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Abstract

Voice over IP (VoIP) providers require access to user data in order to fulfill their VoIP sig-
naling tasks. They currently know the associations between user identities, phone numbers and
IP addresses, which is a significant amount of privacy-critical data. Privacy of user data on
provider-side can be improved with Secure Multiparty Computation (SMC). SMC is an emerg-
ing cryptographic technique which enables multiple parties to jointly perform computations on
private data in a secure manner. This thesis applies SMC to VoIP signaling. SMC with secret
sharing is used to split and distribute the private metadata among multiple providers. Single
providers then no longer have access to the user metadata and its associations in plain text.
Still, the VoIP functionality can be preserved if multiple providers cooperate and perform SMC
on the secret shared data. Due to legal reasons, absolute privacy in VoIP provider systems is
not attainable. The presented SMC approach manages to harmonize privacy by default with
controlled Lawful Interception. This thesis contributes a design of a VoIP signaling system with
an SMC lookup table at its core which protects the user metadata of phone numbers and IP
addresses. A corresponding provider application is implemented as a prototype in Java using the
FRESCO SMC framework. Performance measurements show that the application of SMC is
most realistic in low-latency environments, since the execution time scales linearly with latency.
The evaluation results also suggest that a hashing approach is best suitable for the realization
of an SMC lookup table, matching the scaling behavior of classic map data structures. Overall,
the developed SMC VoIP signaling approach with improved privacy is able to preserve func-
tionality and achieve realistic applicability if providers are willing to cooperate and the latency
between providers is sufficiently low.





Zusammenfassung

Voice over IP (VoIP) Provider benötigen zur Erfüllung der VoIP-Signalisierungsfunktionalität
Zugriff auf Nutzerdaten. Die Provider kennen momentan die Zusammenhänge zwischen Nutzer-
identitäten, Telefonnummern und IP-Adressen, was eine signifikante Menge privatheitskritischer
Daten darstellt. Die Privatheit der Nutzerdaten auf Providerseite lässt sich mit Hilfe von Secu-
re Multiparty Computation (SMC) verbessern. SMC ist eine aufkommende kryptographische
Technik, die es mehreren Parteien ermöglicht gemeinsam sichere Berechnungen auf privaten
Daten durchzuführen. Diese Arbeit wendet SMC auf VoIP-Signalisierung an. SMC mit Secret-
Sharing wird verwendet um private Metadaten aufzuteilen und auf mehrere Provider zu verteilen.
Einzelne Provider haben dann keinen Zugriff mehr auf die Nutzermetadaten und deren Asso-
ziationen im Klartext. Dennoch kann die VoIP-Funktionalität erhalten werden, indem mehrere
Provider kooperieren und gemeinsam SMC auf den geteilten Daten ausführen. Aus rechtlichen
Gründen ist eine absolute Privatheit in VoIP-Providersystemen nicht erreichbar. Der präsen-
tierte SMC-Ansatz schafft es, Privatheit als Standard mit den rechtlichen Regeln zur Heraus-
gabe von Nutzerdaten in Einklang zu bringen. Diese Arbeit trägt einen Entwurf für ein VoIP-
Signalisierungssystem basierend auf einer SMC-Auflösungstabelle bei, das die Nutzermetadaten
Telefonnummer und IP-Adresse schützt. Eine entsprechende Prototyp-Providerapplikation wur-
de in Java unter Verwendung des SMC-Frameworks FRESCO implementiert. Performanzmes-
sungen zeigen, dass die Anwendung von SMC am realistischsten in Umgebungen mit geringer
Latenz ist, da die Ausführungszeit linear mit der Latenz skaliert. Die Auswertung legt auch nahe,
dass ein Hashing-Ansatz für die Realisierung einer SMC-Auflösungstabelle am besten geeignet
ist, in Übereinstimmung mit dem Skalierungsverhalten klassischer assoziativer Datenstrukturen.
Insgesamt ist der entwickelte SMC-VoIP-Signalisierungsansatz mit verbesserter Privatheit in
der Lage, die Funktionalität zu erhalten und realistische Anwendbarkeit zu erreichen, falls die
Provider gewillt sind zu kooperieren und die Latenz zwischen den Providern gering genug ist.
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Chapter 1

Introduction

Voice over IP (VoIP) telephony providers are the central party of VoIP signaling.
Providers act as mediators for clients and help them establish connections to other
clients when they make phone calls. To perform this task, they need to know where
the other clients are reachable. The providers hold these mappings between phone
numbers and IP addresses in their location databases, which are queried each time a
client requests the resolution of a target phone number to the corresponding IP address.
The issue with this situation is that the providers have access to a significant amount
of client metadata. A solution is desirable where provider knowledge of privacy-critical
metadata is minimized while preserving the VoIP functionality at the same time.

The goal of this thesis is to improve the privacy of telephony client metadata by applying
Secure Multiparty Computation (SMC) to VoIP signaling. SMC is an uprising and
promising cryptographic technique suitable for building privacy-preserving services. It
enables several parties to jointly perform computations on private data while keeping
the privacy of the data intact and without having to depend on a trusted third party.
Applied to an existing multiparty system with a desire for better privacy, this essentially
allows to preserve the functionality of the system while improving privacy at the same
time. Such an upgrade comes in general with the drawback of increased computation
times due to the SMC overhead. The objective of this thesis is to protect the client
metadata within the VoIP provider location database, consisting of phone numbers and
IP addresses, with SMC.

The research questions to be addressed with this thesis are:

1. How can SMC be applied to VoIP signaling in order to improve metadata privacy?



Chapter 1: Introduction

2. How can Lawful Interception still be realized if data is privacy-protected?

3. What are the performance and scalability properties of such a VoIP solution?

In the context of this thesis, a fitting SMC solution is to be developed by designing an
SMC VoIP provider system, implementing a prototype provider SMC application and
evaluating its feasibility, performance and scalability.

The thesis is structured in the following way: First, background information is given
in Chapter 2 about VoIP, SMC, a state-of-the-art SMC framework and Lawful Inter-
ception. Then, Chapter 3 analyzes the problem domain and presents main use cases
and a list of functional and nonfunctional requirements. The analysis is followed by a
design of a solution to the described problem with Chapter 4. The main architecture of
the designed system is explained there as well the components and dynamic behavior.
This design is then realized with a prototype SMC provider implementation, which is
the topic of Chapter 5. Performance measurements were conducted with the prototype
provider application and a test client in a testbed environment. This evaluation and its
results are presented in Chapter 6. At the end of the thesis, related work and future
work is outlined in Chapter 7 and 8 respectively before the conclusion is drawn in the
last Chapter 9.
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Chapter 2

Background

The next sections give an overview of the background on Voice over IP, Secure Multi-
party Computation, the used SMC framework Fresco and Lawful Interception.

2.1 Voice over IP telephony

Voice over IP (VoIP) [10] is a technology stack for voice communication over the In-
ternet. It features many extensions and related protocols. In the context of this thesis,
the focus is only on the relevant central parts of VoIP.

The main actors of managed VoIP are clients and providers. The former group wants
to use VoIP for telephony. The latter group is responsible for providing the VoIP
telephony services. One of their tasks for example is to help clients at establishing
connections to others.

Important VoIP protocols are the Session Initiation Protocol (SIP) [16] and the Real-
time Transport Protocol (RTP) [17]. The signaling protocol SIP is used as control layer
when making phone calls. RTP is the protocol for transmission of the actual audio data
between clients.

Main SIP components are user agents, proxy servers and location and registrar services.
User agents are the clients. The SIP proxies are the front-end servers of VoIP providers.
Each provider manages a database containing associations between SIP URIs and IP
addresses. This database can be queried with the location or registrar service for read
or write requests respectively.
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When initiating a call, the user agent of the caller sends an INVITE signal to the user
agent of the callee via the SIP proxy. The provider then performs a lookup in the
location database to find the target IP address, before forwarding the INVITE signal
there. The client at the other end receives this call initiation message and can accept it
to complete the telephony session establishment. Voice data is now transmitted directly
between the clients using RTP.

Both SIP and RTP messages can be transmitted securely by using their encrypted
protocol variants [20]. This protects the transfer of voice data for example. However,
the metadata on provider-side is currently not protected: The location databases of
providers contain the associations between phone numbers and IP addresses in plain
text.

2.2 Secure Multiparty Computation

Secure Multiparty Computation (SMC) is a cryptographic technique which enables
multiple parties to jointly compute a function in a secure way without needing to depend
on a trusted third party.

The classic SMC example is the Millionaire’s Problem of Yao [21]. Two millionaires
want to find out who is richer without disclosing their actual wealth. In a mathematical
sense, their goal is to calculate the inequality comparison function ≤. At the end of
the function evaluation, both millionaires should only have learned the result of the
comparison as a boolean value, but no other additional information.

More formally, a secure computation of a function y = f(x1, ..., xn) with n parties, each
inputting their secret xi, has to fulfill two conditions [7]:

1. Correctness: The correct value of y is computed.

2. Privacy: y is the only new information that is released.

Figure 2.1 visualizes this concept. SMC does not require a trusted third party for the
function computation. The computing parties also do not need to trust each other
when using SMC and can keep their function inputs secret. In the SMC model of
active security against a dishonest majority of malicious adversaries, which is used in
this thesis, the security and privacy properties are still achieved if up to n − 1 parties
are corrupted.

SMC can be realized with secret sharing [7]. Using the concept of m-out-of-m secret
sharing, a secret value can be split up into m shares. Any strict subset of these m shares

4
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Figure 2.1: SMC concept

does not allow the reconstruction of the secret value. Only if all shares are available,
this value can be revealed again by combining all m shares:

SecretValue = Share 1 ◦ Share 2 ◦ . . . ◦ Share m

Using SMC with secret sharing, the secure function computation is performed with the
input values in a secret shared form. The secret inputs in Figure 2.1 would therefore
first be split into shares, before they are used for the function evaluation.

To summarize, SMC in general addresses the security of multiparty computations and
the privacy of input data. SMC fills the gap in the data security triangle [19]: It is
already possible to secure data in transport, e.g. with TLS, and data at rest, e.g. with
hard disk encryption. Now, SMC allows to secure data also during computation.

2.3 FRESCO

The Framework for Efficient Secure Computation (“Fresco”) [2] is an actively devel-
oped, open source state-of-the-art SMC framework. Implemented in Java and licensed
under the MIT license, it can be used to realize SMC applications. Fresco allows the
specification of such an application independent of the used SMC protocol suite. This
abstraction provides flexibility in the choice of SMC primitives. Protocol suites consist
of a set of basic SMC operations like addition and multiplication. The framework user
can then combine these operations to build more complex methods as Fresco SMC
applications. Currently, SPDZ [8] can be seen as the main protocol suite. Fresco

5
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not only offers the basic SPDZ operations such as addition or multiplication, but also
more complex derived ones, e.g. modulo computation. Secret values within Fresco are
represented by SInt objects, which contain an SMC secret share. Normal unprotected
integer values can be closed and converted into SInt objects. Computations can then
use the input secret shares to create intermediate ones and finally a result. At the end
of a computation, this result value is then made visible to the parties by opening it.

2.4 Lawful Interception

In the context of VoIP Lawful Interception (LI), providers can be legally requested by
Law Enforcement Agencies (LEAs) to selectively intercept communication and hand
over user data and metadata.

As an example of concrete LI requirements, this section examines EU law and German
law regarding requirements concerning the interception of user metadata.

On EU level, the “Council Resolution of 17 January 1995 on the lawful interception
of telecommunications” [6] serves as main LI guideline document. These guidelines
are standardized on a European level in the technical standard “ETSI Standard TS
101 331” [9]. National governments put the EU LI requirements into force by creating
corresponding local laws, for example [4] in Germany.

As central requirement, LEAs can request VoIP providers to hand over metadata,
also referred to as “call-associated data” or “intercept related information”, of specific
targeted identities. Such metadata includes identifiers, phone numbers, IP addresses,
user action timestamps and location information, if available. Providers are also asked
to intercept communication and associated data in a transparent way, which results
in no visible service changes for the interception target. Additionally, standardized LI
interfaces are required, which enable automatic LI request processing and serve as a
gateway for the intercepted data.

The EU justifies the existence of LI because it is seen as “an important tool for the
protection of national interest, in particular national security and the investigation of
serious crime” [6].

6



Chapter 3

Analysis

The analysis chapter describes the setting, the attacker model and a solution sketch
for an SMC VoIP signaling system, followed by a list of matching main use cases and
requirements.

3.1 Setting

Starting point of the analysis is an abstracted state of the art of VoIP. The main actors
are clients, providers and LEAs. These parties can interact with each other. The focus
is on the signaling functionality and user metadata. The primary interaction is that
clients can call other clients using the providers as mediators. In this VoIP signaling
use case, the task of the provider is to resolve the phone number of the callee to the
corresponding IP address by consulting the location database. In this lookup table data
structure, providers save the associations between phone numbers and IP addresses of
their users. The secondary interaction is LI, which can be requested by LEAs from
providers, who then would have to hand over intercepted client data.

3.2 Attacker model

With this setting described in Section 3.1, the provider lookup table contains the asso-
ciations between phone numbers and IP addresses in plain text. The provider therefore
knows who owns which phone number and under what IP address it is reachable, as
well as who calls whom. This metadata on provider-side is not privacy-protected, but
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is privacy-critical. A passive attacker observing the provider system, and not the net-
work, could therefore monitor and comprehend the links between user identities, phone
numbers and IP addresses. The security goal of confidentiality is violated. Given an IP
address for example, it is possible to find out the associated phone number(s), if any,
and the owner’s identity. Connections can also be made back in the other directions.
Observing interactions between users and providers from within the provider system
for a prolonged period of time would allow the passive attacker to build a social graph.
This can be done by combining the monitored call metadata, more specifically phone
numbers and identities of caller and callee. Additionally, the links between identities,
phone numbers and IP addresses can be used to derive the users’ geolocations. Such a
malicious actor could abuse this discovered metadata. Because of that, it is desirable to
improve the metadata privacy while preserving the basic VoIP functionality. As a side
effect of privacy-protected user data, transparency and accountability of LI would be
enhanced, if state actors would be more constrained on a technical level to use official LI
interfaces instead of directly monitoring the provider system in a possibly unauthorized
or non-transparent way.

Furthermore, phone numbers are currently owned by users for a relatively long time.
This too can be seen as problematic, since the same personal phone number is often
used and distributed to others for many different purposes and could be linked back
accordingly. This leads to another desirable feature, which is to increase the purpose
binding of phone numbers, fulfilling the privacy goal of unlinkability.

3.3 Solution sketch

The goal of this thesis is to protect the metadata regarding phone numbers and IP ad-
dresses from a passive attacker on provider-side. This could be achieved if the providers
themselves have no direct knowledge of or access to this metadata. Here, SMC presents
itself as a possible solution to this challenge. SMC allows multiple parties to securely
operate on private data. Computations would be performed on secret shares instead
of plain text data. Providers could therefore work together and replace the plain text
lookup table data with secret shared data. Essentially, the data structure of the provider
location database would become an SMC lookup table. One assumption SMC requires
is that at most n − 1 out of n providers working together are compromised by the
attacker. With such an approach, the metadata privacy of phone numbers and IP ad-
dresses in the lookup table can be improved. LI can still be supported, if LEAs request
from every provider to hand over specific intercepted user metadata in a secret shared

8
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form instead of in plain text. They can then combine the shares themselves to discover
their real values.

Purpose binding of phone numbers can be increased, if they are treated as pseudonyms
with user chosen lifetime and usage. Users should have the ability to create and manage
multiple of such lifetime restricted pseudonyms. They can then use and distribute
each of the pseudonyms context-dependently to others, providing flexibility and further
improving the privacy.

3.4 Use cases

Use cases can be derived from the interactions between users, providers and LEAs.
The primary use case is the signaling functionality. Users want to call other users.
Providers help them at establishing a connection by resolving the target pseudonym,
which represents the phone number, to the associated IP address as endpoint. On this
metadata in the provider lookup table, SMC is applied to protect that data. Users
should be able to manage their own pseudonyms in that SMC lookup table including
the creation of new ones and updates to or deletions of existing ones. The secondary use
case is LI. LEAs still require the feasibility of interceptions, even though the metadata
is protected with SMC.

3.4.1 SMC Lookup

The providers jointly operate a distributed SMC lookup table. This is the central data
structure of the provider location service. It contains the mappings between pseudonyms
and IP addresses. The goal of a lookup is to find the table entry with the endpoint that
corresponds to a particular pseudonym.

3.4.2 Pseudonym registration

Users can generate and register new pseudonyms. A registration of a pseudonym creates
an entry in the lookup table of the providers, which associated the new pseudonym with
an endpoint, a lifetime and extra data. All of these values are chosen by the user. A
pseudonym can only be registered if it does not exist yet.

9
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3.4.3 Pseudonym resolution

Users can request the resolution of pseudonyms to endpoints. When providers receive
such a request, they resolve the pseudonym to the corresponding endpoint by consulting
the lookup table. If a matching table entry has been found, the providers check that
the lifetime of the pseudonym is not exceeded yet and then they return the endpoint to
the user. A table entry with an expired pseudonym would be removed instead.

3.4.4 Pseudonym update or deletion

Users can update their pseudonyms, e.g. if the endpoint has changed, and can also
delete their pseudonyms together with associated endpoints. Similar to pseudonym
registrations or resolutions, this request is also processed with the help of a table lookup.
Before corresponding entries in the lookup table are updated or deleted, the providers
have to check if the user has the necessary authorization in order to assure that only
the user who created a pseudonym can update or delete it.

3.4.5 Lawful Interception

LEAs can demand from the providers to hand over user metadata, which might be
saved on provider-side in the lookup table or some log files. In addition to retroactive
LI requests, where metadata about past user actions is queried, proactive LI requests
are a second type of possible requests by LEAs, in which providers are asked to intercept
specific user requests in real time and deal with them accordingly.

3.5 Requirements

The requirements of an SMC VoIP signaling system for improved privacy are de-
scribed in the next subsections and are divided into functional, security and privacy,
performance, and legal requirements.

3.5.1 Functional requirements

Requirements of Users

Users can register new pseudonyms, resolve any pseudonym, and update and delete
their own pseudonyms. Every pseudonym is associated with an endpoint, a lifetime and
some arbitrary extra data for extensibility.

10
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Requirements of Providers

Providers can verify requests and messages either received from users, other providers
or LEAs. Such a verification step can be used to analyze the validity of a request and
to check if the entity the request was received from has the necessary authorization.

Providers can rate limit users and deny to process their requests. This might be nec-
essary if a user makes too many requests per time in general, which could negatively
impact provider availability, or if the providers detect spam calls and want to block
them.

Providers can log user requests. Log entries can contain a timestamp, the request type
and the user id, as well as the pseudonym and endpoint in some form. The log can then
later be consulted in case of LI.

Requirements of Law Enforcement Agencies

LEAs can instruct providers to perform LI. This can include querying information from
the provider log files and requesting a live interception of certain users.

3.5.2 Security and privacy requirements

The baseline security and privacy requirements are those of VoIP SIP. Some central
requirements are now improved with an increased demand in privacy.

Confidentiality: Single providers have no knowledge of the actual values of the pseu-
donyms and endpoints that they process in their system, e.g. in their SMC lookup
table or log files.

Integrity and Authenticity: All communication between provider and user, other
providers or LEA is authenticated.

Controlled Access: Requests by users, providers and LEAs to a provider must be
authorized. Users have to be signed in for pseudonym resolution or management
requests. Pseudonym updates or deletions can only be done by the pseudonym
owner, i.e. the user who registered it. Only providers are allowed to participate
in SMC lookups. Providers have to check the authenticity and validity of LEA
requests before answering to it.

Accountability: Users initiate requests to providers using their private sign in iden-
tifiers. These are then included in the log files of the providers, making requests
traceable. The user’s interactions with the providers can be traced back, by LEAs

11
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for example, if the connection between user and identifier is uncovered and com-
bined with information from the provider logs.

Availability: Providers are able to apply rate limiting to decrease negative availabil-
ity impacts by single users. Additionally, redundant providers can be added for
robustness.

Unlinkability: Links between identities, pseudonyms and endpoints should be hidden
from single providers. Connections between two pseudonyms or two endpoints
should also be unknown to single providers.

Transparency: The transparency requirements are similar to VoIP SIP. Users send
their data to the providers and have no direct knowledge of how the providers
use it. Transparent data usage insights are therefore not given from the user
perspective. Another aspect of transparency is LI. Providers do know when and
to what extend LEAs request interceptions.

Intervenability: Users have the ability to manage their own pseudonyms and have
control over who can contact them by distributing the pseudonyms accordingly
and by controlling the pseudonym lifetimes. Context dependent pseudonym usage
also gives them control over how their different pseudonyms can be linked together.

Data Minimization: Single providers no longer have access to their users’ pseudo-
nyms and endpoints in plain text, while still being able to provide the required
basic VoIP telephony functionality.

3.5.3 Performance requirements

In general, the performance compared to VoIP SIP is expected to be lower due to the
performance overhead introduced by SMC.

Response time: For usability, user requests, especially lookup requests, should have
a low response time. This is ideally less than a second, but a few seconds could
still be tolerable. LEA requests on the other hand are allowed to have a longer
response time. This however depends on the legal requirements, so that a few
hours response time could be acceptable in some cases.

Scalability: The systems of the providers should scale sufficiently in terms of request
handling throughput, total user count and total number of lookup table entries.

12
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3.5.4 Legal requirements

Providers are legally required, to the extent of applicable law, to take measures regarding
LI. Interception can be demanded by LEAs in a retroactive or proactive way. In the
retroactive case, providers are asked to hand over certain user metadata which they
keep in their databases or log files. In the proactive case, providers are given certain
search criteria, that they apply on live requests in real time, in order to notify the LEA
about these particular active user requests and eventually to take additional interception
measures.

The LI search criteria and query types that the providers are required to support are
as follows:

• Timestamp range query: Return all log entries or active events within a given
time frame.

• User request origin query: Return a list of requests which have been or are
being initiated by a given user.

• Pseudonym query: Return all log entries or active events associated with a
given pseudonym.

• Endpoint query: Return all log entries or active events associated with a given
endpoint.

• Combined query: Combination of any query type from above for a more narrow
entry selection.

13





Chapter 4

Design

The objective of this chapter is to design an abstracted VoIP system using SMC. Sim-
ilar to classic VoIP, the primary provider task is to manage a lookup table containing
associations between pseudonyms and IP addresses, which are important for the signal-
ing functionality. The second provider task is to enable LI. The design applies SMC on
the lookup table in order to protect its content. Users should still be able to query the
providers with pseudonym related requests such as resolutions. To realize this SMC
lookup table, multiple providers have to work together. In classic VoIP, users would
only directly communicate with their own provider. With the SMC provider system,
users would instead interact with multiple providers simultaneously.

The next sections first give an overview over the architecture of the designed SMC
VoIP system with the lookup table at its core, then describe important components
and at the end explain the interactions and dynamic of the system.

4.1 Architecture

The actors of the designed system are clients, n providers and LEAs. In the context of
this thesis, n is chosen to be three. This number could however also be selected higher in
order to have more providers participate in the designed SMC system. Providers have
two main components and offer three interfaces. The two components are the lookup
table and the log. Providers interact with other actors via interfaces for provider-
provider, provider-client and provider-LEA communication. Interactions of the first
type between providers are necessary for SMC. The second kind of interaction between
clients and providers are for pseudonym resolution or management requests which are
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Figure 4.1: Provider components and interfaces

received by the providers via a dedicated API. The last of the three interfaces is the LI
interface, where LEAs can request interceptions. Figure 4.1 contains a UML component
diagram depicting the described actors, components and interfaces. Communication
channels themselves are already assumed to be sufficiently secured, e.g. with TLS.

Each provider holds and manages a matching instance of the lookup table. This compo-
nent is the central one of the whole system. It contains the mapping of pseudonyms to
endpoints. The table is consulted by the providers if a corresponding request is received
from a user. A lookup is performed in order to find the correct table entry, on which
providers can follow up with read or write operations. If the request has been processed,
a response is returned to the user indicating the success of the request and delivering
requested data or other information.

Since pseudonyms and endpoints within the table should be protected from the providers
for privacy reasons, they are not saved as plain text. Instead, the values in the lookup
table that are to be kept private are secret shared among the providers. SMC can be
jointly performed by the providers to still work with the secret values in useful ways.
This is necessary for example in case of pseudonym user requests. Such a scenario
is displayed in Figure 4.2: A user makes a pseudonym request to all three providers
at the same time. Now the goal of the providers is to find the corresponding lookup
table entry. This requires them to compare the pseudonym key of the request with
the pseudonyms in the table. SMC between the providers is necessary at this point to
search in the table while each provider only has access to their own secret share of each
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pseudonym. The detailed notation of the lookup table entries in Figure 4.2 is as follows:
Pseudonyms are denoted by Ψi,j where i is owner of the pseudonym and j indicates the
j-th pseudonym of this user. Similarly, endpoints are denoted by Ei,j . Values in square
brackets represent SMC shares, e.g. [ΨA,1]k, with k indicating the k-th share part.

User

Provider 1

Key Value
... ...

[ΨA,1]1 [EA,1]1
[ΨC ,5]1 [EC ,3]1
[ΨA,2]1 [EA,1]1

... ...

Provider 2

Key Value
... ...

[ΨA,1]2 [EA,1]2
[ΨC ,5]2 [EC ,3]2
[ΨA,2]2 [EA,1]2

... ...

Provider 3

Key Value
... ...

[ΨA,1]3 [EA,1]3
[ΨC ,5]3 [EC ,3]3
[ΨA,2]3 [EA,1]3

... ...

1.
Pseu

don
ym

Requ
est

3.
Resp
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e

1. Pseudonym Request
3. Response

1. Pseudonym Request

3. Response

2. SMC Lookup

2. SMC Lookup

2. SMC Looku
p

Notation:
[...] = Secret share
Ψ = Pseudonym
E = Endpoint

Figure 4.2: Central architecture

4.2 Lookup table data structure

The main data structure of the whole system is the SMC lookup table. It is a map data
structure, where pseudonyms act as keys and values are a tuple of endpoint, lifetime
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and extra data. The pseudonyms and endpoints are saved in the lookup table as secret
shares. These shares are distributed among the providers. Every provider holds and
manages a matching instance of the lookup table. Their internal structure is equal, but
the secret shares as table contents are different for each provider. SMC comes into play
when providers want to perform operations on the lookup table, such as insertions or
lookups. An additional map property is support for concurrency. This is relevant for
the scalability of the lookup table regarding request processing throughput. In general
the table should be optimized for read operations as these are expected to occur more
frequently than write operations.

Map data structures are usually realized with hashing for best performance. Whether
this argument also holds when applying SMC is initially not clear, because SMC op-
erations do not follow the execution time rules of normal operations. That is why for
the design of the lookup table data structure three variants are proposed: Realizing the
map as list, tree-like and with hashing. Each approach varies in performance, scalability
and requirements regarding necessary SMC operations.

4.2.1 Map as list

Lists are rather simple data structures and generally offer linear time complexity O(n),
since the list is traversed linearly. Yet, they can be used to realize a map if list entries
are seen as key-value pairs. Lookups are then performed by searching the list front to
back, making a key equality check at each entry. With the keys being pseudonyms and
saved as shares, this equality check has to be an SMC equality check. Listing 4.1 shows
this linear SMC search logic as pseudocode.

Listing 4.1: SMC Lookup (linear search)
1 # Input 1: pseudonym of type PseudonymShare
2 # Input 2: listMap of type List[ Tuple [ PseudonymShare , MapValue ]]
3 # Output : Reference to the matching list entry
4 # or None if the pseudonym is not in the list
5
6 for entry in listMap :
7 if equalsSMC (pseudonym , entry [0]):
8 return entry
9

10 return None

4.2.2 Map tree-like

Tree-like data structures exist in many forms. One reason for preferring to use such
data structures over lists is the logarithmic time complexity O(log n) of tree operations.
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Listing 4.2: SMC Lookup (binary search)
1 # Input 1: pseudonym of type PseudonymShare
2 # Input 2: sortedListMap of type SortedList [ Tuple [ PseudonymShare , MapValue ]]
3 # Output : Reference to the matching sorted list entry
4 # or None if the pseudonym is not in the sorted list
5
6 leftIndex = 0
7 rightIndex = len( sortedListMap ) - 1
8
9 while leftIndex <= rightIndex :

10 midIndex = ( rightIndex + leftIndex ) // 2
11
12 compareResult = compareSMC (pseudonym , sortedListMap [ midIndex ][0])
13
14 if compareResult == 0:
15 return sortedListMap [ midIndex ]
16 elif compareResult < 0:
17 rightIndex = midIndex - 1
18 else: # compareResult > 0
19 leftIndex = midIndex + 1
20
21 return None

When traversing a tree-like map, comparisons are performed at each step down the tree
to decide whether to continue in one subtree or the other. Since these comparisons
are done on the pseudonym keys, this operation has to be an SMC comparison. In
Listing 4.2, binary search on a sorted list is used to demonstrate with pseudocode how
such an SMC comparison can be applied in the context of a tree-like map.

4.2.3 Map with hashing

When performance is the important factor, maps are typically realized with hashing.
This would require the availability of a fitting hash function, in this case an SMC
hash function, which might be more complex to realize than an equality or comparison
function. The best-case time complexity of map access with hashing is O(1), while the
average time complexity is O(1+c) with c being the overhead caused by extra operations
within a hash bucket in case there is more than one element in the bucket. These extra
operations could be equality checks, if hashing with chaining is used. In such a hash
map setup, lookups would first hash the requested key, which is a pseudonym, and then
perform equality checks until the corresponding table entry has been found. Here, two
SMC operations are required: One for hashing and one for equality checks. Listing 4.3
shows the pseudocode of an SMC lookup where hashing with chaining is the chosen
hash map type. The linear search part there within a chain is equivalent to the map as
list approach above.
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Listing 4.3: SMC Lookup (hashing)
1 # Input 1: pseudonym of type PseudonymShare
2 # Input 2: hashMap of type List[List[ Tuple [ PseudonymShare , MapValue ]]]
3 # Output : Reference to the matching hash map entry
4 # or None if the pseudonym is not in the hash map
5
6 pseudonymHash = hashSMC ( pseudonym )
7 hashIndex = pseudonymHash % len( hashMap )
8 chain = hashMap [ hashIndex ]
9

10 for entry in chain :
11 entryPseudonym = entry [0]
12 if equalsSMC (pseudonym , entryPseudonym ):
13 return entry
14
15 return None

4.2.4 Table entry format

The lookup table maps pseudonyms to table values. Such a table value consists of an
endpoint, a lifetime and extra data. All of these values are specified by the user. Pseu-
donyms and endpoints are represented as integers for flexibility. The lifetime determines
how long the pseudonym and the table entry as a whole is valid. If this expiration time
has been reached, the entry can be removed by the providers and read requests to the
pseudonym would result in an error. The extra data field acts as a placeholder and
allows future extensibility of table entries. Extra data can be treated as a user chosen
string of limited size. Users can choose to make extra data available to single providers
in plain or to multiple providers in a secret shared form. Depending on the context,
it could be reasonable to partially return extra data in pseudonym resolution requests
made by other users. Less limitations on the size of the extra data string lead to higher
memory and bandwidth requirements, especially on provider-side.

4.3 Provider log

To cover the use case of retroactive LI requests, each provider maintains a log which
contains information about pseudonym related user requests. It is sorted by request
time and the entries consist of the pseudonym request type, the identifier of the user
who created the request as request origin, the pseudonym share and the endpoint share.
Depending on the request type, the shares are either specified by the user or retrieved
by the provider in the process of a lookup. Table 4.1 illustrates this log structure with
example entries. New log entries are created by providers for each successful pseudonym
related user request. The log can be queried by LEAs by sending corresponding LI
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Timestamp Request Type Origin Pseudonym Share Endpoint Share

1562765976 Ψ Registration User45 [ΨUser45,1]1 [EUser45,1]1
1562766001 Ψ Registration User62 [ΨUser62,2]1 [EUser62,2]1
1562766090 Ψ Resolution User45 [ΨUser62,2]1 [EUser62,2]1
1562766259 Ψ Update User78 [ΨUser78,1]1 [EUser78,1]1
1562774593 Ψ Deletion User23 [ΨUser23,3]1 [EUser23,3]1

Table 4.1: Example log of provider 1

requests to providers. The sorting by time makes the log by default easily searchable
by time. In case the log is needed to be searchable efficiently by other columns as
well, it is possible to create and maintain additional search indexes, e.g. for the origin,
pseudonym share or endpoint share column. Such share indexes could require the use
of SMC, similar to the provider main pseudonym SMC lookup table. Search queries to
the log for specific pseudonyms or endpoints would then have to be resolved with SMC
operations. The main SMC lookup table data structure could be reused here to realize
search indexes for pseudonyms and endpoints. Instead of mapping to endpoints, the log
SMC table index could map to a list of associated log entries.

4.4 Provider behavior

Providers interact with other providers, users and LEAs. For each of these actors
providers offer one interface. These three interfaces are explained in the next three
subsections.

4.4.1 SMC interaction

In order to operate on the lookup table, providers have to cooperate and jointly perform
SMC. While doing so, they have to make sure that their lookup tables stay in a matching
consistent state. Otherwise, the type or number of SMC operations might vary among
the providers when accessing the table, causing SMC errors. Therefore, the providers
should coordinate lookup table operations and associated SMC executions.

Synchronization is required in two ways: Multiple parallel threads and SMC sessions on
each provider for scalability need to be synchronized as well as the order of operations
across all three providers for table consistency. Before any SMC method is called, a
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User Provider1 Provider2 Provider3

1 closeSMC(pseudonym)

2 resolvePseudonym(pseudonymShare1)

3 resolvePseudonym(pseudonymShare2)

4 resolvePseudonym(pseudonymShare3)

par

5 lookupSMC()

6 lookupSMC()

7 lookupSMC()

8 endpointShare1

9 endpointShare2

10 endpointShare3

11 openSMC(endpointShares123)

Figure 4.3: Pseudonym resolution

communication round takes place between the providers that prepares a coordinated
execution. The order of operations can for example be determined by comparing the
average request timestamps of the three providers.

4.4.2 Pseudonym requests

Providers offer an API which users can utilize for pseudonym related requests. These
can be pseudonym registrations, resolutions, updates or deletions. If a user wants to
create a request, the first step is to close any secret pseudonym and endpoint values of
this request locally into secret shares. The user can then send one copy of the request to
each provider with the exception of the shares which are unique for each request. The
providers now have to perform an SMC lookup in their table to be able to read from or
write to the requested table entry. After that, each provider returns a response to the
user indicating success or failure and including requested data or other information. In
case of a pseudonym resolution, the endpoint shares of the looked up table entry are
returned by the providers. The user can then open these shares to discover the actual
endpoint value. Figure 4.3 shows the pseudonym resolution process in a UML sequence
diagram. Registrations, updates and deletions are done in a similar way. Depending on
the request type, the user would include the desired new table value in the request.
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User Proxy Provider1 Provider2 Provider3

1 closeSMC(pseudonym)

2 encrypt(pseudonymShares123)

3 resolve(encPseudonymShares123)

4 resolve(encPseudonymShare1)

5 resolve(encPseudonymShare2)

6 resolve(encPseudonymShare3)

par
7 lookupSMC()

8 lookupSMC()

9 lookupSMC()

10 encEndpointShare1

11 encEndpointShare2

12 encEndpointShare3

13 encEndpointShares123

14 decrypt(encEndpointShares123)

15 openSMC(endpointShares123)

Figure 4.4: Pseudonym resolution with proxy

As an extension or alternative, a proxy or gateway between the user and the providers
could be added to act as a mediator to simplify communication effort on user side.
The proxy could collect messages from users and distribute them correctly among the
providers. Responses from the providers would then be collected and sent back to
the user. This would decrease the amount of messages users send or receive and save
bandwidth. Additionally, the user would only have to communicate with the proxy
instead of all three providers. The user could therefore outsource knowledge about
where providers are located on the Internet to the proxy. Better administration in
complex user networks with firewalls and other middleboxes could be achieved as well.
Encryption can be used to protect critical message contents such as secret shares against
the proxy. In theory, a proxy is not essential for a working system and could also be
realized on user side. It complicates the system by being an additional party and could
become a performance bottleneck or single point of failure. Nevertheless, a sequence
diagram of the proxy concept is displayed in Figure 4.4.

Pseudonym updates and deletions require the requesting user to be authorized. Only
the owner of a pseudonym can update or delete the corresponding table entry. In
this context, authentication is also necessary to confirm the user identity. The design
however does not elaborate on the details of how a secure authentication can be realized,
but assumes it as given.
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LEA Provider1 Provider2 Provider3

1 closeSMC(searchSecrets)

2 intercept(query, queryShares1)

3 intercept(query, queryShares2)

4 intercept(query, queryShares3)

par

5 interceptSMC()

6 interceptSMC()

7 interceptSMC()

8 response, responseShares1

9 response, responseShares2

10 response, responseShares3

11 openSMC(responseShares123)

Figure 4.5: Lawful Interception

4.4.3 Lawful Interception requests

The third interface providers offer is the LI interface. This can be used by LEAs to
request interceptions. Such requests contain search terms as query parameters which are
used to specify the interception target. Search terms can be time ranges, user identifiers,
pseudonyms and endpoints.

There are two types of LI requests: Proactive and retroactive. In the proactive inter-
ception case, providers are instructed to monitor or intercept active user requests and
future provider interactions by specific users. Providers can realize this by checking the
list of interception targets each time a new user request comes in to decide whether this
special attention is required. In the retroactive interception case, LEAs request certain
lookup table or log entries. Providers then have to find the entries corresponding to the
given search terms.

If LEAs specify pseudonyms or endpoints as search terms, they do so in a secret shared
way using SMC. In such a case, the providers would then also have to employ SMC
either on active incoming user requests, the lookup table or the log in order to determine
if a request, table entry or log entry matches the interception search terms. The request
flow of this scenario is shown as a UML sequence diagram in Figure 4.5.
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Chapter 5

Implementation

A prototype provider application, matching the designed components, is implemented
using Java as programming language. Each provider can then run this application on
own hardware. The SMC lookup table is realized using the SMC framework Fresco.
A REST API allows users to send pseudonym related requests to providers. As a dis-
tributed system, synchronization and parallel execution play an important role. Some
of the implemented components use multi-threading, for example the REST API, others
are simplified to single-threading such as the lookup table, but kept extensible. Next to
synchronization of methods within one provider, some operations also require coordi-
nation by all three providers. This kind of synchronization is also realized. The whole
provider implementation consists of approximately 3300 lines of code.

5.1 SMC with FRESCO

The SMC functionality is implemented using the Fresco [2] framework in its current
version 1.2.0. An overview of this framework is given in the background chapter in
section 2.3. The chosen protocol suite is SPDZ, which is secure against malicious ad-
versaries in a dishonest majority setting. SPDZ features an offline preprocessing phase
and an online evaluation phase. Fresco provides by default a dummy preprocessing
strategy with less security than theoretically achievable, which is seen as a tolerable
limitation for a prototype.

The implemented class SMCSession encapsulates the initialization of Fresco and acts
as SMC facade front, serving as entry point for calls to SMC operations from the normal
provider code. It decouples SMC and Fresco from the other components, enabling
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Operation Input Output

Close Int SMCInt

Open SMCInt Int

Equals 2 SMCInt Boolean

Compare 2 SMCInt Int -1/0/1

Hash SMCInt Int

Table 5.1: Implemented Fresco SMC applications

future modifications of the SMC back end without having to change the other provider
components. In the setup phase, all providers connect to each other via dedicated
and known ports for a new SMC session. Once the Fresco engine has started and
connectivity is established, providers can execute SMC operations. Within one session,
which only ends if the providers shutdown, multiple such executions can take place, but
in a sequential way. Parallel SMC executions are possible in theory, if providers just
start extra SMC sessions with different ports, but the implementation omitted this for
simplification.

Secret shares are represented by SMCInt objects. Each of these SMC integers encapsu-
lates a Fresco SInt object and therefore acts as a wrapper. The SMCInt class overrides
the special Java methods equals(), compareTo() and hashCode() with corresponding
calls to SMC operations. Together, this abstracts the secret shares and the SMC calls
away from users of the class. This is especially useful in the lookup table data structure
implementation, where SMCInt can directly be used as normal Java map key object.

Five SMC operations are implemented as Fresco SMC applications: Close, Open,
Equals, Compare and Hash. SMC applications are composed of basic native Fresco
SMC protocols. An overview of the function inputs and outputs is given in Table 5.1.
The Close and Open operation are used to convert normal integers to secret ones and
vice versa. Equals checks two SMC integers for equality and returns true or false
accordingly. Compare acts similar to classic integer comparison functions, returning
-1 if the first SMCInt is lesser than the second one, 0 if both values are equal and 1
otherwise. The Hash operation calculates a 30-bit hash of a secret value.

While the first four operation types utilize basic Fresco SMC primitives, the hash
function is a bit more complex. Given a pseudonym as key, hashing is used, together
with a subsequent modulo table size operation, to calculate the corresponding bucket
respectively table index in the hash map. The hash function has to be consistent and
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always return the same value for each key. From a security and privacy perspective,
the hash value should not allow any significant conclusions about the secret pseudonym
integer input. If this is not considered, the hash function could for example be chosen to
just return the lowest n bit of the secret value. This would leak these lowest bits of the
pseudonym, which could be tolerable if the total bit length is much higher. On the other
end of the security spectrum, a cryptographic SMC hash function could be implemented.
This would even provide collision resistance, but would also make the calculation much
more expensive and slower. Since collision resistance is not an essential requirement in
this SMC hashing context, the implemented hash function is chosen to be a one-way
hash function, but not a cryptographic hash function. Literature describes for example
the Rabin function as a one-way function [11]:

Rabin(x) = x2 mod N

Here, N is a product of two prime numbers. Similar to RSA, security of the Rabin
function relates to the difficulty of prime factorization: “[E]xtracting square roots mod-
ulo N is computationally equivalent to factoring N”. Because this function offers the
one-way property and is still rather simple, it is chosen as candidate for the SMC hash
function. The prime numbers and the divisor N are fixed to constant values in the im-
plementation for simplification, but could also be variables and dependent on the secret
integer value or derived otherwise. This implemented Hash operation takes an SMCInt
as input and returns a corresponding hash as normal integer.

The execution of each of the five implemented SMC operations described above can be
started by calling the corresponding methods of the SMCSession. To make this process
simple, the session is made available everywhere in the provider code by introducing the
SMCService. Its static methods can be reached globally within the provider applica-
tion and just forward the SMC calls to the SMCSession. This service is mainly used by
SMCInt objects.

Important to remember is that SMC operations are always executed by all three
providers simultaneously. Secret integers are represented by three SMCInt objects, dis-
tributed among the providers. Synchronized SMC executions have to be coordinated
by the providers. How this coordination is implemented is explained later.

Associated Java files: SMCService.java, SMCSession.java, SMCInt.java,
EqualsApplication.java, CompareApplication.java, HashApplication.java,
CloseApplication.java, OpenApplication.java
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Method Arguments Returned value

Put SMCInt, TableValue Boolean

Get SMCInt TableValue

Update SMCInt, TableValue TableValue

Delete SMCInt TableValue

Table 5.2: Implemented lookup table methods

5.2 Lookup table

The LookupTable is a data structure that maps pseudonym keys of type SMCInt to
values of type TableValue. These value objects contain the associated endpoint as
SMCInt, the expiration time, the extra data string and the user identifier of the pseu-
donym owner, which is used by the providers to authorize write requests on existing
entries.

Four methods are defined in the LookupTable: Put, Get, Update and Delete. Table 5.2
gives a summary of the arguments and returned values of the four implemented lookup
table methods. They follow classic calling convention rules. Put creates a new table
entry for the given combination pseudonym and table value, if the pseudonym does not
exist yet. Get looks up the value of a given pseudonym. Update overwrites an existing
table entry with a new value and returns the old value. Delete removes a pseudonym
from the table and returns the deleted table value.

The SMC lookup table is implemented in three variants. However, none of the table im-
plementations actually need to or do understand the concept of SMC. They also do not
directly start SMC operations or are aware of their executions. Instead, this functional-
ity is hidden in the SMCInt objects, more precisely in their equals(), compareTo() and
hashCode() methods. The LookupTable can therefore treat the keys of type SMCInt in
the same way as non-SMC objects that implement these three methods. This indirec-
tion and separation between the lookup table, the SMC code and Fresco is shown in
Figure 5.1.

The first variant is the ListLookupTable. It is based on the Java ArrayList. The list
entries are tuples of the SMCInt pseudonym and the corresponding table value. When
accessing this list map with either of the four table methods, the array list is searched
linearly. For each entry, the equals() method of the SMCInt search key is called to
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LookupTable SMCInt SMCService

SMCSessionFRESCO Application

Figure 5.1: Call flow from the lookup table to FRESCO

check whether a matching entry has been found, which in turn triggers for each entry
the execution of the corresponding SMC Equals operation.

The other two variants are the TreeLookupTable and HashLookupTable. Both directly
utilize the existing Java map implementations TreeMap and HashMap. SMCInt can im-
mediately be used here as key type without requiring any modification of the Java map
classes. Internally, the methods equals(), compareTo() and hashCode() are called
again by the map and the SMCInt then launches the correct SMC operation.

Computation-complexity-wise, the number of equals(), compareTo() and hashCode()
calls depend on the used table variant and the current number of table elements n. Map
access therefore has time complexity O(n) in the list map case, O(log n) in the tree map
case and O(1 + c) in the hash map case. Another performance influencing factor is the
overhead introduced by the three different SMC operations.

Similar to the SMCSession, of which the providers currently only have one for simplicity,
concurrency is also omitted in the three lookup table implementations. A multi-threaded
table version is possible in theory, but would require a fitting synchronization process to
make sure the provider tables do not deviate from each other internally. Randomness
should also be avoided or used with care within a table implementation since it could
also cause divergence. In general, the providers have to coordinate executions of the
four lookup table operations to keep their tables in a matching consistent state.

Providers call lookup table methods if they receive pseudonym requests by clients and
want to read from or write to the lookup table.

Associated Java files: LookupTableService.java, LookupTable.java,
ListLookupTable.java, TreeLookupTable.java, HashLookupTable.java,
TableValue.java
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5.3 REST API

Clients can make lookup table related requests to providers through their API. The
request types include pseudonym resolution, registration, update and deletion. The
API that providers offer for this purpose is a REST API. The corresponding request
methods are as follows:

• Pseudonym resolution: GET /api/pseudonyms/{pseudonymShare}

• Pseudonym registration: POST /api/pseudonyms/{pseudonymShare}

• Pseudonym update: PUT /api/pseudonyms/{pseudonymShare}

• Pseudonym deletion: DELETE /api/pseudonyms/{pseudonymShare}

Lookup table accesses are done by the providers using SMC. For this, matching SMC
operations have to be executed in parallel by all providers. Before they can start re-
solving client requests in this way, the clients first have to send matching requests
to all providers. The implementation therefore requires that each provider has to be
queried by the client at roughly the same time for a valid pseudonym related request.
The time window for request processing is chosen to be 30 seconds long. The timer
on each provider starts after receiving the user request. If the request could not be
processed within the time span, for example because one provider has not received a
matching request yet, a timeout is triggered and the request is rejected. If however all
three providers have received a matching request, they can together start to resolve it.
Responses are then also created by each provider and sent back to the client.

All client requests also contain the user identifier as query parameter. In this context
and as a prototype simplification, user ids emulate client authentication. The user id
serves multiple purposes on provider-side. It is for example used by the providers to
check whether a client has the necessary authorization for a request. This makes sure
clients can only update or delete their own lookup table entries. Additionally, a rate
limiting system could be based on the user identifiers, which has however not been
implemented here.

While all four requests carry pseudonym shares and user identifiers in the URL, not
every request and response contains an additional payload. Of the client requests,
only pseudonym registrations and updates include the new or updated table value as
JSON string. The endpoint share, expiration time and extra data are all part of the
table value. Of the provider responses, only the pseudonym resolution returns the
corresponding endpoint as a payload. An example pseudonym registration request is
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shown in Listing 5.1. The share values are abbreviated there as they usually consist
of about 450 characters each. Pseudonym resolutions do not carry a table value in the
request, as displayed in Listing 5.2.

Listing 5.1: Example pseudonym registration request
1 POST http :// localhost :8081/ api/ pseudonyms /114903048...006083527? user -id =1
2 {
3 " endpointShare ": "126226288...06083527" ,
4 " expirationTime ": "2020 -09 -06 T09 :12:18.707 Z",
5 " extraData ": "test"
6 }

Listing 5.2: Example pseudonym resolution request
1 GET http :// localhost :8081/ api/ pseudonyms /36767358481...9006083527? user -id =1

Associated Java files: RestServer.java, RestAPI.java,
PseudonymRequestHandler.java

5.4 Coordinated provider actions

One task of the providers is to keep the internal structure of their lookup table in a
matching and corresponding state compared to the table structure of the other providers.
That means, every logical table entry has the same table index on each provider. Start-
ing from such a consistent state, providers have to coordinate table operations to pre-
serve the consistency, while considering that the pseudonym requests triggering these
table operations are received by the providers in an asynchronous and unordered way.
Each table access should behave similar on all three providers and call the same in-
ternal map methods. This includes the SMC operations which are carried out when
traversing the lookup table to search for correct indexes. These SMC executions have
to be coordinated by the providers. If the lookup tables are in a consistent state, each
provider wants to execute the same number and type of SMC operations in a matching
order. If this is not the case and the tables have diverged, one provider for example
might start one extra SMC function while the others already found the correct index,
resulting in an error situation.

The providers therefore have to coordinate the order in which they handle the user
pseudonym requests, since these cause lookup table accesses. Before even being able to
process such a user request, each provider needs to have received a matching request
part. That means, providers have to communicate to each other which requests they
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have received in order to find out the set of matching request triples that they then can
choose an execution order for and after that start with the actual table accesses.

One simple coordination approach is to let each provider forward a user request to the
other providers as soon as it is received. This would allow them to notice for each of
their own user requests whether the other providers also received a matching request.
What is not achieved by this approach is a correct table access order, since coordination
messages have no clear order themselves and messages between two providers might get
lost or delayed without the third provider noticing in time, causing providers to start
table operations corresponding to different user requests.

For this reason, the coordination solution is implemented differently. Instead of imme-
diately forwarding received user requests to the other providers, they are collected on
each provider and then exchanged as batches after a certain interval. This is chosen to
be 50 milliseconds long. Smaller intervals would increase network usage because of a
higher rate of coordination message exchanges. The interval also influences the response
time of pseudonym related user requests, since incoming user messages first have to wait
for coordination before they are processed. Each of these batch exchange iterations in-
crements a coordination round counter, which defines a clear batch order. After each
exchange, the three batches are searched for matching user requests by comparing the
user identifiers and request types contained in the request batches. These can then be
sorted on all three providers by an average provider timestamp, resulting in a total order
guaranteed to be the same on each provider. The ordered requests are finally scheduled
for sequential detailed processing regarding lookup table access in the just calculated
order.

All of this coordination functionality is encapsulated in the SyncService. It is called
by the provider code that handles REST API user requests whenever the lookup table
is about to be accessed. The processing time window of 30 seconds mentioned in the
REST API section includes the coordination time. Providers cancel user requests after
this time span, resulting in the user receiving an error message. This can for example
happen if two providers received a matching request, but the third one did not.

Associated Java files: SyncService.java, PseudonymRequestHandler.java

5.5 Logging and LI

Each provider keeps a log of successful pseudonym user requests. LI rules might also
require the logging of unsuccessful requests, but the focus is on successful requests here.
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Log entries contain a timestamp, the pseudonym request type, the user identifier as
request origin, the pseudonym share and the endpoint share. The log is implemented
as a simple list. As mentioned in the design chapter already, this could be optimized
though by using a more efficient data structure. Additionally, search indexes could be
created for each entry column, which could even be realized by reusing the SMC lookup
table data structure.

Retroactive LI is supported by the provider log. It can be queried for specific entries
by a time range, request origin, pseudonym or endpoint. The list of log entries is then
searched sequentially for matches. In case the LI request contains a pseudonym or
endpoint as search term, the providers perform SMC equality checks using the secret
shares provided by the LEA and the ones in the log in order to find the target entries.

Proactive LI could be implemented in a similar way. Instead of consulting the log, the
providers would check incoming client requests for LI significance and act accordingly
before processing the request normally. An according implementation has been omitted
however for simplification.

Associated Java files: LogService.java, Log.java, LogEntry.java

5.6 Client secret sharing helper

Clients send and receive pseudonyms and endpoints to and from providers in a secret
shared form. A client application would therefore require methods to convert normal
values to secret shares and vice versa. These shares have to be formatted in such a
way that they are understood by the providers, suggesting the use of the Fresco secret
share format. To make a matching value-share-conversion available on client side, the
close and open functionality of Fresco could be ported to the client application or
the client could run a Fresco instance themself just for this purpose. To simplify the
development of a test client application, the share conversion functionality is outsourced
to the providers instead. The REST API is extended by a close and an open method:

• Close integer: GET /api/helper/close/{integer}

• Open integer: GET /api/helper/open/{integerShare}

Similar to pseudonym requests, all three providers would be queried at the same time
to prompt them to execute the underlying SMC close or open application. However,
clients should be aware of the privacy implications when using these two methods.
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Providers have to be trusted to generate correct shares and to keep the privacy of the
values intact. For testing purposes, this approach is acceptable though.

Associated Java files: ClientHelper.java, RestAPI.java
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Evaluation

The provider prototype implementation is tested for performance in a testbed envi-
ronment using a small web client implemented for testing purposes. The goal of the
measurements is to find out if and which scenarios deliver realistic execution times.

6.1 Setup

Performance tests are done with four parties in a testbed environment: Three hosts are
used to act as providers and a fourth host is used as client. The client will later send
test requests to the providers, that they then have to answer. The hardware properties
of the host computers are as follows:

CPU: Intel(R) Xeon(R) CPU D-1518 @ 2.20GHz with 4 cores and 8 threads

RAM: 32 GiB

Network: 1 Gbit/s

All four hosts have the same operating system installed. Additionally, the providers
have Java installed to be able to run the provider application software and the client
requires Node.js so it can run the JavaScript client application. The detailed software
properties are as follows:

OS: Linux 4.9.0-9-amd64 #1 SMP Debian (Stretch) 4.9.168-1+deb9u5 x86_64

Java: OpenJDK 1.8.0_222

Node.js: v10.16.3
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6.2 Methodology

The goal of the performance tests is to find out how the table size, table type and
network latency impact the execution time on provider-side of the SMC operations
Equals, Compare and Hash, and the execution time on client side of pseudonym requests
of different type.

Tests are executed with four parameters, which are constant throughout a test run, but
vary over multiple runs:

Number of requests per pseudonym request type: Between 10 and 100
(equals maximum table size)

Repetitions: Between 1 and 3
(specifies number of test logic repetitions within a test run)

Table type: List, Tree or Hash

Network latency [ms]: 0.1, 1, 5, 10, 15, 20, 25

The request and repetition count was decreased as the latency increased for test exe-
cution time reasons which will become more clear when looking at the measurement
results. The concrete chosen test parameters are listed in Table 6.1.

Latency [ms] 0.1 1 5 10 15 20 25

Requests per type 100 100 25 10 10 10 10

Repetitions 3 3 3 3 1 1 1

Table 6.1: Number of requests per pseudonym request type and number of repetitions by latency

The test logic incorporates a warm-up phase and a test phase. In both phases, pseu-
donym requests of all four types are generated by the client and sent to the providers.
The requests are sent out sequentially, i.e. the client waits for a response before sending
the next request. The warm-up phase lets the Java just-in-time compiler optimize the
important code paths, assuring the first few measurements are comparable to the oth-
ers. In the test phase, the client measures the response time for each request and the
providers measure the duration of each SMC operation they execute. Within one test
repetition, n requests of each pseudonym request type are made. The requests of differ-
ent type are connected to each other by the user id which is contained in the request. n

pseudonym registrations with an increasing user id are followed by n resolutions and n

updates with the same increasing user ids. This means for example that the first pseu-
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donym that is resolved is also the first pseudonym that got registered. The deletions
however are done in reverse, i.e. the last registered pseudonym is deleted first and so
on. This makes sure that delete measurements involving a list allow comparable scaling
observations, which would not be the case when always removing the first element. The
test logic steps are therefore:

1. Start providers

2. Warm-up phase (5 requests per request type, total 20)

3. Make n registrations (increasing user id)

4. Make n resolutions (increasing user id)

5. Make n updates (increasing user id)

6. Make n deletions (decreasing user id)

7. Repeat step 3 to 6 for each additional repetition

6.3 Test web client

A simple client application was implemented whose main purpose is to create test re-
quests against the REST APIs of the providers. It consists of approximately 400 lines
of code. As a web client, the chosen programming language is JavaScript, which allows
it to be run either in a web browser like Firefox or with Node.js.

The client implementation supports the creation of pseudonym requests of type regis-
tration, resolution, update and deletion. New pseudonyms and endpoints can also be
generated from client chosen values by querying the client secret sharing helper. In
the same way, provider responses can be interpreted if they contain secret shared val-
ues. Additionally, the client offers an automatic generation of many requests, which is
relevant for the performance measurements.

Associated JavaScript file: main.js

6.4 Measurement results

The first important result to note is the influence of latency on the execution time
of SMC operations. Figure 6.1 pictures this relation for each of the three measured
SMC operations Equals, Compare and Hash. The width of every box plot correlates
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to the amount of sample data for the given latency. It is apparent that the execution
time increases linearly as the latency increases. A doubled latency approximately also
doubles the execution time.

The seemingly large variation of the Compare method can be explained by looking at
the number of executed native SMC protocols. They are displayed in Figure 6.2. The
native protocols are the basic Fresco SPDZ operations that are executed. These are
for example additions and multiplications. More complex operations are combinations
of multiple native protocols. The statistics for the Compare method show that its
execution can end after two distinct numbers of native protocols. The lower point is
reached if the result of the comparison returns 0, which means both values are equal.
In this case, the Compare method has the same number of native protocol executions
as the Equals method. The upper point on the other hand is reached if both values are
not the same. Calculating which value is greater or smaller than the other is apparently
much more computationally expensive.

The second main result are the absolute execution times of single SMC methods. Fig-
ure 6.1 already portrayed this. Equals operations take some tenths of a second to
complete, in low-latency situations even only two-digit millisecond values. Compare
executions take significantly longer in the non-equal case with a few seconds, in low-
latency cases under one second. Hash computation times are similar to the ones of the
Compare method.

The third important result is the answer to the question whether the SMC lookup table
with its three types does actually scale as the table type suggests. This is indeed the
case. The scaling of the lookup table when using the list map approach is linear and
logarithmic for the tree map. The hash map has a constant scaling with additional
chaining overhead sometimes in case of collisions. All three scalings are, among other
things, visualized in Figure 6.3, 6.4 and 6.5 respectively. The three referenced figures
show the pseudonym request timings for each table type and for each request type of
the measurements taken with latency 1 ms. Every plot contains 300 data points, since
100 requests per type were repeated 3 times with latency 1 ms.

The fourth main result are the absolute execution times of pseudonym related lookup
table requests. With a maximum table size of 100 and a latency of 1 ms, durations of
single requests stay within a few seconds in the list map case of Figure 6.3, but grow
linearly. Response times with a tree map vary depending on the request type. This
can be seen in Figure 6.4, where read-only operations take only about half as long on
average as write operations. Similar to the list map, the absolute execution times are
in the area of a couple of seconds. However, the growth is logarithmic this time. By far
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Figure 6.2: Native protocols by SMC method

the best results delivers the hash map approach, displayed in Figure 6.5. Here, requests
take consistently under one second to complete, on average about 0.4 seconds, given
a latency of 1 ms. Hash bucket collisions can also be seen, which result in additional
Equals operations, causing outliers with increased execution time in Figure 6.5. The
constant scaling and the low absolute execution time makes the hash map approach
seem to be the best one for the realization of the SMC lookup table.

To summarize, low-latency scenarios combined with the usage of a hash lookup table
deliver the best and even realistic response times regarding pseudonym related user
requests.
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Chapter 7

Related work

This chapter presents existing work about related SMC applications and other solution
approaches to some sub-problems encountered in this thesis.

An application of SMC in the area of VoIP has already been explored in 2015 by Archer
and Rohloff [3]. Their goal was to provide audio data security in the sense of end-to-
end encryption. For this, they created a prototype VoIP teleconferencing system using
SMC based on linear secret sharing and homomorphic encryption. They did however
not address the problem of metadata privacy in the signaling phase.

Next to client audio data and the metadata of phone numbers and IP addresses in the
lookup table of the VoIP provider, metadata relating to the user identity can also be
protected using SMC. In the Master’s Thesis “Anonymous Authentication Using Secure
Multi-Party Computations” written by Ahmad in 2011 [1], an SMC authentication
process is developed which allows users to authenticate themselves at servers without
actually revealing their identity simultaneously. A dedicated registrar service decouples
the initial user identification from subsequent authentications at other services. That
SMC authentication technique could be used to extend the designed and implemented
VoIP provider system in this thesis with the goal of protecting the user identities
themselves against passive observers on provider-side.

Another approach for protecting data in a lookup table is to use a map data structure
with the oblivious property [15, 18]. Obliviousness would hide the access pattern of
map operations and could be useful to limit the knowledge of providers about which
table entries have been accessed by which users. The system design given in this thesis
does not hide this information from providers. Instead, the contents of the lookup table
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themselves are protected with SMC. It might be possible to create an oblivious SMC
lookup table that protects both the table content and the access pattern.

In a similar direction go [12] and [14], who use table lookups with secret index values
to realize SMC implementations for AES.

The problem of coordinating lookup table operations on provider-side also relates to
the Byzantine fault tolerance problem [13]. The providers want to achieve a consensus
about the order in which they execute the lookup table operations. This interactive
consistency problem might also be addressed using a solution to the Byzantine fault
problem, for example the “Practical Byzantine Fault Tolerance” algorithm [5], instead
of the simpler approach of exchanging coordination messages time interval based, that
the provider implementation uses.
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Future work

Extensions and variations of the designed and implemented system are imaginable in
multiple ways.

On the design level, the number of in SMC participating providers could be varied
for example. A set of backup providers could additionally be introduced to act as
a fallback in case one provider is temporarily unavailable, which would increase the
system robustness. Here, t-out-of-n secret sharing might be useful.

If the metadata on provider-side should not only be protected against passive attackers
but also active ones, some sort of verifiable secret sharing could be applied in combina-
tion with public key infrastructure. This would allow callers to verify the integrity and
authenticity of shares returned by providers in case of pseudonym resolutions.

Another idea is to let clients participate in SMC executions. The advantages and
disadvantages of such an approach would have to be examined for this.

On the implementation level, performance of the implemented provider SMC applica-
tion could be optimized. Full multi-threading would for example be a desirable fea-
ture for throughput scalability. Another aspect is the coordination process between
providers. The used consensus algorithm could be replaced by a more efficient one.

The prototype provider implementation can also be extended in various ways to in-
crease its realism regarding security. Transport encryption and authentication mecha-
nisms have been assumed, but were not practically realized. The dummy preprocessing
strategy of the used SMC protocol suite SPDZ can also be replaced with a real one.
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Conclusion

VoIP signaling operates on a significant amount of privacy-critical metadata. This
thesis manages to improve the privacy of user metadata by applying SMC to VoIP
signaling. The privacy goals of data minimization and unlinkability are achievable,
while preserving the functionality. The presented SMC VoIP provider system protects
privacy against a passive attacker monitoring up to n−1 out of n providers. LI has also
been addressed in order to fulfill legal requirements and give LEAs the opportunity to
request interceptions, despite the better protected user metadata.

On a more technical level, an SMC lookup table has been realized as central provider
location service data structure. Secret sharing allowed the private table contents to be
distributed among multiple providers. Functionality can be preserved if the providers
cooperate and perform SMC on the secret shared user metadata. The developed design
has been implemented as a prototype in Java using the Fresco SMC framework and
tested in a testbed environment.

The results of the performance evaluation show that especially low-latency environments
deliver realistic execution times, since SMC computations scaled linearly with latency.
An SMC hash map approach delivered the best scaling and the best absolute execution
times. In a setting with a latency of 1 ms for example durations of less than one second
are achievable.

SMC is a promising privacy-preserving technique. It is a solution to the trade-off
between data utilization and data privacy protection. Research is ongoing to improve
SMC performance and thus increase its practical applicability. Many existing and future
systems could benefit from SMC.
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