Predicted value, ms

0

500

1000

1500

A
ct

ua
lv

al
ue

,m
s

(d) D3, Mean RTT, GR 1

0 500 1000 1500

Predicted value, ms

0

500

1000

1500

A
ct

ua
lv

al
ue

,m
s

(e) D3, Mean RTT, GR 2

0 500 1000 1500

Predicted value, ms

0

500

1000

1500

A
ct

ua
lv

al
ue

,m
s

(f) D3, Mean RTT, GR 3

0 500 1000 1500

Predicted value, ms

0

500

1000

1500

A
ct

ua
lv

al
ue

,m
s

(g) D4, Mean RTT, GR 1

0 500 1000 1500

Predicted value, ms

0

500

1000

1500

A
ct

ua
lv

al
ue

,m
s

(h) D4, Mean RTT, GR 2

0 500 1000 1500

Predicted value, ms

0

500

1000

1500
A

ct
ua

lv
al

ue
,m

s

(i) D4, Mean RTT, GR 3

0 500 1000 1500

Predicted value, ms

0

500

1000

1500

A
ct

ua
lv

al
ue

,m
s

(j) D5, Mean RTT, GR 1

0 500 1000 1500

Predicted value, ms

0

500

1000

1500

A
ct

ua
lv

al
ue

,m
s

(k) D5, Mean RTT, GR 2

0 500 1000 1500

Predicted value, ms

0

500

1000

1500

A
ct

ua
lv

al
ue

,m
s

(l) D5, Mean RTT, GR 3

Figure 6.7: Scatter plots of RTT prediction of D2 - D5, all trained using D144 44

0 50

Predicted value, Mbit/s

0

20

40

60

80
A

ct
ua

lv
al

ue
,M

bi
t/

s

Cubic
Reno

(a) D2, Mean flow rate, GR 1

0 50

Predicted value, Mbit/s

0

20

40

60

80

A
ct

ua
lv

al
ue

,M
bi

t/
s

(b) D2, Mean Flow Rate, GR 2

0 50

Predicted value, Mbit/s

0

20

40

60

80

A
ct

ua
lv

al
ue

,M
bi

t/
s

(c) D2, Mean Flow Rate, GR 3

0 50

Predicted value, Mbit/s

0

20

40

60

80

A
ct

ua
lv

al
ue

,M
bi

t/
s

(d) D3, Mean Flow Rate, GR 1

0 50

Predicted value, Mbit/s

0

20

40

60

80
A

ct
ua

lv
al

ue
,M

bi
t/

s

(e) D3, Mean Flow Rate, GR 2

0 50

Predicted value, Mbit/s

0

20

40

60

80

A
ct

ua
lv

al
ue

,M
bi

t/
s

(f) D3, Mean Flow Rate, GR 3

0 50

Predicted value, Mbit/s

0

20

40

60

80

A
ct

ua
lv

al
ue

,M
bi

t/
s

(g) D4, Mean Flow Rate, GR 1

0 50

Predicted value, Mbit/s

0

20

40

60

80

A
ct

ua
lv

al
ue

,M
bi

t/
s

(h) D4, Mean Flow Rate, GR 2

0 50

Predicted value, Mbit/s

0

20

40

60

80

A
ct

ua
lv

al
ue

,M
bi

t/
s

(i) D4, Mean Flow Rate, GR 3

0 50

Predicted value, Mbit/s

0

20

40

60

80

A
ct

ua
lv

al
ue

,M
bi

t/
s

(j) D5, Mean Flow Rate, GR 1

0 50

Predicted value, Mbit/s

0

20

40

60

80

A
ct

ua
lv

al
ue

,M
bi

t/
s

(k) D5, Mean Flow Rate, GR 2

0 50

Predicted value, Mbit/s

0

20

40

60

80

A
ct

ua
lv

al
ue

,M
bi

t/
s

(l) D5, Mean Flow Rate, GR 3

Figure 6.8: Scatter plots of flow rate prediction of D2 - D5, all trained using D1

Chapter 6: Evaluation

72.3 % of the time. While the scatter plots for GR 1 and 2 (Figures 6.8a and 6.8b) look
somewhat promising, the plot for GR 3 (Figure 6.8c) shows significant diversion from
the optimum, with a maximum absolute error of 44.8 Mbit/s. The model with GR 3
also shows noticable plateaus at the 10 Mbit/s and 20 Mbit/s marks (expected values, y
axis), where the model predicted higher flow rates. These are probably caused by the
spikes in the distribution of flow rates from the simulation output discussed in Section
6.1.1. The GR 3 model fails to predict values greater than 30 Mbit/s, while GR 1 and 2
manage to do so, albeit with decreased accuracy (mean abs. rel. error for (D2, GR 1)
< 30 Mbit/s: 9.62 %, ≥ 30 Mbit/s: 12.52 %). This is also caused by the distributions of
flow rates from the simulation data of D1, as 97 % of flow rates in D1 are smaller than
30 Mbit/s.

As expected, the results for D3, D4 and D5 are worse in terms of accuracy than the
ones for D2, with D4 having the lowest mean absolute relative error of 16.19 % using
the model with GR 1. All of the plots for the combination of GR 3 and these three
datasets (Figures 6.8f, 6.8i and 6.8l) show the same plateaus and cutoff at the 25 Mbit/s
predicted value mark as the one with D2, suggesting that is is a general issue with GR 3.

The mean flow rates from D4 are similiarly distributed to the ones from D2, albeit being
a bit lower across the whole dataset (12.2 Mbit/s vs. 12.4 Mbit/s mean respectively),
leading to a slighty higher but still comparable mean absolute relative error of around
16.4 % for the models using GR 1 and 2 (Figures 6.8g and 6.8h).

The models obtained using GRs 1, 2 and 3 combined with dataset D5 yield the worst
results in this trial, with an mean absolute relative error of over 108 % in the worst case.
As the scatter plots show, the models overestimate the mean flow rate drastically, with
nearly all points in the scatter plot below the diagonal (see Figures 6.8j, 6.8j and 6.8j).
Especially, TCP Cubic flows are estimated by the model to have significantly higher flow
rates than they actually do according to the simulation.

Except for D5, the flow rate of TCP Cubic flows is predicted with greater accuracy than
that of TCP Reno flows. For the best case scenario (D2, GR 2), the difference in the
mean absolute percentage error is 3.7 % (Cubic is predicted with lower error) between
the two flow types. The maximum difference occurs for the combination (D3, GR 3),
where there is a difference of 71 % between the mean absolute relative errors between
the two flow types in favor of TCP Cubic.

Queue utilization
As stated previously, the models for testing the performance regarding the mean queue
utilizations at the sending interfaces was only done using GRs 1 and 2, as GR 3 does not

46

6.2 Trained models and results

model individual interfaces. The results are displayed in Figure 6.9 as scatter plots and
the mean absolute errors are given in Table 6.3. We adjusted the scatterplots to only
include the top 10 % of errors in order be able to gauge at the origin of the outliers better.
As Table 6.3 shows, the mean absolute errors are relatively small, as many datapoints
have low queue utilization and are predicted with relatively high accuracy. Compared to
the flow metrics, the queue utilization results show a much greater amount of outliers
than the graphs for the other metrics from the previous paragraphs.

The results for datasets D2, D3 and D4 all exhibit a similiar pattern, with larger spread
around the optimum line in GR 1 compared to GR 2. The first GR shows a noticably
larger cloud of datapoints above the optimum line where the predicted value is too low.
Both models struggle with values near zero in all datasets, as shown by a large amount
of datapoints near the origin of both axes. A vertical line around the 20 % mark can also
be found in the scatterplots for the GR 2 model for D2, D3 and D4. It is best visible in
Figure 6.9f, but the cause is unclear, as it does not correspond to any specific value in
the original simulation data. All plots show a slight skew above the diagonal optimum
line for higher queue utilizations, where the datapoints are consistently predicted to be
too high.

Looking at the first row of graphs, the models trained with D1 perform best with the D2
dataset because they share the same distributions of metrics. In the best case scenario
(D2, GR 2, Figure 6.9b), a mean absolute error of 0.8 % is achieved. The plot for GR 1
has far more outliers above the diagonal compared to GR 2.

The plots for D3 look similiar to the plots for D2, but the amount of outliers further away
from the optimum diagonal is noticably larger. The empty line at the optimum looks
smaller and suggests lower errors in the 90th percentile range (which was ommitted).
This is due to a higher amount of lower queue utilization datapoints in D3. When
looking closely, the slope of the line where most datapoints reside seems to be steeper
in Figure 6.9c compared to Figure 6.9d. At first, we believed that this was also
because of the last_layer_sigmoid hyperparameter, but this is not the case. The
last_layer_sigmoid hyperparameter flag was not set for both queue utilizattion models
shown here. Apparently, the inclusion of path nodes in GR 2 simply leads to better
accuracy for queue utilizations higher than the ones encountered during training.

Figures 6.9e and 6.9f show the scatter plots for the results for dataset D4. The error
corridor, where the 90th percentile of errors would reside, is larger compared to results
from D2 and D3, indicating a bigger deviation from the optimum. As expected, the
number of outliers increases again compared to D2 and D3, but more outliers are below

47

0 50 100

Predicted value, %

0

20

40

60

80

100

A
ct

ua
lv

al
ue

,%

(a) D2, Mean Queue Util., GR 1

0 50 100

Predicted value, %

0

20

40

60

80

100

A
ct

ua
lv

al
ue

,%

(b) D2, Mean Queue Util., GR 2

0 50 100

Predicted value, %

0

20

40

60

80

100

A
ct

ua
lv

al
ue

,%

(c) D3, Mean Queue Util., GR 1

0 50 100

Predicted value, %

0

20

40

60

80

100

A
ct

ua
lv

al
ue

,%

(d) D3, Mean Queue Util., GR 2

0 50 100

Predicted value, %

0

20

40

60

80

100

A
ct

ua
lv

al
ue

,%

(e) D4, Mean Queue Util., GR 1

0 50 100

Predicted value, %

0

20

40

60

80

100

A
ct

ua
lv

al
ue

,%

(f) D4, Mean Queue Util., GR 2

0 50 100

Predicted value, %

0

20

40

60

80

100

A
ct

ua
lv

al
ue

,%

(g) D5, Mean Queue Util., GR 1

0 50 100

Predicted value, %

0

20

40

60

80

100

A
ct

ua
lv

al
ue

,%

(h) D5, Mean Queue Util., GR 2

Figure 6.9: Scatter plots of queue util. prediction of D2 - D5, trained using D1,
90th percentile removed

48 48

6.2 Trained models and results

the optimum diagonal. This is due to D4 having variable queue sizes, which the model
from D1 has not been trained with.

Finally, the scatter plots for D5 (Figures 6.9g and 6.9h) show, that both models completely
overestimate the queue utilization when encountering queue sizes which are drastically
smaller than the one the model was trained with, resulting in larger absolute errors
where the queue utilizations are consistently predicted too high.

When ignoring the datapoints where the expected value is zero, a relative error can be
calculated. For the best case scenario (D2, GR 2), this results in the model having a
mean relative error of 131.6 %, which is not very insightful, because the expected values
for queue utilization in D2 are very small (median queue utilization is 0.016 % when
removing all zero datapoints from D2).

6.2.2 Generalization to larger network sizes
As was already shown in the previous subsection, the model is able to predict metrics
from larger topologies than the ones it was trained with (see results of model trained with
D1 predicting metrics of D3, Figures 6.7d, 6.8d), but looses accuracy once the expected
values are too far off from the original range of expected values from the training dataset.

In order to check whether this happens due to normalization with the minmax range
from D1, the model for predicting the flow RTT with D1 and GR 1 was retrained with
a different minmax range, this time utilizing the minimum and maximum over both
D1 and D3. Figure 6.10a shows the results of this experiment. The results indicate
that this is simply a problem with unknown input data and has nothing to do with the
normalization, as the mean absolute relative error increases to 2.96 %, while the scatter
plot looks almost identical to the original in Figure 6.10b.

We also wanted to verify our claim about the last_layer_sigmoid function causing
the hard cutoff in Figure 6.7e. We retrained the (D1, GR 2) model using the same
hyperparameters, but supplied new minmax bounds for training. The result can be seen
in Figure 6.11a next to the original graph for comparison. The graph looks more like the
one with GR 1, with fewer outliers and a slight increase in the mean absolute relative
error to 3 %.

The mean absolute error for all datapoints in D3, where the expected value is larger than
the maximum RTT of D1, is 8.4 % for the GR 1 model and 14.1 % for the GR 1 model
with the adjusted minmax normalization range. The mean absolute error of 2.82 % of
the minmax adjusted model over the whole of D3 is also slightly worse compared to
the 2.30 % of the non-adjusted model. The larger error margin does not correlate much
with the overall topology size, but rather with the path length of the individual flow.

49

Chapter 6: Evaluation

0 500 1000 1500

Predicted value, ms

0

500

1000

1500
A

ct
ua

lv
al

ue
,m

s

(a) minmax(D1, D3)

0 500 1000 1500

Predicted value, ms

0

500

1000

1500

A
ct

ua
lv

al
ue

,m
s

(b) minmax(D1)

Figure 6.10: Scatter plots of prediction of D3 RTT using D1, GR 1, different minmax bounds

For a visualization of the (D3, GR 1) prediction error, see the two plots in Figure 6.12.
On the left (Figure 6.12a), the absolute relative error ist shown in relation the the path
length of the associated flow. Please note that there are less samples for the longer path
lengths to the right of the graph, leading to smaller deviations in the errors. On the
right side (Figure 6.12b), the scatterplot from Figure 6.7d is colored by path lengths.
Using this information, it seems clear that the large deviation is mostly caused by path
lengths which are greater than what is encountered in the training dataset D1.

While evaluating the results, we noticed that the graphs resulting from GRs 1 and
2 could be disconnected, for example when two flows pass over the same router, but
different interfaces. We compared the mean absolute relative error between datapoints
from graphs which are fully connected to those which are not. The difference is less
than 1 % for all RTT model and dataset combinations, except for D5, which showed a
difference of 1.5 % favoring the fully connected topologies. The difference is larger for
the flow rate models, with a maximum difference of 5.8 % for (D3, GR 3), favoring the
not fully connected topologies.

6.2.3 Generalization to different queue sizes
As discussed in the previous sections, the large error increase when adjusting the queue
sizes at the interface nodes is due to the model trained with D1 expecting fixed queue
sizes of 125 kB. In order to test how the model would perform if it had experienced
differing queue sizes, we created a new training dataset, D6. D6 shares all properties of
D4, except with a broader range of queue sizes. These were chosen randomly from the

50

6.2 Trained models and results

0 500 1000 1500

Predicted value, ms

0

500

1000

1500
A

ct
ua

lv
al

ue
,m

s

(a) minmax(D1, D3)

0 500 1000 1500

Predicted value, ms

0

500

1000

1500

A
ct

ua
lv

al
ue

,m
s

(b) minmax(D1)

Figure 6.11: Scatter plots of prediction of D3 RTT using D1, GR 2, different minmax bounds

4 5 6 7 8 9 101112131415161718192021
Path Length

0

5

10

15

20

25

30

A
bs

.
R

el
.

Er
ro

r,
%

(a) Abs. rel. error by path length. Boxes represent the first
quartile and third quartile, orange lines represent the median /
second quartile.

0 1000

Predicted value, ms

0

500

1000

1500

A
ct

ua
lv

al
ue

,m
s

5.0

7.5

10.0

12.5

15.0

17.5

20.0

(b) Colors indicate Path Length

Figure 6.12: Visualization of prediction error of D3 RTT using model D1, GR 1

range of 10 kB to 200 kB. The range was chosen so that D6 would have some topolgies
similiar to the ones in D5.

We then trained a model with GR 1 and D6 for predicting the mean flow RTTs, again
using 300 trials using NNI. This time, the training data (and validation data) was
normalized using the minmax bounds of D6. After training, we performed inference

51

Chapter 6: Evaluation

against D2, D3, D4 and D5 which were also normalized using the minmax bounds of D6
for this task.

The inference against D2 yielded a mean absolute relative error of 1.81 %, which is only
slightly higher than the error of the model obtained with D1 and GR 1 for the RTT.
This makes sense, as there are more parameters in the model but the queue sizes in D2
are constant. A model expecting a fixed queue size will perform better on a dataset with
fixed queue sizes than a model expecting varying queue sizes.

When inferring the RTTs for D3, the model yields a mean absolute error of 2.67 %,
which is also slightly higher than the one obtained using the D1 model (2.3 %). This
was also expected for the same reason as with D2 presented above.

Applying the model for predicting D4 leads to better results than with the model obtained
from D1. The mean absolute relative error is reduced to 2.25 %. That the model would
perform better is to be expected, but the magnitude of this change is rather low. The
model obtained from D1 managed to achieve a mean absolute relative error of 4.4 %,
which is not that far off compared to this model.

Finally, comparing the model against D5 is where the inclusion of the low queue sizes in
the topologies really makes a difference. The model predicts the mean RTT in D5 with
a mean absolute error of 1.13 %, nearly an order of magnitude better than the model
obtained from D1 (10.08 %). Figure 6.13 illustrates this difference in accuracy.

52

6.2 Trained models and results

O
rig

.
M

od
el

,D
2

U
pd

at
.

M
od

el
,D

2

O
rig

.
M

od
el

,D
3

U
pd

at
.

M
od

el
,D

3

O
rig

.
M

od
el

,D
4

U
pd

at
.

M
od

el
,D

4

O
rig

.
M

od
el

,D
5

U
pd

at
.

M
od

el
,D

5

10−2

10−1

R
el

at
iv

e
A

bs
ol

ut
e

Er
ro

r

Figure 6.13: Comparison of absolute relative prediction error of RTTs using models obtained using D6
(Updated) and D1 (Original). Boxes indicate first and third quartile, orange lines mark the median/second
quartile

6.2.4 Analysis of feature importance
When looking at the different GRs, it becomes clear that the features embedded in the
GR from the original network topology play a great role in determining the model’s
accuracy.

The main difference between GRs 1 and 2 lies in the inclusion of path nodes, which
add the information of direction of the flow to the model. By inspecting the results, it
appears that including this metric has mostly small but negative effects on the accuracy
of the flow RTT and flow rate predictions, and postive but relatively small effects on the
prediction accuracy of queue utilizations.

By comparing the results from GR 3 with GRs 1 and 2, it is obvious that the modeling of
individual queues and their respective sizes has a great effect on the model’s performance
when predicting flow RTTs and flow rates. For example, the error differs by a factor of
5 when comparing (D2, GR 1) and (D2, GR 3). The scatter plots associated with GR 3
show, that not modeling individual interfaces results in the metrics being predicted too
low once multiple flows traverse the same network node on different interfaces.

53

Chapter 6: Evaluation

6.3 Summary of evaluation results

The results from this evaluation show, that GGNNs are suitable for the general prediction
of TCP performance metrics. However, it also becomes clear that a “one size fits all”
approach in regards to different GRs and the predicted metrics could be disadvantageous.
Different metrics seem to benefit from different GRs, as shown by the difference in RTT
and flow rate predictions.

We showed that the models can learn how certain metrics of TCP flows behave in
arbitrary networks, with multiple flows interacting with one another. As expected,
the models’ loose some accuracy when facing previously unknown data, such as larger
topologies. However, the models did still perform relatively well with data where the
expected results are atleast somewhere in range of the training data. For example, a
mean absolute relative error of under 10 % for model (RTT, GR 1) when predicting D3
which has never encountered topologies this large is still a viable metric, depending on
the application. The same goes for different queue sizes. As we show in Section 6.2.3,
the models benefit from learning from a broader range of data which is somewhere near
the range of the data which one wants to predict later on.

We found that the model’s hyperparameters have a great impact on the models accuracy.
For example, the last_layer_sigmoid hyperparameter in combination with minmax
normalization can cause the model to be unable to predict values outside of the min-
max bounds it was trained with. If generalization to larger topologies is a goal, the
last_layer_sigmoid function should not be used, or a different normalization method
needs to be employed.

As we only predicted the mean flow RTT and mean flow rate of flows and mean queue
utilization at the interfaces, we can only compare these metrics to findings of related
work. Compared to the results of Geyer [4] and Mirza et al. [13], our models performance
for predicting the mean flow rate lies somewhere in between. While Mirza et al. report
a median absolute relative error of 10 %, our model predicts flow rates for unknown
topologies with roughly the same properties with a median absolute relative error of
4 %. Geyer manages to predict the mean flow rate with a median absolute error below
1 %. However, it has to be noted that the topologies being compared here are different.
The topologies in the work of Geyer [4] are all daisy-chained switches with servers
connected to each switch. In the previous work of Mirza et al. [13] the topology is fixed
to a dumbbell topology. The topologies in our approach are all trees, but otherwise not
limited in their shape.

54

6.3 Summary of evaluation results

The RouteNet model [15] achieves a mean relative error of 2.5 % when predicting the
delay in TCP flows with a topology unknown to the model, but comparable in size to the
topologies in the training data. This result is comparable to our models’ mean relative
error of 1.8 % when predicting the mean flow RTTs.

55

Chapter 7

Conclusion and future work

In this chapter, we summarize the findings of this thesis and try to draw a conclusion in
regards to how well GGNNs are suitable for the prediction of TCP performance metrics.
A brief overview of possible future work is also presented.

7.1 Conclusion

As shown in Chapter 6, GGNNs prove to be a viable alternative to discrete event
network simulation for TCP performance prediction. Once trained, the inference process
is magnitudes faster than simulation (see Sections 6.1.1 and 6.2). The ability to present
an already trained model with arbitrary shapes of topolgies is what really makes GGNNs
attractive for network optimization purposes. However, in order to receive results with
desirable accuracy, the graph representation and training data have to be chosen wisely
in regards to the metric to be predicted.

The GRs presented in this thesis (Chapter 4) produced mixed results for the three metrics
we tried to predict. The RTT prediction was most successful, being able to predict the
mean flow RTT with a mean absolute relative error of around 1–2 % in the best case
scenario. If trained with a more diverse dataset, e.g. a wider range of queue sizes, these
metrics are achieved for the previously worse performing datasets as well (see Section
6.2.3). The flow rate prediction produced overall less acurrate results. Considering
that the approach by Geyer [4] also utlizes GGNNs but achieves better accuracy for
flow rate predictions, there is potential for further improvement, e.g. by modeling the
network graph differently. The third metric, queue utilization at the sending interfaces,
was predicted with relatively high accuracy in terms of absolute errors, and thus could
also be useful in real world applications. We found that the minmax bounds should be

Chapter 7: Conclusion and future work

chosen carefully, especially if the data is passed through a sigmoid function in the end,
as this can limit the model’s ability to generalize.

The model’s ability to generalize to larger networks is somewhat limited by the training
data, as it struggles to predict metrics for flows with path lengths that are significantly
longer than the ones encountered during training. The same goes for the generalization
to different queue sizes, albeit with a less significant impact.

However, as long as the metric to be predicted is not too far off the range of the training
data, atleast for the RTT and flow rate predictions, the error might still be in an
acceptable range, depending on the application purpose.

7.2 Future work

In the future, the framework could be extended to include a model with an LSTM
memory cell as outlined in Section 2.3.2. Geyer has implemented this approach and
found that it can improve the accuracy of GGNN models in some cases, so this is
definetely an option to explore for future improvement [4]. As no implementation for
the PyTorch-Geometric framework exist at the time of writing, we decided to omit the
LSTM cell implementation from this thesis, as the implementation would not have been
a trivial task.

Another thing that was prepared at the beginning but then later ommitted was the
prediction of the flow’s loss metric, and the inclusion of lossy links in the simulation.
As seen in the example topology JSON file in Listing A.1, the format already includes
a loss attribute for each link, but those are consistently set to zero by the generator.
As we were constrained by time, we decided to focus on the prediction of the presented
metrics first before introducing another variable. The implemented simulation program
is however fully capable of simulating those potentially lossy links and recognizes the
loss attribute from the JSON file. The parsers which produce the GRs would have to be
adjusted to include these link loss attributes in order for the network to be able to learn
them.

Another topic which could be explored is the inclusion of arbitrary, non tree-like topologies,
which allow multiple routes to exist between network nodes. That would require the
routing information to be embedded in the topology description and graph representation
in some way. Since ns-3 makes it rather difficult to acces the routing tables when
populated by the automatic static routing helper, a custom implementation would
probably be required.

58

Finally, the reason for the erroneous behavior of TCP Vegas and TCP BBR in the
ns-3 simulation program discussed in Section 5.2 could be investigated. If TCP Vegas
and TCP BBR flows would produce reasonable results in the simulator, their effects on
networks could hopefully be learned by the GGNN as well.

59

Chapter A

Appendix

A.1 Example JSON topology file

Listing A.1: Example Topology File generated by topology generator script
1 {
2 " node_count ": 4,
3 " nodes ": [
4 {
5 "id": 0,
6 " tcp_congestion_algo ": "ns3:: TcpCubic ",
7 " queue_size ": 125
8 },
9 {

10 "id": 1,
11 " tcp_congestion_algo ": "ns3:: TcpCubic ",
12 " queue_size ": 125
13 },
14 {
15 "id": 2,
16 " tcp_congestion_algo ": "ns3:: TcpCubic ",
17 " queue_size ": 125
18 },
19 {
20 "id": 3,
21 " tcp_congestion_algo ": "ns3:: TcpCubic ",
22 " queue_size ": 125
23 }
24],
25 " link_count ": 3,
26 " links ": [
27 {
28 "id": 0,
29 "lhs": 0,
30 "rhs": 1,
31 " bandwidth ": 80,
32 " delay ": 14.407,
33 "loss": 0
34 },
35 {

Chapter A: Appendix

36 "id": 1,
37 "lhs": 1,
38 "rhs": 2,
39 " bandwidth ": 30,
40 " delay ": 35.008,
41 "loss": 0
42 },
43 {
44 "id": 2,
45 "lhs": 0,
46 "rhs": 3,
47 " bandwidth ": 40,
48 " delay ": 47.937,
49 "loss": 0
50 }
51],
52 " flow_count ": 1,
53 " flows ": [
54 {
55 "id": 0,
56 " host_a ": 2,
57 " host_b ": 3,
58 " start ": 0.0,
59 " time_limit ": 60.0,
60 " data_limit ": null,
61 " route ": [
62 2,
63 1,
64 0,
65 3
66]
67 }
68],
69 " sim_duration ": 60.0,
70 " graphviz ": " strict graph links {\ nnode [shape = ellipse]; N0; N1; N2; N3;\ nN0

-- N1 [label =\"14.407ms \"];\ nN1 -- N2 [label =\"35.008ms \"];\ nN0 -- N3 [
label =\"47.937ms \"];\n}"

71 }

62

A.2 List of acronyms

A.2 List of acronyms

IP Internet Protocol
QT Queueing Theory
ML Machine Learning
NN Neural Network
GR Graph Representation
SVR Support Vector Regression
RNN Recurrent Neural Network
GNN Graph Neural Network
GRU Gated Recurrent Unit
GGNN Gated Graph Neural Network
FFNN Feed-Forward Neural Network
LSTM Long Short-Term Memory
TCP Transmission Control Protocol
UDP User Datagram Protocol
JSON JavaScript Object Notation
CSMA Carrier-Sense Multiple Access
PPP Point-to-Point Protocol
RTT Round-Trip Time
CSV Comma-separated values
BBR Bottleneck Bandwidth and Round-trip propagation time, TCP congestion

control algorithm
RNG Random Number Generator
LR Learning Rate
MPE Mean Percentage Error
KPI Key Performance Indicator
SDN Software-defined Networking
CPU Core Processing Unit
GPU Graphics Processing Unit
ReLU Rectified Linear Unit

63

Bibliography

[1] J. Padhye, V. Firoiu, D. F. Towsley, and J. F. Kurose, “Modeling TCP Reno per-
formance: A simple model and its empirical validation”, IEEE/ACM transactions
on Networking, vol. 8, no. 2, pp. 133–145, 2000. doi: https://doi.org/10.1109
/90.842137.

[2] ns-3 Project Website, https://ns-nam.org/, Accessed: 2022-05-15.
[3] OMNet++ Project Website, https://omnetpp.org/, Accessed: 2022-05-15.
[4] F. Geyer, “DeepComNet: Performance evaluation of network topologies using

graph-based deep learning”, Perform. Evaluation, vol. 130, pp. 1–16, 2019. doi:
10.1016/j.peva.2018.12.003. [Online]. Available: https://doi.org/10.1016
/j.peva.2018.12.003.

[5] I. J. Goodfellow, Y. Bengio, and A. C. Courville, Deep Learning (Adaptive compu-
tation and machine learning). 2016, isbn: 978-0-262-03561-3. [Online]. Available:
http://www.deeplearningbook.org/.

[6] R. S. Sutton and A. G. Barto, Reinforcement learning - an introduction (Adap-
tive computation and machine learning). 1998, isbn: 978-0-262-19398-6. [Online].
Available: https://www.worldcat.org/oclc/37293240.

[7] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini, “The
Graph Neural Network Model”, IEEE Trans. Neural Networks, vol. 20, no. 1,
pp. 61–80, 2009. doi: 10.1109/TNN.2008.2005605. [Online]. Available: https
://doi.org/10.1109/TNN.2008.2005605.

[8] K. Rusek, J. Suárez-Varela, P. Almasan, P. Barlet-Ros, and A. Cabellos-Aparicio,
“RouteNet: Leveraging Graph Neural Networks for Network Modeling and Opti-
mization in SDN”, IEEE J. Sel. Areas Commun., vol. 38, no. 10, pp. 2260–2270,
2020. doi: 10.1109/JSAC.2020.3000405. [Online]. Available: https://doi.org
/10.1109/JSAC.2020.3000405.

[9] M. Gori, G. Monfardini, and F. Scarselli, “A new model for learning in graph
domains”, in Proceedings. 2005 IEEE International Joint Conference on Neural
Networks, 2005., vol. 2, 2005, 729–734 vol. 2. doi: 10.1109/IJCNN.2005.1555942.

https://doi.org/https://doi.org/10.1109/90.842137
https://doi.org/https://doi.org/10.1109/90.842137
https://ns-nam.org/
https://omnetpp.org/
https://doi.org/10.1016/j.peva.2018.12.003
https://doi.org/10.1016/j.peva.2018.12.003
https://doi.org/10.1016/j.peva.2018.12.003
http://www.deeplearningbook.org/
https://www.worldcat.org/oclc/37293240
https://doi.org/10.1109/TNN.2008.2005605
https://doi.org/10.1109/TNN.2008.2005605
https://doi.org/10.1109/TNN.2008.2005605
https://doi.org/10.1109/JSAC.2020.3000405
https://doi.org/10.1109/JSAC.2020.3000405
https://doi.org/10.1109/JSAC.2020.3000405
https://doi.org/10.1109/IJCNN.2005.1555942

Bibliography

[10] Y. Li, D. Tarlow, M. Brockschmidt, and R. S. Zemel, “Gated Graph Sequence
Neural Networks”, in 4th International Conference on Learning Representations,
ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings,
Y. Bengio and Y. LeCun, Eds., 2016. [Online]. Available: http://arxiv.org/abs
/1511.05493.

[11] K. Cho, B. van Merrienboer, Ç. Gülçehre, D. Bahdanau, F. Bougares, H. Schwenk,
and Y. Bengio, “Learning Phrase Representations using RNN Encoder-Decoder
for Statistical Machine Translation”, in Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing, EMNLP 2014, October 25-29,
2014, Doha, Qatar, A meeting of SIGDAT, a Special Interest Group of the ACL,
A. Moschitti, B. Pang, and W. Daelemans, Eds., 2014, pp. 1724–1734. doi: 10.31
15/v1/d14-1179. [Online]. Available: https://doi.org/10.3115/v1/d14-1179.

[12] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory”, Neural Comput.,
vol. 9, no. 8, pp. 1735–1780, 1997. doi: 10.1162/neco.1997.9.8.1735. [Online].
Available: https://doi.org/10.1162/neco.1997.9.8.1735.

[13] M. Mirza, J. Sommers, P. Barford, and X. Zhu, “A Machine Learning Approach to
TCP Throughput Prediction”, IEEE/ACM Trans. Netw., vol. 18, no. 4, pp. 1026–
1039, 2010. doi: 10.1109/TNET.2009.2037812. [Online]. Available: https://doi
.org/10.1109/TNET.2009.2037812.

[14] A. Mestres, E. Alarcón, Y. Ji, and A. Cabellos-Aparicio, “Understanding the
Modeling of Computer Network Delays using Neural Networks”, in Proceedings
of the 2018 Workshop on Big Data Analytics and Machine Learning for Data
Communication Networks, Big-DAMA@SIGCOMM 2018, Budapest, Hungary,
August 20, 2018, P. Casas, M. Mellia, A. Dainotti, and T. Zseby, Eds., 2018,
pp. 46–52. doi: 10.1145/3229607.3229613. [Online]. Available: https://doi.or
g/10.1145/3229607.3229613.

[15] K. Rusek, J. Suárez-Varela, A. Mestres, P. Barlet-Ros, and A. Cabellos-Aparicio,
“Unveiling the potential of Graph Neural Networks for network modeling and
optimization in SDN”, in Proceedings of the 2019 ACM Symposium on SDN
Research, SOSR 2019, San Jose, CA, USA, April 3-4, 2019, 2019, pp. 140–151.
doi: 10.1145/3314148.3314357. [Online]. Available: https://doi.org/10.1145
/3314148.3314357.

[16] M. F. Galmés, K. Rusek, J. Suárez-Varela, S. Xiao, X. Cheng, P. Barlet-Ros, and
A. Cabellos-Aparicio, “RouteNet-Erlang: A Graph Neural Network for Network
Performance Evaluation”, CoRR, vol. abs/2202.13956, 2022. arXiv: 2202.13956.
[Online]. Available: https://arxiv.org/abs/2202.13956.

[17] GraphViz Project Website, https://graphviz.org/, Accessed: 2022-05-15.

66

http://arxiv.org/abs/1511.05493
http://arxiv.org/abs/1511.05493
https://doi.org/10.3115/v1/d14-1179
https://doi.org/10.3115/v1/d14-1179
https://doi.org/10.3115/v1/d14-1179
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1109/TNET.2009.2037812
https://doi.org/10.1109/TNET.2009.2037812
https://doi.org/10.1109/TNET.2009.2037812
https://doi.org/10.1145/3229607.3229613
https://doi.org/10.1145/3229607.3229613
https://doi.org/10.1145/3229607.3229613
https://doi.org/10.1145/3314148.3314357
https://doi.org/10.1145/3314148.3314357
https://doi.org/10.1145/3314148.3314357
https://arxiv.org/abs/2202.13956
https://arxiv.org/abs/2202.13956
https://graphviz.org/

[18] GNU Parallel Project Website, https://www.gnu.org/software/parallel/,
Accessed: 2022-05-15.

[19] Neural Network Intelligence Project Website, https://www.microsoft.com/en-u
s/research/project/neural-network-intelligence/, Accessed: 2022-05-15.

[20] X. Bresson and T. Laurent, “Residual Gated Graph ConvNets”, CoRR, vol. abs/1711.07553,
2017. arXiv: 1711.07553. [Online]. Available: http://arxiv.org/abs/1711.075
53.

67

https://www.gnu.org/software/parallel/
https://www.microsoft.com/en-us/research/project/neural-network-intelligence/
https://www.microsoft.com/en-us/research/project/neural-network-intelligence/
https://arxiv.org/abs/1711.07553
http://arxiv.org/abs/1711.07553
http://arxiv.org/abs/1711.07553

	Introduction
	Motivation
	Research questions
	Effects of different graph representations
	Ability to generalize to larger topology sizes
	Effects of feature choice on model performance

	Background
	Machine Learning fundamentals
	Graph Neural Networks
	Gated Graph Neural Networks
	Gated Recurrent Units
	Long Short-Term Memory Cells
	Message passing and learning in GGNNs

	GGNNs for computer networks

	Related work
	SVR approach by Mirza et al.
	Delay modeling by Mestres et al.
	DeepComNet: GGNN approach by Geyer
	RouteNet: GGNN approach by Rusek et al.
	GGNN RouteNet-Erlang by Galmés et al.

	Approach
	Overview of the training pipeline
	Prediction metrics
	Graph representations
	Graph representation 1
	Graph representation 2
	Graph representation 3

	Implementation
	Topology generation
	Topology simulation
	Graph Representation mapping
	Training
	Machine Learning model architecture
	GatedGraphConv
	ResGatedGraphConv

	Validation and evaluation

	Evaluation
	Simulation and training setup
	Generated topologies
	Distribution of simulation results

	Trained models and results
	Comparison of graph representations
	Generalization to larger network sizes
	Generalization to different queue sizes
	Analysis of feature importance

	Summary of evaluation results

	Conclusion and future work
	Conclusion
	Future work

	Appendix
	Example JSON topology file
	List of acronyms

	Bibliography

