
Department of Informatics
Technical University of Munich

TECHNICAL UNIVERSITY OF MUNICH

DEPARTMENT OF INFORMATICS

BACHELOR’S THESIS IN INFORMATICS

Analysis of the Pacing Mechanism in Current QUIC Protocol
Stacks

Lennart Keller

Technical University of Munich
Department of Informatics

Bachelor’s Thesis in Informatics

Analysis of the Pacing Mechanism in Current
QUIC Protocol Stacks

Analyse des Pacing Mechanismus in aktuellen
QUIC Protocol Stacks

Author: Lennart Keller
Supervisor: Prof. Dr.-Ing. Georg Carle
Advisor: Benedikt Jaeger

Johannes Zirngibl

Date: February 15, 2021

I confirm that this Bachelor’s Thesis is my own work and I have documented all sources
and material used.

Garching, February 15, 2021
Location, Date Signature

Abstract

QUIC is a new transport protocol combining features of the Transmission Control Protocol
(TCP), Transport Layer Security (TLS) and Hypertext Transfer Protocol version 2 (HTTP/2).
Consequently, QUIC provides reliable and secure transport of data. Two main goals of QUIC
are the elimination head-of-line blocking and reduction of initial latency by combining the hand-
shakes of the TCP+TLS stack. QUIC uses the User Datagram Protocol (UDP) as a foundation
to allow for fast update cycles. In contrast to TCP, QUIC implements all of its features in user
space, including congestion and flow control.

Packet pacing reduces traffic burstiness, which results in less packet loss. Since Linux kernel
version 4.13, packet pacing is implemented within the TCP stack. QUIC cannot use the kernel
implementation of TCP pacing, as it uses UDP, but has to implement its own pacing mechanism
in user space.

This thesis investigates the pacing mechanism of various QUIC implementations and compares
it to TCP. We conduct measurements on a testbed using multiple machines and passive fiber
TAPs to capture packet timestamps with nanosecond precision.

At 10 Mbit/s, most of the examined QUIC implementations rely on ACK-clocking for packet
pacing and show similar behavior to TCP. A QUIC receiver usually sends one acknowledgment
after two packets have arrived, which complies with the acknowledgment frequency of TCP. Due
to ACK-clocking, many QUIC senders send a burst of two packets every 2.1 ms. The variation
around this value is up to five times larger than in the case of TCP.

In contrast to the other examined QUIC implementations and TCP, we found that the QUIC
implementation picoquic does not rely on ACK-clocking. A picoquic sender using CUBIC does
not send bursts of two packets but spreads 91 % of the packets evenly over time. Picoquic
also implements the congestion control algorithm BBR, which integrates packet pacing. Our
findings indicate that BBR in TCP can time the sending of a packet two times more precisely
than picoquic.

Contents

1 Introduction 1
1.1 Motivation . 3
1.2 Research Questions . 3
1.3 Outline . 4

2 Background 5
2.1 Kernel Space vs. User Space . 5
2.2 Transmission Control Protocol . 7

2.2.1 ACK-clocking . 8
2.2.2 Packet Pacing . 9

2.3 Congestion Control . 10
2.3.1 CUBIC . 11
2.3.2 BBR . 13

2.4 User Datagram Protocol . 14
2.5 QUIC . 14

2.5.1 Acknowledgment Mechanism . 16
2.5.2 Pacing Mechanism . 16
2.5.3 Proposed Congestion Controller 17
2.5.4 Implementation in User Space . 17

3 Related Work 19

4 Analysis 21
4.1 Sender and Receiver . 21
4.2 Measurement Setup . 22
4.3 Measurement Techniques . 22
4.4 ACK-clocking . 24
4.5 Pacing Mechanism . 25

4.5.1 BBR . 26

4.5.2 Loss-based Congestion Controllers 26

5 Methodology 29
5.1 Selection of QUIC Implementations . 29
5.2 Comparison with TCP . 30
5.3 Measurement Setup . 31
5.4 Traffic Shaping . 32
5.5 Measurement Process . 33

6 Evaluation 35
6.1 Link Utilization . 35
6.2 Acknowledgment Mechanism . 37

6.2.1 Acknowledgment Frequency of TCP 38
6.2.2 Acknowledgment Frequency of QUIC Implementations 39

6.3 Pacing Mechanism in QUIC . 41
6.3.1 ACK-clocking . 42
6.3.2 BBR . 46
6.3.3 Pacing Rate Calculation . 49

7 Conclusion 53
7.1 Major Contributions . 53
7.2 Future Work . 55

A List of acronyms 57

Bibliography 59

II

List of Figures

1.1 The TCP+TLS+HTTP/2 protocol stack compared to the QUIC+HTTP/3
protocol stack. 2

2.1 Linux architecture. 6
2.2 TCP 3-way handshake. 8
2.3 Adaption of the sending rate due to ACK-clocking. 9
2.4 Comparison between a traffic burst and evenly spread packets. 10
2.5 Congestion collapse can happen without congestion control. 11
2.6 Comparison of handshakes performed by different protocol stacks be-

tween a client and server. 15

5.1 Pacing mechanism measurement setup. 31

6.1 Simplified link utilization measurement setup. 36
6.2 Link utilization at different bandwidths. 37
6.3 Acknowledgment frequency of TCP at different bandwidths. 38
6.4 Acknowledgment frequency over time of TCP senders at 10 Mbit/s. . . . 39
6.5 Acknowledgment frequency of multiple QUIC implementations. 40
6.6 Acknowledgment frequency over time of aioquic at 100 Mbit/s. 40
6.7 Acknowledgment mechanism of a picoquic receiver if BBR is configured. 41
6.8 Acknowledgment mechanism of a picoquic receiver at 10 Mbit/s if CUBIC

is configured. 41
6.9 Pacing mechanism of aioquic, ngtcp2 and paced TCP at 10 Mbit/s. . . . 43
6.10 Pacing mechanism of ngtcp2 and non-paced TCP at 100 Mbit/s. 44
6.11 Pacing mechanism of quic-go and non-paced TCP at 10 Mbit/s. 45
6.12 Pacing mechanism of quic-go and paced TCP at 100 Mbit/s. 46
6.13 Distribution of intervals between packets sent by a picoquic sender. . . . 47
6.14 Pacing mechanism of TCP at 10 Mbit/s using BBR. 49
6.15 Pacing mechanism of picoquic at 10 Mbit/s using CUBIC. 50

List of Tables

5.1 Overview of selected QUIC implementations. 30

6.1 Ethernet frame size and according intervals between sent packets. 42
6.2 Theoretical intervals between packets sent by picoquic using BBR. . . . 47
6.3 Cluster sizes of intervals between packets sent by picoquic using BBR. . 48
6.4 Cluster sizes of intervals between packets sent by TCP using BBR. . . . 49

Chapter 1

Introduction

On the Internet, the Transmission Control Protocol (TCP) is used to transfer data reli-
ably from one endpoint to another. It was designed in 1981, and since then, it got many
updates. TCP is usually implemented in the operating system kernel. It implements
various features in kernel space, like congestion and flow control, loss detection, and
retransmission. Additionally, a variety of optimizations for TCP (e.g., packet pacing
or ACK-clocking) are implemented in the kernel. Packet pacing avoids sending packets
in bursts. Instead, the sender sends packets evenly spread (e.g., over one round trip
time (RTT)), which decreases short term congestion and packet loss [1]. If multiple
connections share the same network link, pacing can increase the fairness at which the
available bandwidth is split between connections [2].

However, updates and upgrades to TCP usually require operating system kernel updates,
which slows down the update cycle of TCP.

With the worldwide Internet growth, security features became more and more impor-
tant. The Transport Layer Security (TLS) protocol operates on top of TCP and is
used to authenticate communication partners and encrypt the transmitted data. The
application layer protocol Hypertext Transfer Protocol (HTTP) is commonly used in
web browsers to retrieve content from websites. The client requests data from a server,
which answers with the requested file. With HTTP version 2 (HTTP/2), these request
and response pairs can be multiplexed to a single TCP connection to speed up the
content delivery [3]. To deploy secure websites on the world wide web, HTTP is used
on top of the TCP+TLS protocol stack. This creates the Hypertext Transfer Protocol
Secure (HTTPS) protocol stack.

Chapter 1: Introduction

IP

TCP

TLS

HTTP/2

Network Layer

Transport Layer

Security Layer

Application Layer

UDP

QUIC

HTTP/3

U
se

r
Sp

ac
e

U
se

r
Sp

ac
e

Figure 1.1: The TCP+TLS+HTTP/2 protocol stack in comparison to the QUIC+HTTP/3 protocol
stack. Adapted from [7].

The layering of different protocols follows the design of the ISO/OSI standard but also
introduces problems.

TCP and TLS perform separate handshakes. TCP uses the transport handshake to set
up a reliable connection. Next, TLS performs the cryptographic handshake to secure
the connection with authentication and encryption. These handshakes introduce a delay
before application data can be transmitted.

HTTP/2 allows stream multiplexing of request and response pairs, but TCP abstracts
these streams into a single byte stream. If a packet gets lost, all HTTP/2 streams have
to wait for this packet to get retransmitted, even if it did not contain data for a specific
stream. This delays other streams and is called head-of-line blocking.

To address these problems of TCP, TLS, and HTTP/2, Google developed the Quick
UDP Internet Connections (QUIC) protocol around 2012 [4]. Since 2016, the Internet
Engineering Task Force (IETF) is standardizing this new transport protocol [5]. QUIC
combines selected features of TCP, TLS, and HTTP/2 into a single protocol. QUIC
offers congestion control, flow control, loss detection, and retransmission. Additionally,
it has security features, as it incorporates Transport Layer Security protocol version
1.3 (TLS 1.3), and also offers stream multiplexing to address the problem of head-of-
line blocking. At the same time, HTTP version 3 (HTTP/3) is standardized, which is
supposed to use QUIC as its transport protocol [6].

A comparison between the protocol stack using TCP, TLS, and HTTP/2 and the
QUIC+HTTP/3 protocol stack can be seen in Figure 1.1.

Besides well-known features from TCP, TLS and HTTP/2, QUIC also implements new
features like connection migration [5]. To be less dependent on middlebox vendors
adding support for a new transport protocol, QUIC operates on top of the User Data-
gram Protocol (UDP).

2

1.1 Motivation

1.1 Motivation

Unlike TCP, QUIC is implemented in user space instead of kernel space. This means all
transport layer features are implemented in user space as well. On the one hand, this
design decision allows speeding up the update cycle of QUIC compared to TCP. On the
other hand, kernel optimizations of TCP (e.g., packet pacing) have to be implemented in
user space. TCP kernel optimizations are meant to improve the performance. Therefore,
these optimizations are also valuable for QUIC. The current QUIC draft recommends
implementing packet pacing [1].

However, it is not clear how well the TCP kernel optimizations can be implemented in
user space for QUIC. User space has limited access to hardware, limited processing time,
and generally no privileged functionality. Since packet pacing needs precise timing, it
is an open research field to investigate how it works, if it is implemented in user space,
and how it affects the performance of QUIC. Past research has shown that QUIC is
performing better than alternative protocol stacks in most scenarios [7–12]. For QUIC, it
has not been investigated how efficient kernel optimizations can be implemented in user
space. In this thesis, we have a closer look at the optimization of packet transmission
with packet pacing in QUIC and compare it to TCP.

1.2 Research Questions

We want to examine if QUIC implementations can implement packet pacing in user
space effectively. For our analysis of the pacing mechanism in current QUIC protocol
stacks, we select a variety of QUIC implementations. These are analyzed and compared
to TCP with the help of the following research questions:

To which extend can the pacing mechanism of current QUIC implementa-
tions be analyzed?

Different teams develop QUIC implementations in different programming languages.
This causes wide performance differences between implementations. For the analysis of
optimizations, like packet pacing, the QUIC sender and receiver must not be in overload.
Therefore, we have to find a suitable measurement setup, allowing for a sound analysis
of the peacing mechanism.

How does the acknowledgment frequency differ between QUIC implementa-
tions and TCP?

The QUIC draft does not propose a fixed acknowledgment strategy for the receiver.
It primarily elaborates tradeoffs between a high and low acknowledgment frequency.

3

Chapter 1: Introduction

We examine how the acknowledgment mechanism differs between different QUIC im-
plementations and TCP. The higher the acknowledgment frequency, the more impactful
ACK-clocking can be for packet pacing.

How important is ACK-clocking for packet pacing in QUIC?

Packet pacing is related to ACK-clocking. If a sender is ACK-clocked, it spreads outgo-
ing packets based on the rate of incoming acknowledgments. In general, ACK-clocking
does not eliminate packet bursts but reduces the burst size. We investigate how much
the QUIC implementations rely on ACK-clocking for packet pacing.

How does the pacing mechanism differ between QUIC implementations and
TCP?

Due to the variety of QUIC implementations, we expect to see different pacing behavior
and different implementation strategies. A perfectly paced sender would send all packets
evenly spread [1]. Other pacing strategies may just limit burst sizes. We examine how
different QUIC implementations pace packets in our measurements and compare the
results. Additionally, we investigate how the pacing mechanism in QUIC sets apart
from packet pacing in TCP.

1.3 Outline

This thesis is structured as follows.

Chapter 2 provides background information about TCP, congestion control algorithms,
ACK-clocking, and packet pacing. We present details about the QUIC protocol and
elaborate differences to TCP.

In Chapter 3, related work about the pacing mechanism in QUIC and the diversity
between different QUIC implementations is presented.

Chapter 4 analyzes different measurement techniques to capture packet timestamps.
Additionally, it elaborates on which phases during the data transmission we want to
focus on for our analysis.

Chapter 5 explains how we deal with the QUIC implementation diversity. It provides a
detailed insight into the measurement setup that is used to measure the pacing perfor-
mance of a QUIC implementation.

In Chapter 6, the measurement results are evaluated. The pacing mechanism of QUIC
implementations is compared to pacing in TCP.

Chapter 7 concludes this thesis and suggests future work.

4

Chapter 2

Background

This chapter presents information about the TCP and QUIC protocols and highlights
differences between them. We provide further details about the concept of ACK-
clocking, packet pacing, and congestion control.

2.1 Kernel Space vs. User Space

The Linux operating system supports two execution modes for processes: kernel mode
and user mode. These offer a different level of authority to protect the operating system
against attacks or programming errors by the user. Accordingly, the memory is divided
into two distinct areas: kernel space and user space. Each space stores code and data
for the respective processes.

The kernel space is reserved for the operating system kernel. It allows all machine code
instructions to be executed and has direct access to hardware. Additionally, most device
drivers operate in kernel mode.

The user space is meant for user applications to run in. Processes running in user
mode are not allowed to run privileged instructions that enable full control over I/O-
devices. This includes network interface devices. The user space has no direct access
to hardware but can only access it indirectly through the functionality offered by the
operating system. The user space process has to use a system call, which hands control
over to the operating system.

For networking, user space applications can create a socket, as shown in Figure 2.1.
It allows specifying the desired network protocol, either IPv4 or IPv6, and the type

Chapter 2: Background

User Processes/Applications/Programs
User Space

Operating System

Kernel
Kernel Space

TCP/UDP Socket

send() recv()

Network
Interface CPU Memory Hardware

Figure 2.1: Linux architecture.

of the socket (e.g., stream-oriented or datagram-oriented, using TCP and UDP respec-
tively) [13].

The application can write data to the socket with the send system call. The kernel is
responsible for adding the transport and network protocol headers, like UDP and IPv4,
and finding the correct route for the packets. Afterwards, packets are handed to the
network device driver, which transmits the packets on the physical layer.

The application can read data from the socket with the recv system call. If incoming
packets arrive at a host, the kernel identifies the receiving application with the help
of the network and protocol device drivers. If the receive buffer is not full, the kernel
buffers the data until the application reads data from the socket.

In the case of a datagram-oriented socket, the application reads the data of one packet
from the socket with each system call. Analogously, the kernel sends one packet for
each send call on the sender side.

In the case of a stream-oriented socket, message boundaries are not kept. The kernel
decides in which form the data written to the socket is split into packets. The receiver
can read no data, partial data from one packet, or data from multiple packets with one
recv call.

In contrast to datagram-oriented sockets, a stream-oriented socket guarantees that the
receiving application will receive all of the data sent by the sending application. The
data is ordered and no parts are duplicate.

Since the user mode relies on the system call interface to access hardware, its possibilities
to adjust and optimize the behavior of hardware is limited. Additionally, the socket API
for networking includes expensive system calls. The user data has to be copied between
user space and kernel space whenever the user process reads from or writes to the socket.
This can be a bottleneck if high performance or concurrency is needed [14].

6

2.2 Transmission Control Protocol

With every system call, the user space application execution is interrupted by the kernel.
The application’s execution state is stored and the kernel takes control. This is known as
a context switch, which can include copying of data between user and kernel space [15].

2.2 Transmission Control Protocol

The design of the Transmission Control Protocol (TCP) was finished almost 40 years
ago [16]. It is a connection-oriented protocol that adds reliable data transmission on
top of the network protocol stack. TCP is implemented in kernel space. A user process
only has to create a socket. The kernel is responsible for reliable data transfer.

TCP allows for reliable communication between two processes running on different hosts
on the Internet. During transmission, packets can be lost, reordered, or duplicated. Due
to reliability, a TCP receiver will receive the complete and unduplicated application
data in the correct order a TCP sender transmits. Reliability is achieved with sequence
numbers and acknowledgment numbers, which enable loss detection and retransmission
of lost packets [16].

TCP abstracts the application data it transports into a single stream of bytes. Each
sent packet contains a so-called TCP segment, which consists of the TCP header and
application data.

At the beginning of a connection, the two communication parties perform the TCP
3-way handshake [16], as shown in Figure 2.2. One host initiates the connection with a
TCP segment in which the SYN flag is set inside the TCP header [16]. The other party
answers with a similar segment. Finally, this answer is acknowledged by the initial party
with another segment with the ACK flag set. Within this handshake, the two parties
can decide on various options that are used for the connection [16].

The TCP header contains a sequence number. This sequence number increases by one
for each byte of application data the sender sends. In the case the network delivered
TCP segments in incorrect order, this sequence number allows the receiver to reorder
them correctly. The TCP header also includes an acknowledgment number. The re-
ceiver of TCP segments uses this header field to inform the sender about the next
sequence number it is expecting. TCP uses cumulative acknowledgments, which means
an acknowledgment number acknowledges the arrival of all lower sequence numbers.
In general, a receiver sends back an acknowledgment every second received TCP seg-
ment [17]. The TCP sender is allowed to send a limited amount of data until it has to
wait for an acknowledgment.

7

Chapter 2: Background

SYN

SYN, ACK

ACK

Client Server

Figure 2.2: TCP 3-way handshake.

The amount of data a sender is allowed to send is restricted by two factors:

1. Congestion control, which avoids overloading the network with packets. Conges-
tion control uses a congestion controller, which determines the size of a congestion
window throughout the connection lifetime. This congestion window represents
the maximum amount of unacknowledged bytes a sender can keep in transit.

2. Flow control. The receiver sets a receive window size within the TCP header of
the acknowledgments it sends back to the sender.

The minimum of the receive window and the congestion window is the actual window
the TCP sender uses to limit the number of bytes it sends before waiting for an ac-
knowledgment. Dividing the window size by the RTT yields the average sending rate of
a sender [2].

average sending rate = window
RTT

If the window is limited by the receive window, the sender is called flow control limited.

The data in flight is the amount of data, which was sent by the sender but is still
unacknowledged by the receiver. If the receiver sends an acknowledgment, the sending
window slides forward based on the number of acknowledged bytes. The amount of
unacknowledged inflight data is now less than the window size. Consequently, the
sender can send new data until the amount of inflight data matches the sending window
size.

2.2.1 ACK-clocking
If the sender sends packets in a large burst or at a higher rate than the bottleneck
rate of the network, the bottleneck spreads those packets at the bottleneck rate. The

8

2.2 Transmission Control Protocol

packets spread
after one RTT

initial burst bottleneck link
sets packet

distance

distance
between packets

is preserved

Sender Receiver

Figure 2.3: Adaption of the sending rate due to ACK-clocking. Adapted from [18, 19].

acknowledgments the receiver sends as a response keep the distance. Once the data
in flight matches the sending window size, the TCP sender can only send new data if
an acknowledgment arrives. As the incoming acknowledgments are spread according to
the bottleneck rate, new data enters the network at the same rate. This mechanism,
visualized in Figure 2.3, is called ACK-clocking [2].

In many scenarios, this mechanism is not sufficient for spacing packets effectively.

On a high bandwidth link, which is shared by many different TCP flows, packets likely
stay clustered or might generate even larger bursts [2].

The retransmission of lost data can cause the sender to send a large burst of new data.
Due to cumulative acknowledgments, the receiver sends duplicate acknowledgments if
at least one segment got lost, but multiple new segments arrive. The receiver buffers
these segments. If the sender successfully retransmits the lost packet, the receiver can
acknowledge all the buffered segments. This allows the sender to send more data than
usual.

2.2.2 Packet Pacing
Congestion controllers often send packets in bursts after the arrival of an acknowl-
edgment [2]. The theory of queuing discipline has shown that traffic bursts increase
queueing delays, which increases the RTT of a connection. Additionally, traffic bursts
lead to more packet loss and, therefore, lower throughput [2].

In front of a bottleneck, the packets arrive at a higher rate than they can be transmitted
across the bottleneck link. The arriving packets have to be buffered until they can be
transmitted. This introduces queueing delays. If the packets arrive in a burst, the
router has to buffer most of the packets at the same time. Therefore, the limit of the

9

Chapter 2: Background

(a) Packets sent in a burst. (b) Packets sent evenly spread.

Figure 2.4: Qualitative comparison between a traffic burst and evenly spread packets. Adapted
from [20].

buffer is likely to be exceeded. Some packets cannot be buffered, which leads to packet
loss.

One solution to this problem is to prevent bursts by sending packets evenly spread
over one RTT. This mechanism is referred to as packet pacing [2]. Pacing effectively
decreases the size of queues. A qualitative comparison between a sender sending packets
in bursts and a sender pacing packets can be seen in Figure 2.4.

Pacing can be achieved in two ways. It can be implemented on the sender or receiver
side, but sender pacing is more effective [2].

If a sender implements pacing, it is not sending all new packets it is allowed to send
after an incoming acknowledgment in one burst. Instead, it calculates a pacing rate by
dividing the current window size by the estimated RTT. Following this rate, the packets
are sent evenly spread over the next RTT [2].

If pacing is done by the receiver, it spreads acknowledgments over one RTT, which causes
the sender to space packets as well due to ACK-clocking. This method is less effective
for a couple of reasons [2]. One reason is ACK-compression. Acknowledgments might be
buffered behind other acknowledgments on a busy network link. These acknowledgments
arrive in a burst at the sender, causing the sender to send a burst of packets as well.

With Linux kernel version 4.13, packet pacing got implemented in the TCP module [21].
Until then, it was only handled by the Fair Queue (FQ) packet scheduler [22], which
operates on top of the network device drivers in the Linux kernel but not within the
TCP stack.

2.3 Congestion Control

A network should not be under-utilized because this decreases the throughput of a
connection. Throughput is a measurement for the total amount of bytes a network can
transmit within a specific time period.

A network should also not be overloaded with packets, as this leads to packet loss, which
decreases the goodput of a connection. Goodput represents the amount of application

10

2.3 Congestion Control

Maximum
Ideal

Congestion controlled

Without congestion control

Congestion collapse

G
oo

dp
ut

Load of Network

Figure 2.5: Congestion collapse can happen without congestion control.

data that arrives at the receiver within one unit of time. In contrast to throughput,
goodput excludes the protocol overhead. Additionally, goodput is negatively impacted
by packet loss because packets have to be retransmitted as they did not reach their
destination.

One goal of congestion control is to prevent congestion collapse as indicated by Fig-
ure 2.5. If too many senders send more data than the network can deliver to the receiver
in a particular time, packets are dropped by buffers. Due to the reliability feature of
TCP, lost packets are retransmitted. If the amount of data the sender keeps in flight
remains higher than the network capacity, retransmitted packets might get lost, causing
more retransmissions. Due to an increasing amount of retransmissions, the goodput of
the connection decreases.

Congestion controllers use various algorithms to control the size of the congestion win-
dow, to find an equilibrium that is neither under-utilizing nor overloading the net-
work [17].

In 1999 the congestion control algorithm TCP NewReno was invented, which introduces
improvements to the loss recovery and retransmission algorithms in comparison to older
algorithms [23]. It got updated in 2012 [24].

2.3.1 CUBIC
CUBIC is the default congestion controller on Linux since kernel version 2.6.19 [25, 26].
It interprets packet loss as congestion and adapts the congestion window size if packet
loss has occurred because it is a lost-based congestion controller. CUBIC is implemented
by the sender and only needs feedback in the form of acknowledgments by the receiver.
The network itself is not giving any feedback about congestion directly.

The congestion control algorithm is split into multiple phases.

11

Chapter 2: Background

At the beginning of the connection, the slow start phase increases the congestion window
exponentially. Per RTT, the sender keeps one congestion window size of data in flight.
Every time the sender receives an acknowledgment, it adds one maximum segment size
(MSS) to the current congestion window [17]. This effectively doubles the congestion
window size each round trip time.

This phase tries to quickly find the maximum network capacity, which utilizes the
network to a certain degree without overloading it. The slow start phase ends if either
loss is detected or an internal threshold ssthresh for the congestion window within the
slow start phase is hit.

The congestion controller then switches to the congestion avoidance phase. This phase
adapts to network changes and tries to keep the network fully utilized.

The congestion window increases by the pattern of a cubic function [25]. This pattern
leads to better utilization of networks with high bandwidth and high RTT than a linear
increase of the congestion window [25]. This increase continues until packet loss is
recognized. Packet loss can be caused by either random packet loss or by congestion.
The TCP sender recognizes packet loss in two ways.

• With each segment sent by the sender, a timer is set. Within this time, the sender
expects to receive the belonging acknowledgment. If a timeout occurs, the sender
assumes the network is congested and all packets have been dropped by routers.
Therefore, the sender retransmits the packets.

• If the sender receives acknowledgments with the same acknowledgment number
at least three times, this indicates loss as well [17]. If a segment gets lost, but
packets with a higher sequence number arrive at the receiver, it cannot increase
the acknowledgment number and sends duplicate acknowledgments. The TCP
sender recognizes these and retransmits the lost packet [17].

The sender interprets packet loss as congestion and decreases the congestion window
size. If a packet loss is detected by a timeout, the congestion controller resets to the
slow start phase. If a loss is detected by duplicate acknowledgments, the congestion
controller reduces the congestion window by 30 % [25]. It adjusts parameters for the
cubic function and then restarts again to increase the reduced congestion window over
time. The TCP sender first retransmits lost data and then sends new data.

The approach of adding a certain amount of bytes to the congestion window every RTT
but decreasing the congestion window by a specific percentage if packet loss has occurred
is referred to as additive increase and multiplicative decrease [17].

12

2.3 Congestion Control

Loss-based congestion controllers likely cause packet loss during the connection lifetime
as they continuously increase the congestion window. Over time, this leads to more
data in flight per RTT than the bottleneck router can buffer. The router has to drop
packets.

2.3.2 BBR
In 2016, the rate-based congestion control algorithm BBR was presented by Google [27].
In contrast to loss-based congestion control algorithms, BBR tries to keep the buffer of
the router in front of the bottleneck empty.

BBR estimates the round-trip propagation time (RTprop) and bottleneck bandwidth
(BtlBw) of a network path. RTprop is the minimum RTT of the connection, which is
constrained by the physical properties in terms of the propagation delay of the network.
BtlBw is the maximum bandwidth of the connection, which is limited by the bottleneck
of the network. With these two values, the bandwidth-delay product (BDP) can be
calculated.

BDP = RTprop · BtlBw

BBR uses this value as its congestion window. This is the optimal value for the conges-
tion window size since the network cannot deliver more data more quickly [27]. Sending
more data yields in queueing delays, which increases the RTT. Therefore, the effective
delivery rate is not increased.

In contrast to loss-based congestion controllers, the pacing mechanism is a fundamental
part of BBR [27]. BBR avoids building queues, which means it has to adjust its sending
rate to the bottleneck rate. Therefore, packets have to be paced.

At the beginning of the connection, BBR doubles the sending rate every RTT in the
startup phase, until the measured delivery rate is not increasing any more. Afterwards,
the drain phase decreases the sending rate to remove potentially built queues at the
bottleneck router until the amount of inflight data matches the estimated BDP.

BBR calculates the sending rate by multiplying the measured bottleneck bandwidth
with a pacing gain value [27].

sending rate = BtlBw · pacing gain

After the drain phase, pacing gain = 1 holds for most of the time during the probing-
for-bandwidth phase. To probe for more bandwidth, BBR sets the pacing gain value
to 1.25 for one RTprop. If more bandwidth is available, the RTT does not increase.

13

Chapter 2: Background

Afterwards, BBR sets pacing gain = 0.75 for one RTprop to remove potentially built
queues if no additional bandwidth is available.

To probe for a lower RTprop value, the sender reduces the sending rate drastically every
ten seconds. The amount of data in flight is reduced to four packets for at least one
RTprop, trying to empty the bottleneck queue. Based on the received acknowledgments,
BBR can detect if RTprop has decreased.

2.4 User Datagram Protocol

The User Datagram Protocol (UDP) is the lightweight counterpart to TCP and a
datagram-oriented protocol [28]. It does not perform a handshake to initiate a con-
nection or handles a connection teardown. Additionally, the transmitted application
data is not abstracted into a stream of bytes. Instead, each time the application writes
data to a UDP socket, this data is sent as one message, even if the amount of data is
only a few bytes.

UDP only offers basic functionality to fulfill the role of a transport protocol: Allowing
to address a source and destination process on a sending and receiving host. This is
achieved by the source and destination port specified in the UDP header.

UDP is an unreliable protocol, meaning it does not implement any of the advanced fea-
tures of TCP for loss detection and retransmission. It also does not support congestion
or flow control.

UDP does not implement any of the optimizations for TCP, including packet pacing.
Pacing needs feedback from the receiver to estimate a round trip time, but a UDP
receiver does not send back acknowledgments. Additionally, the sender has to keep track
of a sending window to calculate a pacing rate, but a UDP sender does not support this
feature.

2.5 QUIC

QUIC is a new transport protocol implemented in user space, which combines features
of TCP, TLS, and HTTP/2 [29]. In 2013, Google started to deploy and experiment with
this new transport protocol on their servers [4].

Since 2016, QUIC is standardized by the IETF [5]. The standardization process holds
on to the initial concepts of Google’s version of QUIC but transforms it into a more
modular and extensible general-purpose transport protocol [4, 5]. The most recent draft

14

2.5 QUIC

Client Server

(a) TCP+TLS 1.2.

Client Server

(b) TCP+TLS 1.3.

Client Server

(c) QUIC.

Figure 2.6: Comparison of handshakes performed by different protocol stacks between a client and
server.

version is 34, which is the proposed standard. It is currently submitted to the IESG for
publication [30].

Since QUIC includes the stream multiplexing feature of HTTP/2, the QUIC working
group at the IETF standardizes HTTP/3 as well [6]. QUIC is the proposed transport
protocol for HTTP/3 [6].

QUIC is a reliable transport protocol, like TCP. It offers congestion control and a con-
nection and stream-level flow control mechanism. Additionally, it allows for connection
migration if the client changes its IP address or port. The connection is authenticated
and encrypted as QUIC incorporates TLS 1.3 [5].

As the QUIC handshake incorporates the TLS 1.3 handshake, it reduces the handshake
latency in comparison to the TCP+TLS stack as shown in Figure 2.6.

QUIC uses UDP to transport QUIC packets. One UDP datagram can encapsulate
multiple QUIC packets.

Each QUIC packet starts with a header, which contains a packet number [5]. This
number increases with every QUIC packet a sender sends. Retransmitted application
data is sent within a packet having a new packet number since the packet number is
used as a cryptographic nonce for the decryption of the packet. In contrast, the TCP
segment number is repeated if a segment is retransmitted.

The payload of a QUIC packet following the header consists of one or more QUIC
frames. Each frame has a specific type [5]. The STREAM frame carries application
data belonging to the specified stream. Various control frame types are used for flow
control or the acknowledgment mechanism, for example.

15

Chapter 2: Background

2.5.1 Acknowledgment Mechanism
Like TCP, the default behavior of QUIC is to send back one acknowledgment every
second incoming QUIC packet [5]. The acknowledgment mechanism works differently
in QUIC than in TCP.

In QUIC, packet headers do not contain an acknowledgment number. Instead, acknowl-
edgments are carried in so-called ACK frames within the payload of the packet [5].

An ACK frame contains one or more ACK ranges, which specify the packet numbers a
QUIC receiver has received. Multiple specified acknowledgment ranges indicate a lost
packet, as there is a gap between the numbers. Therefore, the sender knows which data
it must retransmit.

In general, the QUIC receiver sends back an acknowledgment frame after it has received
two QUIC packets [5]. The receiver does not only include one ACK range, which ac-
knowledges the last two packets. It also incorporates ACK ranges which acknowledge
older packets. The sender also sends acknowledgment frames. These tell the receiver
which acknowledgments the sender has received. It can adapt the ACK ranges accord-
ingly and does not send acknowledgments for older packets anymore.

A QUIC receiver might deviate from the strategy of sending an ACK frame every second
incoming QUIC packet [5]. This will also be shown in Section 6.2.2.

2.5.2 Pacing Mechanism
To avoid short-term congestion and packet loss, a QUIC sender has to use packet pacing
or limit traffic bursts [1]. A perfectly paced sender would send all packets evenly spread.
Bursts should be limited to the initial congestion window size, which is a function of
the maximum datagram size (MDS). The MDS is the counterpart to the MSS for TCP.

initial congestion window = min(10 · MDS,max(14 720 bytes, 2 · MDS))

If a QUIC packet only contains acknowledgment frames and no application data, it
should not be paced [1]. This ensures timely delivery, which is important for loss
recovery.

An implemented pacer works closely together with a congestion controller. To calculate
the pacing rate, a window-based congestion controller can use the following formula [1].

pacing rate = N · congestion window
smoothed RTT (2.1)

16

2.5 QUIC

N is a factor of at least 1. This avoids under-utilization of the congestion window by
the congestion controller. Smoothed RTT is an exponentially-weighted moving average
of the round trip time estimations throughout the connection lifetime.

As an alternative, the inter-packet interval can be calculated to pace packets [1].

interval = smoothed RTT · packet size
congestion window · 1

N

This interval is the time a sender has to wait until it sends the next packet, instead of
sending all packets at once.

The QUIC draft proposes a leaky bucket algorithm for the implementation of a pacer [1].
A bucket fills according to the pacing rate in Equation 2.1. The capacity of the bucket
is limited to the maximum burst size.

2.5.3 Proposed Congestion Controller
The draft for QUIC specifies a loss-based congestion controller, which is very similar to
TCP NewReno [1].

The main difference between the proposed congestion controller for QUIC and CU-
BIC is the algorithm for the increase of the congestion window during the congestion
avoidance phase. The proposed congestion controller increases the congestion window
linearly [17, 24]. This is achieved by limiting the increase of the congestion window to
one maximum datagram size per RTT [1].

Another difference is that the congestion window reduced by 50 % when packet loss has
occurred [1], instead of 30 % as in the case of CUBIC [25].

A QUIC implementation does not have to use the specified congestion control algorithm
but can use other congestion controllers like CUBIC or BBR [1].

2.5.4 Implementation in User Space
In the case of networking, the kernel handles the processing of the network and transport
layer headers of an incoming packet.

For TCP, this includes processing of the TCP header fields and updating TCP’s internal
state [16]. The kernel decides whether to send an acknowledgment or not. On the
receiver side, the received packet contents are buffered according to the sequence number
at the correct position in a ring buffer. If the application wants to read from the receive
buffer, it can only read up until to the point where there is a gap in the sequence number
space due to lost segments [16]. On the sender side, the received acknowledgments are

17

Chapter 2: Background

processed within kernel space. The data the sending application provides with the send
system call is buffered until the kernel decides to send the data.

For QUIC, an incoming QUIC packet has to be copied between the kernel space and
user space before the QUIC packet is processed [15]. This adds additional computa-
tional overhead in comparison to TCP for the processing of incoming acknowledgments.
Additionally, the acknowledgments in QUIC are encrypted, which means they have to
be decrypted by the QUIC application before they can be handled.

A context switch is also happing if the user process writes data to the socket. For TCP
the kernel knows about the state of the TCP connection. Therefore, it has to perform
many operations, like finding the correct route or applying firewall rules, only at the
beginning of a connection [15]. For QUIC, the kernel cannot store any state, which
means these operations have to be repeated for every sent packet.

18

Chapter 3

Related Work

In 2017, Yu et al. [12] were comparing the throughput and packet loss rates of Google’s
version of QUIC with pacing enabled and disabled. For their measurements, they de-
ployed a testbed in Mininet [31]. Pacing reduces the number of packet losses by 50 %.
It increases throughput by 50 % in networks with small buffers. Pacing decreases the
throughput up to 20 % under better network conditions with buffer sizes of at least the
BDP [12].

We analyze the pacing mechanism of multiple open-source QUIC implementations in
further detail. We compare different approaches for packet pacing among different QUIC
Implementations. Additionally, we compare the pacing mechanisms to TCP. Instead of
using Mininet, we deploy a measurement setup using multiple machines.

Diversity between QUIC Implementations: Marx et al. [32] have compared 15 open-
source QUIC implementations in May 2020. They discovered a wide diversity between
the implementation of various features of the QUIC protocol. Their major methodology
is the analysis of log files created by the QUIC implementations at runtime. We focus
on timestamp measurements of transmitted packets.

The authors discovered different acknowledgment behaviors since the QUIC draft does
not state a fixed acknowledgment frequency [5]. Some of the QUIC implementations
show a narrow variation of an acknowledgment frequency of 2-4. Others show a wider
range of up to 1-38. We further investigate the acknowledgment frequency in specific
scenarios to evaluate the importance of ACK-clocking for the pacing mechanism in
QUIC.

Chapter 3: Related Work

Additionally, they also discovered that only 8 out of the 15 examined implementations
had implemented packet pacing because of ‘the complexity of the technique [...] and lack-
ing support in the Linux kernel in combination with other optimization techniques’ [32].
They did not investigate how well the implemented pacers work in practice but just re-
viewed the source code. We take measurements for multiple QUIC implementations
and analyze how well the implemented pacing mechanisms work.

System Call Interface: User space applications rely on system calls to send and receive
data from the network [13]. This system call interface does not allow various optimiza-
tion techniques to be applied in parallel, like generic segmentation offload (GSO) and
packet pacing [20].

Ghedini [20] examined how different system calls for sending data affect the throughput
of the QUIC implementation quiche by Cloudfare [33]. The system call sendmsg allows
to send one UDP packet and a different system call sendmmsg to send multiple UDP
packets. The latter yielded a higher throughput because fewer system calls were needed,
which caused less overhead due to context switches. GSO can be used to improve
throughput even further. Without GSO, the application has to use a small buffer for
each QUIC packet it wants to send. Each of these small buffers is transmitted as a UDP
datagram by the kernel. GSO allows the application to pass one large buffer with data
to the kernel, which is then responsible for splitting it into smaller UDP datagrams.
This doubled the throughput for both of the investigated system calls.

One problem is that sending multiple UDP datagrams with one system call or using
GSO conflicts packet pacing [20]. If the application implements pacing, it can only pass
one QUIC packet at a time to the kernel.

Due to these observations, we investigate the throughput of different QUIC implemen-
tations on different bandwidths before analyzing the pacing mechanism. We focus on
bandwidths the QUIC implementations can fully utilize to avoid any influence of per-
formance limitations on the pacing mechanism.

20

Chapter 4

Analysis

Packet pacing is a packet transmission optimization that requires the possibility to
precisely time packet sending. We want to examine whether packet pacing implemented
in user space operates as efficiently as packet pacing implemented in kernel space.

To analyze the pacing mechanism of a QUIC implementation or TCP, we have to capture
the traffic sent between a sender and receiver. In this chapter, we discuss different
measurement setups and different capture techniques.

4.1 Sender and Receiver

A QUIC or TCP connection can be used to transport application data in either both
directions or primarily just one direction. In the former case, both connection endpoints
send approximately the same amount of application data to the other endpoint simul-
taneously. The latter case follows a client-server model, where the client initiates the
connection and requests data, which is sent from the server towards the client. In this
case, the client is only sending acknowledgments but no or only very little application
data.

For the analysis of the pacing mechanism, we need a sender, which sends data packets
and tries to pace these outgoing packets. How well these packets are paced can be
evaluated by analyzing the time intervals between the packets. The better the pacing
mechanism works, the less of a traffic burst is seen. Instead, packets are spread evenly
over one round trip time.

On the other hand, we need a receiver that acknowledges the incoming data packets,
allowing the sender to send more data towards the receiver.

Chapter 4: Analysis

Consequently, the measurement setup can follow the server-client model, where user
data is mostly sent in one direction. We can evaluate the pacing mechanism of the
QUIC implementation by measuring how well the server paces packets. The QUIC
client only sends acknowledgments, which should not be paced [1].

4.2 Measurement Setup

To evaluate the pacing mechanism of various QUIC implementations, we deploy a mea-
surement setup to collect data. The measurement setup can be realized on real hardware
with multiple distinct hosts. Alternatively, a software-based setup with a network em-
ulator like Mininet can be used, which creates a virtual network on a host [31].

The advantage of a network emulator is that it can create complex network architectures
very easily and quickly because only one machine is needed. On the other hand, it is
less suitable for precise measurements than real hardware. The network is just emulated
on one host, which means the measurements of timings are deferred if the host is under
load.

A hardware-based setup is less flexible but offers the potential for more accurate results,
as the load is split on different machines. The network has to be realized with real
hardware components.

We can use a simple network to benchmark the implemented pacing mechanism of a
QUIC implementation because packet pacing implemented on the sender side does not
depend on the network architecture itself. The sender only uses more abstract values,
like the RTT and the congestion window, to calculate a pacing rate, as specified in
Section 2.5.2. Therefore, a hardware-based setup is more suitable than a software-based
setup, as it allows for more accurate results.

With the Linux traffic control functionality, various network conditions can be emulated
on a hardware-based setup [34]. It allows specifying queueing disciplines for egress traf-
fic, which can emulate latency introduced by a long network link or a lower bandwidth
caused by a bottleneck link. The protocol device drivers enqueue outgoing network
traffic into the queueing disciplines, which are responsible for scheduling the outgoing
packets. When the outgoing packets leave the queue, they are handed to the network
device drivers, which send the packet on the physical layer [35].

4.3 Measurement Techniques

On a hardware-based setup, the measurements can be retrieved in three different ways.

22

4.3 Measurement Techniques

Tcpdump: First of all, the command-line tool tcpdump can be used to capture the in-
and outgoing packets on each host [36].

On the sender side, the packet capture of tcpdump is influenced by offloading features
like TCP segmentation offload (TSO) or GSO. In both cases, neither the kernel nor
the user space application is responsible for segmenting data into smaller chunks. With
offloading enabled, this task is performed by the network interface card (NIC) itself. For
transmission, packets can only have a size of the maximum transmission unit (MTU).
Otherwise, a NIC or network link cannot transmit the packet.

Consequently, tcpdump does not capture each packet sent, but only larger packets with
the size of multiple thousands of bytes, instead of just up to 1500 bytes, the default
MTU for Ethernet networks [37].

To capture packet timestamps with tcpdump on the sender side, these offloading features
have to be disabled. Disabling offloading features might interfere with either a QUIC
implementation or our measurements for TCP if the sender uses offloading features in
its implementation.

For received packets, the tcpdump capture is influenced by GRO (generic receive offload)
or LRO (large receive offload). Received packets are aggregated together by the NIC,
which reduces the number of packets that have to be processed by the network protocol
drivers. Again, tcpdump only captures these larger packets, but not the individual
packets that have been transmitted through the network.

Disabling offloading features on other machines than the sender does not interfere with
packet pacing done by the sender. Therefore, it is more suitable to capture the packets
with tcpdump on a different device than on the sender.

Passive Fiber TAPs: The second method uses passive fiber test access points (TAPs).
These split the signals sent via optical fiber between two network devices. A third
machine, which is connected to the network TAPs, can capture and analyze the split
signals. This measurement technique is the most significant advantage of a hardware-
based setup. It allows collecting timestamps for the total traffic created by a QUIC
or TCP sender and receiver, without causing overhead on the respective two hosts.
Additionally, this measurement technique is not influenced by any offloading features
because it recognizes actual Ethernet frames sent via the network link.

If the sending rate of the sender matches the bottleneck rate, no queue is built in the
bottleneck router buffer. If the sending rate of a sender is higher than the bottleneck
rate or the sender sends a burst of packets, the packets get buffered and delayed by the

23

Chapter 4: Analysis

bottleneck router. In both scenarios, the packets are transmitted via the bottleneck link
according to the bottleneck rate.

Consequently, passive fiber TAPs must not be installed at the bottleneck link but on a
faster link between the sender and the bottleneck router. Otherwise, passive fiber TAPs
cannot measure if the sender sent a burst of packets or sent packets at the bottleneck
rate.

Qlog: The last measurement technique is possible with QUIC implementations, but
not TCP. Most QUIC implementations support qlog [38]. Qlog is a JSON-based logging
format, which is specifically designed for QUIC. It logs the internal state of a QUIC
implementation in the form of events in combination with a timestamp. Qlog was
designed to make QUIC implementations easier to debug. Since the QUIC packet header
is almost entirely encrypted [5], information from packet captures cannot be extracted
without decrypting it. Additionally, each QUIC packet consists of one or more QUIC
frames [5]. For these reasons, the complete packet captures have to be stored, including
the transmitted application data. Qlog solves this issue, as it logs the frames contained
in a sent or received QUIC packet without storing the application data. We can use
the information from qlog files to analyze the acknowledgment behavior for each QUIC
implementation.

Qlog alone is not sufficient for the analysis of the pacing mechanism. The timestamps
are set by the application and therefore do not match the timestamps of the packets
that are sent on the physical layer.

4.4 ACK-clocking

Received acknowledgments allow the sender to send more data. Depending on the
receiver’s acknowledgment frequency, ACK-clocking plays an essential role in packet
pacing.

Even if the sender sends a large burst of packets, the effective delivery rate does not
increase due to the bottleneck [27]. The delivery rate specifies the rate at which data
reaches the receiver and is the amount of delivered data per time.

delivery rate = ∆delivered
∆time

24

4.5 Pacing Mechanism

This delivery rate equals the rate at which a receiver acknowledges data. Due to ACK-
clocking, the delivery rate limits the rate at which the sender sends more data, as
explained in Section 2.2.1.

If each incoming acknowledgment on the sender side triggers new packets to be sent, the
acknowledgment frequency determines the burst sizes of a sender. If the receiver sends
an acknowledgment after every incoming packet, the sender can send one new packet
after it received an acknowledgment. Even if no packet pacing is implemented on the
sender side, the sent packets would be paced if the incoming acknowledgments are not
arriving in a burst.

In general, a receiver sends an acknowledgment after two or more incoming packets [5],
which would trigger higher bursts to be sent if the sender does not pace packets.

Therefore, to evaluate the pacing mechanism of a QUIC sender, the acknowledgment
frequency of the QUIC receiver has to be measured.

4.5 Pacing Mechanism

The pacing algorithm in QUIC calculates the pacing rate with

rate = N · congestion window
smoothed RTT , (4.1)

as explained in Section 2.5.2.

Using this rate results in an interval of

interval = smoothed RTT · packet size
congestion window · 1

N
(4.2)

between sent packets.

To analyze the pacing mechanism, we do not need a complex network. A simple
hardware-based measurement setup can be configured to perform very reliably through-
out the whole lifetime of a connection between sender and receiver. Therefore, it is not
susceptible to frequent network changes or lossy links. The connection between sender
and receiver does not have to share the network with different flows, leading to queueing
delays on a router due to congestion. This removes many variables, leading to variating
behavior between different congestion controllers. We do not have to consider fairness
between multiple flows.

25

Chapter 4: Analysis

Therefore, if the implemented pacing mechanisms work well, the interval between pack-
ets specified by Equation 4.2 should be observed during the steady state of different
congestion controllers.

In the following, we discuss which phases of each congestion controller we want to focus
on for the analysis of the pacing mechanism. We are interested in phases lasting for
the majority of the connection lifetime in which the sending rate of the sender is only
fluctuating a little. Short phases with a rapidly changing sending rate do not allow for
a consistent pacing rate.

4.5.1 BBR
We do not analyze the pacing within the startup and drain phase since the sending rate
changes exponentially and both phases only last a few round trip times [27].

The probing for a higher BtlBw and probing for a lower RTprop are part of the steady
state of BBR [27]. Both phases will not discover a new bandwidth or RTT in our static
and isolated setup.

In the probing-for-bandwidth phase, BBR periodically increases the pacing rate by
25 % every eighth RTT. BBR decreases the sending rate by 25 % in the next RTT. This
phase is relevant to the pacing mechanism analysis because it lasts for the majority of
the connection [27].

The probing phase for RTprop only happens every ten seconds [27]. Due to the rare
interval and low sending rate, as explained in Section 2.3.2, this phase is not significant
for evaluating the pacing mechanism.

4.5.2 Loss-based Congestion Controllers
Window-based congestion controllers control the size of the congestion window to limit
the amount of data in flight. Loss-based congestion controllers, like NewReno [24] or
CUBIC [25], increase the size of the congestion window until loss occurs.

The pacing rate is calculated by dividing the congestion window through the smoothed
estimation of the RTT as specified in Equation 4.1.

At the start of the connection, the congestion window increases exponentially within
the slow start phase. Additionally, the sender has only received a few acknowledgments
to estimate the RTT, which lead to a varying smoothed RTT value. Therefore, we do
not focus on the slow start phase.

The slow start phase at the beginning of the connection is used to start the ACK-
clock [17], which supports more accurate RTT estimations during the congestion avoid-

26

4.5 Pacing Mechanism

ance phase. Therefore, we focus on the congestion avoidance phase, which lasts for the
majority of the connection.

During congestion avoidance, the congestion window increases with every incoming
acknowledgment.

If the congestion window is smaller than the BDP, an increase in the congestion win-
dow yields a proportional increase of the pacing rate. The RTT does not increase,
as no persistent queue at the bottleneck forms, but the congestion window increases.
Accordingly, the interval between paced packets decreases proportionally.

Once the congestion window is larger than the BDP, a persistent queue builds in front
of the bottleneck. This leads to an increase in the RTT due to the queueing delay. The
RTT increases with the same rate as the congestion window. Consequently, the pacing
rate is more stable if the congestion window has at least the size of the BDP.

Loss-based congestion controllers can cause packet loss due to the increasing congestion
window. Once packet loss has happened, the sending rate decreases to reduce the
amount of data in flight, as the congestion window is decreased. Exact numbers depend
on the implemented congestion controller. Therefore, the buffer for the bottleneck in
the measurement setup should be at least twice the BDP. A multiplicative decrease of
the congestion window by 50 % after packet loss still yields a congestion window larger
than the BDP.

Packet loss can also happen due to a random packet loss, which cannot be avoided on
real hardware. On modern hardware, random packet loss is an order of magnitude lower
than the number of losses caused by a full buffer. Therefore, we are not considering
random packet loss as a significant factor for our analysis. Nevertheless, experiments
and measurements should be performed multiple times to minimize the probability and
impact of biased data.

27

Chapter 5

Methodology

There are more than 15 different open-source implementations [39], which implement
features of the QUIC protocol differently [32]. Therefore, we examine multiple imple-
mentations representing the QUIC implementation diversity.

The measurement setup is realized with multiple distinct machines. The use of real
hardware allows for more accurate results. Our design choices and the performed mea-
surements are explained in this chapter.

5.1 Selection of QUIC Implementations

Due to the diversity between QUIC implementations, we expect to see different be-
havior in the pacing mechanism between different implementations. Because of this
assumption, we conduct measurements with multiple QUIC implementations to allow
for a sound analysis of the pacing mechanism.

To allow for a more in-depth analysis of the pacing mechanism of individual QUIC
implementations, we select a subset of the available open-source implementations [39].
An overview of the selected QUIC implementations is shown in Table 5.1. This subset
represents the QUIC implementation diversity because they are implemented in different
programming languages by different teams.

The selected QUIC implementations provide a fully functional example-client and -
server implementation to generate network traffic. The client has to initiate a con-
nection and request a test file. Then, the server sends this test file to the client. All
implementations support qlog, which supports analyzing the acknowledgment mecha-
nism.

Chapter 5: Methodology

Name Language Version Git commit Pacing BBR CUBIC NewReno
aioquic Python draft-28 04b28d8 X × × X
picoquic C draft-27 bf84867 X X X X
quic-go Go draft-29 eff36f3 X × X ×
ngtcp2 C draft-32 20d04c3 × × X ×

Table 5.1: Overview of selected QUIC implementations.

The majority of selected QUIC implementations implement packet pacing. For com-
parison with a QUIC implementation without an implemented pacing mechanism, we
added ngtcp2 [40] to the list. Ngtcp2 is programmed in C, as is picoquic [41], which
allows for the comparison of the general performance of a paced and non-paced sender.
Additionally, it uses the same congestion controller as quic-go, which allows for the
comparison between an implementation with and without pacing.

The QUIC implementations accord with different QUIC draft versions during our mea-
surements, but all of these versions recommend implementing packet pacing [1].

5.2 Comparison with TCP

The measurements for the pacing mechanism of QUIC implementations are compared
to pacing in TCP. The command-line tool nc (netcat) allows to configure a very basic
TCP connection [42]. This serves as a baseline for measuring the pacing performance
of different QUIC implementations and TCP. A netcat server is started and waits for
a netcat client to connect and request the test file. There are no other higher layer
protocols involved.

Using QUIC, the connection is authenticated and encrypted due to TLS 1.3. Addition-
ally, the server and the client application use the application layer protocol HTTP/3 [6]
to communicate.

To create a more similar scenario using TCP, a secure Apache web server is used [43].
The server and client use HTTPS to communicate [44]. With the command-line tool
curl, the client requests a test file over HTTPS [45]. The connection is authenticated
and encrypted with TLS 1.3. The client sends an HTTP/2 [3] request to the server,
which sends the test file in response. This covers the TCP+TLS+HTTP/2 stack and is
a similar scenario to the QUIC implementations’ server and client setup.

In the case of TCP, packet pacing can be enabled in three different ways. First of all,
the FQ queueing discipline can be configured on the outgoing network interface of the
sender [22]. FQ handles the pacing of egress traffic within the kernel, but outside of the

30

5.3 Measurement Setup

Splitter
Traffic
shaping

Traffic
shaping

Server

Sniffer

Router
Client

Figure 5.1: Pacing mechanism measurement setup.

TCP stack. Alternatively, the TCP kernel module can be instructed to use BBR. The
third way is setting the SO_MAX_PACING_RATE socket option on the socket the sender
uses to send data to a receiver.

In the case that FQ is not configured, the kernel uses the internal pacing implementation
of the TCP stack if it is requested by the usage of BBR or the socket option.

We implement a custom TCP sender and receiver in C using the socket API. The sender
sets the value of the socket option SO_MAX_PACING_RATE to the bottleneck bandwidth.

5.3 Measurement Setup

To retrieve accurate results, we set up a testing environment with four distinct machines.
An overview can be seen in Figure 5.1.

The operating system on every host is Debian 10.3 with a Linux kernel version of 4.19.0-
8. All machines are equipped with an Intel Xeon D-1518 CPU @ 2.20 GHz with four
cores and 32GB RAM. The hosts are live systems, meaning that everything is stored
within the RAM and there is no hard drive.

This setup with four devices allows measuring on real hardware, leading to more pre-
cise results than measurements done with network emulators or virtualization software.
Additionally, this reduces the overhead on the server and client side as much as possible
and serves as a baseline for further experimentation with higher CPU load.

The server and client applications under test are running on two distinct machines.
Between the client and server, a third Linux machine is configured as a router and
forwards packets between the server and client.

The server and the router are connected with two optical fibers that both support full-
duplex mode and a bandwidth of up to 10 Gbit/s. We use two optical fibers because a
passive fiber TAP is installed. This device splits signals which are transmitted through

31

Chapter 5: Methodology

the fiber [46], which only works in one direction. To split signals for both directions, we
have to use two fibers.

The server uses the first fiber to transmit packets to the router. The other fiber is used
by the router for the reverse direction to forward packets sent by the client to the server.
This behavior is achieved by configuring the routing tables on each host. Packets, which
are destined to the other machine, are sent via the network interface connected to the
correct fiber.

The split signals can be received by the last machine, which operates as a sniffer and
captures the total traffic exchanged between server and client on the high bandwidth
link.

Due to the sniffer capturing the traffic, neither the server, nor the client, nor the router
has to capture the traffic themselves with tcpdump, which further decreases the overhead
on the machines.

The router and the client are connected by a slower link, with a maximum bandwidth
of 1 Gbit/s. This link is the bottleneck of the connection.

This setup allows measuring how well the server implementation can pace packets on a
link with a bandwidth of 10 Gbit/s if the bottleneck bandwidth is at or below 1 Gbit/s.

5.4 Traffic Shaping

The bottleneck link between the router and client operates on up to 1 Gbit/s. To emulate
a lower bandwidth, we are using the Token-Bucket Filter (TBF) queueing discipline [47].
The command to configure TBF can be seen in the first and second line of Listing 5.1.
A tocken bucket fills at the specified rate (e.g., 10 Mbit/s). A packet is dequeued if
enough tokens are in the token bucket. We set the size of this bucket to approximately
one packet size. Otherwise, packets can be sent at a higher rate than the specified
bandwidth after idle times. This behavior interferes with BBR’s estimation of the
bottleneck bandwidth [48]. TBF requires setting a buffer size. This buffer determines
how long packets can wait for enough tokens to become available. We set the buffer size
equal to 4 · BDP, which means packets wait for up to 4 · RTT within the buffer. This
buffer size should yield more stable results than smaller buffers, as it does not get filled
up as quickly and, therefore, packet loss happens less likely.

32

5.5 Measurement Process

Listing 5.1: Configuring network interface $IF to limit the bandwidth and add a delay.
1 tc qdisc replace dev $IF root handle 1: \
2 tbf rate 10 mbit burst 1600b latency 200 ms
3 tc qdisc add dev $IF parent 1: handle 2: netem delay 25 ms limit 1000

Since all the hosts are connected via short cables, the RTT with empty buffers is below
0.5 ms. If a server uses a loss-based congestion controller, the buffer specified for TBF
increases the RTT, because the buffer fills as explained in Section 2.3.1. For BBR, the
RTT stays low, as BBR avoids filling up buffers [27].

To increase RTprop when buffers are empty, we additionally configure the Network
Emulator (NetEm) queueing discipline as shown in the third line of Listing 5.1. It
allows specifying a delay to outgoing packets, which effectively emulates a network link
with a higher signal propagation time. NetEm uses an internal queue to delay the
packets [49]. To avoid that packets have to be dropped because of a small queue within
NetEm, we set the limit of packets that can be stored to at least 2 · BDP. In theory,
one BDP would be enough, as this would be the capacity of a real link.

After packets have passed both queueing disciplines, they are dequeued and then passed
to the network interface card, which is responsible for sending the packets on the physical
layer.

5.5 Measurement Process

One the server, either the QUIC server application, nc in listen mode, the Apache
web server, or our custom TCP sender is started. Respectively, on the client machine,
the QUIC client, nc, curl, or our custom TCP client is started afterwards. The client
initiates the connection to the server and requests a test file. Next, the server sends the
file to the client until it is fully transmitted and the client closes the connection. The
test file is large enough to take at least two minutes to transmit. This procedure is done
ten times for each implementation. Analysis can be done on averaged results to reduce
the impact of unusual behavior caused by random packet loss, for example.

Each time an experiment is conducted, we capture the traffic with qlog and passive fiber
TAPs. We do not use tcpdump to capture traffic.

To capture and save the split signals on the sniffing host, we use a tool called Moon-
Sniff [50]. It allows measuring timestamps of sent packets with nanosecond precision,
with an accuracy of ± 20 ns.

33

Chapter 5: Methodology

Only QUIC clients log their internal state and events with qlog. To reduce overhead
on the QUIC server, we disable logging on it. The qlog files contain the acknowledg-
ment frames the client sent. We use this information to determine the acknowledgment
frequency. For TCP, the acknowledgment number in the TCP header captured by the
sniffer allows determining the acknowledgment frequency.

34

Chapter 6

Evaluation

We performed measurements with a variety of QUIC implementations. This chapter
presents our results and elaborates differences between the acknowledgment and pacing
mechanisms of different QUIC implementations and TCP.

6.1 Link Utilization

Measurements for the pacing behavior should be performed on a bandwidth on which
the QUIC implementations are not in overload. The sending of packets is application
limited if the sender cannot send data as fast as the bandwidth would allow because the
performance of the implementation is too low. This scenario does not allow to measure
in which way the sender actively paces packets since the sender is overloaded. Therefore,
a maximum bandwidth has to be found, on which the QUIC implementations’ sending
rate is limited by the bandwidth and not due to overload.

Therefore, we measured how well each implementation can utilize a link at various band-
widths with a single stream. For this performance measurement, we used a simplified
setup, which is shown in Figure 6.1. It is similar to the full setup in Figure 5.1, but the
router is missing. The server and client are connected on a link offering a bandwidth of
up to 10 Gbit/s. The traffic can be captured with the sniffer.

This performance measurement was done on four different bandwidths. The 1 Gbit/s
and 10 Gbit/s could be configured on the network interface cards themselves by using
the command-line tool ethtool, as shown in Listing 6.1. For 10 Mbit/s and 100 Mbit/s,
we used the TBF traffic shaper with a bucket size of 1600 B and a maximum latency of
200 ms.

Chapter 6: Evaluation

Splitter

Server

Sniffer

Client

Figure 6.1: Simplified link utilization measurement setup.

Listing 6.1: Configure a bandwidth of 1 Gbit/s on interface $IF.
1 ethtool -s $IF speed 1000 duplex full autoneg off

We calculated the link utilization by dividing the averaged throughput over the connec-
tion lifetime by the configured bandwidth.

link utilization = throughput
bandwidth

The throughput is the quotient of the total amount of bytes sent and the transmission
duration.

throughput = sent bytes
transmission duration (6.1)

The transmission duration is the difference between the timestamp of the first packet
and the last packet belonging to a connection. Each measurement was taking at least
40 seconds.

The amount of sent bytes is the sum of all Ethernet frames the server sent. Each frame
contains the Ethernet frame header, the IP header, and a TCP segment or a QUIC
packet wrapped by a UDP datagram.

On the client and server machine, only the respective applications were running. Logging
and capturing was disabled on both hosts. The packets were captured by the sniffer,
allowing to measure the transmission duration and the total amount of transmitted
bytes.

The link utilization was measured ten times for each implementation. An overview of the
averaged results is shown in Figure 6.2. Every implementation fully utilizes a 10 Mbit/s
and 100 Mbit/s link. The only exception is aioquic, which shows a link utilization of
46.92 % at 100 Mbit/s. At 1 Gbit/s, all TCP applications and the QUIC implementations
picoquic and ngtcp2 can utilize the link with at least 97 %. The QUIC implementations

36

6.2 Acknowledgment Mechanism

10 100 1000 10000
0

50

100

Bandwidth [Mbit/s]

Li
nk

ut
ili

za
tio

n
[%

]

netcat
Apache
custom
picoquic
ngtcp2
quic-go
aioquic

Figure 6.2: Link utilization at different bandwidths.

quic-go and aioquic lose performance. At 10 Gbit/s, the TCP applications are above
48 % link utilization and all QUIC implementations are below 19 %.

Based on these results, we decided to focus on a bandwidth of 10 Mbit/s and 100 Mbit/s
for analyzing the pacing mechanism. Except for aioquic on 100 Mbit/s, logging can be
enabled on the client side at those two bandwidths without overloading the client.

For each measurement, we remove the first five seconds from the analyzed data to
circumvent the influence of the connection initialization, startup and drain phases, or
slow start phase of various congestion controllers.

6.2 Acknowledgment Mechanism

The acknowledgment mechanism of a receiver is closely related to the pacing mechanism.
The sender needs the acknowledgments sent back by the receiver to estimate the RTT
of the connection. Packets can also be paced due to the ACK-clocking mechanism.

The more similar the acknowledgment behavior of different implementations, the easier
it is to compare their pacing mechanism. With every arriving acknowledgment, which
acknowledges new packets, the smoothed RTT value is updated. Ideally, newly sent
packets are paced according to the calculated pacing rate. The ACK-clock is established
if acknowledgments are sent at a steady rate, which is the bottleneck rate. The sender
can use the ACK-clocking mechanism for packet pacing.

The network in our setup, shown in Figure 5.1, is not changing throughout the mea-
surement. The sender and receiver do not share the link with competing parties. The
only change is the RTT, which increases if the bottleneck router buffer fills. Loss-based
congestion controllers repeatedly cause a slow increase of the RTT due to the additive

37

Chapter 6: Evaluation

0 1 2 3 4 5 6 7 8 9 10
0

0.2
0.4
0.6
0.8

1

Acknowledged TCP segments

D
en

sit
y

Apache
netcat

custom (SO)
netcat (BBR)
Apache (FQ)

(a) 10 Mbit/s.

0 1 2 3 4 5 6 7 8 9 10
0

0.2
0.4
0.6
0.8

1

Acknowledged TCP segments

D
en

sit
y

Apache
netcat

custom (SO)
netcat (BBR)
Apache (FQ)

(b) 100 Mbit/s.

Figure 6.3: Acknowledgment frequency of TCP at different bandwidths.

increase of the congestion window during the congestion avoidance phase. A sudden
decrease in the RTT happens regularly due to the multiplicative decrease of the conges-
tion window after a packet loss. The rate-based congestion controller BBR keeps the
RTT more constant and close to the with NetEm configured RTprop.

If the acknowledgments arrive at a steady rate, they can be used for a reliable estimation
of the RTT.

In our setup, the acknowledgments arrive at a steady rate, as they cannot get queued
behind other packets in the reverse direction, as only the sender sends large packets
containing data.

We examine the acknowledgment frequency of the client on different bandwidths. The
acknowledgment frequency counts the number of packets a receiver acknowledges with
one acknowledgment. Stable behavior supports the sender with packet pacing. Similar
behavior between different implementations simplifies comparing the pacing mechanism
between these.

6.2.1 Acknowledgment Frequency of TCP
Figure 6.3a shows the acknowledgment frequency of two TCP receivers without pacing
enabled and three TCP receivers with pacing enabled by either of the options explained
in Section 5.2.

CUBIC increases its congestion window and amount of data in flight during congestion
avoidance, which causes the bottleneck router buffer to fill up. This leads to packet
loss because the bottleneck router has to drop packets. TCP segments with a higher
sequence number still arrive at the receiver and get buffered. The receiver sends du-
plicate acknowledgments due to the cumulative acknowledgment mechanism of TCP.
On 10 Mbit/s, 26.52 % of the acknowledgments were duplicate, in the case of netcat
and Apache using CUBIC without pacing enabled as shown in Figure 6.3a. If no loss

38

6.2 Acknowledgment Mechanism

100 200 300 4000

500

1,000

1,500

Time [s]

#
A

ck
no

w
le

dg
ed

T
C

P
se

gm
en

ts netcat

(a) Non-paced sender.

100 200 300 4000

200

400

600

Time [s]

#
A

ck
no

w
le

dg
ed

T
C

P
se

gm
en

ts custom (SO)
netcat (BBR)
Apache (FQ)

(b) Paced senders.

Figure 6.4: Acknowledgment frequency over time of different TCP senders at 10 Mbit/s.

occurs, an acknowledgment is sent after two TCP segments have arrived. In the case of
TCP with pacing enabled, the amount of duplicate acknowledgments is close to zero,
indicating lower packet loss rates.

After the sender retransmits the lost segment, the receiver can acknowledge many pack-
ets since it has buffered the arrived segments with a higher sequence number. Figure 6.4a
shows their repeating occurrence throughout the connection lifetime.

Figure 6.4b shows how those large acknowledgments are not occurring if packet pacing
is enabled by using BBR or FQ. They did not completely disappear but yielded a lower
frequency in the case of our custom TCP sender and client written in C.

At 100 Mbit/s, the majority of times, a TCP receiver sends an acknowledgment after
three packets have arrived if pacing is not enabled or enabled by BBR, as shown in
Figure 6.3a. It stabilizes at two if pacing is enabled by the socket option or FQ.

There are much fewer duplicate acknowledgments seen on 100 Mbit/s than on 10 Mbit/s
in the case of non-paced senders. This is most likely caused by the larger buffer of the
TBF queueing discipline configured on the router. TBF is configured to let packets wait
for up to 200 ms in the queue for enough tokens to become available. At 100 Mbit/s,
tokens become ten times faster available than on 10 Mbit/s, effectively increasing the
queue size by a factor of 10. Packet loss still occurs, but about three times less fre-
quent than on 10 Mbit/s. The receiver sends only a few duplicate acknowledgments in
comparison to 10 Mbit/s. This could be caused by the higher bandwidth.

6.2.2 Acknowledgment Frequency of QUIC Implementations
Figure 6.5a shows that three out of the four examined QUIC receivers send an ac-
knowledgment after two QUIC packets have arrived on 10 Mbit/s. This accords with
the acknowledgment frequency of TCP at 10 Mbit/s for the most part. The duplicate
acknowledgments are missing because QUIC does not use cumulative acknowledgments.

39

Chapter 6: Evaluation

0 1 2 3 4 5 6 7 8 9 10
0

0.2
0.4
0.6
0.8

1

Acknowledged QUIC packets

D
en

sit
y

aioquic
ngtcp2
quic-go

(a) 10 Mbit/s.

0 1 2 3 4 5 6 7 8 9 10
0

0.2
0.4
0.6
0.8

1

Acknowledged QUIC packets

D
en

sit
y

aioquic
ngtcp2
quic-go

(b) 100 Mbit/s.

Figure 6.5: Acknowledgment frequency of multiple QUIC implementations.

175 180 185 190 195 200
2

4

6

8

Time [s]

#
A

ck
no

w
le

dg
ed

Q
U

IC
pa

ck
et

s

Figure 6.6: Acknowledgment frequency over time of an aioquic receiver at 100 Mbit/s.

At 100 Mbit/s, the acknowledgment frequency is more diverse between the QUIC imple-
mentations, as shown by Figure 6.5b. Quic-go still has an acknowledgment frequency
of two. Ngtcp2 varies between sending an acknowledgment after two or three packets
have arrived, similarly to TCP without pacing at 100 Mbit/s. Aioquic shows the highest
variation by sending increasingly many acknowledgments that acknowledge up to seven
packets. These do not seem to occur randomly. For most of the transmission, the ac-
knowledgment frequency follows the pattern shown in Figure 6.6. The acknowledgment
frequency fluctuates between 2-6 packets. This range narrows down to 5-7 within about
ten seconds, before it shows a peak with eight packets and repeats afterwards. This
pattern might be caused by aioquic being overloaded on 100 Mbit/s.

In the case of picoquic, the acknowledgment frequency depends on the activated con-
gestion controller.

If picoquic is configured to use BBR, it seems to use a different approach for determining
the acknowledgment frequency than the other QUIC implementations and TCP. Fig-
ure 6.7a shows an acknowledgment frequency of seven at 10 Mbit/s. At 100 Mbit/s, each
Ack frame the picoquic receiver sends usually acknowledges 68 to 69 packets. Instead
of sending an acknowledgment after a certain amount of arrived packets, picoquic sends
an acknowledgment after a certain time interval. In Figure 6.7b one cluster forms at

40

6.3 Pacing Mechanism in QUIC

0 10 20 30 40 50 60 70
0

0.2
0.4
0.6
0.8

1

Acknowledged QUIC packets

D
en

sit
y

10 Mbit/s 100 Mbit/s

(a) Distribution.

8.1 8.15 8.2 8.25 8.3
0

0.05

0.1

Acknowledgment sending interval [ms]

D
en

sit
y

10 Mbit/s
100 Mbit/s

(b) Sending intervals between acknowledgments.

Figure 6.7: Acknowledgment mechanism of a picoquic receiver if BBR is configured.

50 100 150 200 250 300 350
0

0.2
0.4
0.6
0.8

1

Acknowledged QUIC packets

D
en

sit
y

(a) Distribution.

100 200 300 400

100

200

300

Time [s]

#
A

ck
no

w
le

dg
ed

Q
U

IC
pa

ck
et

s

(b) Acknowledgment frequency over time.

Figure 6.8: Acknowledgment mechanism of a picoquic receiver at 10 Mbit/s if CUBIC is configured.

about 8.22 ms in the case of 10 Mbit/s. At 100 Mbit/s there are two clusters at 8.12 ms
and 8.23 ms respectively.

We tested the acknowledgment frequency of picoquic at 10 Mbit/s if it is configured to
use CUBIC. The client shows a very low acknowledgment frequency in comparison to
other QUIC implementations and TCP. Often, the receiver sends only one ACK frame
after 150 to 250 packets have arrived, as indicated by Figure 6.8a. Figure 6.8b shows
how the acknowledgments are distributed over time. The acknowledgment frequency
stabilizes at values around 200 for about 15 s and then drops to a value often below four
for less than one second in most cases.

6.3 Pacing Mechanism in QUIC

The bottleneck bandwidth specifies the maximum delivery rate at which data can be de-
livered to the receiver [27]. Together with the Ethernet frame size, the interval between
packets on a fully utilized link can be calculated.

interval = frame size
bandwidth (6.2)

41

Chapter 6: Evaluation

Ethernet Packet interval [ms] at
Implementation frame size [B] 10 Mbit/s 100 Mbit/s
TCP 1514 1.211 0.121
picoquic 1482 1.186 0.119
aioquic 1332 1.058 0.106
quic-go 1294 1.035 0.104
ngtcp2 1294 1.035 0.104

Table 6.1: Median Ethernet frame size and corresponding intervals between sent packets according to
Equation 6.2.

By substituting a higher bandwidth with the bottleneck bandwidth, this yields the
interval between optimally paced packets on a faster link in front of the bottleneck.

In Table 6.1 the median size for Ethernet frames can be seen for every implementation
we examined. For all the TCP applications, the Ethernet frame size is the same since all
use the same kernel implementation. For QUIC, the Ethernet frame size varies between
different implementations and is overall lower than in the case of TCP.

Table 6.1 also shows an overview of the optimal packet intervals according to Equa-
tion 6.2 on a faster link, if the bottleneck is 10 Mbit/s or 100 Mbit/s. A perfectly paced
sender would send packets evenly spread according to these intervals [1].

In the following, we present our measurement results by analyzing aspects of the pacing
mechanism in QUIC and TCP.

6.3.1 ACK-clocking
The ACK-clocking mechanism can be responsible for packet pacing, as explained in
Section 2.2.1. The QUIC implementations aioquic, ngtcp2, and quic-go use a loss-based
congestion controller and rely on ACK-clocking for packet pacing at 10 Mbit/s.

Figure 6.9a and Figure 6.9c show that half of the packets are sent with no gap in between
them in the case of aioquic and ngtcp2. The other half of the packets are sent with a
delay in an area around 2.1 ms. This behavior is caused by ACK-clocking as the sender
sends a burst of two packets after an acknowledgment has arrived. Figure 6.9b and
Figure 6.9d show the intervals between acknowledgments sent by the aioquic and ngtcp2
receiver, respectively. The acknowledgment intervals match the intervals between the
bursts of two packets sent by the aioquic or ngtcp2 sender very closely. The difference
between the two QUIC implementations is that for ngtcp2 the range of intervals between
acknowledgments has only 45.45 % of the width as in the case of aioquic.

42

6.3 Pacing Mechanism in QUIC

0
0.1
0.2
0.3

0 0.5 1 1.5 20
0.2
0.4
0.6
0.8

1

D
en

sit
y

Packet interval [ms]

C
um

ul
at

iv
e

(a) Distribution of intervals between packets
sent by an aioquic sender.

0
0.01
0.02
0.03

0 0.5 1 1.5 20
0.2
0.4
0.6
0.8

1

D
en

sit
y

Acknowlegment interval [ms]

C
um

ul
at

iv
e

(b) Distribution of intervals between acknowledgments
sent by an aioquic receiver.

0

0.2

0.4

0 0.5 1 1.5 20
0.2
0.4
0.6
0.8

1

D
en

sit
y

Packet interval [ms]

C
um

ul
at

iv
e

(c) Distribution of intervals between packets
sent by a ngtcp2 sender.

0
0.02
0.04
0.06
0.08

0 0.5 1 1.5 20
0.2
0.4
0.6
0.8

1

D
en

sit
y

Acknowlegment interval [ms]
C

um
ul

at
iv

e

(d) Distribution of intervals between acknowledgments
sent by a ngtcp2 receiver.

0

0.2

0.4

0 0.5 1 1.5 20
0.2
0.4
0.6
0.8

1

D
en

sit
y

Packet interval [ms]

C
um

ul
at

iv
e

(e) Distribution of intervals between packets
sent by the TCP sender.

0
0.05
0.1
0.15
0.2

0 0.5 1 1.5 20
0.2
0.4
0.6
0.8

1

D
en

sit
y

Acknowlegment interval [ms]

C
um

ul
at

iv
e

(f) Distribution of intervals between acknowledgments
sent by the TCP receiver.

Figure 6.9: Pacing mechanism of aioquic, ngtcp2 and paced TCP at 10 Mbit/s. The TCP sender sets
the value of the SO_MAX_PACING_RATE socket option to the bottleneck bandwidth.

The same pacing mechanism as for aioquic and ngtcp2 at 10 Mbit/s is observable in the
case of TCP with our custom server and client implementation using the socket option
to set a pacing rate. This can be seen in Figure 6.9. Due to larger packet sizes in the
case of TCP, the cluster of intervals between acknowledgments is located at 2.4 ms in
Figure 6.9f. The range of intervals around that value has 43.33 % of the width as in the
case of ngtcp2 and consequently only 19.7 % as in the case of aioquic.

Aioquic is in overload at 100 Mbit/s. In the case of ngtcp2, the relationship between
ACK-clocking and packet pacing is not clear on 100 Mbit/s, as indicated by Figure 6.10a
and Figure 6.10b. The acknowledgments arrive at a less reliable rate, similarly to the
acknowledgments sent by a TCP receiver if the TCP sender does not pace packets, as
shown in Figure 6.10d. Figure 6.10b shows clusters of intervals between acknowledg-
ments at around 0.11 ms and between 0.3 ms and 0.4 ms. On 100 Mbit/s, the ngtcp2
sender sends bursts of up to five packets. The intervals between bursts are relatively

43

Chapter 6: Evaluation

0
0.05
0.1
0.15
0.2

0 0.1 0.2 0.3 0.4 0.50
0.2
0.4
0.6
0.8

1

D
en

sit
y

Packet interval [ms]

C
um

ul
at

iv
e

(a) Distribution of intervals between packets
sent by a ngtcp2 sender.

0

0.05

0.1

0.15

0 0.1 0.2 0.3 0.40
0.2
0.4
0.6
0.8

1

D
en

sit
y

Acknowlegment interval [ms]

C
um

ul
at

iv
e

(b) Distribution of intervals between acknowledgments
sent by a ngtcp2 receiver.

0
0.2
0.4
0.6
0.8

0 0.2 0.4 0.6 0.8 1 1.20
0.2
0.4
0.6
0.8

1

D
en

sit
y

Packet interval [ms]

C
um

ul
at

iv
e

(c) Distribution of intervals between packets
sent by the unpaced TCP sender.

0

0.2

0.4

0 0.1 0.2 0.3 0.40
0.2
0.4
0.6
0.8

1

D
en

sit
y

Acknowlegment interval [ms]

C
um

ul
at

iv
e

(d) Distribution of intervals between acknowledgments
sent by the TCP receiver.

Figure 6.10: Pacing mechanism of ngtcp2 and non-paced TCP at 100 Mbit/s.

evenly distributed between 0.05 ms and 0.5 ms, as indicated by Figure 6.10a. Ngtcp2
does not implement an explicit pacer. Further analysis is necessary for more detailed
statements.

Figure 6.10a shows that bursts of packets are not as dense as the 10 Gbit/s link the
ngtcp2 sender is connected to would allow. Figure 6.10c shows that the interval between
packets in a burst is around 1.2 µs in the case of TCP due to the 10 Gbit/s link the sender
is connected to. In theory, the interval between bursted packets on a 10 Gbit/s link
would be around 1 µs in the case of ngtcp2. Our measurements show an interval of at
least 8 µs. Ngtcp2 uses the sendmsg system call to send QUIC packets [51]. Therefore,
there is one context switch per QUIC packet [20]. This overhead seems to limit the
sending rate of the ngtcp2 sender to about 1 Gbit/s. None of the other observed QUIC
implementations seems to be optimizing the number of system calls, which could be
one reason for the low performance of all the QUIC implementations at 10 Gbit/s in
Figure 6.2. The overhead for each packet varies between programming languages and
other implementation details of a QUIC implementation, which is why the observed link
utilization varies between different QUIC implementations.

Quic-go seems to rely on ACK-clocking for packet pacing in our measurements at
10 Mbit/s. This is indicated by Figure 6.11a and Figure 6.11b because the intervals
between packets sent by the sender match the intervals between arriving acknowledg-
ments. A very similar pattern can be seen for TCP in Figure 6.11 if TCP pacing is not
enabled.

44

6.3 Pacing Mechanism in QUIC

0

0.1

0.2

0 0.5 1 1.5 20
0.2
0.4
0.6
0.8

1

D
en

sit
y

Packet interval [ms]

C
um

ul
at

iv
e

(a) Distribution of intervals between packets
sent by a quic-go sender.

0
0.01
0.02
0.03
0.04

0 0.5 1 1.5 20
0.2
0.4
0.6
0.8

1

D
en

sit
y

Acknowlegment interval [ms]

C
um

ul
at

iv
e

(b) Distribution of intervals between acknowledgments
sent by a quic-go receiver.

0

0.2

0.4

0 0.5 1 1.5 2 2.50
0.2
0.4
0.6
0.8

1

D
en

sit
y

Packet interval [ms]

C
um

ul
at

iv
e

(c) Distribution of intervals between packets
sent by the TCP sender.

0

0.02

0.04

0 0.5 1 1.5 2 2.50
0.2
0.4
0.6
0.8

1

D
en

sit
y

Acknowlegment interval [ms]
C

um
ul

at
iv

e

(d) Distribution of intervals between acknowledgments
sent by the TCP receiver.

Figure 6.11: Pacing mechanism of quic-go and non-paced TCP at 10 Mbit/s.

In Figure 6.11d, 26.71 % of the acknowledgments are sent with an interval of around
1.2 ms by the TCP receiver. This percentage matches the percentage of duplicate ac-
knowledgments in Figure 6.3a. The TCP receiver sends duplicate acknowledgments
immediately if a segment introducing a gap in the sequence number space arrives. It
does not wait for a second segment, which is the recommended behavior for TCP re-
ceivers [17]. The interval between duplicate acknowledgments is 1.2 ms because the
bottleneck delivers packets sent by the server at this interval due to the TCP segment
size.

Quic-go seems to follow the recommendation for TCP since the distribution of intervals
looks similar to TCP in Figure 6.11. The receiver seems to send an acknowledgment
without delay if a packet introducing a gap in the packet number space arrives. Due to
the smaller size of quic-go packets compared to TCP, the interval for these immediately
sent acknowledgments should be around 1.04 ms. Instead, the cluster is located at
1.37 ms. One reason might be additional overhead for processing a QUIC packet.

The strict acknowledgment frequency of two shown in Figure 6.5 seems to contradict
the hypothesis that quic-go sends acknowledgments without delay after loss. We would
have expected the quic-go receiver to acknowledge just one packet in a few cases, similar
to duplicate acknowledgments in TCP. Further research has to be done to find an exact
answer.

45

Chapter 6: Evaluation

0
0.02
0.04
0.06
0.08

0 0.1 0.2 0.3 0.4 0.50
0.2
0.4
0.6
0.8

1

D
en

sit
y

Packet interval [ms]

C
um

ul
at

iv
e

(a) Distribution of intervals between packets
sent by a quic-go sender.

0

0.02

0.04

0.06

0 0.1 0.2 0.3 0.40
0.2
0.4
0.6
0.8

1

D
en

sit
y

Acknowlegment interval [ms]

C
um

ul
at

iv
e

(b) Distribution of intervals between acknowledgments
sent by a quic-go receiver.

0

0.2

0.4

0 0.5 1 1.5 20
0.2
0.4
0.6
0.8

1

D
en

sit
y

Packet interval [ms]

C
um

ul
at

iv
e

(c) Distribution of intervals between packets
sent by the paced TCP sender.

0
0.02
0.04
0.06

0 1 2 30
0.2
0.4
0.6
0.8

1

D
en

sit
y

Acknowlegment interval [ms]

C
um

ul
at

iv
e

(d) Distribution of intervals between acknowledgments
sent by the TCP receiver.

Figure 6.12: Pacing mechanism of quic-go and paced TCP at 100 Mbit/s.

On 100 Mbit/s, ACK-clocking could still be important for the pacing mechanism in quic-
go. This is indicated by Figure 6.12a and Figure 6.12b due to a similar distribution of
intervals between arriving acknowledgments and the bursts of two packets the sender
sends.

In the case of our custom TCP sender, which paces packets, ACK-clocking seems to
be the primary factor for pacing at 100 Mbit/s. This is indicated by Figure 6.12c and
Figure 6.12d. However, Figure 6.12 shows that the intervals between acknowledgments
the TCP receiver sends are variating much less compared to quic-go. Further research
is required to find the reason for quic-go’s behavior.

6.3.2 BBR
Pacing can be achieved by using BBR. Picoquic is the only QUIC implementation we
examined which uses BBR.

Because of BBR, the picoquic sender estimates the BtlBw and RTprop value [27]. For
most of the time, the sending rate is set equal to the estimated bottleneck bandwidth.
During the probing-for-bandwidth phase, every eighth RTprop the sending rate is in-
creased by 25 % and afterwards decreased for one RTprop as explained in Section 2.3.2
and shown in Listing 6.2.

46

6.3 Pacing Mechanism in QUIC

Pacing gain 1.25 1.0 0.75
Interval [ms] with BtlBw = 10 Mbit/s 0.949 1.186 1.581
Interval [ms] with BtlBw = 100 Mbit/s 0.095 0.119 0.158

Table 6.2: Theoretical intervals between packets sent by a picoquic sender using BBR during the
probing-for-bandwidth phase.

0

0.02

0.04

0 0.5 1 1.50
0.2
0.4
0.6
0.8

1

D
en

sit
y

Packet interval [ms]

C
um

ul
at

iv
e

optimal CDF

(a) 10 Mbit/s.

0
0.01
0.02
0.03

0 0.05 0.1 0.150
0.2
0.4
0.6
0.8

1

D
en

sit
y

Packet interval [ms]

C
um

ul
at

iv
e

optimal CDF

(b) 100 Mbit/s.

Figure 6.13: Distribution of intervals between packets sent by a picoquic sender.

Listing 6.2: The pacing gain cycle used in the picoquic implementation.
1 static const double bbr_pacing_gain_cycle [BBR_GAIN_CYCLE_LEN] = \
2 { 1.0 , 1.0 , 1.0 , 1.0 , 1.0 , 1.0 , 1.25 , 0.75};

Consequently, the intervals between evenly spread packets on a faster link in front of
the bottleneck vary due to BBR since the intervals depend on the sending rate.

interval = frame size
sending rate = frame size

BtlBw · pacing gain

For picoquic, the theoretical optimal packet intervals on a faster link in front of the
bottleneck are shown in Table 6.2.

The distribution of intervals between packets the picoquic sender sent on a 10 Mbit/s
connection are shown in Figure 6.13a. There are three clusters visible around the
optimal interval values from Table 6.2 indicating that picoquic is able to estimate the
bottleneck bandwidth correctly.

If only the phase for probing for more bandwidth is taken into consideration, 75 % of
the packets should be paced according to the bottleneck bandwidth in a pacing gain
cycle length of eight. About 15.6 % of the packets should be paced with a 25 % higher
rate. 9.4 % of the packets should be paced with a 25 % lower rate.

The measured amount of packet intervals in an area of ± 0.1 ms around the interval
values according to the different pacing gains are shown in Table 6.3. There are fewer
packets in the center cluster and more packets in the two outer clusters than by theory.

47

Chapter 6: Evaluation

Interval [ms] 0.949 1.186 1.581
Theoretical 15.60 % 75.00 % 9.40 %
Measured at 10 Mbit/s 24.78 % 58.84 % 14.52 %

Table 6.3: Percentage of intervals between packets sent by picoquic using BBR in an area of ± 0.1 ms
around the given interval value.

Consequently, the cumulative distribution function (CDF) of the observed intervals does
not perfectly match the optimal CDF, as shown in Figure 6.13a.

At 100 Mbit/s, the results look similar but show an interesting pattern, which is shown
in Figure 6.13b. Again, there are three major clusters visible, but each is divided
into three minor clusters. The three major clusters are formed because of the BBR
algorithm. The minor clusters are probably caused by variations in the measurements of
the bottleneck bandwidth throughout the connection lifetime. The three minor clusters
of the center major cluster are located at 114 µs, 120.5 µs and 125 µs. The other minor
clusters distribute accordingly.

This pattern does not change if a three times smaller test file is transmitted to reduce
the transmission duration. Therefore, the over and under-estimation of the bottleneck
bandwidths seems to be occurring in much shorter cycles. At 10 Mbit/s, we did not
observe this pattern, even if a file of the same size as on 100 Mbit/s is transmitted.

One reason for this observation in the behavior of picoquic’s BBR implementation at
100 Mbit/s could be inaccuracies within TBF at a rate of 100 Mbit/s.

The lower acknowledgment frequency we observed at 100 Mbit/s in comparison to
10 Mbit/s in Figure 6.7a is most likely not the reason. In both cases, the picoquic
sender receives an acknowledgment approximately every 8.2 ms.

For TCP, the Linux kernel allows using BBR instead of CUBIC as the congestion con-
troller [52]. Figure 6.14 compares the intervals between and packets sent by a TCP
sender using BBR and incoming acknowledgments on 10 Mbit/s.

Figure 6.14b shows that the receiver sends an acknowledgment acknowledging two pack-
ets every 2.4 ms.

In general, the sender sends bursts of two packets, as indicated by Figure 6.14a due to
an interval of just 1.2 µs between 50 % of the packets. In contrast to picoquic, the three
clusters in the pattern of intervals are not shown for individual packets. Instead, the
pattern applies to the distribution of intervals between bursts of two packets.

48

6.3 Pacing Mechanism in QUIC

0

0.2

0.4

0 1 2 30
0.2
0.4
0.6
0.8

1

D
en

sit
y

Packet interval [ms]

C
um

ul
at

iv
e

(a) Distribution of intervals between packets
sent by a TCP sender using BBR.

0

0.02

0.04

0 0.5 1 1.5 2 2.50
0.2
0.4
0.6
0.8

1

D
en

sit
y

Acknowlegment interval [ms]

C
um

ul
at

iv
e

(b) Distribution of intervals between acknowledgments
sent by a TCP receiver, if the sender uses BBR.

Figure 6.14: Pacing mechanism of TCP at 10 Mbit/s using BBR.

Interval [ms] 2.007 2.492 3.310
Theoretical 7.80 % 37.50 % 4.70 %
Measured 12.86 % 32.45 % 3.07 %

Table 6.4: Percentage of intervals in an area of ± 0.1 ms around the given interval value during the
probing-for-bandwidth phase of a TCP sender using BBR.

This explains the three clusters around 2.01 ms, 2.49 ms, and 3.31 ms on 10 Mbit/s.
These values are more than twice as large as in the case of picoquic because of imple-
mentation details of BBR in TCP and the larger size of TCP segments in comparison
to picoquic packets [52].

The measured percentage of packets in an area of ± 0.1 ms around 2.01 ms, 2.49 ms,
and 3.31 ms are shown in Table 6.3. Similarly to picoquic, there are more packets in
the lower cluster and fewer packets in the center cluster than expected by theory. In
contrast to picoquic, packets are missing in the upper cluster.

In the case of TCP, the density of intervals falls below a threshold of 0.0002 at a distance
of ± 50 µs to the center of the three clusters. In the case of picoquic, this threshold
is usually only undercut at a distance of at least ± 120 µs. This could be hinting that
the TCP kernel implementation could be able to time the sending of packets two times
more precisely than a QUIC user space implementation.

6.3.3 Pacing Rate Calculation
For loss-based congestion controllers, aioquic, guic-qo, and picoquic calculate the pacing
rate by dividing the current congestion window through the smoothed RTT value [53–
55].

pacing rate = N · congestion window
smoothed RTT (6.3)

49

Chapter 6: Evaluation

0
0.01
0.02
0.03
0.04

0 0.5 1 1.50
0.2
0.4
0.6
0.8

1

D
en

sit
y

Packet interval [ms]

C
um

ul
at

iv
e

(a) Distribution of intervals between packets
sent by the picoquic sender.

0

0.05

0.1

0.15

0 100 200 3000
0.2
0.4
0.6
0.8

1

D
en

sit
y

Acknowlegment interval [ms]

C
um

ul
at

iv
e

(b) Distribution of intervals between acknowledgments
sent by the picoquic receiver.

Figure 6.15: Pacing mechanism of picoquic at 10 Mbit/s using CUBIC.

Based on the received acknowledgments, the QUIC sender calculates a smoothed RTT
value as an estimation for the RTT of the connection [1]. How much the congestion
window and the RTT change over time depends on the used congestion controller of an
application. There is no other influence in our isolated setup.

Aioquic uses N = 1 in Equation 6.3 and leaky bucket algorithm as its pacer implemen-
tation [53]. The rate the bucket fills is constant. A packet needs a different amount of
tokens depending on the calculated pacing rate. The maximum capacity of the bucket
is limited to 16 maximum datagram sizes. Consequently, the pacer of aioquic allows
bursts of up to 16 packets. In theory, the remaining packets of a larger burst will be
delayed. In our measurements, those burst sizes were not achieved during the congestion
avoidance phase, which is why our results solely show ACK-clocking being responsible
for packet pacing.

Quic-go does not implement a leaky bucket algorithm for the pacer but follows a dif-
ferent approach [54]. If the calculated pacing rate results in an interval of below 1 ms
between packets, the sender does not delay each packet accordingly but sends pack-
ets in a burst instead. Then, the sender waits for the remaining time until 1 ms has
passed. Consequently, the pacing implementation in quic-go allows higher bursts on
higher bandwidths.

In contrast to aioquic, quic-go uses N = 1.25 in Equation 6.3 [54]. With a bottleneck
bandwidth of 10 Mbit/s, quic-go might calculate an interval of below the 1 ms threshold
for the pacer. This could be the reason why quic-go shows ACK-clocking at 10 Mbit/s
instead of evenly spread packets in our measurements. Further research is required for
a definite answer.

Picoquic can also be configured to use CUBIC instead of BBR. In contrast to other
QUIC implementations and TCP, picoquic does not use ACK-clocking for packet pac-
ing but sends almost 91 % of the packets evenly spread as indicated by Figure 6.15a.

50

6.3 Pacing Mechanism in QUIC

Figure 6.15b shows that the client often only sends one ACK frame every 150 ms to
300 ms, indicating that the picoquic sender is not ACK-clocked.

Table 6.1 states that an interval of 1.19 ms would be optimal for picoquic, since this
is the interval between packets on the bottleneck link. In Figure 6.15a, most packets
are sent with an interval of just 0.94 ms. In theory, this results from using a factor of
N = 1.25 in Equation 6.2.

interval = frame size
N · bandwidth = 1482 B

1.25 · 10 Mbit/s ≈ 0.95 ms

Within the source code of picoquic, the pacing rate is calculated by dividing the current
congestion window by the calculated smoothed RTT [55].

pacing rate = congestion window
smoothed RTT

Further research has to be done to answer why picoquic paces packets according to a
25 % higher pacing rate than the bottleneck rate.

51

Chapter 7

Conclusion

This chapter concludes our results and major contributions. Additionally, we provide
an outlook on future work.

7.1 Major Contributions

Our major contributions to the research field around QUIC can be summarized by the
answers to our research questions.

To which extend can the pacing mechanism of current QUIC implementa-
tions be analyzed?

The open-source QUIC implementations we examined are not optimized for high band-
widths. For the analysis of the pacing mechanism in QUIC, implementations must not
be in overload because packets would not be actively paced by the sender but spread
because of performance limitations. On bandwidths in the range of 1 Gbit/s, QUIC im-
plementations not implemented in C cannot fully utilize the link with a single stream.
A value between 1 Gbit/s and 2 Gbit/s seems to be the maximum throughput the ex-
amined QUIC implementations programmed in C can achieve with a single stream.
The main reason might be the context switch for each packet sent, which is one reason
for a delay of at least around 5 µs between bursted packets. Consequently, the QUIC
implementations we examined show a link utilization between 0.47 % and 18.3 % at
10 Gbit/s.

This performance limitation on high bandwidths constrains the evaluation of the pac-
ing mechanism to bandwidths of below 1 Gbit/s until the implementations are further
optimized.

Chapter 7: Conclusion

For a basic evaluation of the pacing mechanism, a simple measurement setup can be
used. Ideally, the setup allows capturing timestamps for sent packets passively. The
setup needs a high and low bandwidth link, which functions as the bottleneck. On the
high bandwidth link, the intervals between sent packets can be analyzed.

How does the acknowledgment frequency differ between QUIC implementa-
tions and TCP?

Between most of the examined QUIC implementations, the acknowledgment mechanism
behaves similar to TCP on 10 Mbit/s. In general, the QUIC receiver sends an acknowl-
edgment after two incoming QUIC packets. A quic-go receiver seems to be not waiting
for a second packet to arrive if it received a packet introducing a gap in the packet
number space due to packet loss. Instead, it seems to send an acknowledgment without
delay, similarly to TCP sending duplicate acknowledgments immediately.

On 100 Mbit/s the acknowledgment frequency is more diverse between QUIC implemen-
tations and sets apart from TCP.

One outstanding exception is the acknowledgment frequency of the QUIC implementa-
tion picoquic. Instead of sending an acknowledgment after a certain amount of received
packets, the picoquic receiver sends an acknowledgment once approximately every 8.2 ms
on both 10 Mbit/s and 100 Mbit/s if picoquic is configured to use BBR. If picoquic uses
CUBIC, the acknowledgment frequency is much lower with an interval of up to 360 ms
between acknowledgments.

How important is ACK-clocking for packet pacing in QUIC?

In our measurements, most QUIC senders using loss-based congestion controllers rely
on ACK-clocking for packet pacing on bandwidths around 10 Mbit/s. Therefore, the ob-
served pacing behavior between implementations implementing a pacing algorithm does
not differ from implementations, which do not implement a pacer, on this bandwidth.

One exception is picoquic. Picoquic implements BBR and also loss-based congestion
controllers. In both cases, the sender does not rely on ACK-clocking for packet pacing
but sends packets according to a calculated pacing rate.

On higher bandwidths, the relationship between ACK-clocking and the pacing mecha-
nism of QUIC implementations is less tightly coupled and requires further investigation.

How does the pacing mechanism differ between QUIC implementations and
TCP?

Since ACK-clocking is the dominant factor for packet pacing in our measurements, TCP
and QUIC pace packets similarly in most cases. Our findings indicate that a TCP sender

54

7.2 Future Work

or receiver might be able to time the sending of a packet up to five times more precisely
than a QUIC application.

The QUIC draft proposes a leaky bucket algorithm for a pacer implementation [1]. The
bucket fills according to the calculated pacing rate. A perfectly paced sender would
send packets evenly spread over time.

Across different QUIC implementations, there are deviating approaches for a pacer
implementation. Aioquic uses a similar kind of leaky bucket algorithm, limiting the
size of a burst to 16 packets. Quic-go does not evenly spread packets if the pacing
rate results in an interval of below 1 ms between packets. Instead, it sends packets in a
burst and then waits for 1 ms. Consequently, quic-go tolerates higher bursts on higher
bandwidths.

Picoquic implements BBR, which handles packet pacing [27]. At 10 Mbit/s, the observed
intervals between packets sent by a picoquic sender match the theoretically calculated
values closely. At 100 Mbit/s, the intervals between packets show more clusters than
expected. This behavior might be caused by inaccuracies within TBF that we used to
limit the bandwidth on the bottleneck. Picoquic applies BBR to individual packets,
while TCP paces bursts of two packets according to BBR. If the picoquic sender is
configured to use CUBIC, the pacing mechanism uses a leaky bucket algorithm. In
contrast to other QUIC implementations and TCP, picoquic sends 91 % packets evenly
spread instead of relying on ACK-clocking.

7.2 Future Work

This thesis had a look at the pacing mechanism of four different open-source QUIC im-
plementations in a basic network. More implementations implement a pacing mechanism
as well, which can be analyzed. Additionally, the influence on the pacing mechanism of
various network conditions, like shared or lossy links, can be investigated.

Our measurements were performed in a static network, which does not change over the
lifetime of a QUIC or TCP connection. Changing network conditions, like a new RTT
or bottleneck bandwidth, have an influence on the pacing rate. It can be investigated
how fast different QUIC implementations can react and how well they can adapt to
network changes.

Our results show that in the case of senders using loss-based congestion controllers,
ACK-clocking is the primary factor for packet pacing on a bandwidth around 10 Mbit/s.
Statements about higher bandwidths are often not possible due to the performance

55

limitations of the QUIC sender. If implementations get further optimized, the pacing
mechanism can be evaluated on higher bandwidths.

Some implemented pacing strategies only show an effect if higher bursts occur during the
transmission. In our measurements, we did not generate enough of these large bursts to
make well-founded statements about how well these strategies can pace packets. Future
work can find techniques forcing a QUIC sender to send higher bursts.

A pacing mechanism is just one optimization for a QUIC sender. This optimization
conflicts with GSO, for example, since it does not allow the sender to set individual
timestamps for each packet [20]. GSO would improve the throughput on higher band-
widths, at the cost of packet pacing. Pacing can be offloaded to the kernel by configuring
the FQ queueing discipline [56]. It can be investigated how well FQ can pace multiple
QUIC flows if a single UDP socket is used by multiple QUIC connections.

In our measurements, we used pairs of servers and clients of the same QUIC implementa-
tion. We discovered different strategies for the acknowledgment and pacing mechanism.
Further research can investigate how these strategies perform if a server and client of
different QUIC implementations communicate.

56

Chapter A

List of acronyms

BDP Bandwidth-delay product
BtlBw Bottleneck bandwidth
FQ Fair Queue
GSO Generic segmentation offload
HTTP Hypertext Transfer Protocol
HTTP/2 Hypertext Transfer Protocol version 2
HTTP/3 Hypertext Transfer Protocol version 3
HTTPS Hypertext Transfer Protocol Secure
IETF Internet Engineering Task Force
MDS Maximum datagram size
MSS Maximum segment size
MTU Maximum transmission unit
NetEm Network Emulator
NIC Network interface card
QUIC Quick UDP Internet Connections
RTprop Round-trip propagation time
RTT Round trip time
TBF Token-Bucket Filter
TCP Transmission Control Protocol
TLS Transport Layer Security
TLS 1.2 Transport Layer Security protocol version 1.2
TLS 1.3 Transport Layer Security protocol version 1.3
TSO TCP segmentation offload
UDP User Datagram Protocol

Bibliography

[1] J. Iyengar and I. Swett, “QUIC Loss Detection and Congestion Control”, Inter-
net Engineering Task Force, Internet-Draft draft-ietf-quic-recovery-34, Jan. 2021,
Work in Progress, 52 pp. [Online]. Available: https://datatracker.ietf.org/
doc/html/draft-ietf-quic-recovery-34.

[2] A. Aggarwal, S. Savage, and T. Anderson, “Understanding the Performance of
TCP Pacing”, in Proceedings IEEE INFOCOM 2000. Conference on Computer
Communications. Nineteenth Annual Joint Conference of the IEEE Computer and
Communications Societies (Cat. No.00CH37064), vol. 3, 2000, pp. 1157–1165.

[3] M. Belshe, R. Peon, and M. Thomson, Hypertext Transfer Protocol Version 2
(HTTP/2), RFC 7540, May 2015. [Online]. Available: https://rfc- editor.
org/rfc/rfc7540.txt.

[4] A. Langley, A. Riddoch, A. Wilk, A. Vicente, C. Krasic, D. Zhang, F. Yang, F.
Kouranov, I. Swett, J. Iyengar, J. Bailey, J. Dorfman, J. Roskind, J. Kulik, P.
Westin, R. Tenneti, R. Shade, R. Hamilton, V. Vasiliev, W.-T. Chang, and Z.
Shi, “The QUIC Transport Protocol: Design and Internet-Scale Deployment”, in
Proceedings of the Conference of the ACM Special Interest Group on Data Commu-
nication, ser. SIGCOMM ’17, Los Angeles, CA, USA: Association for Computing
Machinery, 2017, 183–196.

[5] J. Iyengar and M. Thomson, “QUIC: A UDP-Based Multiplexed and Secure Trans-
port”, Internet Engineering Task Force, Internet-Draft draft-ietf-quic-transport-
34, Jan. 2021, Work in Progress, 207 pp. [Online]. Available: https : / /
datatracker.ietf.org/doc/html/draft-ietf-quic-transport-34.

[6] M. Bishop, “Hypertext Transfer Protocol Version 3 (HTTP/3)”, Internet En-
gineering Task Force, Internet-Draft draft-ietf-quic-http-33, Dec. 2020, Work in
Progress, 73 pp. [Online]. Available: https://datatracker.ietf.org/doc/
html/draft-ietf-quic-http-33.

https://datatracker.ietf.org/doc/html/draft-ietf-quic-recovery-34
https://datatracker.ietf.org/doc/html/draft-ietf-quic-recovery-34
https://rfc-editor.org/rfc/rfc7540.txt
https://rfc-editor.org/rfc/rfc7540.txt
https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport-34
https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport-34
https://datatracker.ietf.org/doc/html/draft-ietf-quic-http-33
https://datatracker.ietf.org/doc/html/draft-ietf-quic-http-33

[7] D. Saif, C.-H. Lung, and A. Matrawy, An Early Benchmark of Quality of Experi-
ence Between HTTP/2 and HTTP/3 using Lighthouse, 2020. arXiv: 2004.01978
[cs.NI].

[8] K. Nepomuceno, I. N. d. Oliveira, R. R. Aschoff, D. Bezerra, M. S. Ito, W. Melo,
D. Sadok, and G. Szabó, “QUIC and TCP: A Performance Evaluation”, in 2018
IEEE Symposium on Computers and Communications (ISCC), 2018, pp. 45–51.

[9] K. Wolsing, J. Rüth, K. Wehrle, and O. Hohlfeld, “A Performance Perspective on
Web Optimized Protocol Stacks: TCP+TLS+HTTP/2 vs. QUIC”, in Proceedings
of the Applied Networking Research Workshop, ser. ANRW ’19, Montreal, Quebec,
Canada: Association for Computing Machinery, 2019, 1–7.

[10] P. Megyesi, Z. Krämer, and S. Molnár, “How quick is QUIC?”, in 2016 IEEE
International Conference on Communications (ICC), 2016, pp. 1–6.

[11] J. Rüth, K. Wolsing, K. Wehrle, and O. Hohlfeld, “Perceiving QUIC: Do Users
Notice or Even Care?”, in Proceedings of the 15th International Conference on
Emerging Networking Experiments And Technologies, ser. CoNEXT ’19, Orlando,
Florida: Association for Computing Machinery, 2019, 144–150.

[12] Y. Yu, M. Xu, and Y. Yang, “When QUIC meets TCP: an Experimental Study”,
in 2017 IEEE 36th International Performance Computing and Communications
Conference (IPCCC), 2017, pp. 1–8.

[13] A. S. Tanenbaum and H. Bos, Modern operating systems. Pearson, 2015.
[14] T. Hruby, T. Crivat, H. Bos, and A. S. Tanenbaum, “On Sockets and System Calls:

Minimizing Context Switches for the Socket API”, in 2014 Conference on Timely
Results in Operating Systems (TRIOS 14), Broomfield, CO: USENIX Association,
Oct. 2014.

[15] K. Oku and J. Iyengar, Can QUIC match TCP’s computational efficiency?, ht
tps://www.fastly.com/blog/measuring- quic- vs- tcp- computational-
efficiency; last accessed on 10.01.2021.

[16] Transmission Control Protocol, RFC 793, Sep. 1981. [Online]. Available: https:
//rfc-editor.org/rfc/rfc793.txt.

[17] E. Blanton, D. V. Paxson, and M. Allman, TCP Congestion Control, RFC 5681,
Sep. 2009. [Online]. Available: https://rfc-editor.org/rfc/rfc5681.txt.

[18] V. Jacobson, “Congestion Avoidance and Control”, in Symposium Proceedings
on Communications Architectures and Protocols, ser. SIGCOMM ’88, Stanford,
California, USA: Association for Computing Machinery, 1988, 314–329.

[19] W. Lautenschlaeger, “A Deterministic TCP Bandwidth Sharing Model”, Apr.
2014.

60

https://arxiv.org/abs/2004.01978
https://arxiv.org/abs/2004.01978
https://www.fastly.com/blog/measuring-quic-vs-tcp-computational-efficiency
https://www.fastly.com/blog/measuring-quic-vs-tcp-computational-efficiency
https://www.fastly.com/blog/measuring-quic-vs-tcp-computational-efficiency
https://rfc-editor.org/rfc/rfc793.txt
https://rfc-editor.org/rfc/rfc793.txt
https://rfc-editor.org/rfc/rfc5681.txt

[20] A. Ghedini, Accelerating UDP packet transmission for QUIC, https://calendar.
perfplanet.com/2019/accelerating-udp-packet-transmission-for-quic/;
last accessed on 28.12.2020.

[21] TCP: Internal implementation for pacing, https://git.kernel.org/pub/scm/
linux/kernel/git/netdev/net-next.git/commit/?id=218af599fa635b107cf
e10acf3249c4dfe5e4123; last accessed on 05.01.2021.

[22] FQ - Fair Queue traffic policing, https://man7.org/linux/man-pages/man8/
tc-fq.8.html; last accessed on 05.01.2021.

[23] T. Henderson and S. Floyd, The NewReno Modification to TCP’s Fast Recovery
Algorithm, RFC 2582, Apr. 1999. [Online]. Available: https://rfc-editor.org/
rfc/rfc2582.txt.

[24] A. Gurtov, T. Henderson, S. Floyd, and Y. Nishida, The NewReno Modification
to TCP’s Fast Recovery Algorithm, RFC 6582, Apr. 2012. [Online]. Available:
https://rfc-editor.org/rfc/rfc6582.txt.

[25] I. Rhee, L. Xu, S. Ha, A. Zimmermann, L. Eggert, and R. Scheffenegger, CUBIC
for Fast Long-Distance Networks, RFC 8312, Feb. 2018. [Online]. Available: http
s://rfc-editor.org/rfc/rfc8312.txt.

[26] TCP: Make cubic the default congestion controller, https://git.kernel.org/
pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=597811ec167f
a01c926a0957a91d9e39baa30e64; last accessed on 17.01.2021.

[27] N. Cardwell, Y. Cheng, C. S. Gunn, S. H. Yeganeh, and V. Jacobson, “BBR:
Congestion-based congestion control”, Queue, vol. 14, no. 5, pp. 20–53, 2016.

[28] User Datagram Protocol, RFC 768, Aug. 1980. [Online]. Available: https://rfc-
editor.org/rfc/rfc768.txt.

[29] M. Piraux, Q. De Coninck, and O. Bonaventure, “Observing the Evolution of
QUIC Implementations”, in Proceedings of the Workshop on the Evolution, Per-
formance, and Interoperability of QUIC, ser. EPIQ’18, Heraklion, Greece: Associ-
ation for Computing Machinery, 2018, 8–14.

[30] IETF QUIC Working Group (quic), https://datatracker.ietf.org/wg/quic/
documents/; last accessed on 28.12.2020.

[31] Mininet, http://mininet.org; last accessed on 03.01.2021.
[32] R. Marx, J. Herbots, W. Lamotte, and P. Quax, “Same Standards, Different Deci-

sions: A Study of QUIC and HTTP/3 Implementation Diversity”, in Proceedings
of the Workshop on the Evolution, Performance, and Interoperability of QUIC,
ser. EPIQ ’20, Virtual Event, USA: Association for Computing Machinery, 2020,
14–20.

[33] quiche, https://github.com/cloudflare/quiche; last accessed on 08.02.2021.
[34] W. Almesberger, Linux network traffic control—implementation overview, 1999.

61

https://calendar.perfplanet.com/2019/accelerating-udp-packet-transmission-for-quic/
https://calendar.perfplanet.com/2019/accelerating-udp-packet-transmission-for-quic/
https://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next.git/commit/?id=218af599fa635b107cfe10acf3249c4dfe5e4123
https://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next.git/commit/?id=218af599fa635b107cfe10acf3249c4dfe5e4123
https://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next.git/commit/?id=218af599fa635b107cfe10acf3249c4dfe5e4123
https://man7.org/linux/man-pages/man8/tc-fq.8.html
https://man7.org/linux/man-pages/man8/tc-fq.8.html
https://rfc-editor.org/rfc/rfc2582.txt
https://rfc-editor.org/rfc/rfc2582.txt
https://rfc-editor.org/rfc/rfc6582.txt
https://rfc-editor.org/rfc/rfc8312.txt
https://rfc-editor.org/rfc/rfc8312.txt
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=597811ec167fa01c926a0957a91d9e39baa30e64
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=597811ec167fa01c926a0957a91d9e39baa30e64
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=597811ec167fa01c926a0957a91d9e39baa30e64
https://rfc-editor.org/rfc/rfc768.txt
https://rfc-editor.org/rfc/rfc768.txt
https://datatracker.ietf.org/wg/quic/documents/
https://datatracker.ietf.org/wg/quic/documents/
http://mininet.org
https://github.com/cloudflare/quiche

[35] S. Hemminger, “Network emulation with NetEm”, in Linux conf au, 2005, pp. 18–
23.

[36] tcpdump, https://www.tcpdump.org; last accessed on 03.01.2021.
[37] D. S. E. Deering and J. Mogul, Path MTU discovery, RFC 1191, Nov. 1990.

[Online]. Available: https://rfc-editor.org/rfc/rfc1191.txt.
[38] qlog: QUIC and HTTP/3 logging schema, https://github.com/quiclog/inter

net-drafts; last accessed on 30.12.2020.
[39] Open-source QUIC implementations, https://github.com/quicwg/base-draft

s/wiki/Implementations; last accessed on 30.12.2020.
[40] ngtcp2, https://github.com/ngtcp2/ngtcp2; last accessed on 30.12.2020.
[41] picoquic, https://github.com/private-octopus/picoquic; last accessed on

30.12.2020.
[42] netcat, https://linux.die.net/man/1/nc; last accessed on 30.12.2020.
[43] Apache HTTP server project, https : / / httpd . apache . org; last accessed on

30.12.2020.
[44] E. Rescorla, HTTP Over TLS, RFC 2818, May 2000. [Online]. Available: https:

//rfc-editor.org/rfc/rfc2818.txt.
[45] curl, https://curl.se; last accessed on 30.12.2020.
[46] passive fiber TAPs, https://www.gigamon.com/content/dam/resource-librar

y/english/white-paper/wp-network-taps-first-step-to-visibility.pdf;
last accessed on 04.01.2021.

[47] Token Bucket Filter queueing discipline, https://linux.die.net/man/8/tc-
tbf; last accessed on 30.12.2020.

[48] D. Scholz, B. Jaeger, L. Schwaighofer, D. Raumer, F. Geyer, and G. Carle, “To-
wards a Deeper Understanding of TCP BBR Congestion Control”, in IFIP Net-
working 2018, Zurich, Switzerland, May 2018.

[49] J. D. Beshay, A. Francini, and R. Prakash, “On the Fidelity of Single-Machine
Network Emulation in Linux”, in 2015 IEEE 23rd International Symposium on
Modeling, Analysis, and Simulation of Computer and Telecommunication Systems,
2015, pp. 19–22.

[50] MoonSniff, https://github.com/gallenmu/MoonGen/tree/master/examples/
moonsniff; last accessed on 10.01.2021.

[51] ngtcp2, https://github.com/ngtcp2/ngtcp2/tree/20d04c3abea00beeef10d
9e0bacb8b717504f2ed; last accessed on 02.02.2021.

[52] Linux kernel BBR implementation, https://elixir.bootlin.com/linux/v4.
19.8/source/net/ipv4/tcp_bbr.c; last accessed on 02.02.2021.

[53] aioquic, https://github.com/aiortc/aioquic/tree/04b28d8c632cc62fa4d
63cdcce427f0257d00c8a; last accessed on 02.02.2021.

62

https://www.tcpdump.org
https://rfc-editor.org/rfc/rfc1191.txt
https://github.com/quiclog/internet-drafts
https://github.com/quiclog/internet-drafts
https://github.com/quicwg/base-drafts/wiki/Implementations
https://github.com/quicwg/base-drafts/wiki/Implementations
https://github.com/ngtcp2/ngtcp2
https://github.com/private-octopus/picoquic
https://linux.die.net/man/1/nc
https://httpd.apache.org
https://rfc-editor.org/rfc/rfc2818.txt
https://rfc-editor.org/rfc/rfc2818.txt
https://curl.se
https://www.gigamon.com/content/dam/resource-library/english/white-paper/wp-network-taps-first-step-to-visibility.pdf
https://www.gigamon.com/content/dam/resource-library/english/white-paper/wp-network-taps-first-step-to-visibility.pdf
https://linux.die.net/man/8/tc-tbf
https://linux.die.net/man/8/tc-tbf
https://github.com/gallenmu/MoonGen/tree/master/examples/moonsniff
https://github.com/gallenmu/MoonGen/tree/master/examples/moonsniff
https://github.com/ngtcp2/ngtcp2/tree/20d04c3abea00beeef10d9e0bacb8b717504f2ed
https://github.com/ngtcp2/ngtcp2/tree/20d04c3abea00beeef10d9e0bacb8b717504f2ed
https://elixir.bootlin.com/linux/v4.19.8/source/net/ipv4/tcp_bbr.c
https://elixir.bootlin.com/linux/v4.19.8/source/net/ipv4/tcp_bbr.c
https://github.com/aiortc/aioquic/tree/04b28d8c632cc62fa4d63cdcce427f0257d00c8a
https://github.com/aiortc/aioquic/tree/04b28d8c632cc62fa4d63cdcce427f0257d00c8a

[54] quic-go, https://github.com/lucas-clemente/quic-go/tree/eff36f3057c
96a60a25d40a72b6eb1d6ff4aa962; last accessed on 02.02.2021.

[55] picoquic, https://github.com/private-octopus/picoquic/tree/bf84867d
82de93be052dad9d9049c5fc280d3902; last accessed on 02.02.2021.

[56] W. de Bruijn and E. Dumazet, “Optimizing UDP for content delivery: GSO,
pacing and zerocopy”, in Linux Plumbers Conference, 2018.

63

https://github.com/lucas-clemente/quic-go/tree/eff36f3057c96a60a25d40a72b6eb1d6ff4aa962
https://github.com/lucas-clemente/quic-go/tree/eff36f3057c96a60a25d40a72b6eb1d6ff4aa962
https://github.com/private-octopus/picoquic/tree/bf84867d82de93be052dad9d9049c5fc280d3902
https://github.com/private-octopus/picoquic/tree/bf84867d82de93be052dad9d9049c5fc280d3902

	Introduction
	Motivation
	Research Questions
	Outline

	Background
	Kernel Space vs. User Space
	Transmission Control Protocol
	ACK-clocking
	Packet Pacing

	Congestion Control
	CUBIC
	BBR

	User Datagram Protocol
	QUIC
	Acknowledgment Mechanism
	Pacing Mechanism
	Proposed Congestion Controller
	Implementation in User Space

	Related Work
	Analysis
	Sender and Receiver
	Measurement Setup
	Measurement Techniques
	ACK-clocking
	Pacing Mechanism
	BBR
	Loss-based Congestion Controllers

	Methodology
	Selection of QUIC Implementations
	Comparison with TCP
	Measurement Setup
	Traffic Shaping
	Measurement Process

	Evaluation
	Link Utilization
	Acknowledgment Mechanism
	Acknowledgment Frequency of TCP
	Acknowledgment Frequency of QUIC Implementations

	Pacing Mechanism in QUIC
	ACK-clocking
	BBR
	Pacing Rate Calculation

	Conclusion
	Major Contributions
	Future Work

	List of acronyms
	Bibliography

