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Abstract

Commonly used user space network drivers such as DPDK or Snabb currently have e�ectively
full access to the main memory via the unrestricted Direct Memory Access (DMA) capabilities
of the PCI Express (PCIe) device they are controlling. This can be a security issue, as the driver
can use the PCIe devices DMA access to read and / or write to main memory . But malicious
hardware, or hardware with malicious or corrupted firmware can be an even bigger security risk,
as most devices and their firmware are closed source. Attacks with malicious NICs have been
shown as a proof of concept in the past. All modern CPUs feature an I/O Memory Management
Unit (IOMMU) as part of their virtualization capabilities: It is required to pass PCIe devices
through to virtual machines and is currently used almost exclusively for that. But it can also
be used to restrict memory access of DMA devices, thus reducing the risk of malicious or simply
badly implemented devices and code.

In this thesis, support for using the IOMMU via the vfio-pci driver from the Linux kernel
for the user space network driver ixy was implemented in C and Rust and the IOMMU and
its impact on the drivers were investigated. In the course of this, a model of the IOMMU
on the investigated servers was developed to enable the usage of it in further work and other
drivers, as well as minimize the performance impact from using it. Reasonable specifications of
the IOMMU that are not widely known or documented, as the number of page entries in the
IOMMU’s IOTLB or its insu�ciently documented capability of using huge pages for memory
management were found and used. Additionally, the C library libixy-vfio was developed
to make it easy to use the IOMMU in any driver. When properly implemented, i.e. using
2 MiB hugepages and putting all NICs in the same IOMMU container, using the IOMMU has
no significant impact on the performance of the ixy driver in C or Rust and does not introduce
any latency to most packets, but e�ectively isolates the NICs and restricts access to memory
e�ectively. Since the performance impact is negligible and the security risk when not using the
IOMMU is high, using it should always be a priority for researchers and developers when writing
all kind of drivers. Using the library libixy-vfio or following the patches for ixy or ixy.rs,
implementing usage of the IOMMU is simple, safe and secure for user space network drivers.
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Chapter 1

Introduction

User space drivers for NICs have several advantages over the kernel drivers. For specific tasks,
like simple forwarding or packet generation, there is a speed improvement, since the packets do
not have to traverse the kernel from the NIC to the application. Kernel drivers follow the kernel
coding rules and use a lot of code and macros that can be complicated and thus badly readable.
They implement every feature of a NIC when often only a very small subset is really needed,
whereas user space drivers can implement only exactly what they need to be small and readable,
as for example ixy [12] does. Since most widely used kernels (Windows, Mac OS, Linux) are
written in C, most kernel drivers are too. This can be cumbersome and, since writing correct C
code is hard, often leads to memory management problems [8], sometimes resulting in the fatal
segfault error and often leading to severe security risks [29]. User space drivers like ixy.rs [11]
solve this problem by using a “safe” language for their implementation of the driver, reducing
the risk of such mistakes to a bare minimum, while only sacrificing little to no speed [46].

One other, not so-often discussed disadvantage of kernel drivers is that they automatically run
with root privileges, making them inherently unsafe and potentially dangerous. Unfortunately,
most user space still need to run as root, since the device files do not belong to any user other than
root, or the driver needs to make use of huge pages or mlock capabilities, which, by default, also
need root privileges. While all of these problems might be solvable on their own, the vfio-pci
driver [26] for Linux solves them all at once in a very elegant way, exposing exactly one file for
each device bound to it which can be chowned to the non-privileged user the driver will run as.

But the most useful feature of the IOMMU for user space drivers is that it can control the
memory regions a PCIe device can access. By default, PCIe devices can unrestrictedly access
the whole system memory and other PCIe devices memory via DMA, reading as well as writing.
Since most drivers are extremely hard to read and thus most computer users do not know what
their NIC driver does, it would be very simple to attack a user with a malware driver that
conveniently also has inherent internet access. And even if the malware is in the firmware itself,
virtually impossible for users to detect, DMA access enables the misbehaving firmware to read



and write all system memory. As Markettos et al. proved in their Thunderclap paper, this is
not just a theoretical risk, but computers can actively be attacked by malicious hardware [28].
The IOMMU can restrict the access of the device to specific memory regions, protecting the
user from malicious firmware, and the programmers of said user space drivers from accidentally
overwriting important memory regions, e.g., their file system.

Currently, the IOMMU is mostly used for virtualization, passing through PCIe devices like
NICs to virtual machines in professional environments (e.g., server hosting) or graphics cards in
consumer environments (GPU passthrough) [1]. While some user space drivers use the IOMMU
for some level of isolation [10], others dropped the support for it again or have never begun to
implement it [19]. Also, most operating systems do not enable the IOMMU by default, or even
have support for doing so [21, 39, 28].

How big are the changes to a driver that add IOMMU usage for better security? What is
the performance impact of using the IOMMU, and is it feasible to use it? And what are the
non-published specifications of the IOMMU on a modern CPU? In this thesis, the usage of the
IOMMU will be implemented in the educational user space network drivers ixy and ixy.rs.
Additionally, a C library for easy extension of drivers to use the IOMMU will be written. Using
the ixy driver, by changing various variables, the IOMMU will be investigated and new key
data about it estimated. It will be shown how to implement the fundamental changes to device
and memory management, and the method will be explained in detail. The performance of
the IOMMU enabled driver will be measured with ixy-fwd and MoonGen [14] based on packet
forwarding capacity and latency. In the course of this, the IOMMU of the investigated CPU will
be modeled and the optimal use case and constants for its constrains researched and explained.
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Chapter 2

Background

2.1 User Space Network Drivers

User Space Network Drivers, like the Data Plane Development Kit (DPDK ) [9], Snabb [40] and
ixy [12] try to circumvent some of the stated problems with kernel drivers, like high latency
and low performance by minimizing the number of kernel code and syscalls needed. As a
result, they can provide a higher level of security, as they are isolated from the kernel space
and could be run by a non-privileged user. They mostly are highly specialized. DPDK is
the largest user space driver kit with most applications. It can be used for software packet
routing (with Open vSwitch [34]), dumping packets (tcpdump-like [9]) and most other Network
Functions Virtualization (NFV) [17] applications. MoonGen can be used for packet generation
and ixy has exactly two applications right now, namely packet forwarding and packet generation.
Additionally, most user space network drivers only work on a very limited set of NICs, with
DPDK supporting about 30 NICs at the time of writing. With kernel drivers, any application in
the user space can use any NIC that has a kernel driver available (the kernel contains currently
over 1000 di�erent ethernet network drivers [45]), but has to use syscalls for every interaction
with the hardware, thus adding layers of function calls and privilege separation and impacting
performance.

Most network drivers are implemented very similar at a ground level [18], see Figure 2.1 for
an overview of how ixy works. Most modern NICs have the option to use multiple queues for
receiving (RX) and sending (TX) packets, thus the ability to balance load on multiple CPUs
(or CPU cores). The driver can enable either one, several or all hardware queues. For each
such enabled hardware queue, some kind of queue structure is generated in the main memory.
The NIC of course needs memory access to these regions, thus there exists a mapping from the
virtual memory address of this queue (for the driver) to the physical memory address (for the
hardware). Since actual packet data is large, and the queue needs to be accessed regularly (to
check if a new packet was received or needs to be sent), most NICs don’t save actual packet data



2.1 User Space Network Drivers

Memory

RX Queue

TX Queue

Mempool

NIC Driver

Figure 2.1: Model of the user space network driver ixy. Every NIC hardware queue (only one depicted
here) features one RX and TX queue in the main memory. Every RX and TX queue entry point to
one packet bu�er in the mempool (dotted lines). Both the NIC and the the driver application have to
access both queues and the mempool regularly (solid lines).

in these queues, but only packet metadata, or descriptors. The packet data itself is then stored
in a separate memory space. Depending on the implementation, the driver allocates the memory
for each packet individually (which produces overhead for mapping and unmapping each packet
memory space), or allocates only a single, large memory space often called mempool. Each entry
in every packet descriptor queue must then be given a fixed packet bu�er address from this
mempool, and the NIC needs access to this mempool, too, again needing a mapping of each
packet in virtual (driver) memory space to physical space. Depending on the implementation, a
mempool is allocated for every NIC or for every driver. NICs normally have unrestricted memory
access to the main memory via DMA, thus access to each queue and mempool is guaranteed.
This means, that, if the address given to the NIC in a packet descriptor in one of the queues is
wrong, the NIC will write to or read from unwanted memory space, with the ability to destroy
important information. The same of course is true if the NIC is given wrong memory addresses
for the queues.

The device is set up by issuing certain Peripheral Component Interconnect (PCI) commands
to certain device files, e.g., in Linux the files config, and resource0 and other Base Address
Registers (BAR) files are located in /sys/bus/pci/devices/$PCI_ADDRESS/. These commands
di�er with every NIC, but must always contain the address to the queues. Most devices also have
other commands, like device resets, enabling and disabling of queues, or for certain cosmetic
abilities like turning the LEDs of a NIC on and o�. Other commands that are issued via these
files might tell the NIC at which place in a queue to place new packets, telling the device that
new packets have been put in a TX queue, or simply to stop transmitting or receiving packets.

On the application side, the RX queues must be read and cleaned (received) regularly or after an
Interrupt Request (IRQ) from the NIC, i.e., for each received packet, the descriptor entry must
be given a new packet bu�er from the mempool. The received packet must then be processed.
In the case of a forwarding application, the packet in the mempool must be edited (e.g., the TTL
must be decreased), the destination in a forwarding table found and then added to a (possibly
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2.2 The (IO)MMU

di�erent) NIC’s TX queue, i.e., the packet bu�er memory address written to an empty TX queue
descriptor. Other applications might process the packet in other ways, e.g., simply discarding
the packet, displaying its content or dumping it to hard disk memory. Sending a packet happens
similar. The application needs to allocate a packet bu�er in the mempool for the packet, write
the contents into the bu�er and set the bu�er address to an empty TX queue entry. Whenever
the driver tries to send a packet, but the TX queue is full (i.e., the NIC has not sent any packets
from the queue), it has to decide if the packet is getting queued in another, internal queue
(increasing packet delay), deleting unsent packets from the TX queue and substituting them
with new packets, or dropping the packet to be sent (both resulting in packet loss).

All driver operations normally happen in so called batches, i.e., the driver will receive a certain
amount (the batch size) of packets at once, process and send packets and clean queues (clearing
hardware flags or assigning new packet bu�ers) in batches. Since accessing main memory is
relatively slow, a small batch size will bottleneck the application. E.g., for the ixy forwarding
application, a batch size of at least 32 will not bottleneck the application [12] for su�ciently
fast CPUs. It is worth noting, that the usage of IRQs adds additional packet delay, thus simple
user space drivers like ixy run the above mentioned steps (batched receiving, processing and
sending) in a continuous loop and thus fully occupying one CPU core. Using IRQs, the CPU
usage could be decreased, but this would also increase the packet delay due to the added overhead
of processing IRQs.

2.2 The (IO)MMU

Figure 2.2: 4-Level memory page translation in x86-64 CPUs. Page mapping happens via four 9 Bit
wide layered page tables. From O. Lawlor, 2012 CS 301 - Assembly Language [25].

The MMU in modern CPU architectures is part of the CPU itself, though it started as an external
component, e.g., the Motorola 68851 in 1984. Its main purpose is to translate virtual memory
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2.2 The (IO)MMU

addresses that are given to any process requesting memory to physical memory addresses, i.e.,
it knows where a processes virtual memory is stored in the physical domain. This has some
advantages. Processes are kind of backward-compatible (i.e., 32-bit processes can make use of
memory beyond the 32-bit barrier at 4 GiB) when using virtual memory. They are also isolated
by the MMU. Every process gets his own virtual memory, such that non-privileged processes
can not access memory that was not explicitly assigned to them.

To address physical memory, the MMU works with so-called pages. On most x86-64 processors,
the standard page size is 4 KiB, i.e., every 4 KiB requested by a process might be contiguous in
virtual address space, but separated in physical address space. The locality of each virtual page
to its physical page is saved in a translation table in the main memory. As seen in Figure 2.2,
the translation of these virtual to physical address spaces happens over several levels (in case of
4 KiB pages there are 4 levels [7] on modern CPUs, though 5 levels are already implemented in
the Linux kernel [6]).

The Translation Lookaside Bu�er (TLB) is a fast cache that saves some of these translation
table entries. In modern CPUs, a typical MMU TLB can hold up to 4096 of these 4 KiB page
entries [3], accelerating access to up to 4096 ◊ 4 KiB = 16 MiB.

CPU

PCIe Root Memory Controller

MMU

Application

PCIe Device

DMA Engine

Memory

DDR4

Figure 2.3: Every PCI(e) device has unre-

stricted memory access via DMA . . .
Image source: [15]

CPU

PCIe Root Memory Controller

MMU

IOMMU

Application

PCIe Device

DMA Engine

Memory

DDR4

Figure 2.4: . . . but not with the IOMMU en-
abled!

The IOMMU on the other hand does for I/O devices (hence the name), what the MMU does for
processes. It can control a PCI(e) devices’ memory access and maps physical memory to I/O
Virtual Addresses (IOVA), which is called DMA Remapping (DMAR). The IOMMU descends
from the Graphics Address Remapping Table (GART), which was originally used by graphics
cards. An IOMMU was first implemented in Sun’s UltraSPARC processors PCI interface as
“Device Virtual Memory Access” [42], AMD implemented its version of an IOMMU as “AMD
I/O Virtualization Technology (IOMMU)” [2] (and gave the IOMMU its name), and Intel im-
plemented its own version of it as “Intel Virtual Technology for Directed I/O (VT-d)” [23]. In
modern CPUs, the IOMMU is part of the CPU itself, like the MMU. Other IOMMU implemen-
tations exist for other architectures and manufacturers, but in this thesis Intel’s VT-d will be
investigated because the hardware is readily available and probably used more often in server
environments than AMD’s processors. For the sake of simplicity, this thesis will always speak
of IOMMU, even when Intel’s VD-t is actually in use. Nevertheless, most findings should be
applicable to at least AMD’s very similar IOMMU, and probably other IOMMU implementa-
tions. An IOMMU also features paging (e.g., the Intel VT-d features a two-level paging [23]),
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2.2 The (IO)MMU

and has its own TLB, called IOTLB. There are no o�cial data on how many entries make up
the IOTLB, though.

2.2.1 Huge Pages

Since modern computers have much more than 16 MiB of main memory, and modern processes
need much more of it, accessing main memory gets very ine�cient when many accesses to large
spaces of main memory are made (as in network drivers), since the TLB cache runs out of
enough entries quickly. For comparison, the unmodified ixy driver uses 8 MiB of main memory
for every NICs mempool (which stores the actual sent / received packets) and two additional
8 KiB queues (RX and TX), adding up to 16.032 MiB main memory for the simple forwarder
application. These 16 MiB need to be accessed regularly and thus the forwarder needs all of the
MMUs TLB entries (and even gets some misses).

For this, larger page sizes have been introduced. Most modern systems feature 2 MiB pages,
and even 1 GiB pages are supported by newer CPUs, all of them called huge pages. Each such
entry only uses one entry in the (IO)TLB. The only hardware restriction is, that these pages
must then be contiguous in physical memory. With this approach, much more memory can be
accessed in a very fast way, as the (IO)MMU does not need to load the translation table entries
for many small pages from the main memory and traverse all the (IO)MMU page levels, but
instead can read relatively few entries from the fast (IO)TLB cache. E.g., the ixy forwarder,
only needs 12 TLB entries when using 2 MiB huge pages, removing all TLB cache misses, thus
making the driver faster and reducing package latency [12].

The Intel Virtualization Technology for Directed I/O Architecture Specification [23] states that
Intel’s IOMMU features page sizes of 4 KiB, 2 MiB and 1 GiB, but the number of entries in its
IOTLB is not discussed in that document. Neugebauer et al. concluded from their tests, that
the IOTLB of one of their test systems (Intel Xeon processors of the Ivy Bridge to Broadwell
generation) has 64 entries [33].

2.2.2 Usage of the IOMMU in Other Operating Systems

Other operating systems than the one investigated in this thesis (Linux) might write their own
drivers for the IOMMU. Microsoft Windows, with the exception of Windows 10 Enterprise,
does not support using the IOMMU, and even in Windows 10 Enterprise, it is not enabled by
default. In fact it is only possible to use it when both UEFI boot and secure boot are enabled.
And even then, devices share mappings, i.e., every device can read every other devices memory,
and up to build 1803, the host operating system was not fully protected. Limited protection
was implemented in build 1803, though [28]. Mac OS, on the other hand, seems to be the only
widely used operating system that by default enables the IOMMU, thus protecting the user from
malicious devices [28].

Especially for microkernel and unikernel operating systems using the IOMMU seems interesting,
as they aim to be very secure. Minix, the free microkernel operating system, has a driver for
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2.2 The (IO)MMU

AMD’s IOMMU since at least 2011, but does not use it by default for any kind of device [43].
Singularity, the discontinued microkernel operating system from Microsoft, apparently recog-
nized the problem in 2005 already, but did never receive an IOMMU driver [21]. MirageOS
and IncludeOS, unikernel operating systems, rely on the virtualization technology of the host
to isolate devices. Since those unikernel operating systems are mostly compiled for exactly one
purpose, the need for IOMMU is very small as every OS has a very limited number of PCI
devices. Still, it would be good to have the additional security to be protected from malicious
devices. Redox, the free Rust operating system, does not currently have an IOMMU driver [37].
Also Biscuit, a POSIX kernel written in the Go language, does not implement an IOMMU dri-
ver right now [35]. The seL4 microkernel also does not have an IOMMU driver currently, but
the developers are working on it [39]. Both big free virtualization technologies KVM [24] and
XEN [48] have options to use the IOMMU, but that is only on a per-VM based isolation of
PCI devices, so a VM can not read other VMs’ or the host’s memory. The guest operating
system is then in charge of separating its devices itself, e.g., via a virtual IOMMU exposed by
the virtualization solution [5].

2.2.3 Usage of the IOMMU in Other Projects

DPDK, the user space network driver framework, implements usage of isolated network inter-
faces, when VT-d is activated in the host kernel and BIOS, and the VFIO driver is used for
NICs [10]. So, when having the IOMMU enabled in the BIOS and in the operating system, it
will be used to restrict devices, though all devices will belong to the same container, thus not iso-
lating them from each other and giving them full access to each other’s DMA memory. Still, the
DPDK framework can not be run as non-root user, since access to the address translation from
virtual address space to physical address space needs root permissions under Linux, and this is
needed for most drivers. Snabb, another user space network driver framework, does currently
support the IOMMU only if the host system has the IOMMU enabled in "passthrough" mode,
i.e., enabled, but not operating at all. An issue to make Snabb work with enabled IOMMU
exists, though [19].

2.2.4 IOMMU in Linux: VFIO

In Linux, the usage of the IOMMU is implemented in the vfio-pci driver. VFIO originally
meant “Virtual Function I/O”, but since this name was meaningless at best and misleading
at worst, other names have been found: “Very Fast I/O” or “Virtual Fabric I/O”. The most
fitting name would be “Versatile Framework for user space I/O”, though [47] .

Have a look at Figure 2.5 for the following explanation of the partition into IOMMU devices,
groups and containers. In respect to the IOMMU, a function of a PCI(e) device (e.g., a single
interface on a NIC, a single USB controller of an USB controller card, or the audio or graphics
controller of a graphics card) is an IOMMU device. Mind the di�erence between PCI(e) device
and IOMMU devices: One might call a single PCIe add-in card a “device”, but for the IOMMU,

8



2.2 The (IO)MMU

Figure 2.5: Overview over the grouping of PCI devices into groups and containers, and the way they
access main memory. From An Introduction to PCI Device Assignment with VFIO [47].

this card might be several “IOMMU devices”, e.g., a PCIe card might have two network in-
terfaces, but every one of those interfaces is a single “IOMMU device”. IOMMU devices (=
hardware functions) that can not be further separated on hardware level, e.g., the audio and
graphics chip on a graphics card, form an iommu group. Thus, an IOMMU group might contain
one or more IOMMU devices. It is possible, that one single PCI device with two functions
(e.g., a NIC with two interfaces) adds two or more IOMMU groups (one for every interface).
The exact grouping of hardware into VFIO groups can change with hardware (e.g., a di�erent
mainboard), firmware (e.g., mainboard BIOS) or the version of the vfio-pci driver, where most
of the times newer versions will give a finer isolation of devices. With some mainboards, even
several PCIe cards might be grouped together in regards of the IOMMU. This means that for
optimal performance a cutting edge firmware, BIOS and kernel are necessary.

Though each of the IOMMU groups can be separated by the IOMMU, this is sometimes not
desirable. In a simple forwarding application of a network driver, both NICs have to access the
other NIC’s mempool. For such scenarios, one or more IOMMU groups can be put in IOMMU
containers. IOMMU memory is mapped to containers, such that every device in every group of
one container can access all the memory that was mapped to this container, but is fully isolated
from other containers and the rest of the system main memory.

The vfio-pci driver maps IOMMU devices, groups and containers to their software counter-
parts, VFIO devices, groups and containers [47]. Thus, full control over how to group devices
(as far as the hardware allows) and put them into containers is given to a user by the vfio
driver.
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Chapter 3

Related Work

Of course, a lot of literate was published on the IOMMU, and the comparison of performance
between di�erent languages, compilers and interpreters. This chapter will give a short overview
over some of the work that is related to this thesis.

3.1 Related Work on the IOMMU

Since Oracle applied for its “Device Virtual Memory Access” patent in 1993 [44], the isolation
of DMA devices has found concern in the scientific community. In 1996, when the patent
was granted and the IOMMU implemented in the SPARC architecture, Linux was ported to
SPARC, with full usage of the new IOMMU [22]. But only with AMD’s own implementation of
the IOMMU in 2007 [2] and Intel’s implementation of VT-d in 2011, IOMMUs became widely
available on many devices, starting a real flood of publications, dealing with breaking, fixing,
improving and, finally, actually using the IOMMU.

3.1.1 Impact of the IOMMU on PCIe Performance

At Sigcomm ’18, a group of researchers presented their findings on the impact on NICs through
the PCIe bus and various of its features, including the IOMMU [33]. Using Netronome and
NetFPGA NICs, they wrote a PCIe benchmarking suite called pcie-bench that measures among
other things bandwidth and latency of the PCIe bus, and were able to compare di�erent architec-
tures and processors. Neugebauer et al. were also able to investigate the impact for Non-Uniform
Memory Access (NUMA) systems and the IOMMU. Though PCIe apparently does not bottle-
neck 10 GBit/s NICs (with exceptions), apparently the bus itself must be considered as a possible
bottleneck for NIC performance. In that work, the impact of the IOMMU int IOTLB was also
investigated, concluding a IOTLB size of 64 entries. Additionally, they found that the e�ective
bandwidth of a PCIe 3.0 device drops as far as 70 percent, depending on the PCIe bus packet
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size. This could be circumvented by using two network cards on separate PCIe lanes, but for
40 GBit/s NICs more than four PCIe lanes would be needed for further improvement.

3.1.2 DMA Attacks

Markettos et al. wrote an article called Thunderclap [28] in which they describe a hardware attack
on hosts exposing PCIe via Thunderbolt, that can be mitigated in parts by using the IOMMU
in the host system. By programming an FPGA that was attached to the host’s Thunderbolt
via Universal Serial Bus (USB) C, such that it registered as an Intel 82574L Gigabit Ethernet
Controller to the host system - a standard gigabit ethernet adapter that can be connected to
hosts via USB 3. It then acted as an ethernet adapter, sending and receiving packets through
the attached ethernet port to the host system, and thus was almost indistinguishable from a
normal adapter. It used its DMA access though, to read system memory for a proof of concept.
It was found, that many operating systems do not protect from such attacks by default, as
described in Chapter 2.

Stewin et al. wrote in 2012 the DMA malware DAGGER (DmA based keystroke loGGER) [41].
It was written for the Intel Management Engine (IME). The IME has full DMA access to the
main memory via the Management Engine Interface (MEI) PCI interface. The DMA malware
DAGGER was implemented in the IME Firmware and it uses its DMA capabilities to read
system memory and find the keyboard bu�er address in the memory of the host operating
systems, Linux and Windows. The malware infiltrates the host systems during runtime with a
known bug in the IME, and then logs keyboard input of the user and sends the information via
the IME’s network connection (an out-of-band network connection that uses the same physical
hardware than the host operating system). Using the IOMMU can mitigate this malware attack,
since the IME is not able to use DMA to read memory when isolated. It still can use the network
interface, though, and as such is an inherent security risk in all unpatched systems.

3.1.3 Circumventing the IOMMU as an Attacker

Just by using the IOMMU, a certain basic protection can be assumed, as long as it is implemented
and set up correctly. In 2010, Sang et al. analyzed two attacks on the IOMMU [38]. The first
attack was set against a misconfigured Intel VT-d, showing that it is hard to correctly configure
the IOMMU and thus be protected from DMA attacks. For this attack, either hardware access
is needed to the machine to disable the IOMMU all together, (e.g., in the unprotected Basic
Input/Output System (BIOS)), or root access is needed to set up the kernel to not use the
IOMMU or group several devices together. The second attack was set against a correctly set
up IOMMU, abusing a second I/O controller to perform attacks on the user. In this attack,
a machine with known IOMMU grouping (see Chapter 2), can be attacked. When two PCIe
devices are in the same IOMMU group, they can still read each other’s memory. In the case of
the attack described in the paper, an USB ethernet card was connected to the same PCI bus as
a FireWire device, thus both shared DMA capabilities and were not isolated from each other.
A malevolent FireWire device (a modified iPod) was used to inject malicious ethernet frames
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to the USB Network Interface Card (NIC). The attacker then could use ARP cache poisoning
to intercept all tra�c between the attacked host and any other machine, when in the same
network. Generally, the FireWire and Thunderbolt connections are prone to such attacks, since
they expose DMA access to the attached device.

In 2016, based on the DAGGER attacks, Morgan et al. used a bug in the IOMMU and the
Linux kernel to bypass IOMMU protection [31]. By circumventing the IOMMU very early in
the system boot process (it was demonstrated during the GRUB bootloader), a modified FPGA
device was able to inject a rootkit kernel module into the main memory, that was executed later
and provided the attacker with physical access to the device e�ectively full root access.

3.1.4 IOMMU Limitations and Their Mitigation

As stated earlier, the IOMMU features an IOTLB that caches recently accessed pages. When
many DMA accesses are made in short time, the IOTLB needs to be refreshed, and pages that
are no longer in the cache have to be read from the system main memory, by walking the page
table. This can seriously impact performance. Amit et al. wrote in IOMMU: Strategies for
Mitigating the IOTLB Bottleneck about how the IOTLB bottleneck could be mitigated, and
proposed hard- and software solutions for that [4]. They begin with stating that single-use
mapping of DMA memory is unfeasible and increases CPU load, thus multiple-use mappings
should be created that are not unmapped after each access. This would decrease security only
minimally, since the device could read all its mapped memory all the time. Several devices were
investigated in regard to their DMA access patterns and di�erent IOTLB miss rates. In their
investigated CPU (an Intel Xeon X5570 on a X58 chipset), the IOTLB seems to have 32 entries.
To investigate the access patterns and find hardware fixes for the IOMMU, they implemented the
vIOMMU [5], a virtual IOMMU that can also be used by virtual machines that do not have an
own IOMMU. Based on the access patterns they recognized with several kinds of hardware, e.g.,
network cards and SCSI disk controllers, they found ways to mitigate the IOTLB bottleneck.
One of their main proposals is the increase of pages the IOTLB can hold, and the use of huge
pages. Additionally, they propose prefetching of adjacent IOTLB entries and explicit caching
of newly mapped pages. With their proposed changes, they were able to reduce the number of
IOTLB misses by up to two thirds, depending on the application.

Malka et al. designed a ring IOMMU (rIOMMU) [27] to mitigate some performance impacts of
the IOMMU and IOTLB on high performance networking cards and PCIe SSD controllers. Using
this could further improve performance for high-throughput 40 GBit/s networking cards, but
needs hardware implementation and can not be implemented in software only. The throughput
gain is achieved by implementing the IOMMU as a ring bu�er, thus minimizing the cost of
IOTLB invalidations. Since memory accesses are already queued in a ring queue (RX and TX
queue in case of network cards), access to memory spaces also happens in a ring kind of way.
When DMA memory is unmapped after every operation, the IOTLB entry has to be invalidated,
which is a costly procedure and might thus be stalled, to later invalidate the whole IOTLB at
once [27]. Since the ixy driver does currently not unmap DMA addresses, such invalidations
do not happen, and thus ixy already is optimized for the use of IOMMU without needing an
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rIOMMU. Drivers for other devices, or drivers with a di�erent use case than ixy, might need to
unmap DMA memory, though (e.g., solid state drive drivers), and in these cases employing an
rIOMMU would improve throughput and reduce latency.

3.2 Performance Comparison of Different Languages

Many attempts have been made to create a reasonable, fair comparison of the di�erent pro-
gramming languages, compilers and interpreters. Kernels and operating systems exist written
in many di�erent languages (Linux, Windows and Mac OS are written in C, Redox OS in Rust,
Biscuit and GopherOS in Go, and even Java has its own JavaOS). Ixy right now comes in flavors
of eight programming languages, namely the standard implementation in C (ixy), ixy.rs in
Rust, ixy.go in go, ixy.cs in C#, ixy.hs in Haskell, ixy.swift in swift, ixy.ml in OCaml
and ixy.py in Python [13]. Since all of the language variants of ixy have been compared to each
other [13], a comparison of the languages for other tasks seems reasonable. A short overview
over some comparisons between languages, compilers and interpreters will be given here.

In 2000, Prechelt compared C, C++, Java, Perl, Python, Rexx and Tcl with each other, using the
Phonecode programming problem [36]. In the Phonecode problem, every letter of the alphabet
is given a digit. The algorithm is provided an input file of words, and an input file of telephone
numbers, and must match words to the letters of the telephone numbers. In this comparison,
C is the fastest implementation, followed by Perl (time factor of 4), Python, Tcl, Java and C+
(all about a factor of 10), and finally Rexx (factor of about 100). The memory footprints of the
running programs range from 10 MBytes (C++) to 45 MBytes(Java). Also, the coding time
per program has been evaluated, and the length of the program in Lines Of Code (LOC). It
is concluded, that C and C++ are comparably fast, and the scripting languages fall behind in
performance.

In 2015, the codebase Rosetta Code [30] was used to compare eight widely used programming
languages (“procedural: C and Go, object-oriented: C# and Java, functional: F# and Haskell,
scripting: Python and Ruby”) in A Comparative Study of Programming Languages in Rosetta
Code [32]. Rosetta Code is a website that features solutions for di�erent problems in as many
programming languages as possible. For example, the Caesar cipher problem, where each letter
in an input is shifted by a certain number of letters in the alphabet, has a solution in 124
di�erent programming languages right now. Investigated were the length of source code, size of
executables, runtime and memory performance and susceptibility to failures. Length of code is
important, as programmers are prone to produce more errors in more LOC. Python solutions
to the investigated programs needed the least LOC, followed by Haskell, Ruby, F#, Java, Go, C
and C#. The size of the executable files is mostly irrelevant, since most computers have more
than enough main memory and cache to keep most binary code in at least level 3 cache, but
it is noteworthy that most languages have a similar compiled size (bytecode), whereas Haskell
and C# compile to native code, with a larger executable. Speed results are more interesting:
C comes ahead of the other languages, followed by Go. Then Java and F#, C#, Haskell and
Python follow in that order, with Ruby needing the most time for most tasks. A similar pattern
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can be seen for memory usage of the programs, where the only major di�erence is that Haskell
solutions need more memory than Ruby. Last, the susceptibility to errors is investigated. The
strictly typed languages produce less errors in most cases, making Go the most secure of the
investigated languages, and Python and Ruby, very loosely typed languages, the most error
prone.

In 2019, Felix Leitner called upon the readers of Fefes Blog to send idiomatic or strongly op-
timized code for a single word processing problem, in which words in an input file should be
counted and output in order of their occurrence counts [46]. Solutions for the languages C, Rust,
Go, Python, Perl and others have been tested with the source code of llvm 8.0.0 as input file.
While the highly optimized C code (compiled with gcc) is the fastest competitor, Rust follows
(with a working time of about double that of C, but almost 10 times as much memory needed)
on second place. C++, Go and java follow C and Rust, with up to 3 times more time needed
for the task, and Ruby comes in last taking almost 12 times as long.

With all of the above results and since the ixy application is CPU bound most of the time
in case of forwarding 64 Byte packets, it comes to no surprise that the original ixy and ixy.rs
implementation feature the best performance.
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Chapter 4

Implementation

This chapter will describe how to activate the IOMMU on a machine and how to implement
using it in C and Rust.

4.1 Activating the IOMMU

On most systems, the IOMMU is deactivated by default, and must be activated in both the
BIOS and the operating system. Exact steps on how to activate the IOMMU in a server’s
BIOS can not be given here, as too many di�erent mainboards and BIOSes exist, but on Intel
CPUs the option is most likely called VT-d, and on AMD CPUs IOMMU. Most of the time it
is essential to also activate all virtualization options (i.e., all other VT options like VT-x). The
IOMMU must then be enabled for the operating system. To the Linux kernel, the command
line argument intel_iommu=on must be given for Intel CPUs, and for many distributions (i.e.,
kernel build configurations), iommu=force must also be given, since it is not set by default in
all distributions configurations. Only now, devices will be visible in their respective IOMMU
groups in /sys/kernel/iommu_groups, and the IOMMU can be used.

4.2 IOMMU Grouping and Device Acquisition

As stated in Subsection 2.2.4, IOMMU devices are grouped and then put in containers. Any
memory that is mapped to a container with one or more devices will be available by all devices
in all groups in this container, but not to any devices in other containers. In a best-case scenario,
every device would have its own container, being completely isolated from all other devices.

The usability of a network driver where each device is completely isolated would be limited by
raw CPU and memory speed (e.g., packets would have to be copied by the process from the
memory space of one NIC to the memory space of the other NIC). Thus, in the IOMMU enabled
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implementation ixy [20] all NICs are put in one container, making it possible for each NIC to
read the packets in the mempool of any other NIC.

Binding a device to the vfio-pci driver in Linux exposes the devices group in
/dev/vfio/$GROUP_NUMBER. This file can be chowned by any user, thus eliminating the need to
be root to communicate with the device. This file combines all devices in one group.

4.3 Every System Programmer’s Friend: ioctl(2)

To do useful stu� with the group file, the VFIO syscalls in ioctl are needed. ioctl(2) is
the Linux kernel interface for everything that does not get its own syscall. Since it combines
many use cases, it is not that simple to use, syscalls to it are not that easy to read and the
return values and errnos can be very ambiguous. In the Linux documentation to VFIO [26]
and in linux/vfio.h, all needed syscalls are described and explained. Luckily, there is an even
better introduction to VFIO than the kernel documentation by Alex Williamson [47], a Red Hat
developer.

Summarized, the following ioctl calls are needed in roughly that order:

1 ioctl (group , VFIO_GROUP_GET_STATUS , & group_status );

2 ioctl (group , VFIO_GROUP_SET_CONTAINER , & container );

3 ioctl ( container , VFIO_SET_IOMMU , VFIO_TYPE1_IOMMU );

4 ioctl ( container , VFIO_IOMMU_GET_INFO , & iommu_info );

5 ioctl ( container , VFIO_IOMMU_MAP_DMA , & dma_map );

6 ioctl (group , VFIO_GROUP_GET_DEVICE_FD , $DEVICE_PCI_ADDR );

7 ioctl (device , VFIO_DEVICE_GET_INFO , & device_info );

8 ioctl (device , VFIO_DEVICE_GET_REGION_INFO , &reg );

9 ioctl (device , VFIO_DEVICE_GET_IRQ_INFO , &irq );

10 ioctl ( container , VFIO_IOMMU_UNMAP_DMA , & dma_map );

11 ioctl (device , VFIO_DEVICE_RESET );

Source code 1: All ioctl calls needed for basic IOMMU support

VFIO_GROUP_GET_STATUS sets the status to two flags. VFIO_GROUP_FLAGS_VIABLE is set to true,
when the group is viable, i.e., all devices in the group are either unbound by any Linux driver
or bound to the vfio-pci driver. VFIO_GROUP_FLAGS_CONTAINER_SET is set to true when the
group already is in a container. For this driver it is assumed that a group’s devices are bound to
vfio-pci before the driver is started, but as a precaution the viable flag is checked anyways. If
a group is not viable, the driver exits with an error message. As the ixgbe driver in ixy works
only for NICs that are each in their own group, a check for VFIO_GROUP_FLAGS_CONTAINER_SET
is not needed.
VFIO_GROUP_SET_CONTAINER adds a group (in this case with only one device) to the container,
that was previously opened with open("/dev/vfio/vfio", O_RDWR).
VFIO_SET_IOMMU enables the IOMMU model for this container to Type 1. Other possible types
are VFIO_SPAPR_TCE_IOMMU for SPARC processors or VFIO_TYPE1v2_IOMMU for version 2 of the
IOMMU. Since Type1v2 does not o�er any improvements regarding ixy, Type 1 is used to be
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compatible with most modern x86-64 CPUs, including Intel and AMD processors.
VFIO_IOMMU_GET_INFO then fills a struct vfio_iommu_type1_info, which contains informa-
tion about supported memory sizes. For the ixgbe devices on the investigated servers, the
IOMMU supports 4 KiB, 2 MiB and 1 GiB page sizes. Since on all the ixy supported NICs and
systems 2 MiB huge pages are supported, this ioctl is not used in ixy, and the driver always
uses 2 MiB huge pages.
VFIO_IOMMU_MAP_DMA is the critical one, it maps memory for the device according to the given
struct vfio_iommu_type1_dma_map. This also programs the IOMMU to allow I/O memory
access for this container only to the mapped region(s). Such mapped regions can be reset later
via VFIO_IOMMU_UNMAP_DMA, which is not needed in ixy, since this happens automatically when
the application is closed again. This also prevents the higher CPU usage by remapping DMA
space every other time, as explained in the work by Amit et al. [4].
Up to now, all interactions have been with the group. VFIO_GROUP_GET_DEVICE_FD recovers the
device file descriptor for following ioctl syscalls that need access to the individual device.
VFIO_DEVICE_GET_INFO fills a struct vfio_device_info with information about several func-
tions supported by the device (via VFIO_DEVICE_FLAGS_*), the number of regions the device
exposes and the IRQs the device supports. Since the ixgbe NIC is well-known, this call is not
needed in ixy.
VFIO_DEVICE_GET_REGION_INFO is needed in ixy, as the region info for the config region is
needed to enable DMA in vfio_enable_dma and the resource0 region to configure the device.
The information on the requested region is put in a provided struct vfio_region_info.
VFIO_DEVICE_GET_IRQ_INFO is not needed in ixy, since ixy does not yet make use of IRQs.
Finally, VFIO_DEVICE_RESET resets the device. This syscall is not needed, either, as this happens
automatically when exiting the process, and the device is reset by writes to the config region
when initializing an ixgbe device.

4.4 libixy-vfio

The main part of the work regarding VFIO and the IOMMU happens in the newly written
libixy-vfio library. The libixy-vfio header file libixy-vfio.h describes all exposed func-
tions:

1 int vfio_init ( const char* pci_addr );

2 void vfio_enable_dma (int device_fd );

3 uint8_t * vfio_map_region (int vfio_fd , int region_index );

4 uint64_t vfio_map_dma (void* vaddr , uint32_t size );

5 uint64_t vfio_unmap_dma (int fd , uint64_t iova , uint32_t size );

Source code 2: libixy.vfio functions exposed in libixy-vfio.h

vfio_init() initializes the IOMMU for the given device by issuing the above mentioned ioctls
after checking the binding of the device to the vfio-pci by looking for an existing group file. It
returns the device file descriptor that is later needed by other calls to the libixy-vfio library.
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vfio_enable_dma() enables DMA access for the device with file descriptor device_fd via the
config region exposed by the device file descriptor returned by vfio_init().
vfio_map_region() maps one of the device regions, either the config or one of the resource
regions, in the memory and returns a pointer to the mmapped region. This is needed in ixy
for mapping the config region to enable DMA (see above), or to map the resource0 BAR, to
communicate with the NIC.
vfio_map_dma() and vfio_unmap_dma() map and unmap DMA-able memory for the device.
The unmap function is not used in ixy, as all regions are unmapped when the process exits.
vfio_map_dma() is the function that actually programs the IOMMU and restricts the device to
the mapped memory.

4.5 Changes to ixy

Changes to ixy include adding two fields to the struct ixy_device bool vfio and
int vfio_fd. The boolean value vfio is needed to check if initialization of the IOMMU
is needed. The int vfio_fd is the pointer to the aforementioned device file descriptor. It
is needed to access the config space and BAR of the device, as the vfio-pci driver ex-
poses them in the /dev/vfio/$GROUP_NUMBER file as stated earlier. The access is thus dif-
ferent than the regular access via the files in /sys/bus/pci/devices/$PCI_BUS_NUMBER/.
In the non-IOMMU enabled version of ixy, device configuration happens by mapping
/sys/bus/pci/devices/$PCI_BUS_NUMBER/config into memory and reading / writing to the
mapped memory. In the IOMMU enabled version, the config space is mapped in the vfio_fd
with a certain o�set, which is described in the struct vfio_region_info filled by the
VFIO_DEVICE_GET_REGION_INFO ioctl syscall. Same is true for the resource0 and every other
resource space, though only the config and resource0 memory spaces are needed in ixy.

The file ixgbe.c had to be changed to determine if VFIO initialization is needed, and initialize
it. Also, the resource0 file has to be mmapped via above mentioned file descriptor vfio_fd
instead of the standard /sys/bus/pci/devices/$PCI_BUS_NUMBER/resource0 file. The same
two changes had to be made to the VirtIO driver in virtio.c.

The memory.c file also needed several adjustments. Since the memory mapping for the IOMMU
happens on a per-container basis, a global variable for the container file descriptor is needed,
which is set once an IOMMU enabled device gets initialized. In accordance with that, the
memory_allocate_dma() function needs to change the way memory is allocated for VFIO de-
vices, calling libixy-vfio’s vfio_map_dma() function instead of mmaping huge pages by itself.
The memory mapping to the devices I/O Virtual Addresses (IOVA) is chosen to be explicitly
simple: Despite the fact that an own memory mapping could be used, the implementation maps
the same virtual addresses for the device (IOVA) as for the process (VA).

The full, working implementation into ixy (C) can be found at GitHub [20].
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4.6 Implementation Using Rust

Since the Linux kernel is written in C, for any application also written in C (like the original
ixy driver) it is relatively easy to implement the needed ioctl syscalls, memory mapping and
file descriptor handling. Implementing IOMMU support in other languages, however, holds its
own problems.

At time of writing this thesis, ixy implementations exist for eight programming languages,
namely the standard implementation in C (ixy), ixy.rs in Rust, ixy.go in go, ixy.cs in C#,
ixy.hs in Haskell, ixy.swift in swift, ixy.ml in OCaml and ixy.py in Python [13]. Of these,
ixy.rs has the best performance (after the original ixy implementation), and Rust is a “systems
programming language”, and such the Rust implementation was chosen to receive an IOMMU
upgrade, too.

While the basic steps behind the IOMMU setup are the same as with C (see above), the most
implementation intensive part is actually calling ioctl in rust. Modules for ioctl usage exist
(e.g., nix::sys::ioctl), but those lack other needed C syscalls (like pread or pwrite). So,
with use of the crate libc, IOMMU support was implemented in ixy.rs. Some of Rusts most
appraised advantages had to be circumvented, though, as C library calls expect pedantic C
behavior. Rust supports structs, but the memory layout of a Rust struct is not the same as in
a C struct by default, instead the compiler option #[repr(C)] must be given if the C memory
structure is needed:

1 // Rust code //C code

2 #[repr(C)]

3 struct vfio_group_status { struct vfio_group_status {

4 argsz : u32 , __u32 argsz ;

5 flags : u32 , __u32 flags ;

6 } };

Source code 3: Di�erent declaration of structs in C and Rust. Mind the #[repr(C)] in the Rust
code.

Since most of the VFIO structs from linux/vfio.h are used as arguments for the needed ioctl
calls, all those struct definitions had to be implemented as #[repr(C)] structs in ixy.rs.

Rust is designed to be as memory safe as possible, and this is implemented by very good
measures: Files, for example, are closed as soon as the program moves out of the context where
the file was opened. This is a very good idea, since most programmers are lazy and often forget
to close() files. That behavior is unwanted, though, if a file handle needs to be held open as
long as the program runs, as is the case in the network driver ixy.rs. In that case, a global
variable has to be defined, which is not only very “un-rust-y”, but also unsafe (more on that
below).

Also, some constants from the C header file linux/vfio.h had to be hard coded in ixy.rs, as
they were not exposed by any rust crate.
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4.6.1 Unsafe Code

Rust is a safe programming language, as long as the Unsafe Superpowers are not used. These
include dereferencing a raw pointer, calling an unsafe function, accessing a mutable static vari-
able, and implementing an unsafe trait. All four of these are needed in the user space network
driver ixy.rs:
Dereferencing raw pointers is needed, since ioctl sometimes only gives back pointers, which
have to be dereferenced then.
As stated above, calling unsafe functions from the libc is needed, which are all together unsafe.
Most of all, of course, ioctl itself is unsafe.
The file descriptor for the container file needs to be mutable static, but must accessed at least
once per application run.
Lastly, the RawFD type for raw file pointers is needed, and RawFD implements an unsafe trait.

All together, 29 of 552 added lines of code use the unsafe keyword. This does not invalidate
the use of Rust for usage as a systems programming language, as the basic safeties that Rust
guarantees are still given outside of the unsafe scope, e.g., when handling packet memory. By
design, above operations need to be unsafe as they can not be checked at compile time. The usage
of the unsafe keyword clearly marks regions in the code, where basic programming mistakes
could still be made. Other mistakes, like logical ones, can still be made outside of the scope of
unsafe regions, but here the compiler can at least give you some guarantees of not running into
memory errors like access violations.

The full, working implementation into ixy.rs can be found at GitHub [11].
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Chapter 5

Modeling the IOMMU

All the measurements in this thesis were made on an Intel Xeon E5-2620 v3 with an Intel 82599ES
NIC. The load (2 ◊ 10 GBit/s at 64 Byte packets, i.e., 14.88 Mpps) was generated on a server
with an Intel Xeon E5-2630 v4 CPU and another Intel 82599ES NIC with MoonGen [14]. Similar
results were achieved with Intel X540-2 NICs on both sides. Results may vary with di�erent
NICs, processors and even with di�erent mainboards due to di�erent PCIe configuration.

5.1 Performance Impact of 4 KiB Pages

When using the IOMMU was first implemented in this thesis, it was done without use of 2 MiB
huge pages, which resulted in a performance drop of up to 75 percent, as can be seen in Fig-
ure 5.1. This led to the question, how to optimize for this apparent bottleneck, and for this, it
is important to know the number of page entries, the IOTLB can hold. As stated earlier, this
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Figure 5.1: Impact of 4 KiB pages on the IOMMU at 1.60 GHz
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Figure 5.2: Impact of the CPU frequency on the e�ective batch size (ebs) with 4 KiB pages. ebs is
capped at 32 by the driver constant BATCH_SIZE.

is not stated in the Intel specifications [23], but because of the severe performance drop, it can
safely be assumed that the IOTLB features significantly less entries than the TLB.

The performance impact of the TLB of the MMU when using 4 KiB pages has been investigated
by Emmerich et al. in the original ixy implementation and is very small [12]. For comparison
with the IOTLB impact, it can be seen by inspecting the E�ective Batch Size (ebs), i.e., the
actual number of packets the forward application reads and writes from and to the RX and TX
queues per loop cycle. In the unmodified ixy driver, the (maximum) batch size is set to 32, so
32 packets would be taken from the RX queue of every NIC, the packets touched (so that they
go through all levels of the CPU cache), and then written to the RX queue of the other device.
If the NICs can write / read more packets to / from the queues than the CPU in a certain
amount of time, the ebs will always be this set batch size. Increasing the batch size can help
with this issue to a certain point, as shown by Emmerich et al. [16]. This ebs bottlenecking can
be observed by intentionally creating a CPU bottleneck, i.e., clocking the CPU at a very low
speed. When increasing the CPU speed again, the process will be able to read and write from
the queues faster, up to a certain point, where the NICs will be slower in refilling the RX queue
than the CPU is in clearing it. Then the ebs will drop from the set batch size of 32, indicating
that the CPU is faster than the NICs in the forwarding application.

As Figure 5.2 shows, with a modified packet bu�er size (the size of one memory pool en-
try, i.e., the memory footprint of one packet in the main memory) of 4096 Byte, the appli-
cation is CPU-bound up to 2.00 GHz. Only when reaching 2.40 GHz, the CPU is “faster”
than the NIC, emptying the RX queue faster than the NIC can fill it. In this scenario, one
packet needs a whole 4 KiB memory page, and both the MMU and the IOMMU are bound
by TLB and IOTLB cache misses: The memory footprint of the whole DMA memory is
4 ◊ 8 KiB + 2 ◊ (4096 ◊ 4096 B) = 32.032MiB, which is way to large for even the MMU’s 4096
pages. The second line depicts the same load with a unmodified packet bu�er size of 2048 Byte.
Now, two packets fit into one 4 KiB memory page. Then, the application is CPU-bound only
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Figure 5.3: Model of the ixy forwarder with the IOMMU. Both the IOMMU and the MMU need to
hold the pages for all four queues and and all accessed packet bu�ers in both mempools.
The simplified path for a single packet forwarded from NIC1 to NIC2 is marked in thick lines: The
packet is received by NIC1, which then writes the descriptor to the RX queue and the packet into the
packet bu�er in its mempool. The driver checks the RX queue for new packets, touches the packet in
the mempool and moves the descriptor to NIC2’s TX queue. NIC2 then reads the descriptor from its
TX queue, reads the packet from NIC1’s mempool and sends it.

up to 1.20GHz, any faster than that the CPU out-paces the NIC. The memory footprint of the
DMA memory is about half the size from before: 4 ◊ 8 KiB + 2 ◊ (4096 ◊ 2048 B) = 16.032 MiB,
which fit (almost) in the MMU’s TLB. This shows, that the IOTLB has fewer entries than the
TLB, and thus more frequent misses, so the NICs can not push new packets fast enough into
the memory, and the CPU will wait for new packets most of the time, decreasing the ebs.

5.2 Measuring the Number of Pages in the IOTLB

To find out the number of entries in the IOTLB, one needs to understand in which way the NICs
access the main memory. Figure 5.3 depicts a simplified version of the process of forwarding one
packet.

The following section will use the unmodified values that are hard coded in the ixy driver. The
forwarder processes packets in batches of 32 (batch size) packets at once. The bu�er for one
packet in main memory is 2048 Byte (packet bu�er size). The number of entries in one NICs
mempool is 4096 of these packet bu�ers (mempool entries). The length of the RX and TX
queues is 512 entries each (queue entries).
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5.2 Measuring the Number of Pages in the IOTLB

This leads to 8 KiB memory size for each queue, since the queue itself contains only the packet
descriptors with 16 Byte each. Additionally, each NIC gets a mempool, that is large enough for
4096 entries of 2048 Byte packets each, adding up to 8 MiB of main memory for every mempool.
All in all this means that 8.016 MiB of main memory are reserved for each NIC.

Since the main application of ixy right now is the ixy-fwd forwarder application, that application
is used in this work for performance testing. This means, that DMA-able memory for the
forwarder application is 16.032 MiB all together.

When running, every NIC accesses all its RX and TX queue entries regularly, pushing the
memory mapping table entries containing these (2 ◊ 2 ◊ 8 KiB = 32 KiB) into the IOTLB. Since
they are accessed rather often, it is safe to assume, that they do not leave the IOTLB, which
evicts the least recently used lines first. Then, for each packet that is received by the NIC (and
a free entry in the RX queue of this NIC exists), the packet is written to the NICs mempool,
thus 2 KiB of memory are accessed - ideally one 4 KiB page per two packet bu�ers. Because of
the way the mempool is used in ixy with a free stack, two consequently accessed packet bu�ers
will most likely be consequent in physical memory.

If no free entry is found in the RX queue, the packet is discarded by the NIC. This happens
only if the application is CPU bound, which should not be the case at high CPU speeds. An
access to the mempool is thus only made whenever the CPU cleared an entry in the RX queue.
The application tries to clear the RX queue regularly, copying the descriptors in the RX queue
in a forwarder descriptor bu�er it holds for packets to be sent out, and then assigning a new
packet bu�er from the mempool to this RX queue entry. This bu�er comes from the top of the
free stack, in a manner that recently used bu�ers that are not needed anymore (because the
other NIC sent the packet out and the driver cleaned them from the RX queue, see below) gets
reassigned, e�ectively re-using only a small subset of the packet bu�ers in the mempool. The
driver then cleans up descriptors in the TX queue, freeing packet bu�ers in the mempool of
that NIC. The newly freed bu�ers are inserted into the free-stack, where new bu�er are taken
from in the RX step in the next forward loop. After the driver sends a packet into the TX
queue of a NIC, the NIC reads the packet from the mempool (of the other NIC), i.e., accessing
the memory that was just accessed by the receiving NIC. Because of the way the TX cleaning
is implemented, a maximum of two full clean batches, which is the same as the batch size, of
bu�ers is added to the regularly used bu�ers, so the number of bu�ers that are regularly used
is described by the following formula:

#bu�ers = rx queue length + 2 ◊ batchsize

This number, multiplied with the packet bu�er size (2048 by default) plus the size of both
queues (RX and TX each 8 KiB by default) gives us the memory that is accessed by each NIC
regularly. For simplicity, the size of the TX queue is always set to the same size as the RX
queue. Dividing this number by the page size (4096 Byte) will give the number of pages that
are regularly accessed, as calculated by Equation 5.1.
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Figure 5.4: Forwarding throughput at variable RX queue size and packet bu�er size, CPU clocked at
2400 MHz. The NIC is capped at 21.5 Mpps by the PCIe bus. Minimum throughput of about 8 Mpps
is achievable even with very frequent IOTLB cache misses. The data for this figure can be seen in
Table 5.1.

#pages = 2 ◊ (#bu�ers + 2 ◊ queue size)/pagesize =
2◊ ((queue length+2◊batchsize)◊packetbu�er size+2◊queue length◊16 Byte)/4096 Byte

(5.1)

Whenever this number is larger than the number of IOTLB entries, a drop in throughput will
be noticeable. When the application is CPU bound, e.g., because of a very low CPU speed, the
number of regularly accessed bu�ers and thus pages will di�er, as the RX queues might not be
cleared right away and significantly more packet bu�ers will be needed.

5.3 Results of the IOMMU Measurement

Looking at the results in Table 5.1 and Figure 5.4, the IOTLB of the IOMMU in the investigated
CPU should feature between 80 and 84 pages. Since the application is not CPU bound in above
scenarios, the e�ective batch size di�ers from the set batch size: The CPU can clear the RX
and TX queue much faster than the NICs can refill them, thus the number of regularly accessed
pages might be smaller than the one calculated above. Thus, a IOTLB size of 64 entries is
suspected, as also concluded by Neugebauer et al. [33]. Since the ixy driver forwards 21 Mpps
at this point, any output of the driver regarding the number of regularly accessed bu�ers is just
so imperformant, that it makes the application CPU bound again, and the number of Mpps
forwarded drops as the number of accessed bu�ers increases. A working method to really count
the number of regularly accessed bu�ers, and thus pages, with ixy could not be found.
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batch size packet bu�er size queue entries accessed pages forwarded Mpps

32 4096 512 1160 7.92
32 2048 512 584 8.14
32 1024 512 296 8.66
32 512 512 152 10.04
32 256 512 80 21.18
32 4096 256 644 7.94
32 2048 256 324 8.44
32 1024 256 164 9.70
32 512 256 84 14.40
32 256 256 44 21.02
32 4096 128 388 7.94
32 2048 128 196 9.02
32 1024 128 100 12.40
32 512 128 52 20.86
32 256 128 28 20.82

Table 5.1: Pages accessed at variable RX queue size and packet bu�er size, CPU clocked at 2400 MHz.
This data was used for Figure 5.4. Especially relevant are the accessed pages, calculated with Equa-
tion 5.1.

5.4 Limits of the PCIe Bus

Additionally it can be noted that the NICs are apparently capped at pushing 21.5 Mpps over
the PCIe bus. The Intel 82599ES NIC is a dual port network card that runs on 8 PCIe 2.0
lanes. In the paper understanding PCIe performance for end host networking [33], the PCIe
read/write bandwidth was found by Neugebauer et al. to be capped at small transfer sizes (i.e.,
small packets) because of the packetizing that happens on the PCIe bus. This means, that the
PCIe bus really caps the performance of the ixy drivers at about 21.5 Mpps with small packets.
This performance problem could be solved by increasing the transfer size of the card, either
by telling the NIC to batch PCIe transfers, or simply generating larger packets with MoonGen
(not forwarding more Mpps, but at least saturating the two connected 10 GBit/s network lines).
This PCI bottleneck can easily be bypassed by using NICs on separate PCI lanes, which leads
to higher throughput, being bound by CPU clock.
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Chapter 6

Results

The investigated server features an Intel Xeon E5-2620 v3 6-core CPU with a base frequency of
2400 MHz, and a turbo frequency of up to 3200 MHz. The 32 GiB (4 ◊ 8 GiB) of DDR4 main
memory on this server were clocked at 1866 MHz. For most performance measurements, the
CPU was clocked at 2400 MHz, with Turbo Boost disabled. The load generating server is a
Intel Xeon E5-2630 v4 10-core CPU with a base frequency of 2200 MHz. The load is generated
with the software packet generator MoonGen [14]. The network cards used are Intel X520-T2s,
two-port SFP+ 10 GBit/s network adapters attached to PCIe 2.0◊8 ports. Comparable results
were achieved with two Intel X540-T2s, copper Ethernet siblings to the aforementioned X520-
T2s. Both servers were running Debian stretch on the Linux 4.9 kernel. The C code for ixy
was compiled with the ixy Makefile and gcc 6.3.0. The Rust code for ixy.rs was compiled
with rustc 1.33.0. Both ixy and ixy.rs were pinned to a single CPU core using taskset -c.
PTI was used for Meltdown, __user pointer sanitization for Spectre v1 and full generic
retpoline for Spectre v2 mitigation. Since ixy is a user space driver, and there are not many
kernel syscalls while actually running the application, neither Meltdown nor Spectre mitigation
influence the performance or latency significantly.

6.1 Performance

For performance comparison with the non-IOMMU enabled ixy and ixy.rs drivers, forwarding
capacity in Mpps (million packets per second) was measured depending on forwarding batch
sizes. Each test ran 2 minutes, and the average Mpps over the whole test time was used. The
packet size was always set to the worst-case of 64 Byte. The size of the RX and TX queues was
set to the default 512 entries, the packet bu�er size to the default 2048 Byte and the size of the
mempool to the default 4096 packet bu�ers. TX clean batch size was also set to the default size
of 32 entries. Also, a memory page size of 2 MiB was set, as is by default. The impact of using
a smaller page size is investigated in the previous chapter of this thesis.



6.1 Performance
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Figure 6.1: Forwarding capacity of the ixy driver variants at CPU speed of 1600 MHz. The lines are
mostly overlapping.
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Figure 6.2: Forwarding capacity of the ixy driver variants at CPU speed of 2400 MHz. The lines are
mostly overlapping.

1 2 4 8 16 32 64 128 256
0

10

20
21.5

Batch size

P
ac
ke
t
ra
te

[M
p
p
s]

ixy ixy IOMMU

Figure 6.3: Forwarding capacity of the ixy driver variants at CPU speed of 3200 MHz turbo frequency.
The lines are mostly overlapping.
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6.2 Latency
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Figure 6.4: Latency distribution of packets when forwarding 1 Mpps
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Figure 6.5: Latency distribution of packets when forwarding 10 Mpps

As can be seen in Figure 6.1, Figure 6.2 and Figure 6.3, the usage of the IOMMU does not
a�ect the forwarding capacity of the ixy driver significantly. Forwarding rates for di�erent CPU
speeds and batch sizes are the same for the IOMMU enabled and the vanilla variant of ixy. The
same holds true for ixy.rs and its IOMMU counterpart.

6.2 Latency

For latency measurements, all packets were also captured before and after the device under test
with fiber optic taps, and the MoonSni� framework was used to acquire hardware timestamps
(with 25.6 nanosecond precision). All these tests were run for about 160 million packets, when
generating a forwarding load of 1, 10 and 20 Mpps, at 64 Byte per packet. For the latency tests,
the CPU was clocked permanently at 2400 MHz.
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6.3 C and Rust on Different CPUs
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Figure 6.6: Latency distribution of packets when forwarding 20 Mpps

Figure 6.4, Figure 6.5 and Figure 6.6 show the complementary cumulative distribution function
of the packet latencies. When forwarding 1, 5 and 10 Mpps, the latency distribution is relatively
the same, with more than 99.9999 percent of all packets accumulating under 10µs of latency by
getting forwarded by any implementation of ixy or ixy.rs. The maximum latency introduced in
these tests seem to be about 25 µs. Curiously, the IOMMU implementation of ixy in C introduces
clearly less latency than the other three implementations.

Figure 6.6 shows the latency of packets forwarded when approaching the CPU bottleneck at
20 Mpps. Then, only 99.99 percent of all packets have a latency of less than 10 µs introduced,
with a major latency introduction of 20 to (in the case of the IOMMU implementation of ixy.rs)
50 µs more (adding up to 30 or 60 µs) for the rest of all forwarded packets. At this graph it is
clearly visible, that at least on this CPU the Rust implementation of ixy takes less time per
packet than the C version. Only for a very small percentage of packets, the Rust implementation
takes more time than the C implementation.

6.3 C and Rust on Different CPUs

For the investigated CPU (Intel Xeon E5-2620 v3), the C implementation is significantly and
reproducible slower than the Rust implementation. Tests on other servers indicate, that this
is not the case for all CPUs: All other investigated machines show the same behavior as was
measured by S. Ellman and P. Emmerich in [12] and [11], where the C implementation is up
to 10 percent faster than the Rust implementation. This holds true for the IOMMU enabled
implementation, too, on all but the one investigated CPU.

Why this is the case, could not be established in the course of this thesis. Measurements with
the perf(1) tool revealed, that the instructions per packet are comparable for ixy and ixy.rs,
but with ixy.rs less cycles per packet were needed than with ixy, e�ectively meaning than
with Rust, more instructions per cycle were possible than with C. It needs to be stated again,
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Figure 6.7: Speed comparison of ixy and ixy.rs on two di�erent Intel Xeon processors

that this was only measured on this one Server and CPU, and all other investigated CPUs
behaved as stated above and C was significantly faster than Rust. Also, this holds true for
several versions of rustc (1.30 to 1.33 were tested) and the gcc (6.3.0 and 8.2.0 were tested).
Compiling with llvm on the other hand produced slower results than compiling with gcc on all
tested platforms.
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Chapter 7

Conclusion: Safe and Secure User Space
Drivers

In the course of this thesis, the educational user space network drivers ixy and ixy.rs were
fitted with the ability to take use of the IOMMU to isolate PCIe NICs from the main memory
and the rest of the host system. The libixy-vfio C library was written to make it easy to use
the IOMMU in other drivers. The IOMMU was modeled after the findings in this thesis, which
provides additional insight into the inner workings of it and makes it easier to understand what
goes on and how it works.

The addition of IOMMU support to the investigated ixy driver in C and Rust is - though up to
now it was not well documented - relatively easily to do. The full source code for ixy, ixy.rs and
the patches that introduced IOMMU support into both as well as the libixy-vfio library are
freely available at Github [12, 11].

The usage of the libixy-vfio library for C could speed up the implementation of IOMMU
into other user space frameworks significantly, and the implementation in other programming
languages is also possible, as proven by this implementation of IOMMU support into ixy.rs.
Adding IOMMU support should thus be possible to any language that has support for the ioctl
syscall (e.g., the Go language, Haskell, or Python), or can take advantage of the libixy-vfio
library written in C.

It was found, that the IOMMU has 64 IOTLB entries for 4 KiB memory pages, at this page
size being not suitable for a network driver with a memory impact of more than 16 MiB. Using
2 MiB pages solves that problem, though. The performance impact of using the IOMMU is, for
10 GBit/s NICs and the investigated CPU, negligible, as is the latency introduction by using
the IOMMU.

So, Using the IOMMU for Safe and Secure User Space Network Drivers is not only possible, but
also does not introduce any additional performance issues. By using the patches for ixy and



7.1 Limitations and Remaining Questions

ixy.rs or the libixy-vfio library, NICs with a potentially questionable and dangerous closed-
sourced firmware can securely be used, and fully isolated from the rest of the system. The
possibility for a programmer to introduce memory errors into his machine is greatly reduced
by restricting the NICs DMA access to certain areas, making the above mentioned user space
network drivers a safe choice.

7.1 Limitations and Remaining Questions

Although this thesis gave an overview over the IOMMU and its history, implemented its usage
and discussed some features of it in detail, not all details of it could be investigated. Also, since
ixy and its IOMMU implementation are relatively young, there might still be bugs to be fixed
and features to be implemented. Further questions regarding (user space) network drivers, the
IOMMU and even the PCI(e) bus come to mind easily:

7.1.1 Bottlenecking of the PCIe Bus

Visible on Figure 6.2 and Figure 6.3 is the hard limit of ixy at about 21.5 Mpps. This behavior
is odd, but can be seen in all implementations of ixy. One explanation for this behavior could
be, that the PCIe bus is bottlenecking: Data on the PCIe bus is packetized, and at small packet
sizes, the full throughput of PCIe 2.0 can not be achieved [33]. Most transferred data on the PCIe
bus will be either the size of the queues (8 KiB) or the size of actual ethernet packets (64 Byte).
For a lot of small PCIe packets, the headers will take an increasing amount of bandwidth, thus
reducing the e�ective bandwidth. At 21.5 Mpps, the ixy driver is probably capped at this PCIe
e�ective bandwidth. PCIe bus bottlenecking was already discussed in [33].

7.1.2 40 GBit/s and Faster NICs

For data and switching centers, 10 GBit/s cards are most of the time not fast enough. 40 GBit/s
and faster NICs are used more and more often, and user space drivers for such appliances could
be interesting as well. Since those new NICs are even less well known than Intel’s ixgbe NICs,
educational user space drivers for and isolation of this hardware could bring many new insights.
The bottlenecking through the IOMMU and the PCIe bus was discussed [33], but expansion of
ixy to 40 GBit/s and the isolation of 40 GBit/s NICs with the help of libixy-vfio might return
further interesting results.

7.1.3 Different IOMMUs

Further investigation of the IOMMU on di�erent CPUs or architectures can easily be done with
FPGA NICs [33] or the ixy driver. Di�erences of the IOMMUs in di�erent generations of
Intel processors have not yet been investigated, especially server CPUs before the Sandy Bridge
generation and very new processors could reveal interesting facts about the implementation of
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Intel’s VT-d in newer generations and Intel’s will to improve it. Also, with AMD’s Zen server
processors, their feasibility for servers have greatly risen, and AMD’s IOMMU might as well
be investigated. Although implementation of ixy on SPARC micro architecture might not be
feasible for production, it would make the comparison of x86-64 and SPARC implementations
of the IOMMU possible.

7.1.4 Improvements on ixy

Since ixy is very young, many improvements to it and its other language siblings can still be
made. Other languages, with the exception of the herein discussed Rust version, do not employ
using the IOMMU up to now. With the help of the libixy-vfio, this could be retrofitted to
most variants. Also, ixy does not yet feature a driver for 40 GBit/s NICs, which would improve
the usability of ixy in real use-case relevant environments. Using a 40 GBit/s connection, the
influence of the PCIe bus on networking could further be investigated, as discussed for Netronome
NFP and NetFPGA NICs by Neugebauer et al. [33]. Using a 40 GBit/s connection, the influence
of the PCIe bus on networking could further be investigated, as discussed for Netronome NFP
and NetFPGA NICs by Neugebauer et al. [33]. For high loads, burst packet sending should be
implemented to remove the PCIe bus bottleneck that occurs when transferring a lot of small
packets over the PCIe bus. This would reduce overall packet latency and improve the maximum
achievable overall throughout.

7.2 Future Work

The findings of this work suggest, that implementing IOMMU usage in every driver is highly
advisable. Thus, retrofitting other user space drivers, e.g., the other language implementations
of ixy or DPDK, might yield good results and make the usage of such drivers even safer for
research work. Since Thunderbolt, and with it, external PCIe accessibility in consumer end
devices like laptops is on the rise, implementing IOMMU isolation for a real use driver, like
Linux’ e1000 driver, would not only find a huge user base, but also make those end devices
much safer.

Starting with enabling the IOMMU in more operating systems by default (as stated earlier, only
Mac OS does this by default right now), and then rewriting the drivers to use it reasonable
or retrofitting them with libixy-vfio will lead to a much safer environment for most regular
users, by simply using a piece hardware of that existed in end user devices for a long time already
anyways.
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List of acronyms

BAR Base Address Registers

BIOS Basic Input/Output System

DMA Direct Memory Access

DMAR DMA Remapping

DPDK DataPlane Development Kit

ebs E�ective Batch Size
GART Graphics Address Remapping Table

GRO Generic Receive O�oad
IME Intel Management Engine

IOMMU I/O Memory Management Unit

IOTLB I/O Translation Lookaside Bu�er

IOVA I/O Virtual Addresses

IRQ Interrupt Request

LOC Lines Of Code
MEI Management Engine Interface

MMU Memory Management Unit

NIC Network Interface Card
NUMA Non-Uniform Memory Access

PCI Peripheral Component Interconnect

PCIe PCI Express

TLB Translation Lookaside Bu�er
USB Universal Serial Bus
VFIO Virtual Function I/O
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