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Abstract

QUIC is a secure transport protocol originally developed by Google in 2012 and has been a
draft of the Internet Engineering Task Force (IETF) since 2016. This draft defines QUIC as an
alternative to TCP/TLS and as default for the Hypertext Transfer Protocol Version 3. Multiple
companies such as Akamai, Cloudflare, Facebook and Fastly already adopted the IETF QUIC
protocol and Google uses its derivation Google QUIC (gQUIC) for its services. At the time of
writing, the IETF QUIC protocol is about to become the QUIC standard.

To assess the current state of IETF QUIC in the wild, we need a tool that scans for IETF QUIC.
However, there is currently no tool for scanning IETF QUIC, since these tools either do not
support QUIC at all or only support gQUIC.

In this work, we measure the support of IETF QUIC among IPv4 and IPv6 targets and collect
supported versions, QUIC transport parameters, TLS parameters and TLS certificates of QUIC-
capable servers. For this, we update an existing scanner to support IETF QUIC and implement
a stateful scanner which is able to capture more information about a QUIC-capable target.

Our measurements show that most of the QUIC traffic originates from AS13335 (40.46%, Cloud-
flare), AS15169 (19.96%, Google), AS20940 (12.64%, Akamai) and AS54113 (11.53%, Fastly)
with a strong correlation between Autonomous Systems (ASes) and supported versions. In
addition, IETF QUIC is more widely supported than gQUIC (77.61% - 94.52% IETF QUIC,
36.22% - 51.24% gQUIC) but regardless, the support of both protocols is growing. Further-
more, the results of the stateful scans show a correlation between error messages and ASes. In
general, stateful scans with Server Name Indication (SNI) were less error prone but also less
divers in terms of AS origins because most of the traffic originates from AS13335 (Cloudflare).
Additionally, we find that around 50% of the QUIC configurations (based on QUIC transport
parameters) in combination with ASes have a low entropy and are suitable for fingerprinting.
Furthermore, more than 99% of the scanned targets preferred the TLS cipher suite 0x1301.
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Chapter 1

Introduction

QUIC is the name of a transport protocol originally created by Jim Roskind at Google
in 2012 [30]. At first, QUIC was an acronym for “Quick UDP Internet Connection” [30]
which was later discarded after the Internet Engineering Task Force (IETF) QUIC
working group started to work on QUIC in 2016 [18] and decided to use “QUIC” as
the name for the protocol. Since then, more than 34 drafts have been published by the
IETF group with the latest draft being version 34.

Since Google and the IETF worked simultaneously on QUIC [10], the IETF draft of
QUIC differs from the Google QUIC (gQUIC) implementation. In this thesis, we focus
on the IETF QUIC draft and refer to it as QUIC.

According to the IETF draft of QUIC [19], QUIC is an alternative to Transmission
Control Protocol (TCP)+Transport Layer Security (TLS) and is going to be used as
transport protocol in the Hypertext Transfer Protocol Version 3 (HTTP/3) [6]. At the
time of writing, the QUIC protocol is still a draft of the IETF working group and not
yet a RFC standard. However, this may change in the near future. The latest draft
(version 34) defines the official QUIC version [19] and developer should wait with the
implementation of this draft until it becomes an IETF standard.

Moreover, QUIC and its derivation gQUIC are already widely in use. For example,
gQUIC carries over a third of the traffic of Google [10]. Facebook reports that QUIC
is responsible of over 75% of Facebook’s traffic [20]. Furthermore, Content Delivery
Networks (CDNs) like Cloudflare [26], Akamai [34, 5] and Fastly [17] provide support for
IETF QUIC in their services. In contrast, originally only Akamai and Google supported
QUIC [31].
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On the 16th April 2021, Firefox officially announced QUIC and HTTP/3 support in
Firefox Nightly and Beta [9]. Before that, Chrome already officially announced gQUIC
and IETF QUIC support for their browser [10]. These adoptions of QUIC simplify the
use of QUIC and depending on the configuration, enable QUIC by default if supported
by the server.

With the official standard of QUIC about to be released, we want to assess the state of
QUIC in the wild. However, it is not possible to measure QUIC at the time of writing
since tools either do not support IETF QUIC yet [3] or were only released for gQUIC [31].

Our main goal is to measure the support of QUIC among a selected target group e.g.,
Alexa Top 1M, and collect the supported versions of servers which are QUIC-capable.
In addition, we want to collect information about the configuration of a QUIC server.

This thesis provides the implementation of a stateless scanner and a stateful scanner.
The stateless scanner leverages a version negotiation and collects QUIC-capable targets
and their supported versions. The stateful scanner establishes a connection with the
QUIC-capable targets and collects the QUIC transport parameters, TLS parameters
and TLS certificates.

We scanned targets in IPv4 and IPv6. The scans yielded the following results:

• Most QUIC-capable targets originate from Autonomous Systems (ASes) of Cloud-
flare, Google, Akamai, Fastly and Facebook (largest to smallest share). In addi-
tion, there is a strong correlation between ASes and supported versions.

• IETF QUIC is more widely supported than gQUIC with Akamai changing its
support from only gQUIC to gQUIC and IETF QUIC. In total, the use of both
protocols increases.

• Stateful scans with Server Name Indication (SNI) are less error prone than scans
without SNI. In addition, SNI scans have a more dominant share of Cloudflare
while scans without SNI are more divers.

• Half of the QUIC configurations derived of QUIC transport parameters can be
used to infer the AS of a target.

• The majority of targets only prefer the mandatory cipher suite of TLS 1.3.

In this thesis, we introduce QUIC and provide an overview of its design in Section 2.
Next, we describe our stateless and stateful scanner as well as our measurement setup
in Section 3. Then, we present and evaluate the results of our scans in Section 4. In
Section 5, we put our results in the context of related work. Last, we conclude our work
and describe future work in Section 6.
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Chapter 2

Background

In this chapter, we give an overview of QUIC, its functionality and available parameters
which we use to evaluate the deployment of QUIC in the wild. Since QUIC is an
alternative to TCP and TLS, we start with a comparison between TCP and QUIC.
Then, we describe QUIC in more detail according to its current draft [19]. We cover
the versioning, the structure of packets and frames, the handshake, the encryption and
the header protection.

2.1 QUIC as Alternative to TCP+TLS

Hypertext Transfer Protocol Version 2 (HTTP/2) uses TCP as transport protocol and
TLS as security layer. Instead of re-using the previous standard, HTTP/3 introduces a
new stack and uses User Datagram Protocol (UDP) with QUIC. We compare the Inter-
national Organization for Standardization (ISO)-Open Systems Interconnection (OSI)
layers of a HTTP/3 and HTTP/2 stack to give an overview of the differences of both in
Figure 2.1.

In the HTTP/2 stack on the left, each layer has its own function: TCP handles conges-
tion and ensures a reliable data stream, TLS encrypts and decrypts data, while HTTP/2
enables stream multiplexing. In contrast, the HTTP/3 stack on the right changes the
approach to split functionality into layers. By using UDP, the HTTP/3 stack uses a
smaller UDP datagram instead of a larger TCP segment but loses e.g., the ability to
ensure a reliable data transfer. Therefore, QUIC needs to perform these operations such
as controlling congestion and ensuring reliable data streams. Additionally, QUIC incor-
porates the TLS protocol and can handle multiple data streams over one connection.
Thus, HTTP/3 does not implement stream multiplexing like HTTP/2.
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Network
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Figure 2.1: Simplified Representation of a HTTP/2 and HTTP/3 Stack

In addition, the QUIC implementation resides in user space instead of the kernel space
like TCP and TLS. Therefore, QUIC may lack kernel optimizations in the future but
can be updated frequently and specialized for a use-case [31].

2.2 QUIC Versions

The implementation of QUIC in user space enables frequent updates to be rolled out
without updating the kernel. Therefore, each release of new changes to the QUIC pro-
tocol introduces a new version. These versions may be specific for a capability, the
developing company, the library used or a draft of the protocol. In addition, versions
might not be compatible with each other. For example, Google started with the de-
velopment of QUIC and continued working on their own version of it, even after the
IETF working group began to standardize it [10]. This version named gQUIC is not
compatible with the QUIC protocol developed by the IETF working group.

The distribution of QUIC versions is first-come, first-serve [15] and recorded in the
Github repository of the IETF working group [15]. This list is constantly being ex-
panded. Table 2.1 shows an overview of the registered versions and our acronyms for
each version. We use these acronyms in our results in Chapter 4. According to the
IETF specification [19], the versions from 0x00000001 to 0x0000ffff are reserved for
the IETF QUIC standard and from 0xff000000 to 0xffffffff for the IETF draft.
Most versions reserved by Google are used for different iterations of gQUIC. Other ver-
sions like 0xfaceb000 indicate the company (in this case Facebook) and/or the library
which uses them (in this case mvfst).

Any version that matches the pattern 0x?a?a?a?a with ? representing any single-digit
hexadecimal number from 0 to f is only used for the QUIC version negotiation. A client
may use these versions in an initial request to a server to force a version negotiation,
while servers include these versions in their list of supported versions to ensure a working

4



2.2 QUIC Versions

Version Owner Notes Acronym
0x00000000 n/a Reserved as invalid invalid
0x0000[0001-ffff] IETF Reserved for standard ietf-[01-ff]
0xff[000000-ffffff] IETF Reserved for draft draft-[01-ff]
0x?a?a?a?a IETF Version negotiation
0x51303[0-5]3[1-9] Google gQUIC v1-59 Q0[01-59]
0x51303939 Google gQUIC v99 Q099
0x5430343[8-9] Google gQUIC+TLS v48-49 T0[48-49]
0x5430353[0-9] Google gQUIC+TLS v50-59 T0[50-59]
0x54303939 Google gQUIC+TLS v99 T099
0x50524f58 Google Proxied QUIC prox
0xfaceb00[0-f] Facebook Library mvfst mvfst-[0-f]
0xabcd000[0-f] Microsoft Library MsQuic msq-[0-f]
0xf123f0c[0-f] Mozilla Library MozQuic mozq-[0-f]
0x454747[00-ff] NetApp Library Quant netapp-[00-ff]
0x51474f[00-ff] quic-go Library quic-go quicgo-[00-ff]
0x91c170[00-ff] quicly Library quicly quicly-[00-ff]
0x50435130 Private Octopus Library picoquic picoquic
0xf0f0f1f[0-f] Telecom Italia Measurability experiments tcit-[0-f]
0xf0f0f0f[0-f] ETH Zürich Measurability experiments ethzue-[0-f]

Table 2.1: Overview of QUIC Versions and Chosen Acronyms [15]

5
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version negotiation [19]. We use the forced version negotiation but we do not define an
acronym for these versions because we exclude them from our results.

From 2019 to 2021, the IETF working group released seven to nine drafts/versions per
year. At the time of writing, the IETF QUIC standard is not yet in use and the most
up to date draft is version 34. We always refer to the draft version 34 when explaining
QUIC if not mentioned otherwise.

2.3 QUIC Packets and Frames

UDP DatagramPorts Checksum
QUIC PacketHeader

QUIC Frame QUIC Frame
Type

Payload

Type

Payload

Figure 2.2: Overview of a QUIC Packet with a Header and Multiple Frames

In this section, we describe the QUIC packet structure. According to the IETF QUIC
draft [19], the payload of an UDP datagram is called a (QUIC) packet. A packet consists
of a header and one or more frames. Each frame has a type and contains a payload.
The general structure can be seen in Figure 2.2.

QUIC differentiates between long and short header packets. The long header specifies
whether a packet is of type Initial, 0-RTT, Handshake, Retry or Version Negotiation.
QUIC uses long header packets for key and connection establishment as well as version
negotiation. Only after negotiating the 1-RTT keys, QUIC can use short header packets
which can only be of type 1-RTT. We describe the use of headers and packet types in
Section 2.3.1.

Each header contains at least one connection ID, the destination connection ID, to keep
track of the shared state of a QUIC connection between two endpoints. QUIC uses
these connection IDs to relay the packet to the other endpoint even after an underlying
protocol changes the IP address or UDP port [19].

The type of header and packet limits the selection of frame types. For example, Version
Negotiation packets cannot contain any frames, while 1-RTT packets can contain every

6
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Packet Type Frame Type
Version Negotiation None

Retry None

Initial ACK, CONNECTION_CLOSE,
CRYPTO, PADDING, PING

Handshake ACK, CONNECTION_CLOSE,
CRYPTO, PADDING, PING

0-RTT CONNECTION_CLOSE, CRYPTO,
PADDING, PING, STREAM (..)

1-RTT
ACK, CONNECTION_CLOSE,
CRYPTO, PADDING, PING,
STREAM (..)

Table 2.2: Permitted Combination of Frames and Packets

possible frame type of the specification. Initial and Handshake packets can only contain
ACK, CRYPTO, PADDING, PING and CONNECTION_CLOSE frames which we
explain in detail in Section 2.3.2. Therefore, Initial and Handshake packets can only
acknowledge packets (ACK), negotiate keys (CRYPTO), contain padding (PADDING),
ping an endpoint (PING) and close connections (CONNECTION_CLOSE). Table 2.2
shows an overview of the allowed frame types for each packet type. In our research, we
focus on Version Negotiation, Initial and Handshake packets.

QUIC uses Initial and Handshake packets with CRYPTO frames to negotiate 1-RTT
keys and establish a secure connection. For this, QUIC incorporates TLS to generate
keys and encrypt its payload. In addition to encrypting a packet, QUIC protects the
header and the payload of a packet. We examine the encryption and protection in
Section 2.3.3.

2.3.1 Packet Types
The packet type depends on the type specified in its header. The type of a header is
specified by the Header Form (HF) bit, which is the most significant bit of a QUIC
packet. HF is equal to one for long header packets and zero for short header packets.
Long header packets contain type-specific bits with which the endpoint differentiates
between Initial, 0-RTT, Handshake and Retry packets. Version Negotiation packets also
use a long header but do not specify the type-specific bits.

7
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

H
F Unused Version = 0

Version = 0 Dst Conn ID Len Dst Conn ID (0-160 bits)
...

Src Conn ID Len Src Conn ID (0-160 bits)
...

Supported Version (32)
[Additional Supported Versions ...]

Figure 2.3: Version Negotiation Packet Structure

First, we describe Version Negotiation packets, followed by Initial and 0-RTT packets.
Then, we explain the use and structure of Handshake and Retry packets. Last, we
analyze 1-RTT packets.

Version Negotiation Packets
QUIC implements a version negotiation using Version Negotiation packets [19], because
the supported versions of a client and a server may differ. When a client initiates a new
connection with a version which is not supported by the server, the server responds with
a Version Negotiation packet. The server can limit the number of Version Negotiation
responses and should respond with an unsupported version even if the server is not
able to decrypt the packet and its payload. A server may not respond if a packet
is not sufficiently large (minimum 1200 bytes as explained in Section 2.3.1 - Initial
packets). An endpoint is not allowed to respond to a Version Negotiation packet with
another Version Negotiation packet to avoid infinite loop of Version Negotiation packets.
A version negotiation can be forced by using the QUIC version 0x?a?a?a?a with ?
representing any single-digit hexadecimal number from 0 to f as seen in Section 2.2. In
our research, we use a forced version negotiation to capture all of the supported version
of a server.

Figure 2.3 shows the structure of a Version Negotiation packet. The Version Negotiation
packet does not include a version in the version field which is therefore set to zero.
However, a server responding with a version negotiation includes all its supported version
as additional fields at the end of the packet.

Initial Packets
To initiate a connection, QUIC uses Initial packets with a CRYPTO frame containing
a TLS Client Hello [19]. Since the specification limits the frame types used by an
Initial packet, it can only ping an endpoint, negotiate keys, acknowledge packets and

8
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
H
F

FB PT RB PNL Version
Version(continued) Dst Conn ID Len Dst Conn ID (0..160 bits)

...

Src Conn ID Len Src Conn ID (0..160 bits)
...

Token Length (i) Token (..)
Length (i)

Packet Number (8..32 bits)
Payload (8.. bits)

Figure 2.4: Initial Packet Structure

close connections. Without handshake keys, a client must increase the size of an Initial
packet to at least 1200 bytes with a PADDING frame. This reduces the effectiveness of
amplification attacks and ensures a reasonable Path Maximum Transmission Unit [19].

Figure 2.4 depicts the structure of an Initial packet. Because of its long header the
Header Form (HF) and Fixed Bit (FB) are set to one. To allow QUIC to coexist with
other protocols, the FB is set to one; otherwise, the packet must be discarded. For Initial
packets the Packet Type (PT) is set to zero. The Reversed Bits (RB) must be zero before
header protection. The Packet Number Length (PNL) specifies the length + 1 of the
Packet Number field in bytes. In other words, if the PNL is zero, the Packet Number
field has a length of one byte. Version defines the QUIC version the endpoint wants to
use.

The length of QUIC connection IDs is variable. For that reason, Dst Conn ID Len
(destination connection ID length) and Src Conn ID Len (source connection ID length)
specify the length of Dst Conn ID (destination connection ID) and Src Conn ID (source
connection ID) in bytes. The value of the length field of both connection IDs can be zero
depending on the packet type but must not exceed 20. The last premise may change
in future QUIC versions [19]. If the length of the connection ID is 0, the connection ID
field length is 0 and the field is therefore removed from the header.

On connection establishment, the QUIC server might send a Retry packet with a token
and has to discard all subsequent Initial packets without a token to validate the client’s
address. If a server requests a token, a client needs to set Token Length and Token to
the according values. If the server does not provide a token, Token Length is set to zero
and the Token field can be removed from the header.

9
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Length specifies the length of the payload in bytes including the length of Packet Num-
ber. QUIC uses this number to acknowledge packets with ACK frames.

0-RTT Packets
0-RTT packets are almost interchangeable to Initial packets. A client can initiate a con-
nection by sending an Initial packet or a 0-RTT packet. In contrast to Initial packets,
0-RTT packets use the Packet Type (PT) 0x1 and include early data to the server before
TLS handshake completion. Therefore, 0-RTT can e.g., also contain STREAM frames
in comparison to Initial packets. QUIC uses STREAM frames to transfer data between
endpoints, e.g., the HTTP request and response. To establish a 0-RTT connection, we
need to store previously negotiated keys.

However, we do not have access to these keys on a first request to the server. In addition,
QUIC server may buffer 0-RTT packets even if no connection could be established. For
this reason and because of our focus on connection establishment as opposed to data
transmission, we do not cover 0-RTT packets in detail.

Handshake Packets
Handshake packets are structurally equal to Initial packets but without the Token
Length and Token field. Handshake packets use the Packet Type (PT) 0x2. Af-
ter a client receives its first Handshake packet from a server which usually contains
a CRYPTO frame with encrypted extensions or certificates, it responds with Hand-
shake packets. Handshake packets must adhere to the same limits as Initial packets
when using frame types [19]. Thus, only ACK, CRYPTO, PADDING, PING, and
CONNECTION_CLOSE frame types are allowed. QUIC server use Handshake pack-
ets to transmit CRYPTO frames including encrypted extensions, certificates and/or
handshake finished messages after a Server Hello message.

Retry Packets
Figure 2.5 shows the structure of a Retry packet. It is structurally similar to an Initial
packet and uses the Packet Type (PT) 0x3. In comparison to an Initial packet, the
Retry packet does not use reserved bits and a packet number. Additionally it does not
use header protection and only secures the integrity of the Retry Token by generating
a Retry Integrity Tag. A server may respond to an Initial packet with a Retry packet
to perform address validation. If a client receives a Retry packet, it must use the Token
in all subsequent Initial packets.
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Figure 2.5: Retry Packet Structure
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Figure 2.6: Short Header Structure

1-RTT Packets
1-RTT packets are short header packets which are available after establishing the 1-
RTT keys. To negotiate these keys, at least one round-trip between two endpoints is
necessary: the current connection establishment for Initial packets or the last connection
for 0-RTT packets. Therefore, QUIC defines these packets as 1-RTT packets.

The structure can be seen in Figure 2.6. In contrast to the long header, the short header
starts with the Header Format (HF) set to zero. Next, the Fixed Bit (FB) is set to one
and the Reserved Bits (RB) are set to zero. The short header introduces the latency
Spin Bit (SB), which usage is optional but allows latency monitoring by observation
endpoints [11]. Additionally, short headers identify changed packet protection keys
with the Key Phase (KP). KP is initially set to zero and then toggled to indicate a
key update. When using 1-RTT packets, endpoints used and specified their destination
connection ID and its length in previous 0-RTT, Initial and Handshake packets. For
this reason, short headers only have the destination connection ID field and are missing
the length of the destination connection ID.

2.3.2 Frame Types
The frame depends on and is limited by the type of packet. Since we focus on the
connection establishment and not on data transfer, we only shortly describe the function
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of ACK, CRYPTO, PADDING, PING and CONNECTION_CLOSE frames. A frame
in general contains a type and a payload depending on the type.

The receiver of a packet uses ACK frames to signal the sender which packets were
received. ACK frames use the value of the packet number to identify packets. Thus,
Version Negotiation and Retry packets cannot be directly acknowledged (but implicitly
via the next Initial packet sent).

QUIC endpoints use CRYPTO frames to transmit cryptographic handshake messages.
In other words, CRYPTO frames contain TLS messages like Client or Server Hello,
Encrypted Extensions and Certificates.

PADDING frames have no content (filled with zeros) and only serve the purpose to
increase the packet size to at least 1200 bytes.

To ensure that the peer is still alive, an endpoint can send PING frames. As response,
the other endpoint should acknowledge the previously sent PING packet.

By sending CONNECTION_CLOSE frames, an endpoint signals a peer that the con-
nection is being closed. Then, the sender enters a closing state and the receiver enters
a draining state. These states should last at least three times the probe timeout and
allow connections to discard any delayed or reordered packets. After the closing or the
draining state ends, an endpoint should discard all state related to the connection.

2.3.3 Encryption and Protection
As mentioned in Section 2.1, the TCP+TLS stack separates the functionality into layers.
This way, TCP provides a reliable connection between endpoints and TLS provides a
secure channel over an untrusted medium. In contrast to TCP+TLS, the QUIC stack
incorporates TLS handshake and alert messages directly and bears the responsibility of
the TLS record layer [19]. In other words, QUIC uses parts of the TLS interface version
1.3 or higher, while TLS uses the reliable data connection and the record layer of QUIC.

As explained in Section 2.3.1, QUIC can use previously gathered information about a
connection to send a 0-RTT packet. This packet includes encrypted application data
protected by Early Data (0-RTT ) keys. Therefore, 0-RTT bare the risk of a replay
attack. Since we do not focus on 0-RTT packets, we do not describe this process in
detail. However, the QUIC protocol defines this process in its specifications [19, 33].

Our focus is on Initial, Handshake, Retry and Version Negotiation packets and their
payload and header protection. Each packet type has its specific encryption key. Version
Negotiation packets do not use any cryptographic protection. Retry packets use e.g.,
the AEAD_AES_128_GCM algorithm [33] to generate a 128 bit long Retry Integrity
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Figure 2.7: Overview of the Header and Payload Protection in QUIC

Tag and to protect the integrity of the Retry Token. QUIC protects Initial packets
with initial secrets and encrypts Handshake packets with the negotiated TLS handshake
keys. QUIC uses the resulting 1-RTT keys to encrypt application data in short header
packets.

QUIC encrypts the payload/frames of a QUIC packet with the 1-RTT keys if available.
Additionally to payload encryption, QUIC protects part of the header. The fields are
specific for the type of header. If defined in the header, QUIC protects the Reserved
Bits (RB), the Key Phase (KP), the Packet Number and the Packet Number Length
(PNL). The header protection should prevent the correlation of a packet number with
an activity [19]. In addition, it should prevent the injection of packets with valid packet
numbers by attackers which cannot observe the network [19].

The encryption and protection is displayed in Figure 2.7. First, the nonce is calculated
by XOR’ing the Packet Number and the initialization vector (iv). Then, QUIC uses
the Authenticated Encryption with Associated Data (AEAD) algorithm described in
RFC5116 [24] with the payload as plaintext, the header as associated data, the nonce
and the encryption key to calculate the cipher text. This cipher text is the resulting
protected payload. Next, the first 128 bits of the ciphertext are encrypted with the
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header protection key (hp) using the Advanced Encryption Standard (AES) cipher in
Electronic Code Book (ECB) mode resulting in a mask. This mask is then used to
receive the protected header by XOR’ing the mask with the unprotected header fields
(RB, [KP], PNL, Packet Number).

We show the calculation of the variables iv, key and hp in Algorithm 1. The QUIC
specification defines the different labels and the salt. While the values of the labels
currently stay constant throughout the QUIC versions, the salt should change in between
the version. In this case, the salt 0xafbfec289993d24c9e9786f19c6111e04390a899
is valid for QUIC from draft-1d to draft-20. draft-21 and draft-22 use the salt
0x38762cf7f55934b34d179ae6a4c80cadccbb7f0a. QUIC uses the version-specific salt,
the connection ID and the HMAC-based Extract-and-Expand Key Derivation Function
(HKDF) [22] to generate secrets with hkdf_extract and hkdf_expand.

Algorithm 1 Calculating iv, key and hp for Initial packet
Require: Connection ID connection_id
1: salt = 0xafbfec289993d24c9e9786f19c6111e04390a899
2: label_client_in = 0x00200f746c73313320636c69656e7420696e00
3: label_quic_key = 0x00100e746c7331332071756963206b657900
4: label_quic_iv = 0x000c0d746c733133207175696320697600
5: label_quic_hp = 0x00100d746c733133207175696320687000
6: initial_secret = hkdf_extract(salt, connection_id)
7: client_initial_secret = hkdf_expand(initial_secret,

info=label_client_in, length=32)
8: key = hkdf_expand(client_initial_secret, info=label_quic_key,

length=16)
9: iv = hkdf_expand(client_initial_secret, info=label_quic_iv,

length=12)
10: hp = hkdf_expand(client_initial_secret, info=label_quic_hp,

length=16)
Ensure: iv, key, hp

2.4 QUIC Connection

To put the previous sections into context, we give an overview of the QUIC connection
establishment and teardown by showing an example of a QUIC connection in Figure
2.8. Since we focus on connection establishment and not data transfer, the example
starts with and uses Initial packets instead of 0-RTT packets.

The first two packet transmissions are not mandatory but occur if a client tries to
use a version in an Initial packet which is unsupported by a server. The client then
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Client Server

Initial: CRYPTO (Client Hello), PADDING

Version Negotiation

Initial: CRYPTO (Client Hello), PADDING

Retry

Initial: CRYPTO (Client Hello), PADDING

Initial: ACK, CRYPTO (Server Hello), PADDING

Handshake: CRYPTO (Encrypted Extensions, Certificate, Certificate Verify, Finished)

1-RTT: STREAM (...)

Initial: ACK, PADDING

Handshake: CRYPTO (Finished), ACK

1-RTT: STREAM (...), ACK, CONNECTION_CLOSE

Handshake: ACK

1-RTT: HANDSHAKE_DONE, STREAM (...), ACK

opt [if version invalid]

opt [if server requests retry]

Figure 2.8: QUIC Handshake in Detail
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receives a Version Negotiation packet including supported versions to choose from. If
the client does not support any version included in the Version Negotiation packet,
the connection establishment fails. This should be stateless but it also depends on the
implementation of QUIC used by server. If the client supports a version of the Version
Negotiation packet, it can use this version in an Initial packet to retry the connection
establishment.

After sending an Initial packet with a valid and supported version, the server may
respond with a Retry packet to perform address validation. A client that receives a
Retry packet, must include the received Token in subsequent Initial packets.

Then, the client sends a valid Initial packet with a CRYPTO frame including a TLS
Client Hello and PADDING frame. The PADDING frame ensures that the Initial packet
is at least 1200 bytes long. If the Initial packet is shorter, an endpoint should not reply
according to the specification [33].

Next, the server responds with an Initial packet. This packet contains an ACK frame
to acknowledge the client Initial packet, a CRYPTO frame including a Server Hello
and a PADDING frame. In addition, the server sends one or more Handshake packets
with CRYPTO frames containing the following TLS messages: Encrypted Extensions,
Certificate, Certificate Verify and Finished. Furthermore, the server may start to send
an 1-RTT packet including data (STREAM frame).

As a response, the client sends an Initial packet which acknowledges the Initial packet of
the server. Additionally, the client sends a Handshake packet with an acknowledgement
of the previous Handshake packet and a CRYPTO frame including a TLS Finished
message. Further, it may sent an 1-RTT packet with an acknowledgement (ACK frame)
and data (STREAM frame). In our case, we want to close the connection without
sending more data. This is done by including a CONNECTION_CLOSE frame inside
the 1-RTT packet.

Last of all, the server responds with an acknowledgement of the previous Handshake
packet and the previous CONNECTION_CLOSE.

Since we control the messages of the client and want to decrease the load on the server
as much as possible, we try to terminate the initiated session as soon as possible. The
current draft of QUIC [19] describes three ways to terminate a connection: idle timeout,
immediate close and stateless reset.

An idle timeout occurs if one peer stays idle for longer than the established maximum
idle timeout. This maximum idle timeout is advertised by either the server or the client
as the transport parameter max_idle_timeout in the TLS extensions, if the parameter
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is neither omitted or zero. If activated by at least one endpoint, both select the minimum
valid (non-zero) value of the max_idle_timeout as their maximum idle timeout. Upon
receiving and processing a packet successfully or sending an ack-eliciting packet, the
endpoint resets its timeout timer. If an endpoint advertises a maximum idle timeout,
it commits to terminating the connection with an immediate close prior to the idle
timeout.

To clear the state of an endpoint and to trigger an immediate close of a connection, an
endpoint can send the CONNECTION_CLOSE frame which closes all streams. The sending
endpoint enters the closing state, which means that it stores enough information to
respond with a CONNECTION_CLOSE frame to incoming packets of the same, already
closed connection. The receiving endpoint enters the draining state, which is identical
to the closing state but the endpoint can only send at maximum one packet containing
a CONNECTION_CLOSE frame before entering the state and must not send any further
packets after entering the state. The CONNECTION_CLOSE frame should use the highest
level of packet protection available to ensure that the endpoint receives and processes
the packet correctly.

The third possibility to close a connection is the stateless reset. The stateless reset
should only be used if an endpoint is not able to process packets of a connection due
to an outage or crash and is not able to send a CONNECTION_CLOSE frame to clear the
state of its peer. Otherwise, the endpoint must use a CONNECTION_CLOSE frame.

In our case, we decide against only using an idle timeout since this would leave the
server waiting for the timeout of our connection. Since we want to solely terminate the
connection for which we have the connection information, we must not use a stateless
reset. Otherwise, we would break the requirements of the QUIC specification. This
leaves us with the only choice of an intermediate close.
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Methodology

In this thesis, we aim to identify QUIC-capable servers on the Internet and collect
information about them. First, we describe which details we collect about a scanned
server and how these details can be retrieved. Then, we introduce the stateless and the
stateful scanner, their functionality, and their underlying implementation. After that,
we explain the challenges of both scanners. Last but not least, we describe the ethical
guidelines for our scans.

3.1 Collected Information

We capture the following information about a server:

1. QUIC capability

2. Supported versions of QUIC

3. Transport parameters of QUIC

4. Configuration of TLS

5. TLS Certificates

First, we identify QUIC-capable server. In Section 2.2 and 2.3.1, we describe the use
of an invalid version (0x?a?a?a?a) with an Initial packet to trigger the QUIC version
negotiation. After studying the specification [19], we identified that this approach uses
the fewest number of requests and has the smallest request size necessary to receive an
answer from a QUIC-capable server.
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If the server receives an Initial packet, the server must process the version first, before
verifying the packet protection and the payload of the packet [19]. As a result, we do
not have to protect the header and payload of the Initial packet and the server does
not have to decrypt the packet to read the version negotiation version. This reduces
the load on the server and should be stateless since the server does not need to store
information about the connection for later requests. However, a server could potentially
store additional information to limit the number of responses to the same client. This
depends on the implementation and we describe this behavior in Section 3.4.

We send one Initial packet with a version negotiation version (0x?a?a?a?a) per target
in a subnet for each scan. If a server responds to this request, it might not necessarily
be QUIC-capable. It can also be an echo server, which mirrors our request. Since these
servers could lead to false positives, we drop each response with a size of less than size
of the Version Negotiation header and each packet that does not use our destination
connection ID. Additionally, we check if the version of the Version Negotiation packet
is 0x00000000 which is necessary according the QUIC specification [19].

Next, we collect the supported versions of a server. Since we receive a Version Negotia-
tion packet from a server to verify if it supports QUIC, we already receive the supported
versions as payload of the packet as explained in Section 2.3.1. Therefore, we do not
need to make additional requests to collect this data.

We can only collect the transport parameters of QUIC, the TLS configuration and TLS
certificates if we establish a QUIC connection. On successful establishment, we receive
an Initial packet with a TLS Server Hello message and one or multiple Handshake
packets with encrypted extensions and certificates. From the Server Hello message, we
extract the QUIC transport parameters of a server and the TLS configuration. The
TLS configuration includes e.g., the available cipher suites and the signing algorithms.
From the Handshake packet, we store the certificates as is. To reduces the load on
the server, we avoid additional HTTP/3 GET requests and close the connection with a
CONNECTION_CLOSE frame.

This approach is stateful since the server has to store the information about the con-
nection, e.g., the length of the connection ID for 1-RTT packets, the encryption and
decryption keys. In contrast to the stateless approach, the server uses encryption and
header protection as explained in Section 2.3.3 and thus, needs more resources to com-
municate with its peer. Overall, the traffic volume of the stateful approach is larger for
each target.

To avoid any unnecessary load on the server and to be as resource-saving as possible,
we split the stateless and stateful approach into a stateless and a stateful scanner. The

20



3.2 Stateless Scanner

stateless scanner uses the forced version negotiation and the stateful scanner establishes
and terminates a connection to known targets.

3.2 Stateless Scanner

The stateless scanner is built on ZMap. ZMap is a fast single packet network scanner
that is capable of scanning the entire IPv4 address space in under five minutes given a
10 Gigabit Ethernet Internet connection [1]. ZMap uses probe modules to scan a specific
protocol and offers e.g., stateless TCP and UDP scans. We extend its functionality by
adding a probe module which is capable of forcing a version negotiation.

3.2.1 Implementation
Originally, Rüth et al. [31] created a probe module for ZMap that detects QUIC-capable
server. This module sends packets with the first version of gQUIC (acronym Q001), a
Client Hello message and padding. Rüth et al. wrote this probe module for a version of
QUIC which was then still developed by Google and is now known as gQUIC. Therefore,
the packets resemble 1-RTT packets which cannot be used to initiate a connection to
a server. As a result, the module fails to detect IETF QUIC-capable servers. We use
the structure of this module and update it in accordance to the IETF QUIC specifica-
tion [19].

Specifically, our scanner forces a version negotiation to obtain a Version Negotiation
packet as response. The forced version negotiation uses an Initial packet with version
0x1a1a1a1a, padding to increase the size of the packet to 1200 bytes, no encryption and
no Client Hello message. The encryption and Client Hello message are not necessary
according to the QUIC specification [19]. We created an additional probe module with
the encryption and a TLS Client Hello message. We tested both scanners with test
servers and verified that the responses were the same. As explained in Section 3.1, we
filter incoming responses based on their length, their structure, their version and their
destination connection ID and drop all invalid responses.

As input, the ZMap QUIC probe module needs a port, an address and a netmask.
Additionally, the module includes an option to deactivate the padding of the Initial
packet to scan for servers that do not adhere to the specification [19] and respond to
Initial packets with a size of less than 1200 bytes. Furthermore, we can choose the rate
of transmitted packets per second. As a result, we receive the IP addresses of QUIC-
capable servers and their supported versions. In this thesis, we also refer to the set of
supported versions as version group.
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Date IP Version Port Padding Total Targets Packet Rate
2021-01-21 IPv4 443 yes 2.88B 5000
2021-02-03 IPv4 443 yes 2.90B 8000
2021-02-17 IPv4 443 yes 2.91B 10 000
2021-03-03 IPv4 443 yes 2.91B 10 000
2021-03-09 IPv4 443 no 2.15M 10 000
2021-03-17 IPv4 443 yes 2.91B 10 000
2021-04-06 IPv4 443 yes 2.90B 15 000
2021-04-14 IPv4 443 yes 2.94B 15 000
2021-04-20 IPv4 443 yes 2.97B 15 000
2021-04-24 IPv4 8443 yes 3.02B 15 000
2021-03-12 IPv6 443 yes 12.04M 8000
2021-04-16 IPv6 443 yes 4.09M 2000
2021-04-24 IPv6 443 yes 21.47M 2000

Table 3.1: Configuration of Stateless Scans

3.2.2 Test Setup
Before using the stateless scanner for measurements in the wild, we tested the stateless
scanner with a local server and the test servers listed on the repository of the IETF
working group [14]. Some of the public test servers were missing domain name entries
and were not available, but we successfully received the Version Negotiation packets
from the available servers.

3.2.3 Configurations of Stateless Scans
Table 3.1 shows the configurations of our measurements in the wild. Most of the times,
we scan on port 443 with padding. In this context, padding and no padding describes
whether the Initial packet includes enough padding to have a size of at least 1200 bytes.
To check if servers comply with the QUIC specification, we scan without padding on
2021-03-09.

We expect the highest response rate of QUIC servers on port 443, since HTTP/3 uses
QUIC as underlying protocol [6] and there is a strong convention to transfer encrypted
Hypertext Transfer Protocol (HTTP) over port 433. However, we found that some QUIC
services use port 8443, if not configured otherwise [32]. Therefore, we also scanned port
8443 on 2021-04-24.

We refer to port 443 with padding as the default configuration, to port 8443 with
padding as “alternative port scan” and to port 443 without padding as “no padding
scan”. Our results contain eleven scans with the default configuration, one no padding
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scan on 2021-03-09 and one alternative port scan on 2021-04-24. In total, we analyze
ten scans of IPv4 and three scans of IPv6.

In addition, Table 3.1 depicts the packet rate for each scan. We used a packet rate of
5000 to 15 000 packets per second in IPv4 scans and a rate of 2000 to 8000 packets per
second in IPv6 scans.

As input for the IPv4 stateless scans with the default and alternative port configuration,
we use targets generated locally from the Border Gateway Protocol (BGP). Therefore,
the total number of targets varies between 2.88B and 3.02B for IPv4. As input for the
no padding scan, we use the targets with successful responses of the scan on 2021-03-03.
The reason is that we only want to test how many QUIC-capable targets respond to an
invalid Initial packet with a version negotiation.

The total number of targets for IPv6 varies between 4.09M and 21.47M. As input for
the first IPv6 scan on 2021-03-12, we used the targets of the IPv6 hitlist [13]. The
IPv6 hitlist excludes targets e.g., originating from Cloudflare from its result to remove
bias [13]. On 2021-04-16, we used the IPv6 addresses of the DNS scans of our Chair.
These DNS scans mostly contain targets originating from Cloudflare as visualized in
Section 4.1.4. For the last scan on 2021-04-24, we combined the IPv6 hitlist and the
DNS scans to flatten the difference in bias of each scan.

3.3 Stateful Scanner

To collect more details than the supported versions, we implement a stateful scanner
from scratch.

3.3.1 Implementation
The stateful scanner is written in Golang and uses forks of the libraries quic-go1 and
qtls2. quic-go implements the versions 29, 32 and 34 of the IETF QUIC draft in
Go [8]. qtls itself is a fork of the official Go TLS library. We alter both libraries to
expose more details of the TLS messages and the QUIC session.

The stateful scanner establishes a connection with a target as described in Section 2.4
and stores the QUIC transport parameter, TLS parameter and certificates. In compar-
ison to the stateless scanner, a target of the stateful scanner consists of an IP address

1 https://github.com/lucas-clemente/quic-go (last visited: 02.05.2021)
2 https://github.com/marten-seemann/qtls-go1-16/ (last visited: 02.05.2021)
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and a port. Additionally, a target may have a hostname. We differentiate two types
of stateful scans: SNI and no SNI scans. SNI scans use targets with hostnames while
no SNI scans only use targets with an IP address and port. The scanner uses SNI to
differentiate between multiple virtual servers on one IP address [7].

Additionally, the stateful scanner terminates the connection to its peer by sending a
CONNECTION_CLOSE frame. In comparison to the idle timeout, this termination
stops the server from idling and frees its resources and resets its state.

Furthermore, the scanner includes an option to log the encryption and protection keys.
When scanning, we can store the QUIC traffic in Packet Capture (PCAP) files. With
these keys, tools like Wireshark can decrypt these files which allows us to inpect the
individual packets.

As input for stateful scans, we use the latest result of the stateless scanner filtered
by the supported versions of quic-go. For SNI scans, we extended the IP addresses
with their corresponding hostnames from the Domain Name System (DNS) scans of the
Chair of Network Architectures and Services. The hostnames result from scans of top
level domains (TLDs) like com, net, org, of lists like Alexa top 1 million [16] and the
Centralized Zone Data Service (CZDS) [2]. In addition, we added an option to limit
the rate of connections establishments by using a token bucket.

The stateful scanner establishes a connection to the targets and stores start and finish
time of the connection establishment and TLS handshake, the QUIC transport para-
meters, TLS parameters and extensions, TLS certificates and possible error messages of
TLS or QUIC.

3.3.2 Test Setup
Similar to the stateless scan, we used a local server and the available test servers of the
IETF working group [14] to test the stateful scanner. Since some test server are not up
to date, we only received 20 successful responses of 23 servers. We failed to connect to
two servers due the choice of the Application-Layer Protocol Negotiation (ALPN) in our
TLS Client Hello. We analyze this error in Section 4.2.1. The third server responded
with error of an incompatible QUIC version. In other words, the server was not capable
of using a QUIC version supported by quic-go. We describe this challenge in Section 3.4.

3.3.3 Configurations of Stateful Scans
Table 3.2 shows the configuration of the stateful scan in the wild. In total, half of the
scans use SNI and the other half do not use SNI. Of the four scans, two scans use IPv4
targets and the other two scans use IPv6 targets. Each scan uses a token bucket with
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Bucket
Date IP Version SNI Size Refill Dur.

2021-04-18 IPv4 no 500 2 ms
2021-04-22 IPv4 no 500 2 ms
2021-04-18 IPv4 yes 500 2 ms
2021-04-23 IPv4 yes 500 2 ms
2021-04-16 IPv6 no 500 2 ms
2021-04-24 IPv6 no 500 2 ms
2021-04-16 IPv6 yes 500 2 ms
2021-04-24 IPv6 yes 500 2 ms

Table 3.2: Configuration of Stateful Scans

a size of 500 and a refill duration of 2ms. This corresponds to a rate of 500 targets per
second.

3.4 Challenges

Since QUIC requires a minimum Initial packet size of 1200 bytes [19], the probe module
of the stateless scanner generates a higher traffic volume than e.g., the ZMap TCP
probe module. To avoid overloading the scanned network or parts of it, we limit the
packet rate to a maximum of 15 000 packets per second. With an shared bandwidth of
1 Gbit/s, we are capable of scanning 3 million targets in under 56 hours. As a result,
the scanning speed of the QUIC probe module is slower than the maximum possible
speed of ZMap but adheres to ethical guidelines (see Section 3.6).

Additionally, we discovered in a local test that a server might not respond to the second
of two consecutive request sent in a time frame of around 10 seconds. This is probably
due to the client still trying to use the same invalid version after receiving a Version
Negotiation packet. In comparison, a real client would either try to change its version
or avoid sending further packets. The specification defines that a server should respond
with a version negotiation even if it is not able to decrypt the payload but is allowed
to limit these responses [19]. Therefore, we cannot determine the exact amount of time
and requests necessary because it depends on the implementation used by the server.
However, we do not expect to encounter this issue since we scan a larger amount of
addresses (e.g., the IPv4 address space) without scanning the same IP address twice.

On the other hand, the challenge of the stateful scanner is its support of versions. The
stateful scanner has only access to the versions supported by its underlying library quic-
go. Therefore, we cannot scan older drafts than draft-29 as well as might not be able
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to scan newly released drafts immediately. In addition, the scanner is not compatible
with gQUIC. Nevertheless, we identified the most supported version with the collected
data from the stateless scans in Section 4.1.5 which is at the time of writing the 29th
version of the IETF quic draft.

3.5 Measurement Setup

For all stateless and stateful scans, we use Debian Buster on a system with 40GiB of
Random Access Memory (RAM) and an Intel(R) Core(TM) i7 CPU 965 with a clock
speed of 3.20GHz. All scans use a 1Gbit/s uplink which is shared with other scans of the
Chair of Network Architectures and Services. To map an IP address to its AS, we use
the University of Oregon Route Views Archive Project [25] to download the latest AS
prefixes announced by the BGP. Then, we use the CIDR Report [4] to map AS numbers
to AS names. Additionally, we removed all version negotiation versions 0x?a?a?a?a
from the supported versions in all responses in order to eliminate the uniqueness of
version groups.

3.6 Ethical Considerations

Network measurements like active scans on the Internet can be intrusive and interpreted
as attack. To avoid complications, we follow this process: First, we test the stateless
and stateful scanners locally and with test servers provided by the IETF on Github [14]
before using it on other targets on the Internet. We verify, that both scanners act
according to the specification [19] and use as few resources of the server as possible
e.g., terminating the connection, to release the server-side state and resources. Second,
we go through an internal approval process of the Chair of Network Architectures and
Services before scanning. Third, we provide a website on the scanning addresses. This
website contains information about the measurements of the chair and a way to contact
us for questions or to exclude targets or subnets from future scans. Fourth, we use a
blocklist to exclude targets from our scans. In addition, we limit the packet rate to
avoid overloading parts of a network e.g., routers on the path to endpoints or endpoints
themselves.
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Results and Evaluation

We split our results and their evaluation into stateless and stateful scans. We start with
the examination and evaluation of the stateless scans. Then, we analyze the results of
the stateful scans.

4.1 Stateless Scans

First, we analyze the version groups and ASes for each configuration and IP version. We
start with the default configuration scans of IPv4. Next, we describe and evaluate the
results of the no padding and the alternative port scans. Then, we examine the default
configuration scan of IPv6. After that, we describe the overall version distribution and
explicitly the share of IETF QUIC and gQUIC. Last, we summarize our findings.

4.1.1 IPv4 Default Configuration
Firstly, we examine the results of the IPv4 scan with the default configuration. The
amount of successful responses of each scan in Table 4.1 increases from 2021-01-21 to
2021-04-06 and decreases afterwards. Overall, the number of successful responses is
around 2.1M with an exception in January (2021-01-21) where the number is approx-
imately 1.76M. In total, only 0.06% to 0.08% of the scanned IPv4 targets supported
QUIC. In comparison, scans of the Chair of Network Architectures and Services indicate
a higher usage of TCP+TLS; the TCP+TLS support is around 1.78% across the same
amount of IPv4 targets. This is around 20 to 30 times more than QUIC.

Figure 4.1 depicts the distribution of version groups and the distribution of ASes for
each scan. The charts at the bottom of Figure 4.1a and 4.1b show the distribution in
total numbers, while the charts at the top show the distribution in percent.
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Figure 4.1: Distribution of Version Groups and Autonomous Systems of IPv4 Stateless Scans with
Default Configuration
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Successful
Date Total Targets Responses Share

2021-01-21 2.88B 1.76M 0.06%
2021-02-03 2.90B 2.13M 0.07%
2021-02-17 2.91B 2.14M 0.07%
2021-03-03 2.91B 2.15M 0.07%
2021-03-17 2.91B 2.16M 0.07%
2021-04-06 2.90B 2.18M 0.08%
2021-04-14 2.94B 2.17M 0.07%
2021-04-20 2.97B 2.06M 0.07%

Table 4.1: Total Targets and Successful Responses of the IPv4 Stateless Scans with the Default
Configuration

We group version groups with a share smaller than 1.0% into “Other”. “Other” contains
47 different version groups such as picoquic draft-1d, draft-1d draft-1e draft-1f
draft-20 and quicgo-ff. Some version groups indicate the used library e.g., pico-
quic, quicgo-ff, msq-0, netapp-22. Additionally, the “Other” group contains version
groups that are unique combinations of multiple IETF draft versions and gQUIC versions
regardless of their order.

Based on Figure 4.1a, the increase in total successful responses between 2021-01-21
(1.76M) and 2021-02-03 (2.13M) is caused by the increased usage of the version group
Q050 Q046 Q043 (increase from 54.2k to 306.0k). In combination with Figure 4.1b,
we identify that this increase originates from AS20940 (Akamai). As a result, this
indicates that either Akamai enabled the QUIC protocol in more of its services or that
we could not reach parts of AS20940 on the 2021-01-21. Since we do not have complete
scans before 2021-01-21, we cannot determine the cause.

Furthermore, we notice a decrease in successful responses on the 2021-04-20 which
is caused by less support for the version group draft-1d draft-1c draft-1b (682.6k
instead of 813.5k). We identify that this version group originates from and is mostly
used by AS13335 (Cloudflare). This decrease only occurs in the last scan (2021-04-20)
and should be analyzed in subsequent scans as future work.

In addition to the total increase and decrease in successful responses, Figure 4.1a visual-
izes a change and adoption in version groups. While the total number of version groups
Q050 Q046 Q043 and draft-1d Q050 Q046 Q043 combined stays roughly the same
over the last three scans (about 314.3k), we notice an increase of version group draft-
1d Q050 Q046 Q043 (to 262.8k) and a decrease of version group Q050 Q046 Q043
(to 57.8k). We discovered that both version groups originate from AS20940 (Akamai).
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Chapter 4: Results and Evaluation

This indicates that Akamai is slowly adopting draft-1d of the IETF QUIC protocol
and that this trend likely continues in future scans.

Besides of these three major changes, the overall distribution remains unchanged. The
top ASes are AS13335 (38.3%, Cloudflare), AS15169 (21.2%, Google), AS20940 (13.4%,
Akamai) and AS54113 (11.0%, Fastly). This distribution influences the distribution of
version groups. The largest version groups are draft-1d draft-1c draft-1b (39.8%,
mostly AS13335, Cloudflare), draft-1d T051 Q050 Q046 Q043 (23.6%, mostly
AS15169, Google), Q050 Q046 Q043 (16.3%, mostly AS20940, Akamai), draft-1d
Q050 Q046 Q043 (4.3%, mostly AS20940, Akamai), and mvfst-2 mvfst-1 mvfst-e
draft-1d draft-1b (1.9%, half from AS32934, Facebook).

In “Other”, we discovered version groups that contain nothing but multiple version
negotiation versions (0x?a?a?a?a) (0.3%). According to the specification, these ver-
sions force a version negotiation and cannot be used for a valid connection establish-
ment [19]. The targets with only version negotiation versions mostly originate from
AS15169 (93.8%), AS24424 (5.1%) and AS396982 (0.6%) which are all owned by Google.

Additionally, we found the version group Q050 Q049 Q048 Q046 Q043 draft-1b
draft-19 T050 4e303433 (88.9k). This version group contains the version 0x4e303433
which is not listed and reserved on the GitHub page of IETF working group [15].
This version group originates from AS4837 (21.8%), AS9808 (19.2%), AS4134 (10.6%),
AS56046 (2.5%) and more whose companies are mainly located in Asia with the majority
of them located in China.

Furthermore, “Other” contains seven version groups (1.9k targets) with the first official
version of the IETF standard (0x00000001 or ietf-01) as it is documented in the draft
version 34 [19]. However, this version is not yet officially released. Over half of theses
version groups originate from AS47541 (24.7%), AS47542 (19.5%) and AS28709 (10.5%)
which belong to a Russian social media platform called vk.com.

Across all responses, the oldest gQUIC versions are Q039 and T048 and the newest
are Q099 and T051. The oldest IETF QUIC version is draft-16 and the newest is
draft-22 or respectively the unreleased version ietf-01.

In general, the top ten ASes are responsible for around 90% of QUIC support as il-
lustrated in Figure 4.2. AS13335 (Cloudflare) is responsible for 33.13% to 46.48% of
successful responses. The top three ASes are responsible for 70.28% to 84.48% of the
results. In total, the results contain 4.30k to 4.69k ASes.
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Figure 4.2: Cumulative Percentage of ASes Ranked by Most Frequently Used ASes

4.1.2 IPv4 No Padding
Next, we analyze the results of the no padding scan. The no padding scan on 2021-03-09
has a smaller amount of targets (2.15M) because it uses the successful responses of the
previous IPv4 default configuration scan as input. 11.3% or 242.8k targets responded to
an Initial packet without padding. The QUIC specification defines that Initial packets
with a size of less than 1200 bytes should be dropped [19]. The specification also specifies
that a server should process the version of an Initial packet first [19]. Although not
intended, libraries could possibly check the version of an Initial packet before its length
and may respond to invalid Initial packet.

231.6k targets use the version group draft-1d draft-1b. This is a share of over 95.4%
of the total number of responses and originates from AS54113 which is owned by Fastly.

Similar to the default configuration scan results, the results contain version groups with
only version negotiation versions. Around 9.1k targets responded with this type of
version group; all of which originate from AS15169 (Google).

Other version groups include e.g., the versions of the IETF draft, mvfst-1, picoquic
and netapp-22 which combined leads to a total share of 0.59% of successful responses.
In total, the majority of responses originate of AS54113 (95.4%, Fastly), AS15169 (3.8%,
Google) and AS16509 (0.3%, Amazon).

Furthermore, we tested if it is possible to establish a connection with these servers using
an Initial packet without padding. We chose 9 targets at random from the top three
ASes (3 from Fastly, 3 from Google, 3 from Amazon). We checked their availability by
sending an Initial packet with a version negotiation version and no padding. After we
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verified that these servers were reachable and still responded to the no padding scan, we
created an Initial packet with valid content (version draft-1d and TLS Client Hello) but
without padding and tried to establish a connection. However, we received no response
to these packets from all servers. Then, we tried to establish a connection with valid
packets including padding, but we only got responses from Fastly.

To summarize, no server establishes a connection with Initial packets without padding,
some servers (Google, Amazon) only responded to forced version negotiations and Fastly
server responded to forced version negotiations and valid Initial packets. This indicates
a faulty configuration of the tested servers of Google and Amazon and a invalid imple-
mentation or configuration of QUIC used by the servers of Fastly.

We tried to reproduce this behavior of Fastly and used their open source library quicly
[28] to created a server. We tested the server by sending the same packets. However, we
could not even reproduce the response to a forced version negotiation with no padding.

4.1.3 IPv4 Alternative Port
Additionally to the scans on port 443, we scanned targets with the alternative port 8443
on 2021-04-24. Although the number of total targets is similar to the scans with the
default configurations (3.02B), this scan has fewer successful responses with a number
of only 703.3k. As a result, only 0.02% of the scanned IPv4 targets instead of 0.06% to
0.08% (default configuration) support QUIC on port 8443 .

99.98% (703.1k) of the scanned targets used the version group draft-1d draft-1c draft-
1b. Other version groups are mostly permutations of the gQUIC and IETF versions and
have a share of combined 0.02%. The majority of the responding targets originates from
AS13335 (96.0%) and AS209242(3.3%) which are both owned by Cloudflare.

Although we drop invalid incoming responses as explained in Section 3.2.1, one target
responded with a valid Version Negotiation header and the invalid version group “2021-
04-26T20:17:08.223+0200”. This target seems to mimic the QUIC version negotiation
but responds with a timestamp. It originates from AS20473 which is owned by the data
center company Constant.

4.1.4 IPv6 Default Configuration
Next, we analyze IPv6 scans with the default configuration. Table 4.2 shows that the
successful responses increase from 76.7k to 210.0k. However in combination with the
varying amount of scanned targets, we can neither deduce a trend nor a correlation.
However, the results on 2021-04-24 indicate that the QUIC-capable targets of the DNS
scan (2021-04-16) and the IPv6 hitlist (2021-03-12) are mutually exclusive.
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Successful
Date Total Targets Responses Share

2021-03-12 12.04M 76.7k 0.64%
2021-04-16 4.09M 133.5k 3.26%
2021-04-24 21.47M 210.0k 0.98%

Table 4.2: Total Targets and Successful Responses of the IPv6 Stateless Scans with the Default
Configuration

To compare QUIC with TCP+TLS, we use the scans of the Chair of Network Architec-
tures and Services. These scans use the same target group as our IPv6 stateless scan
on 2021-04-16. Across these targets, TCP+TLS has a coverage of around 73.3% which
is around 22 times higher than the QUIC coverage of 3.26%.

Figure 4.3 shows the distribution of version groups and ASes of the default configuration
scan of IPv6. As in Table 4.2, we notice an increase in successful responses in Figure 4.3
over time but cannot conclude a trend due to the varying targets used for the scans.

In comparison to IPv4, we identify a similar distribution of ASes and version groups for
the last two scans in Figure 4.3b. The largest AS is AS13335 (Cloudflare), followed by
AS15169 (Google) and AS20940 (Akamai) which is exactly the same order as in IPv4
scans. As a result, the version group distribution of the last two scans in Figure 4.3a is
also similar to IPv4 with the most widely used version group being draft-1d draft-1c
draft-1b.

On the other hand, the first scan of Figure 4.3a on 2021-03-12 mostly consists of the ver-
sion groups draft-1d T051 Q050 Q046 Q043 (57.9%), Q050 Q046 Q043 (30.1%),
mvfst-2 mvfst-1 mvfst-e draft-1d draft-1b (9.9%) and draft-1d draft-1c draft-
1b (1.5%). Although these version groups are similar to IPv4, we notice the smaller
share of version group draft-1d draft-1c draft-1b (39.8% for IPv4) caused by the lack
of targets originating from Cloudflare. In terms of ASes, we notice the same tendency
as in IPv4 but without the dominant share of Cloudflare. The majority of responses
of the scan on 2021-03-12 originate from AS15169 (31.7%, Google), AS20940 (28.0%,
Akamai), AS55836 (1.8%, Reliance Jio Infocomm), AS7552 (1.3%, Viettel Group) and
AS13335 (1.2%, Cloudflare).

4.1.5 Overall Version Distribution
To analyze the adoption of the IETF QUIC draft, we divided the version groups into
IETF QUIC and gQUIC versions. For example, if one target supports multiple versions
of IETF QUIC, we only count this target once. Since targets may support both versions
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Figure 4.3: Distribution of Version Groups and Autonomous Systems of IPv6 Stateless Scans with
Default Configuration
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Date Scan Type IP Version IETF Support gQUIC Support
2021-01-21 default IPv4 93.72% 36.22%
2021-02-03 default IPv4 77.89% 47.04%
2021-02-17 default IPv4 77.80% 47.09%
2021-03-03 default IPv4 77.76% 47.23%
2021-03-17 default IPv4 77.61% 47.39%
2021-04-06 default IPv4 82.40% 47.66%
2021-04-14 default IPv4 88.06% 47.54%
2021-04-20 default IPv4 94.52% 51.24%
2021-03-12 default IPv6 69.83% 88.32%
2021-04-16 default IPv6 99.42% 2.89%
2021-04-24 default IPv6 99.93% 35.31%
2021-03-09 no padding IPv4 96.01% 0.00%
2021-04-24 alternative port IPv4 99.99% 0.00%

Table 4.3: IETF QUIC and gQUIC Support in Stateless Scans

at the same time, the percentages are not mutually exclusive and can add up to more
than 100% in Table 4.3.

Table 4.3 shows the shares of the IETF QUIC and gQUIC versions. We notice a disparity
between the IPv4 default configuration scans and other scans. For example, both the
no padding and alternative port scan only support a negligible share of gQUIC while the
shares of gQUIC in IPv6 scans vary from 2.89% to 88.32% (mainly due to the Cloudflare
share). For this reason, we focus on the IPv4 default configuration scan.

In each scan, between 77.61% and 94.52% of targets support the IETF QUIC protocol.
In comparison, the support of gQUIC is lower with a share of 36.22% to 51.24% per
scan.

Over the time of the analysis, we notice a decrease in the support of IETF QUIC
from 2021-01-21 (93.72%) to 2021-03-17 (77.61%) which is due the introduction of the
version group Q050 Q046 Q043 in AS20940 (Akamai). This decrease is followed by
an increase from 2021-03-17 (77.61%) to 2021-04-20 (94.52%). This major change is
due to the adoption of version draft-1d in version group draft-1d Q050 Q046 Q043
also originating from AS20940 (Akamai). This indicates an increased adoption of IETF
QUIC. Nevertheless, this increased adoption does not influence the share of gQUIC. The
results show an overall increase in gQUIC support with a minor deviation of −0.12% on
2021-04-14.
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Figure 4.4: Supported Versions of IPv4 Stateless Scan with Default Configuration

Figure 4.4 depicts the individual versions in percent for the IPv4 scan with default
configuration. The most supported version is draft-1d, followed by draft-1b, Q043,
Q046, Q050. Next is the version draft-1c, followed by T051. We notice a trend
towards fewer support for versions of draft-1c and draft-1b and an increased support
for draft-1d. The increase of gQUIC support is visible across the versionsQ039, Q043,
Q046, Q048, Q050 and Q099 as well as for version T048. Apart from the spike on
2021-04-20, we identify an overall decrease of support for version T051.

4.1.6 Summary
The stateless scans show that AS13335 (40.46%, Cloudflare), AS15169 (19.96%, Google),
AS20940 (12.64%, Akamai) and AS54113 (11.53%, Fastly) prevail among the all suc-
cessfully scanned targets. The most supported version groups are draft-1d draft-1c
draft-1b (42.07%, mostly Cloudflare), draft-1d T051 Q050 Q046 Q043 (22.37%,
mostly Google and Akamai), Q050 Q046 Q043 (15.18%, mostly Akamai) and draft-
1d draft-1b (11.54%, mostly Fastly). Therefore, the scan results of the stateless scan-
ner show a strong correlation between version groups and ASes.

Our results indicate that the IETF QUIC is more widely supported than gQUIC; es-
pecially, in IPv6, no padding or alternative port scans. Nevertheless, the support of
both protocols mostly increases over the time of our measurements. In addition, we
also notice an adoption of IETF QUIC (draft-1d) by AS20940 (Akamai). The version
draft-1d is the most supported version of QUIC-capable targets.

Our scans contain responses which only include version negotiation versions and re-
sponses with versions that are either not reserved (0x4e303433) or not officially released
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4.2 Stateful Scans

Successful
Date IP Version SNI Total Targets Responses Share

2021-04-18 IPv4 no 1.85M 146.2k 7.88%
2021-04-22 IPv4 no 1.89M 147.0k 7.79%
2021-04-16 IPv6 no 132.6k 7.5k 5.73%
2021-04-24 IPv6 no 208.5k 57.9k 27.76%
2021-04-18 IPv4 yes 41.32M 37.81M 91.51%
2021-04-23 IPv4 yes 41.55M 38.01M 91.49%
2021-04-16 IPv6 yes 5.94M 5.26M 88.55%
2021-04-24 IPv6 yes 5.96M 5.26M 88.31%

Table 4.4: Total Number of Targets and Number of Successful Responses of the Stateful Scans

yet (0x00000001). Furthermore, we discover that 11.3% of QUIC-capable servers in
IPv4 respond to forced version negotiations without padding. However, we cannot es-
tablish a connection to these servers with Initial packets without padding. In addition,
our results show that the majority of IPv4 traffic on port 8443 originates from AS13335
(Cloudflare).

In general, we determine that the QUIC support is growing but that the coverage of
TCP+TLS is 20 to 30 times higher in IPv4 and IPv6.

4.2 Stateful Scans

Table 4.4 depicts the total number of targets and successful responses of each stateful
scan. Due to multiple hostnames per IP address, we scanned a higher number of targets
with SNI than without SNI. In both SNI and no SNI scans, we scanned more targets in
IPv4 than IPv6. Nevertheless, we notice a significant difference in successful responses
for SNI with 88.31% to 91.51% in comparison to no SNI with 5.72% to 27.76%.

We exclude the results from the no SNI scan on 2021-04-08, because we encountered
a limit of file descriptors that we were allowed to open on our operation system. This
lead to fewer responses than we would have actually captured.

We use the QUIC-capable servers of the stateless scanner which supported the versions
of our library as input for our stateful scanner, which tries to establish connections
with each of them. Since there are many points of failure in a complete connection
establishment, we capture the error messages if a connection establishment was not
successful. We refer to responses without error message as successful responses and to
responses with error messages to unsuccessful responses.
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For the no SNI scan, we examined each target which consists of an IP address and a
port. However, we cannot use the same approach for SNI scans since we scanned targets
with the same IP address multiple times with different hostnames. This would lead to
a bias towards IP addresses with a larger amount of hostnames. Therefore, we only
used IP addresses once if at least one hostname resulted in a successful or unsuccessful
response. In other words, the following results use a set of unique IP addresses for SNI
and no SNI if not stated otherwise. We refer to this dataset as filtered targets and to
all targets with bias towards the hostnames as unfiltered targets.

First, we analyze the type of responses and their corresponding ASes. Then, we focus
on the QUIC transport parameters of the successful responses. After that, we evaluate
the results of the QUIC transport parameters, TLS versions and TLS cipher suites.

4.2.1 Responses
First, we start with the analysis of our responses. Before analyzing the AS distribution
of successful responses, we examine responses which include an error message. We group
ASes with a share of less than 1.5% into “Other”.

Unsuccessful Responses and Error Messages
The most common errors of unfiltered targets are:

• CRYPTO_ERROR (0x128): TLS handshake failure 40 (72.99%)

• timeouts (15.41%)

• no compatible QUIC versions found (we support [draft-29], server offered

[0x51303530 gQUIC 46 gQUIC 43]) (10.95%)

The QUIC specification defines CRYPTO_ERROR with the code 0x128 as a generic
CRYPTO_ERROR for handshake failures. Additionally, TLS handshake failure 40 “in-
dicates that the sender was unable to negotiate an acceptable set of security parameters
given the options available” [29]. This error message is generic and does not specify
which security parameters are the issue. Therefore, we picked two servers with this
error message at random and tried customizing all available TLS parameters, changing
the order of the ALPN and using SNI. We did not receive any successful response from
the servers. However, we cannot make any general conclusions since our sample group
only consisted of two targets.

The same CRYPTO_ERROR occured twice in our test setup as explained in Sec-
tion 3.3.2. There, we were able to resolve the error by reordering the values of our
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Date IP Version SNI Total Errors
2021-04-18 IPv4 no 1.70M
2021-04-22 IPv4 no 1.74M
2021-04-16 IPv6 no 125.1k
2021-04-24 IPv6 no 150.7k
2021-04-18 IPv4 yes 229.3k
2021-04-23 IPv4 yes 227.3k
2021-04-16 IPv6 yes 106.6k
2021-04-24 IPv6 yes 107.4k

Table 4.5: Total Number of Unsuccessful Responses of the Stateful Scans with Filtered Targets

ALPN. We discovered that these test servers only checked the first value of the ALPN
which indicates a faulty configuration or incorrect implementation of QUIC.

Among the unfiltered targets, CRYPTO_ERRORs mainly originate from AS13335
(90.77%, Cloudflare), AS15169 (7.16%, Google), AS209242 (0.81%, Cloudflare) and
AS20940 (0.60%, Akamai).

The error messages containing timeouts indicate either an unreachable target (No recent
network activity) or a reachable target which does not respond to QUIC in a timely
manner (Handshake did not complete in time). The latter only occured five times in
total. All other timeouts are caused by an unreachable target. Most unreachable targets
of the unfiltered targets originate from AS54113 (63.22%, Fastly), AS20940 (23.84%,
Akamai) and AS13335 (2.50%, Cloudflare).

Although we filter the input file according to the supported versions of QUIC, we receive
the incompatible QUIC versions error. We tested five servers with this error messages
with our stateless scan and discovered that all servers responded with the version group
draft-1d Q043 Q046 Q050 T051. However, when we tried to establish a connection,
all servers responded with a Version Negotiation packet including the version group
Q043 Q046 Q050. These results were reproducible for results of the SNI and no SNI
scan. Most servers of the unfiltered targets that responded with this error message
originated from AS15169 (96.94%) and AS396982 (3.03%) both owned by Google. In
our stateless scan, 563.0k IP addresses support version group draft-1d Q043 Q046
Q050 T051. Out of these addresses, 182.4k addresses (32.40%) incorrectly claim to
support this version.

Next, we explain the shares of unsuccessful responses and their AS origins of the filtered
targets. We differentiate between IPv4 and IPv6 scans (no SNI and SNI combined), and
between SNI and no SNI scans (IPv4 and IPv6 combined).
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Table 4.5 shows the total amount of unsuccessful responses of the filtered targets. As
in Table 4.4, we notice a significant difference in the amount of unsuccessful targets for
IPv4 without SNI (1.70M - 1.74M) in comparison to IPv4 with SNI (227.3k - 229.3k).
However, we notice a smaller difference (18.5k - 43.3k) with SNI in regards to IPv6.

Figure 4.5a shows the distribution (accumulated over dates) of unsuccessful responses
without the use of SNI in IPv4 (3.45M targets) and IPv6 (275.8k targets). The majority
of unsuccessful targets originate from AS13335 (Cloudflare) for both IPv4 (43.03%) and
IPv6 (86.10%) with a more dominant share in IPv6. Additionally, we receive more
error messages from AS15169 (Google) and AS54113 (Fastly) in IPv4 (22.80%, 13.54%)
than in IPv6 (1.28%, 0.26%). The share of error messages originating from AS20940
(Akamai) is similar for both IP protocols (12.22% of IPv4, 9.00% of IPv6).

Figure 4.5b depicts the distribution (accumulated over dates) of unsuccessful responses
with the use of SNI in IPv4 (456.6k targets) and IPv6 (214.0k targets). As in the no
SNI results, the majority of unsuccessful targets originate from AS13335 (Cloudflare)
for both IPv4 (56.87%) and IPv6 (96.96%) also with a more dominant share in IPv6.
However, both shares are larger than in no SNI scans. In contrast to IPv6, 40.65% of
unsuccessful targets originate from AS15169 (Google) in IPv4.

Successful Responses
Next, we analyze the successful responses of SNI and no SNI scans and their AS distri-
bution for filtered targets.

Figure 4.6a shows the distribution of ASes of SNI and no SNI scans in IPv4. The re-
sponses of the no SNI scans mainly originate from AS15169 (31.17%, Google), AS13335
(4.40%, Cloudflare) and AS12824 (3.45%, home.pl). The remaining share of the SNI
scan consists of ASes in “Other” (60.99%). “Other” contains for example targets orig-
inating from AS55836 (3.36k, Reliance Jio Infocomm Limited) or AS32934 (3.19k,
Facebook). In total, “Other” contains around 4.3k distinct ASes. In IPv4 scans with
SNI, the successful responses mostly originate from Cloudflare with AS13335 (84.50%)
and AS209242 (4.54%), followed by AS12824 (3.79%, home.pl) and AS15169 (1.70%,
Google).

Figure 4.6b depicts a similar distribution of no SNI and SNI scans in IPv6 as in IPv4.
However, fewer targets without SNI originate from “Other” (45.03% instead of 60.99%)
and more targets originate from AS13335 (11.43% instead of 4.40%, Cloudflare). The
share of AS15169 (Google) in IPv6 scans without SNI is larger with 39.37% instead of
31.17%. SNI scans of IPv6 have a larger share of AS13335 (91.94%, Cloudflare) than in
IPv4 (84.50%).
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4.2.2 QUIC Transport Parameters
In addition to the successful and unsuccessful responses, we captured QUIC transport
parameters from successful responses of our filtered targets. All parameters are set
by the server and extracted from the TLS Server Hello message. Some of the QUIC
transport parameters are chosen at random for every new connection establishment
like the destination connection ID. For this reason, we filter for session specific QUIC
transport parameters and only used the following parameters for fingerprinting:

• max_udp_payload_size

• initial_max_data

• initial_max_stream_data_bidi_local

• initial_max_stream_data_bidi_remote

• initial_max_stream_data_uni

• initial_max_streams_bidi

• initial_max_streams_uni

• ack_delay_exponent

• max_ack_delay

• disable_active_migration

• active_conn_id_limit

The purpose of these parameters is explained in the IETF QUIC specification [19]. For
each target, we concatenated the parameters in the order of the list above and hashed
them to use the hash as identifier for the configurations. Table A.1 depicts the hashes
and the parameters in order of the preceding list. In total, we found 38 unique hashes
over IPv4, IPv6, no SNI and SNI combined.

Table 4.6 shows the number of distinct configurations available for each stateful scan.
We notice a weak correlation between the amount of targets scanned and the amount
of unique configuration. In general, IPv4 scans resulted in more unique configurations
than IPv6 scans. 22 configurations are used in both SNI and no SNI scans. Only a few
are specific to SNI such as:

• ca0608af548c52ce538ebcfe7a8291ed3c2ef3200a382cb065234a316f78803d

The top configurations are used by 389.0k (51.26%), 121.8k (16.06%), 105.8k (13.95%)
and 65.8k (8.67%) of filtered targets. Most of these targets originate from AS13335
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Low Entropy
Date IP Version SNI Configurations Entropy Configurations

2021-04-18 IPv4 no 32 1.20 18
2021-04-22 IPv4 no 32 1.20 18
2021-04-16 IPv6 no 15 0.41 8
2021-04-24 IPv6 no 16 1.27 7
2021-04-18 IPv4 yes 29 0.61 16
2021-04-23 IPv4 yes 28 0.61 15
2021-04-16 IPv6 yes 20 0.46 13
2021-04-24 IPv6 yes 21 0.47 13

Table 4.6: Total Number of Unique Configurations and Entropy of the Stateful Scans

(371.8k, 49.00%, Cloudflare), AS15169 (121.8k, 16.06%, Google), AS12824 (18.5k, 2.44%,
home.pl), and AS209242 (17.0k, 2.24%, Cloudflare).

To get the informativeness of the results on each date, we calculated the Shannon
Entropy [23] over the probability of the configurations. Table 4.6 shows that the entropy
is higher for IPv4 no SNI scans (1.20) than for IPv4 SNI scans (0.61). This means that
the configurations of no SNI are less predictable than the configurations of SNI scans.
In addition, we notice a drop in entropy on the first no SNI scan of IPv6 on 2021-04-16.

For IPv4 SNI scans, the top three configurations are:

1. f8190cf2df70d8456154e7685ea4b00ec279f695558b8b43a10d43bd1a2d9f02

2. 3db4ec1a7142968f7d8a6982ef10e63bf6eadb01b89167b28702c0711b53daaf

3. e1419b37eba377c0614e576146acaac0e6d42a1e1091d5fde707cb7854ebda56

To improve readability, we now refer to the top three configurations as alpha, beta and
gamma. Most targets that use alpha originate from AS13335 (94.88%, Cloudflare) and
AS209242 (5.10%, Cloudflare). beta targets originate from AS12824 (88.89%, home.pl)
and AS29222 (1.54%, Infomaniak Network). Targets which use gamma are distrib-
uted more evenly and the largest percentage of targets originate from AS32934 (6.87%,
Facebook).

The results from the top three configurations show that each has a different expressive-
ness and information content. Therefore, we grouped the configurations and ASes and
calculated the Shannon Entropy [23] for each group.

Figure 4.7 shows number of ASes and the entropy of each distinct configuration for IPv4
SNI scans. The entropy of each AS distribution shows what we have shown so far: The
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Figure 4.7: Entropy and Number of ASes per Configuration of IPv4 SNI Scans

first two out of the top three configurations (alpha and beta) have both a relatively low
entropy (0.20 and 0.77) compared to gamma (5.09) which is mostly due to the diversity
of ASes.

Compared with IPv4 SNI scans, Figure 4.8 visualizes a similar pattern of high and low
entropy for some configurations of the IPv4 no SNI scans.

We notice similarities in entropy distribution (high and low entropy configurations)
when comparing Figures 4.7 and 4.8 (IPv4) and Figures 4.9 and 4.10 (IPv6).

Table 4.6 lists the number of configurations with low entropy (less than 0.5) for each
scan. Low entropy means that we have a higher chance to find the AS number of a
target with only the configuration given. Therefore, we know that over half of the
configurations could be used in theory to fingerprint the origins.

In our case, this use is more of a proof of concept since we can identify the target’s AS
number by using the target’s IP address. However, we could calculate the entropy of the
configurations combined with their implementations/libraries identified by other data
(e.g., HTTP headers) in the future. This could be used to identify the implementation
of targets which do not disclose it if the entropy of the combination (configuration and
implementation) is low.

4.2.3 TLS Version and Cipher Suites
We analyzed the TLS versions and cipher suites used in each stateful scan. Our results of
the unfiltered targets show that all successful responses used TLS version 1.3. According
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Cipher Suite
Date IP Version SNI 0x1301 0x1302 0x1303

2021-04-18 IPv4 no 99.85% 0.00% 0.15%
2021-04-22 IPv4 no 99.85% 0.00% 0.15%
2021-04-16 IPv6 no 99.99% 0.00% 0.01%
2021-04-24 IPv6 no 99.93% 0.00% 0.07%
2021-04-18 IPv4 yes 100.0% 0.00% 0.00%
2021-04-23 IPv4 yes 100.0% 0.00% 0.00%
2021-04-16 IPv6 yes 100.0% 0.00% 0.00%
2021-04-24 IPv6 yes 100.0% 0.00% 0.00%

Table 4.7: Distribution of Supported Cipher Suites in Stateful Scans

to the QUIC specification, all endpoints should terminate the connection if a version
lower than TLS 1.3 is used [33].

TLS 1.3 only supports the use of five cipher suites [29]:

• TLS_AES_128_GCM_SHA256 (0x1301)

• TLS_AES_256_GCM_SHA384 (0x1302)

• TLS_CHACHA20_POLY1305_SHA256 (0x1303)

• TLS_AES_128_CCM_SHA256 (0x1304)

• TLS_AES_128_CCM_8_SHA256 (0x1305)
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According to the specification of TLS 1.3 [29], an endpoint must support cipher suite
0x1301 and should support cipher suites 0x1302 and 0x1302. According to the specifi-
cation of QUIC, cipher suite 0x1305 must not be used. The stateful scanner supports
cipher suites 0x1301, 0x1302 and 0x1303 and includes them in the TLS Client Hello
message of the Initial packet. Then, the server select its preferred cipher suite and
responds with a TLS Server Hello message.

Table 4.7 depicts the distribution of preferred cipher suites. The scans show that targets
mostly select cipher suite 0x1301 (99.85% - 100.0%) and 0x1303 (0.00% - 0.15%). The
share of cipher suite 0x1302 is negligibly low (5-143 targets).

4.2.4 Summary
We analyzed successful and unsuccessful connection establishments and found three
types of error messages that prevail: TLS handshake failures (mostly AS13335, Cloud-
flare), timeouts (mostly AS54113, Fastly) and incompatible versions (mostly AS15169,
Google).

The last error invalidates parts of the results of the stateless scan. 32.40% of addresses
that support version group draft-1d Q043 Q046 Q050 T051 incorrectly claim to
support draft-1d and T051.

In total, we notice that with filtered targets stateful scans with SNI are less error prone
and less divers than without SNI. In terms of unsuccessful responses, SNI leads to a
shift towards a higher share of AS13335 (Cloudflare) and AS15169 (Google) in IPv4
and to a more prominent share of only AS13335 (Cloudflare) in IPv6. The use of SNI
leads to a higher amount of successful responses from AS13335 (Cloudflare) while scans
without SNI are generally more divers in terms of AS origins.

Furthermore, we identified QUIC configurations based on the QUIC transport para-
meters. Some configurations in combination with the AS had a lower entropy because
mostly only one AS used this configuration. These low entropy configurations can be
used to predict the AS if only given the configuration or respectively the QUIC para-
meters. In future work, this could be used in combination with e.g., HTTP headers to
fingerprint the implementation of QUIC.

Last but not least, we determined that most targets preferred TLS cipher suite 0x1301.
The share of other cipher suites is negligible.
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Related Work

Next, we put this thesis into the context of similar research of the QUIC transport
protocol.

First of all, we need to mention the main influence on this thesis namely the work of
Rüth et al. [31]. Rüth et al. use a probe module in ZMap to scan QUIC-capable server
and supported version. In addition, they use a stateful scanner to capture and analyze
TLS certificates. They focus on gQUIC (since QUIC was still developed by Google at
that time) and identify that mainly Google and Akamai support QUIC. We use the same
but updated (IETF QUIC compatibility, no padding option) ZMap probe module. We
find that the origins of QUIC traffic shifted to mostly Cloudflare followed by Google and
Akamai. In addition, we focus on the QUIC transport parameter and their potential
use as fingerprint.

In contrast to measurements on the Internet, Gagliardi et al. [12] test implementations
of IETF QUIC. They focus on version 23 of the draft (which was at that time the latest
version). Gagliardi et al. send modified Initial packets to 10 of the public test servers of
QUIC [14] and analyze their responses. These modifications consist of increasing and
decreasing the size of a packet, removing QUIC transport parameters or ALPN, and
setting the version to a future version. Gagliardi et al. determine that two server respond
to the smaller (invalid) Initial packet and some server only respond to the request with
missing QUIC parameters (especially ALPN). In our thesis, we also discover that ALPN
can lead to an unsuccessful connection establishment. Additionally, we use a similar
approach to generate no padding packets but we extend the measurements to reachable
IPv4 and IPv6 targets and test it on all known QUIC-capable servers on the Internet.
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In contrast to Gagliardi et al. , we discover that we can force a version negotiation at
some servers but no connection establishment.

Similar to Gagliardi et al. , Piraux et al. [27] focus on testing and provide a test suite
to check for invalid behavior in implementations. To verify the functionality of their
test suite, Piraux et al. use a similar approach as Rüth et al. to identify QUIC-capable
server. Then, they try to connect to these servers with their test suite. The result
is either success, failure or error. Failure is when a server is not QUIC conform and
error is return in case of a server error. They visualize an error rate around 10% to
20%, a failure rate of around 20% to 30% and a success rate of around 50% to 70%.
Compared to our results, we determine a similar share of error messages for SNI scans
(8.49% - 11.69%) but a significantly higher share for no SNI scans (72.24% - 94.27%).
Like Piraux et al. , we notice that some server do not adhere to the QUIC specification
(ALPN).

Other work related to QUIC is in areas of performance. While performance is not the
main focus of our work, we shortly describe the related topic.

Kakhki et al. [21] compare the performance of QUIC and TCP. For this, they test
the fairness between the cubic congestion control protocols of both transport protocols.
They discover that QUIC shares the bottleneck bandwidth fairly with other QUIC
connections but uses a much higher share when used simultaneously with TCP and is
therefore unfair to TCP. In addition, they show that QUIC outperforms TCP in page
load times for all scenarios but loading a large number of small files. However, Kakhki
et al. use gQUIC versions 25 to 34 which are not supported anymore according to our
results. Therefore, this behavior may have changed.
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Conclusion and Future Work

Although Google and Akamai were among the first companies to support QUIC, our
results show that companies like Fastly have caught up to them and that Cloudflare
even surpassed them in the total number of QUIC-capable targets. In addition, we
discovered that targets originating from Google sometimes respond with faulty QUIC
versions or claim to support more version than they are capable of using.

The share of IETF QUIC is significantly larger than the share of gQUIC with most
targets supporting the IETF QUIC version draft-1d. In regards to the upcoming
official release of the IETF QUIC, we found that version 0x00000001 is already in use,
even though it should not be the case yet.

Furthermore, we suggest using SNI for future stateful scans to reduce the amount of
error messages. However, this leads to successful responses that are biased towards
Cloudflare.

In general, QUIC as alternative to TCP+TLS is widely supported across CDNs like
Cloudflare, Akamai and Fastly but in comparison the support of TCP+TLS is 20 times
larger in both IPv4 and IPv6.

The results show a trend towards an increasing adoption of the draft-1d in ASes from
Akamai. This trend should be studied in future work. Moreover, future work may be
able to clarify which reason is behind the decrease of targets from Cloudflare in the last
scan; for example, if it is or is not a fluctuation in reachability from our side.

We already implemented a basic HTTP HEAD request and capture the response, specif-
ically the HTTP headers with our stateful scanner. In our scans, we did not include the



scanning of these headers, but the analysis of them is a desirable future work and might
reveal the underlying implementation of a QUIC-capable target.

The implementation of HTTP headers may also be used in combination with the QUIC
configurations to calculate the entropy of this combination. With low entropy combi-
nations, future analysis can predict or fingerprint the implementation even if it is not
exposed in the HTTP headers.
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Chapter B

List of Acronyms

AEAD Authenticated Encryption with Associated Data.

AES Advanced Encryption Standard.

ALPN Application-Layer Protocol Negotiation.

AS Autonomous System.

BGP Border Gateway Protocol.

CDN Content Delivery Network.

CSV Comma-Separated Values.

DNS Domain Name System.

ECB Electronic Code Book.

gQUIC Google QUIC.

HKDF HMAC-based Extract-and-Expand Key Derivation Function.

HTTP/2 Hypertext Transfer Protocol Version 2.

HTTP/3 Hypertext Transfer Protocol Version 3.

HTTP Hypertext Transfer Protocol.

IETF Internet Engineering Task Force.



Chapter B: List of Acronyms

ISO International Organization for Standardization.

OSI Open Systems Interconnection. (Reference model for layered network
architectures by the OSI. )

SNI Server Name Indication.

TCP Transmission Control Protocol. (Stream-oriented, reliable, transport
layer protocol. )

TLS Transport Layer Security. (Transport Layer Security )

UDP User Datagram Protocol. (Datagram-oriented, unreliable transport
layer protocol. )
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