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Abstract

This thesis evaluates the QUIC spin bit for passive RTT measurements. The spin bit is a single
bit inside the QUIC header that toggles once per RTT. The signal created by the changing
spin bit can be captured by an observer to estimate the RTT. A test environment was built
to emulate a network with given conditions. This test environment was used to perform RTT
measurements which were then compared to ground truth values.
It was shown that the observer position in regards to delay or the bottleneck link does not seem
to affect measurement accuracy. The influence of bandwidth on measurement quality does not
seem to be significant either. However, with higher latency the number of RTT samples and
the measurement accuracy decreases. In comparison with the TCP Timestamps option, the
spin bit method produces fewer RTT samples, but the effect on the measurement error is not
meaningful. It has been found that pacing in combination with large bandwidth or RTT values
can result in a higher deviation between spin bit RTT estimations and the ground truth. The
spin bit estimation, which is normally higher than the ground truth, is lower and stays mostly
constant in this situation.
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Chapter 1

Introduction

The transport layer protocol TCP, which has been in use for over 40 years, is the
most widely used transport layer protocol. Like many other protocols it has received
few changes and updates over the years [2]. Due to the continued development of the
Internet in the past decade and the resulting changes in requirements, further develop-
ment has become increasingly necessary. With the amount of data rapidly increasing,
network throughput is getting increasingly important. However, the TCP/TLS stack,
often used for web traffic, introduces Head-of-Line blocking that reduces throughput,
amongst other issues, for instance a handshake that takes too long.
The transport layer protocol QUIC (Quick UDP Internet Connections) has been intro-
duced and announced as the successor to TCP in terms of web traffic [16]. QUIC is
built on top of UDP to make sure that it runs on nearly all Internet devices. It fea-
tures swift connection establishment as well as improved transport layer functionality
implemented at the layer of QUIC. One of the main aspects is that QUIC encrypts the
entire payload of a packet and only a small fraction of data in the header is transmitted
without encryption.
The usage of QUIC has already increased in the last few years, even though it has not
yet been standardized. Rüth et al. published statistics on QUIC usage [17]. Google
uses QUIC for around 40 % of their traffic, mostly for its apps and content delivery.
Therefore, Google accounts for around 98 % of all QUIC traffic worldwide. In October
2017, the traffic share of QUIC was around 10 %. The number of hosts supporting QUIC
is also quickly increasing. As an official standard is still missing, QUIC is currently only
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an IETF1 draft.
To measure the quality of a network, passive measurements of the round-trip time
(RTT) are usually performed, amongst others. Passive measurements have several ad-
vantages, for instance no data overhead or an arbitrary position inside the network.
When using TCP, the TCP Timestamps option is often utilized for performing passive
measurements. This method provides a large number of RTT samples throughout the
entire connection. For a long time, QUIC did not offer the possibility to do a passive
RTT measurement. Many methods that were used to estimate the RTT with other
protocols such as TCP are no longer possible in QUIC due to the limited amount of
publicly available information within the QUIC header. The encryption of a large part
of the entire QUIC packet made passive measurements throughout the entire connection
impossible. In 2018, the so-called spin bit has been introduced, which should enable
passive measurements of the RTT [22]. One single bit in the header spins once per
RTT and hereby allows observers to estimate the RTT. The performance of the spin
bit in QUIC under various network conditions has been studied sparsely. There are a
few papers that propose methods to make the spin bit more robust against bad network
conditions by extending it by one or two bits. However, until now, only the one-bit
method is contained in the IETF draft.
A transport layer protocol cannot rely on perfect network conditions like no loss or no
reordering. Packet loss can have many different reasons. For example, interference or
line disturbances can damage packets to such an extent that the contents can no longer
be used. Packets can also be lost due to software issues, such as a TTL value dropping
to zero or a packet filter dropping the packet. Packet reordering can occur if different
packets get routed on multiple different paths.

1.1 Goals

Because of the importance of network latency monitoring, general knowledge of how the
spin bit behaves when specific network parameters change is needed to use it properly.
Furthermore, the influence of the bandwidth on measurement accuracy is important.
In addition to that, the influence of the observer position could be interesting for the
accuracy of the RTT measurements.
The objective of this thesis is to analyze and evaluate the method of RTT measurement
using the spin bit. We would like to compare and evaluate the accuracy under different

1 Internet Engineering Task Force
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1.2 Outline

conditions and influences. For this purpose, a test environment is built, in which the
emulation of various network parameters such as latency, bandwidth, loss, jitter and
cross-traffic is possible. The test environment should be extensible and also be suitable
for different QUIC implementations if needed.
We want to execute measurements in this environment by transferring data between
client and server and measuring the RTT at the same time. Primarily, we want to vary
the latency, bandwidth and position of the passive observer. The results will then be
analyzed and compared to those of a measurement with TCP. At the end, we want
to discover which network parameters have how much influence on the accuracy of the
measurements and if the method using the QUIC spin bit provides comparable accuracy
to the TCP Timestamps option method.

1.2 Outline

In Chapter 2, basic knowledge about QUIC and passive measurements is conveyed, as
well as the functionality of the spin bit. In Chapter 3, related work is presented, which
also deals with the spin bit or RTT measurement with TCP Timestamps option. The
measurement setup and implementation is described in Chapter 4. A short explanation
on how we analyze the captured traffic is given. Chapter 5 evaluates the results we
obtained in the measurement environment. After looking at spin bit measurements in
general, the influence of several network parameters is analyzed. In the last chapter, a
conclusion of the results is given as well as an overview of possible future work.

3





Chapter 2

Background

This chapter provides basic knowledge about QUIC and passive RTT measurements.
The different methods of passive RTT measurement when using QUIC and TCP are
briefly explained.

2.1 QUIC

QUIC is a transport layer network protocol based on UDP1. QUIC was originally
developed by Google to replace TCP as a transport protocol for HTTP [16]. QUIC
provides the following main features [10]:

• Encryption and Authentication

QUIC uses authentication and encryption to protect header and payload. Thus
only the header information is publicly accessible. Apart for the handshake, the
short header is used throughout the connection, containing just the content shown
in Figure 2.2.

• Stream Multiplexing

Another QUIC feature is stream multiplexing. A stream is a bidirectional flow of
data within an existing connection. Since retransmissions are performed at stream-
level, packet loss only impacts the corresponding stream. The use of multiple
streams prevents Head-of-Line blocking. Head-of-Line blocking is a phenomenon

1User Datagram Protocol. a transport layer network protocol.
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that may occur when using TCP. If packet loss occurs, TCP halts all streams. Only
after this packet is re-transmitted and successfully received, the transmission can
go on. When multiple files are transferred, this can prevent TCP from using fully
received files.

• Congestion Control, Flow Control & Loss Detection

QUIC features credit-based flow control to limit the amount of data a server
receives. Congestion control in QUIC is mostly similar to TCP Reno. The used
algorithm can be chosen unilaterally by the endpoints. Acknowledgments are used
to detect packet loss. In general, those three mechanisms are inspired by different
techniques used by TCP. IETF document draft-ietf-quic-recovery describes
congestion control, flow control and loss detection in detail [9].

IP

TCP

TLS

HTTP/2

UDP

QUIC

HTTP/3Application Layer

Security Layer

Transport Layer

Figure 2.1: QUIC and TCP protocol stacks for HTTP

• Low Latency Connection Establishment

An essential feature of QUIC is the combination of transport handshake and cryp-
tographic handshake. An initial QUIC handshake needs only one RTT. This fea-
ture, in combination with the TLS 0-RTT handshake, enables QUIC to perform
an actual 0-RTT connection establishment in some cases. Hence, application data
can be sent already in the first roundtrip before even receiving the first packet by
the server. This 0-RTT handshake cannot be used as initial handshake since it
already requires some preshared information.

• User Space Implementation

As shown in Figure 2.1, QUIC is built on top of UDP. This enables it to be
implemented completely in the user space. Two big advantages of this strategy

6



2.1 QUIC

are that QUIC can run on many existing devices without any additional kernel
application and it can be updated more often, since it is easier to replace an appli-
cation running only in user space. Since QUIC has transport layer functionality
as well as security and application layer functions implemented, it can be seen as
a cross-layer protocol.

QUIC is currently still an IETF draft and has been in IETF standardization process
since 2016. The draft is currently in its 27th version. The QUIC working group currently
plans to submit the documents needed for standardization to the Internet Engineering
Steering Group (IESG) in July 2020. The IESG is responsible for the approval of
Internet standards.

2.1.1 Header

QUIC uses two different header forms, the long and short header. The long header is
used to establish the connection, while the short header is used after version negotiation
and exchange of the encryption keys. The reason for those two header forms is the fact
that more information needs to be exchanged during connection establishment. Since
this phase is only a short fraction of the entire connection, the short header helps to
reduce the overhead of unnecessary information. In this work, only the short header
will be considered because it is predominantly relevant for our measurements.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31...

0 1 S R K P
Destination Connection ID (0..160)

Packet Number (8/16/24/32)

Protected Payload

Figure 2.2: QUIC short header

The short header with its size between 2 and 25 bytes contains the following fields:
The two most significant bits of a QUIC header are always 01 as shown in Figure 2.2.
The third most significant bit of the header is the spin bit, which is described in detail
within Section 2.2.1. The following two bits are reserved bits. The next bit indicates
the key phase and is used for packet protection. The least significant two bits contain
the length of the packet number. The length of the Destination Connection ID (DCID)
has to be known by client and server from the time of connection establishment. After
the DCID and the packet number, the encrypted payload follows.

7
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2.2 Passive RTT Measurements

Measurements of latency as well as RTT are fundamental to assess the quality of a net-
work. The difference between active and passive measurements of the RTT is that for
passive measurements the productive traffic is used whereas for active measurements
extra traffic is generated. ICMP (ping) can be used for this purpose. Passive measure-
ments do not generate overhead and ensure that no erroneous values result from other
processing of the measurement traffic [21]. In some cases, measurement traffic may be
preferred.
Since passive measurements can be performed at any point between transmitter and
receiver, they are particularly popular among companies or network access providers.
They can perform the measurements on gateway routers, for example to help customers
with network problems like a slow connection or to do large measurements for research
purposes. Intra- and inter-network health monitoring is also done with RTT measure-
ment [20].

2.2.1 Latency Spin Bit

The latency spin bit, also just called spin bit, is a single bit only present in the short
header of a QUIC packet. It was added to allow passive latency monitoring. The
spin bit is an optional feature and must be deactivatable according to the IETF draft.
It only works if both client and server have it enabled. Also, it should be randomly
disabled by both client and server on one of 16 connections, so that the spin bit is
effectively disabled on roughly one of eight connections [10]. A reason for that policy is
not mentioned inside the QUIC IETF draft, however, another IETF document specifies
privacy as the main reason [14].

An example connection is presented in Figure 2.3. In (a), the client starts sending
packets to the server. For all outgoing packets, the spin bit is not set. The server,
which receives the first packet from the client in (b) replies to it having the spin bit
not set for outgoing packets. After the client in (c) has received the first packet from
the server, it flips the spin bit on all outgoing packets. The server, which just received
the first packet with a set spin bit in (d), responds to this packet with the spin bit set.
Finally, this packet in (e) arrives back at the client, and the client flips the spin bit on
outgoing packets again. The mechanism described above lets the spin bit value change
once per RTT. While the client inverts the incoming spin bit, the server reflects it.
Observers between client and server can now measure the time between two edges to
estimate the RTT. Figure 2.4 shows a possible curve of the spin bit as an observer can

8
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Client Server

2 1

(a) The client starts sending packets
Client Server

6 5 4 3

1 2

(b) The server starts responding to the received
packets

Client Server

9 8 7 6

2 3 4 5

(c) As soon as the first packet is received by
the client the Spin Bit is inverted for outgoing
packets

Client Server

13 12 11 10

6 7 8 9

(d) The server inverts the Spin Bit for outgo-
ing packets as soon as it changes on incoming
packets

Client Server

17 16 15 14

10 11 12 13

(e) The client also inverts the Spin Bit as soon
as it changes on incoming packets

Figure 2.3: Spin bit explanation (The color (red/black) represents the spin bit (set/unset))

capture it. Every point stands for a packet with the respective spin bit value set. This
can be captured both upstream and downstream, shifted by the observer upstream
delay. It should be noted that the packet flows in both directions must be observed
separately so that the two spin bit courses are not merged.
There is another method to measure just up- or downstream delay. For this purpose
the time between spin bit transitions in both flow directions is measured, instead of
focusing on just one direction. The time difference between the moment when a spin
bit transition is detected in the upstream and downstream direction is naturally the time
it takes for a packet to travel from the observer to the server and back. Analogous to
this, the time difference between a spin bit transition downstream and upstream is the
time a packet needs to travel from the observer to the client and back. This technique
can be used to measure delay between two on-path observers.

time

spin bit

0

1
RTT

Figure 2.4: Spin bit as seen by an observer
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2.2.2 TCP Timestamps Option

With TCP there are several methods to measure the RTT passively. The unencrypted
header facilitates the extraction of connection information as an external observer.
There are a few methods that use special packets during connection setup. These include
SYN-ACK estimation and slow-start estimation. To estimate the RTT with SYN-ACK
estimation, the time interval between the last SYN and the first ACK packet is mea-
sured. Those two packets are both sent from client to server. When none of the initial
packets get lost or delayed, the measured time interval equals the RTT. For a slow-start
RTT estimation, data must be sent from the server to the client. Additionally, if the
flow does not start with at least five data packets with the first four being MSS1, this
method does not work. Since these methods only provide a minimal number of sam-
ples (one per connection) and do not work for the entire connection, it is not possible
to make an accurate RTT estimate for the whole connection duration [12]. Since the
RTT can vary during the connection, e.g. due to congestion, a RTT estimate from the
beginning of the connection says little about the entire connection.
It is also possible to obtain the RTT by measuring the time difference from a packet
and the corresponding acknowledgment. The sequence number can be used to match
those two packets. However, the sequence number of a packet remains the same in case
of a retransmission. When dealing with bad network conditions and a large number of
retransmissions, the measurement gets inaccurate. In this situation, Phil Karn et al.
showed that estimated RTT values are significantly higher than the ground truth [13].

Another method uses the TCP Timestamps option to calculate the RTT. This method
provides a large number of measurements over the entire connection. Figure 2.5 illus-
trates its mechanism of action. We simply capture all packets and save the timestamp
as well as both values TSval and TSecr. Server and client both send increasing TSval in
their packets, just like a timestamp. A virtual clock is generating those values. If server
or client receive a TSval they have not seen before, they send this value in the TSecr
field on outgoing packets. As soon as the next TSval reaches server or client, they echo
this new value on outgoing packets [7].
To measure the upstream delay ∆t1, the timestamp is stored for each TSval seen in
upstream direction. Once this TSval is observed in the opposite direction as TSecr,
the difference between the two timestamps ∆t1 can be calculated. The same procedure
can be used to determine the downstream delay ∆t2. To calculate the entire RTT, two
consecutive up- and downstream delays are added together.

1Maximum Segment Size

10



2.2 Passive RTT Measurements

Client Observer Server

TSval=100, TSecr=0

TSval=200, TSecr=100

TSval=103, TSecr=200

TSval=202, TSecr=103

RTT = ∆t1 + ∆t2

∆t1

∆t2

Figure 2.5: RTT measurement with TCP Timestamps option
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Chapter 3

Related Work

As the QUIC protocol is quite new and has not been standardized by the IETF, there
is not a lot of work on passive RTT measurement with QUIC.
De Vaere et al. fundamentally investigated the spin bit and its performance [4]. Since
this was done before the spin bit was introduced into the IETF draft, they implemented
the spin bit by themselves. They used further methods of spin bit implementations,
including two or three bits. A theoretical analysis was done as well as measurements to
determine the influence of different network conditions. In this work, we use an IETF
implementation of the spin bit to evaluate the technique included into the protocol by
the IETF.
Another paper by De Vaere et al. evaluates the three-bit variant of the spin bit in more
detail. This variant contains a so-called valid edge counter (VEC) to simplify identifi-
cation of invalid measurements. It was built into both the QUIC and TCP header [5].
The main purpose of the additional bits is to improve the detection of faulty measure-
ments caused by reordering. They show that their three-bit variant is resistant to large
amounts of loss or reordering. They focus on packet loss and reordering simulation, to
evaluate the improved behavior of other spin bit variants in comparison to the one-bit
solution. In this work, we also want to compare the QUIC spin bit with TCP, but we
used the Timestamps option already integrated in TCP, which have been used for years
for passive RTT measurements with TCP. We also want to focus on the influence of
link latency and bandwidth first.
Bulgarella et al. also compared the spin bit to the three-bit variant from De Vaere et al.
and another two-bit variant introduced by them, containing an additional delay bit [3].
They showed that their two-bit variant is comparable to the three-bit variant, but if
packet loss occurs, it generates less valid RTT samples than the three-bit solution.
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An article by Stephen D. Strowes takes a closer look on RTT measurements using the
TCP Timestamps option [18]. He experimented with changing network conditions like
latency, bandwidth or loss and used ICMP to retrieve his RTT ground truth. His con-
clusion is that the TCP Timestamps option performs well in most cases. However, the
article does not contain any information on how large the influence of bandwith or ob-
server positioning really is.
Veal et al. explain and evaluate RTT measurements with the help of the TCP Time-
stamps option. They performed tests in virtual and real networks to evaluate their
measurement accuracy. The values were compared with server RTT values and RTT
values retrieved with a self-clocking method. This self-clocking method works for sy-
metric and asymetric routes [23]. Since the RTT measurement method with the TCP
Timestamps option is by far more popular, we decided to use it as comparison in our
work.

14



Chapter 4

Design

4.1 Measurement Setup

All measurements were performed in a test environment created in Mininet. Mininet is
a widespread network emulation tool, which was used in a part of the related work [4][3].
Our network topology consists of one client, one server and four switches in between,
as illustrated in Figure 4.1. NetEm1 is used to add delay for outgoing packets at the
interfaces delay1 to delay4. We decided to use NetEm manually with commands rather
than setting the delay with Mininet for each link. This allows us to set flexible delays
in the future. On the tbf interface, a token bucket filter is used. This filter uses the
token bucket algorithm to limit the bandwidth in the client-server direction. For this
purpose, virtual tokens are given to packets so that they are transmitted further. New
tokens are created at a certain interval. The bandwidth is determined by this interval
and the amount of tokens one packet needs. This is often coupled to the packet size. A
token bucket contains all unused tokens but has a fixed maximum size (buffer size). If
no tokens are available for a packet, it waits. If a packet waits longer than the buffer
latency, it is dropped by the filter. This causes the token bucket filter to drop packets
when the total RTT reaches the sum of the buffer latency and link latency. The link
latency is the sum of all four delay parameters. We use a fixed buffer size of 1600 B and
100 ms buffer latency. The buffer size was chosen to be slightly larger than one packet
to prevent bursts. We have chosen a buffer latency of 100 ms because it was also chosen
by others for similar measurements.

1Network Emulator [8]
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Client Switch 1 Switch 2 Switch 3 Switch 4 Server

delay4 delay1

tcpdump
tbf

tcpdump
delay3 delay2

Figure 4.1: Mininet test environment setup

On Switch 2 and 3 we capture all packets with tcpdump1 at the interface named
tcpdump. We run tcpdump both before and after the token bucket filter to detect
potential differences in measurements depending on whether the bottleneck link is be-
tween observer and client or observer and server.
An additional script on Switch 2 logs the current size of the token bucket continuously.
Another script on the client is pinging the server in small time intervals (0.02 ms to
0.05 ms). Those two scripts help to quickly detect if there was an error during the
measurements. Furthermore the ping is used as ground truth for RTT measurements.
With the size of the token bucket filter we can use Equation 4.1 to calculate the current
delay caused by the token bucket filter.

Filter_Delay = Bucket_Size · 8
Bandwidth · 103 (4.1)

The fraction is expanded with 8
103 to allow the use of the usual units. The Bucket_Size

is given in Bytes while the Bandwidth is noted in Mbit/s.

The test environment can be run with different parameters to vary the protocol being
used (TCP or QUIC), the bandwidth and the RTT. The RTT can be modified at all
four points as decribed above to place the observer (Switch 2) closer to the client or the
server.

To compare measurements done with the QUIC spin bit with others using TCP Time-
stamps option, one single script is used to create the topology described in Section 4.1.
After all link parameters are set and all scripts to capture data are started, the respective
server and client applications are started too.

1https://www.tcpdump.org
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4.1 Measurement Setup

4.1.1 QUIC Client/Server

We took a look on a few different open source QUIC implementations, as seen in Ta-
ble 4.1 [6]. The implementation quic-go which was used by Bulgarella et al. does not
implement the spin bit [3]. We decided to use lsquic, due to its active maintenance, its
age and the spin bit support. Another advantage is that lsquic does not disable the spin
bit in 1 of 16 connections until release 2.10.1 (2020-01-29). Due to this fact we can use
every successful connection for spin bit measurements.

Name Language Version1 Created2 Commits Changed3 Spin Bit
aioquic Python 25 02/2019 764 02/2020 7

lsquic C 25 09/2017 235 02/2020 3

mvfst C++ 24 04/2018 1462 02/2020 7

ngtcp2 C 25 06/2017 1917 02/2020 7

picoquic C 25 06/2017 2409 02/2020 3

quant C11 25 12/2016 2720 02/2020 3

quiche Rust 25 09/2018 930 02/2020 7

QUICker TypeScript 20 09/2017 578 07/2019 3

quicly C 25 06/2017 1178 02/2020 7

Quinn Rust 23 04/2018 1978 02/2020 3

quic-go Go 22 04/2016 4210 02/2020 7

1 IETF draft version 2 Git repository creation date 3 Latest commit on Github

Table 4.1: QUIC implementations, retrieved from Github on 2020-02-12

For our test environment, the md5 server and client provided by lsquic are used. After
the server has been started, it waits for incoming connections. As soon as a client
has established a connection, it sends a file of arbitrary size to the server. When the
file is transferred completely, the server calculates the md5 hash value of the file and
sends it back to the client, which then terminates [19]. Those given client and server
applications support various parameters to change the lsquic behavior. Several test
functions to simulate packet loss or send failure are built directly into the client. A SSL
certificate is required by the lsquic md5 server and therefore created by our script before
the server is started. The file we send is created with the GNU/linux tool truncate.
The size of the testfile is chosen depending on the bandwidth to reach comparable
transmission durations.

4.1.2 TCP Client/Server

The TCP implementation inside the test environment is quite similar. A random file,
created as for the QUIC transmission described above, is sent via netcat from client to
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server. After the file is completely received by the server, it terminates. We use port
443 for this connection. The traffic is unencrypted.

4.2 Analyzer

To process the pcap files from our test environment, we implemented a parser in Python.
A whole connection including multiple pcap files can be analyzed by the script. We use
the Python module dpkt for parsing pcap files. After detecting an UDP packet, we
automatically assume that it is a QUIC packet and use our own class to retrieve QUIC
header information.
For QUIC measurements, we filter all packets for short header packets and save all edge
transitions in a table. The data we store in the table are the following:

• timestamp

• packet direction

• transition direction (rising/falling)

• time difference from last corresponding transition (RTT)

• number of packets since last corresponding transition

We only use the timestamp and RTT values for further processing. The other data is
stored for debugging purposes.
For TCP measurements, we create two tables, one for each part of the RTT. The RTT
is split into two parts, as described in Figure 2.5. In each table, we save any new TSval
we see in a packet with the corresponding timestamp. For each packet, we also check if
the TSecr value is already inside one of our tables as TSval. If an entry exists, we add
the timestamp of this packet to the table, as well as the difference between the current
time and the timestamp the value was seen first as TSval (one part if the RTT). To
calculate the whole RTT, we add two consecutive samples from different tables.
Our analyzer also parses the file created by the ping script containing timestamps and
RTT samples. These values are used as ground truth to calculate the RTT deviation
with the following equations:

Deviation(t) = RTTspin(t) − RTTping(t)
RTTping(t) (4.2)

Deviation =
∑

t

∣∣∣∣∣RTTspin(t) − RTTping(t)
RTTping(t)

∣∣∣∣∣ (4.3)
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However, two measured values (spin and ping) with exactly the same timestamp are
rarely available, since the Ping script delivers RTT values in a fixed interval while the
interval between two spin bit RTT estimations is not controllable. This is why the
closest Ping value one is used. To compare measurements better, we don’t sum over all
values in Equation 4.3 but skip some at the start of the measurement. In Chapter 5,
we will explain in more depth why skipping samples from the first few seconds helps us
to get more accurate results.
The functionality to parse the buffer size of the token bucket filter and calculate the
buffer delay is also implemented for debugging purposes but is disabled by default.
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Chapter 5

Evaluation

Using the measurement setup described in detail in Chapter 4, we performed measure-
ments with different setups. In the following sections, we will present the results and
compare the spin bit with TCP Timestamps option. We always used RTT measurements
from the Ping script as ground truth.
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Figure 5.1: Measurement with 10 Mbit/s bandwidth, 32 ms RTT and observer placed in the middle
between client and server

In Figure 5.1 a sample measurement is shown. The course of RTT, which can be noted
in many of the following graphs, is characterized by repeated rapid drops and slower
rises. These shapes are created by the CUBIC congestion control algorithm. The lsquic
implementation uses CUBIC by default.
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It can be seen immediately that there is a fundamentally larger deviation at the be-
ginning of the connection, as there occur large changes in RTT in a short time. This
is caused by the slow-start algorithm trying to avoid congestion. Throughout the rest
of the connection, the measurement of the RTT using the spin bit remains close to the
ground truth. Only at the peaks, where the RTT drops down, a larger deviation can
be observed. The measurement using the spin bit delivers values that are repeatedly
higher than the ground truth at peaks. Even at low points it is noticeable that the
measurements with the spin bit produce larger RTT values than Ping. Since CUBIC is
loss-based, it reduces the congestion window if loss occurs. The moment this happens is
a high point in Figure 5.1. The larger deviation between spin bit and Ping RTT values
at some peaks is therefore caused by loss. The loss affects the measurement only in
some cases, depending on the phase of the spin bit transition.
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Figure 5.2: Mean average error with standard deviation of RTT measurement with spin bit (20
repetitions, 10 Mbit/s Bandwidth, 32 ms RTT)

Figure 5.2 shows the mean average error as well as the standard deviation of 10 mea-
surements using the same parameters. Due to the fact that the measurement always are
inaccurate at the beginning, we skip the first 10-30 samples in our following comparisons
to achieve equal conditions. For measurements performed in real networks, a visual-
ization as given in this figure would not be practical. Since we have nearly the same
conditions in every measurement, spikes appear at the same time. In real networks, the
aggregation of multiple measurements with spikes at different positions would lead to
higher error throughout the entire connection. The same applies to Figure 5.6.
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5.1 Influence of Observer Positioning

5.1 Influence of Observer Positioning

Since in reality an observer is never placed exactly in the middle between client and
server (concerning RTT), we tested five different positions for each total RTT value,
distributed equally between client and server.

# Delay1 & 4
1 Delay2 & 3

2 Average Error Standard Deviation
0 0 ms 16 ms 15.227 % 10.50 %
1 1 ms 15 ms 0.426 % 0.72 %
2 4 ms 12 ms 0.396 % 0.72 %
3 8 ms 8 ms 0.403 % 0.79 %
4 12 ms 4 ms 0.447 % 1.04 %
5 16 ms 0 ms 0.458 % 1.11 %

1 Delay between Client and Observer 2 Delay between Observer and Server

Table 5.1: Comparison of different observer positions.
10 measurements with a RTT of 32 ms were done for each position. The Observer is at switch 2.

We performed 10 measurements for each position to ensure our results are reproducible.
A fixed bandwidth of 20 Mbit/s and a total RTT of 32 ms was used for all measurements.
It turned out that problems with the measurement occur if the observer is located
directly at the client, which is probably caused by a problem with NetEm. For this
reason, we tried another sixth positioning, where the observer is 1 ms distanced from
the client. The values we got from this positioning were more realistic. We performed
some TCP measurements at the position directly at the client which failed as well. Our
debug scripts showed that the course of the token bucket filter size and accordingly the
filter delay fluctuated during the whole connection. Therefore, the RTT values from
Ping as well as those estimated with the spin bit are fluctuating. This can be seen in
Figure 5.3 (a). The mentioned figure shows one sample measurement for each of the 6
positions. While the orange and blue line show the RTT measured with Ping and the
spin bit, the green line displays the queuing delay added to a packet by the token bucket
filter, emulating the bandwidth limitation. At each moment, the sum of the filter delay
and the link latency (here 32 ms) should be equal to the RTT.

Figure 5.4 compares the accuracy of different observer positions. For each box, we
considered all datapoints (about 500 per measurement) from all 10 measurements. The
top whisker showing the maximum value is not displayed. The maximum value for all
positions is between 10 % and 25 %. We consider the maximum as less important, since
it is mostly caused by a spin bit transition happening close to a packet loss event due
to congestion and between two Ping measurements. Our Ping script sampling rate may
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Figure 5.3: 6 sample measurements with parameters set as described in Section 5.1.
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Figure 5.4: Distribution of measurements with different observer position.

not be high enough for these events, where the RTT drops down fast in a short time
interval. A continuous ground truth could lead to a much lower maximum error.
When looking at Figure 5.3, all different positions 1-5 produce about the same error.
Table 5.1 shows that the mean average deviation as well as the standard deviation is
slightly increasing the closer the observer is to the server.

# Delay1 & 4
1 Delay2 & 3

2 Average Error Standard Deviation
0 0 ms 16 ms 15.053 % 10.38 %
1 1 ms 15 ms 0.578 % 1.50 %
2 4 ms 12 ms 0.531 % 1.43 %
3 8 ms 8 ms 0.520 % 1.47 %
4 12 ms 4 ms 0.490 % 1.21 %
5 16 ms 0 ms 0.473 % 1.11 %

1 Delay between Client and Observer 2 Delay between Observer and Server

Table 5.2: Comparison of different observer positions.
10 measurements with a RTT of 32 ms were done for each position. The observer is at switch 3.

Since the difference is smaller than 0.2 %, we compare the results with the ones from the
second tcpdump script running on Switch 3. The result of those measurements can be
seen in Table 5.2. When using the data from Switch 3, the error is decreasing with the
observer moving closer to the server. However, the difference is still smaller than 0.2 %.
This shows that there is no influence of the observer positioning concerning delay. If we
ignore position 0, the difference between left-most and right-most positioning for both
observers is less than 0.1 %.
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5.2 Influence of Bandwidth

We tested different values for the bandwidth between 5 Mbit/s and 30 Mbit/s. For
measurements with higher bandwidth, we noticed that Mininet does not generate re-
producible results consistently. Due to experiences from other projects, we knew that
Mininet may have problems with very high bandwidth values. Although 30 Mbit/s is
not a high bandwidth, we decided to use only the range mentioned above to provide
precise results. In Section 5.5 we will illuminate those problems in more detail.

As in the tests with the positioning, we performed 10 measurements for each combination
of parameters. A fixed RTT of 32 ms was used for all these measurements. The observer
was always placed centered in between client and server having all four delay parameters
are set to 8 ms. We decided to use this position because the error related to positioning
is comparably small. We have observed that when varying the bandwidth, it does not
matter whether the bandwidth bottleneck is located before or after the observer. Only
minimal differences could be detected. Therefore, the observer at switch 3 is used for
the following measurements.

Bandwidth Average Error Standard Deviation
5 Mbit/s 1.823 % 1.71 %

10 Mbit/s 0.865 % 1.14 %
15 Mbit/s 0.616 % 1.41 %
20 Mbit/s 0.505 % 1.30 %
25 Mbit/s 0.640 % 2.61 %
30 Mbit/s 0.723 % 3.10 %

Table 5.3: Comparison of different bandwidths. 10 measurements were done for each bandwidth.

As shown in Figure 5.5, the number of peaks in a fixed period decreases with increasing
bandwidth. Since the measurement accuracy at the position of a high or low point
is usually significantly lower than in a phase of increase, the errors should intuitively
decrease with higher bandwidth. In Table 5.3 it can indeed be seen that the error at first
decreases with increasing bandwidth. In Figure 5.6, the average error for measurements
with the respective bandwidth is shown. It can be noted that with increasing bandwidth,
the baseline of the average error is getting lower. However, the height of peaks is
increasing. The distribution in Figure 5.7 shows that for a bandwidth greater than
10 Mbit/s, the error for most values is lower than 0.5 %. A heuristic filtering out these
errors at points where RTT drops down fast due to loss would help a lot to improve
measurement quality.
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(f) Bandwidth: 30 Mbit/s

Figure 5.5: 6 sample measurements with parameters set as described in Section 5.2.
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Figure 5.6: Average error over time with standard deviation.
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Figure 5.7: Distribution of measurements with different bandwidth

The larger deviation at the peaks may be related to the higher transmission rate resulting
from the higher bandwidth. As more packets are on the path, more packets are lost when
the queue at the bottleneck link reaches the maximum value. Because it is currently
not possible to detect or measure packet loss in a passive measurement with QUIC, we
cannot make any precise statement about this.
Our measurements showed that from a bandwidth of 10 Mbit/s upwards, the error is
less than one percent on average. Thus, the bandwidth, as well as the position of
the observer, does not have much impact. A bandwidth that is too low (smaller than
10 Mbit/s in our case) can cause the measurements to become inaccurate.

5.3 Influence of Latency

In real networks, link latency varies from values smaller than 1 ms (intranets or fiber-
optic connection) to arbitrarily high values (satellite or cellular connection). In compar-
ison to the TCP Timestamps option, the QUIC spin bit only produces two RTT samples
per RTT, while the TCP Timestamps option produces one sample per TSval, e.g. one
per acknowledgment. When dealing with a high link latency, this reduced amount of
samples might affect the overall accuracy. In this section, we will take a closer look at
the influence of latency.

We tested different RTT values from 16 ms to 128 ms. The observer was always placed
in the middle between client and server. We decided to use a bandwidth of 20 Mbit/s
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Figure 5.8: 5 sample measurements with different link latency.
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RTT Average Error Standard Deviation
16 ms 0.448 % 1.73 %
32 ms 0.520 % 1.44 %
64 ms 0.643 % 1.94 %
96 ms 1.286 % 5.24 %

128 ms 1.625 % 6.23 %

Table 5.4: Comparison of different delay parameters. 10 measurements per row were done.

for these measurements since this was the value we got the most reproducible results
with.
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Figure 5.9: Distribution of measurements with different RTT

It is noticeable that the variation is greater at the beginning with larger RTT. This
is again caused by the slow-start algorithm, which depends on acknowledgments and
therefore takes longer with higher RTT [1]. However, since we do not take the devi-
ation at the beginning into account, this should not change the average error. It can
be clearly seen from the data in Table 5.4 that as RTT increases, the average error
increases as well. If we compare the data with the distribution shown in Figure 5.9, it
can be observed that the median is not varying more than 0.2 % over all measurements.
We learned that the latency does not significantly influence the accuracy of RTT mea-
surements using the spin bit. There are changes to the measurement caused by a higher
link latency, but the observer is still able to obtain a RTT value close to the ground
truth.
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5.4 Comparison to the TCP Timestamps Option

In this chapter, we compare the accuracy of spin bit measurements with TCP Time-
stamps option measurements in selected cases.
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Figure 5.10: QUIC spin bit and TCP Timestamps option comparison

First, we look at a measurement with parameters that have produced an accurate and
consistent measurement with QUIC. We decided to use a bandwidth of 20 Mbit/s and an
RTT of 32 ms with 8 ms delay for each delay parameter. Figure 5.10 shows this measure-
ment in comparison with a QUIC measurement performed with the same parameters. It
can be observed that both measurements have a small error. The mean average error of
the QUIC measurement is 0.46 %, while it is 0.47 % for the TCP measurement. The dif-
ference of both median errors is also smaller than 0.05 %. Both measurements are very
accurate when conditions like these are given. In the first 10 seconds, we obtained 170
samples with our QUIC measurement and 7600 samples from TCP. As it was mentioned
before, the TCP Timestamps option provides a larger number of samples compared to
the QUIC spin bit.

In Figure 5.11, we take a closer look on measurements with low bandwidth. For mea-
surements with QUIC, we experienced higher error rates during the whole connection
compared to a bandwidth between 10 Mbit/s and 30 Mbit/s. It can be seen that both
QUIC and TCP measurements seem to have a larger error compared to the measure-
ments made with the parameters in Figure 5.10. Both mean average errors have in-
creased to about 1.8 %. We also noticed that the number of samples decreased to 160
samples with QUIC and 2000 samples with TCP. However, the median of the QUIC
measurement error is 1.54 %, while it is 1.86 % for TCP. These measurements show that
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Figure 5.11: Comparison of two measurements with a bandwidth of 5 Mbit/s.

the higher error with low bandwidths is not only a spin bit issue, but exists with the
TCP Timestamps option method as well.
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Figure 5.12: Comparison of two measurements with a RTT of 128 ms.

Figure 5.12 compares QUIC and TCP in regard to a measurements with high latency.
As in the chapters before, the values in the very beginning were ignored.

The data from Table 5.5 shows that our measurements with the TCP Timestamps
option were more accurate than the ones performed with the QUIC spin bit. As we
expected, the number of samples with QUIC drops to only 100 due to the high RTT.
The number of TCP RTT samples is still at 6900. We can therefore conclude that
the number of QUIC RTT samples decreases with a higher RTT, while the TCP RTT
samples seem to decrease with a lower bandwidth. In the measurements performed,
the accuracy of RTT estimations with the QUIC spin bit is worse than the accuracy
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Protocol Average Error Standard Deviation Median
QUIC 1.50 % 6.07 % 0.29 %
TCP 0.26 % 0.35 % 0.17 %

Table 5.5: Comparison of measurements with high latency.

of TCP RTT estimations. The smaller amount of samples could be a reason for this
observation.

5.5 Problems with Spin Bit Measurements

During the measurements we encountered a number of problems. In this section we
take a closer look at these problems and why they might occur.
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(d) Bandwidth: 70 Mbit/s

Figure 5.13: 4 sample measurements with higher bandwidth values.

34



5.5 Problems with Spin Bit Measurements

In Figure 5.13 it can be clearly seen that the spin bit does not produce valid samples,
when the RTT is 45 Mbit/s or higher. After a specific point of time, the RTT drops
down to a constant value.
The delay caused by the token bucket filter, which is directly related to the size of the
filter bucket, is fluctuating a lot in those measurements. This is caused by the token
bucket filter periodically becoming fuller and emptier at small intervals. Since this is
related to the sending behavior of the client, we have taken a closer look at the client.
Another instance of tcpdump running on the client provides a pcap file with the original
sending interval of the packets. Since the traffic may get paced or shaped before it
reaches the observer, the client was required to capture the packets to provide the data
as precisely as possible. We took a closer look at the time the client needs between
sending two packets. This time interval, also called inter-arrival time, is visualized over
the first 5 seconds of a connection in Figure 5.14.
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(c) Bandwidth: 50 Mbit/s
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(d) Bandwidth: 70 Mbit/s

Figure 5.14: Inter-Arrival Time of QUIC Packets
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Figure 5.14 shows that most of the packets are sent immediately after one another if
the bandwidth is 10 or 20 Mbit/s. Only a few times the client waits for around 20 ms.
This happens either during the slow-start phase or when packet loss occurs.
At bandwidths where our spin bit measurements differ from those with Ping, the inter-
arrival time fluctuates much more.
A quick scan showed that for the 20 Mbit/s measurement, 99.9 % of the values are below
1.2 ms. To be able to make more precise statements, we visualized all inter-arrival times
between 0 and 1.2 ms in a histogram.
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Figure 5.15: Histogram and cumulative distribution function showing inter-arrival times between 0
and 1.2 ms. The measurement was performed with a bandwith of 20 Mbit/s and a delay of 8 ms for all
four delay parameters.

Figure 5.15 shows that the inter-arrival time is either around 0 ms or 1 ms. Both values
occur with a probability of about 50 %.

With the bandwidth of 10 Mbit/s, the distribution is comparable, but the inter-arrival
time is either 0 or 2 ms. The likelihood of both intervals is also 50 % each. We have
discovered that the two inter-arrival times alternate almost exclusively. This implies
that with a bandwidth of 10 Mbit/s (or 20 Mbit/s), the client sends two packets directly
after one another and then waits one (or two) milliseconds.

We also analyzed bandwidths where our spin bit measurements differ from those with
Ping. 99.9 % of all inter-arrival times of the measurement with 70 Mbit/s were below
10 ms. We noticed that 97 % of all inter-arrival times are even below 0.5 ms. The distrib-
ution of inter-arrival times from this measurement is shown in Figure 5.16. The number
of bins of the histogram was decreased from 200 to 20. The cumulative distribution
clearly shows that the packets are usually sent directly after one another.
Unlike the low-bandwidth measurements, the inter-arrival time distribution over the
packets is different here. The inter-arrival time stays close to 1 ms in the range of 100
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Figure 5.16: Histogram and cumulative distribution function showing inter-arrival times between 0
and 10 ms. The measurement was performed with a bandwith of 70 Mbit/s and a delay of 8 ms for all
four delay parameters.

to 400 packets. After that, the inter-arrival time increases to around 6 ms for a few
packets. This behavior repeats throughout the entire connection.
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Figure 5.17: Packet sending frequency. The time interval equals the time it took to send 2400 packets.
This graph shows only a clip of the whole connection.

Figure 5.17 visualizes those so-called packet trains [11]. While the Y-axis shows the
transmission frequency of the packets, the X-axis shows the time progression. To make
the packet trains visible, the time axis is proportional to the amount of sent packets
during a connection instead of the time itself. Therefore, the X-axis does not have ticks.
A packet train starts where the packet sending frequency rises from a value close to
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zero. The end of a packet train is defined by the moment the frequency goes back to
a value close to zero. In between that, the frequency stays at a value between 100 and
250 Hz. There are some smaller drops during packet trains where the frequency shortly
drops down a bit. Those smaller drops divide the train into several parts which are
sometimes called cars.
We expect the differences between the RTT from our spin bit measurements and from
Ping to be caused by this phenomenon. Since QUIC performs pacing in the user space,
every implementation can handle this differently. We assume that the pacing that
lsquic implements may cause issues with the spin bit measurements when dealing with
bandwidths higher than 35 Mbit/s.
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Chapter 6

Conclusion

This thesis evaluates the QUIC latency spin bit in its use for passive RTT measure-
ments. The spin bit is a bit within the QUIC header flipping once per RTT to allow
passive observers estimation of the RTT. A test environment for passive measurements
with QUIC or TCP was designed and implemented. The test environment has several
parameters to allow modification of network conditions. It captures all the necessary
data to analyze the RTT afterwards. Finally, we performed measurements inside the
test environment with different simulated network conditions. We looked at several
scenarios and analyzed the performance of the QUIC spin bit for RTT estimation.
We showed that the positioning of the observer between client and server has no signi-
ficant influence on the measurement accuracy. The bottleneck link position, as well as
the allocation of a fixed delay to multiple links before and after the observer, does not
affect measurement quality.
The bandwidth does not influence the spin bit measurement either if it is not too low.
In our tests, bandwidths above 10 Mbit/s led to a measurement error of less than 1 %.
In our measurements, we observed that with higher latency the measurement error
increases. This higher error is likely to be caused by the fact that the number of mea-
surement samples decreases with increasing RTT.
The general accuracy of RTT measurements with the TCP Timestamps option and spin
bit estimations under good network conditions with a bandwidth of 20 Mbit/s and a
RTT of 32 ms is comparable. The difference between mean average error and median
error is not significant, even though the method with the TCP Timestamps option pro-
vides far more samples. Only with a delay of 32 ms per delay parameter, we noted that
the spin bit delivers worse estimations than the TCP Timestamps option.
Measurements with a high deviation between the spin bit estimation and the ground



truth were analyzed in detail. We found that there are differences in pacing and inter-
arrival times for measurements with a higher deviation. The assumption was made that
the rapid sending of many packets in succession and the subsequent waiting leads to
problems with spin bit measurements.
As a future work, more parameters can be integrated into the test environment to in-
vestigate packet loss or reordering in more detail.
It would also be possible to replace the ground truth that currently comes from the
ping script. For this purpose the QUIC client can be modified to output the internally
computed RTT samples, which are used for loss recovery and congestion control. These
samples calculated by the client may be closer to the actual application RTT since the
client can make use of encrypted packet numbers to calculate the RTT.
Another task for future work is the replacement of netcat as TCP sender and receiver
with another application that uses encryption. An HTTP server that features TLS
could be used instead. This would make the conditions for the comparison more equal,
as we cannot ensure that TCP connections with and without TLS provide the same
accuracy of RTT estimations.
At last the QUIC library could be exchanged for another one. Since we have found that
the transmission behavior of lsquic causes a measurement inaccuracy in some cases,
comparisons with other implementations are interesting. This way it can be determined
if other QUIC implementations use different pacing methods. Analysis and modification
of the lsquic code to lower the measurement error are also possible.
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List of acronyms

HTTP Hypertext transfer protocol. Application layer protocol for data transfer in
distributed information systems. Mostly used for the transmission of web
pages.

IETF Internet Engineering Task Force. An open standards organization, dealing
with technical development of the Internet.

NetEm Network Emulator. Utility to add delay, packet loss and other characteristics
to packets outgoing from a selected network interface.

pcap Packet capture. An interface to capture network traffic.
QUIC Quick UDP Internet Connections. General-purpose network protocol initially

designed at Google.
RTT Round trip time. The time it takes for a signal to travel from sender to receiver

and back.
TCP Transmission control protocol. Stream-oriented, reliable, transport layer pro-

tocol.
UDP User datagram protocol. Datagram-oriented, unreliable transport layer proto-

col.
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