
Department of Informatics
Technical University of Munich

TECHNICAL UNIVERSITY OF MUNICH

DEPARTMENT OF INFORMATICS

MASTER’S THESIS IN INFORMATICS

Trustworthy Configuration Management
with Distributed Ledgers

Valentin Johannes Hauner

Technical University of Munich
Department of Informatics

Master’s Thesis in Informatics

Trustworthy Configuration Management
with Distributed Ledgers

Vertrauenswürdiges Konfigurationsmanagement
mit verteilten Ledgers

Author: Valentin Johannes Hauner
Supervisor: Prof. Dr.-Ing. Georg Carle
Advisor: Dr. rer. nat. Holger Kinkelin

Dr. rer. nat. Heiko Niedermayer

Date: May 15, 2018

I confirm that this Master’s Thesis is my own work and I have documented all sources
and material used.

Garching, May 15, 2018
Location, Date Signature

cba

This work is licensed under a Creative Commons
Attribution-ShareAlike 4.0 International License.

Abstract

In recent years, IT systems have been adopted in a wide range of uses with direct consequences
for the physical world, including the Internet of Things (IoT), health care and law enforcement.
The rising complexity of these systems requires a proper concept for Configuration Management
(CM) to guarantee their security and safety. Incidents in the recent past show that many orga-
nizations have to cope with attacks from outside, but also with failures and abuse of trust from
inside: an individual with administrative privileges typically has the ability to change critical
parts of a system’s configuration, without requiring the approval of additional administrators.

To mitigate attacks involving the abuse of administrative privileges, we present TANCS, a
Tamper-Resistant and Auditable Network Configuration System. It introduces the principle
of Multi-Party Authorization (MPA), requiring multiple parties to review and approve each crit-
ical configuration change. Only after the configuration change has been authorized by multiple
parties stipulated in a policy, it can be applied to the targeted device. For every configuration
management operation performed with TANCS, we ensure accountability and traceability. Fur-
thermore, TANCS is designed to be tamper-resistant, preventing attempts by individuals with
administrative privileges to attack or circumvent the configuration management process itself.

For providing tamper-resistance, we leverage Distributed Ledger Technology (DLT). In partic-
ular, TANCS is based on Hyperledger Fabric, a comprehensive framework developed by the
Linux Foundation for operating a distributed ledger together with a distributed execution en-
vironment. Every configuration management operation is executed as a smart contract in a
peer-to-peer network, with the execution results stored redundantly in the ledger copies of the
peers. That way, no single participant of the network is able to forge or erase the outcomes of an
operation. Additionally, it even becomes possible to manage configurations for IT infrastructure
and services shared across different stakeholders which only share a limited amount of trust, like
different organizational units or a consortium of several organizations.

Zusammenfassung

In letzter Zeit wurden IT-Systeme in einer Vielzahl von Einsatzbereichen mit unmittelbaren Aus-
wirkungen auf die reale Welt eingeführt, vom Internet der Dinge über das Gesundheitswesen
bis hin zur Strafverfolgung. Die steigende Komplexität dieser Systeme erfordert ein geeignetes
Konzept zur Konfigurationsverwaltung, um deren Sicherheit und Gefahrlosigkeit zu gewährleis-
ten. Vorfälle aus der jüngsten Vergangenheit offenbaren, dass viele Organisationen mit Angriffen
von außerhalb, aber auch mit Versagen und Vertrauensmissbrauch aus dem Inneren zu kämpfen
haben: Ein Einzelner mit administrativen Berechtigungen ist üblicherweise dazu in der Lage, kri-
tische Bestandteile einer Systemkonfiguration zu verändern, ohne auf die Zustimmung anderer
Administratoren angewiesen zu sein.

Um Angriffe auf Basis des Missbrauchs administrativer Berechtigungen zu entschärfen, stellen
wir TANCS vor, ein Tamper-Resistant and Auditable Network Configuration System. Es führt
das Prinzip der Mehrparteienautorisierung ein, das die Überprüfung und Zustimmung mehrerer
Parteien für jede kritische Konfigurationsänderung erfordert. Erst nachdem die Konfigurations-
änderung von mehreren, in einer Policy festgelegten Parteien autorisiert worden ist, kann sie
auf dem Zielgerät angewendet werden. Für jeden mit TANCS ausgeführten Konfigurationsver-
waltungsvorgang stellen wir Verantwortlichkeit und Rückverfolgbarkeit sicher. Darüber hinaus
ist TANCS auf Manipulationssicherheit ausgelegt, sodass die Versuche Einzelner mit adminis-
trativen Berechtigungen, den Konfigurationsverwaltungsprozess anzugreifen oder zu umgehen,
verhindert werden.

Um diese Manipulationssicherheit zu erbringen, machen wir uns Distributed Ledger Technology
zunutze. TANCS basiert im Speziellen auf Hyperledger Fabric, ein umfangreiches Framework
der Linux Foundation, um einen verteilten Ledger zusammen mit einer verteilten Ausführungs-
umgebung zu betreiben. Jeder Konfigurationsverwaltungsvorgang wird als Smart Contract in
einem Peer-to-Peer-Netzwerk ausgeführt, wobei die Berechnungsergebnisse redundant in den
Ledger-Kopien der Peers gespeichert werden. Auf diese Weise ist kein einzelner Beteiligter in
der Lage, die Ergebnisse eines Vorgangs zu fälschen oder zu löschen. Außerdem wird die Möglich-
keit geschaffen, Konfigurationen für gemeinschaftliche IT-Infrastruktur und -Dienstleistungen zu
verwalten, die von verschiedenen Stakeholdern mit einem beschränkten Maß an Vertrauen un-
tereinander betrieben werden, wie zum Beispiel verschiedene Organisationseinheiten oder ein
Konsortium mehrerer Organisationen.

Acknowledgements

The essence of all beautiful��art science, all great��art science, is gratitude.
– Friedrich Wilhelm Nietzsche

First of all, I would like to thank Dr. rer. nat. Holger Kinkelin and Dr. rer. nat. Heiko
Niedermayer for providing me with important advice and expert knowledge during this
research project. I have learned a lot.

It was them who encouraged me to participate in writing a scientific publication about
this project, which was a great experience with a steep learning curve for myself.

In addition, I would like to thank Prof. Dr.-Ing. Georg Carle for supervising me. He
and his research associates at the Chair of Network Architectures and Services provided
me with a valuable insight into the scientific world and community.

Publications

Holger Kinkelin, Valentin Hauner, Heiko Niedermayer, and Georg Carle. “Trustwor-
thy Configuration Management for Networked Devices using Distributed Ledgers”. In:
NOMS 2018 – IEEE/IFIP DOMINOS Workshop. Taipei, Taiwan, Apr. 2018

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Goals . 2
1.3 Outline . 3

2 Background 5
2.1 Configuration Management . 5

2.1.1 Concept . 5
2.1.2 Challenges . 6
2.1.3 Approaches . 7

2.2 Multi-Party Authorization . 10
2.3 Distributed Ledger Technology . 12

2.3.1 Concept . 12
2.3.2 Approaches . 13
2.3.3 Implementations . 14

3 Analysis 23
3.1 Basic Problem . 23
3.2 Requirements . 24

3.2.1 Multi-Party Authorization . 25
3.2.2 Authentication . 25
3.2.3 Accountability and Non-Repudiation 25
3.2.4 Traceability . 25
3.2.5 Tamper-Resistance . 26
3.2.6 Locking . 26
3.2.7 Resilience . 26
3.2.8 Automation . 27
3.2.9 Interoperability . 27

3.3 Design Choices . 27
3.3.1 Process Design . 27
3.3.2 Distributed Ledger Technology 28
3.3.3 Identity Management . 28
3.3.4 Configurations . 29

4 Related Work 31

5 Design 35
5.1 Overview . 35
5.2 Configuration Management Process . 37

5.2.1 Propose . 37
5.2.2 Approve . 37
5.2.3 Retrieve . 37
5.2.4 Acknowledge . 40

5.3 Subjects . 40
5.3.1 Proposer . 40
5.3.2 Approver . 40
5.3.3 Target . 40

5.4 Objects . 41
5.4.1 Configuration Request . 41
5.4.2 Policies . 45

5.5 3-Tier Architecture . 48
5.5.1 Presentation Tier . 50
5.5.2 Logic Tier . 50
5.5.3 Data Tier . 51

5.6 Conclusion . 51

6 Implementation 53
6.1 Overview . 53
6.2 Deployment . 54
6.3 Tiers . 56

6.3.1 Interactions . 56
6.3.2 Presentation Tier . 57
6.3.3 Logic Tier . 60
6.3.4 Data Tier . 63

II

7 Evaluation 65
7.1 Interoperability . 65

7.1.1 Identity Management . 65
7.1.2 Policy Evaluation . 66
7.1.3 Configuration Management . 66
7.1.4 Reusability . 68

7.2 Performance . 68
7.2.1 Latency by Multi-Party Authorization 68
7.2.2 Latency by Distributed Ledger Technology 69

7.3 Security . 71
7.3.1 Fulfillment of Security Requirements 71
7.3.2 Policy Model . 73
7.3.3 Vulnerability Management . 74
7.3.4 Auditing . 75

7.4 Limitations . 76
7.4.1 Security Risks of Policies . 76
7.4.2 Collusion of Participants . 76
7.4.3 Compromisation of Targets . 77
7.4.4 Consistency, Availability and Partition Tolerance 77

7.5 Trade-Offs . 78
7.6 Future Work . 79

7.6.1 Semantic Interpretation of Configurations 79
7.6.2 Emergency Cases . 80

8 Conclusion 81

A Appendix 85
A.1 Implementation . 85

A.1.1 Structure of Go Packages . 85

Bibliography 89

III

List of Figures

2.1 Example of a set of Chef recipes . 9
2.2 Example of a Puppet manifest . 10
2.3 Example of an Ansible playbook . 11
2.4 Example of a smart contract written in Solidity 16
2.5 Example of a chaincode for Hyperledger Fabric in Go 19
2.6 Transaction flow in Hyperledger Fabric 20
2.7 Exemplary endorsement policies for a chaincode in Hyperledger Fabric . 21

5.1 System interactions . 36
5.2 Process model for proposing a configuration 38
5.3 Process model for approving a configuration request 38
5.4 Process model for retrieving configuration requests 39
5.5 Process model for acknowledging a configuration request 39
5.6 Structure of a configuration request . 42
5.7 Example of a configuration request . 43
5.8 State transitions of a configuration request 44
5.9 Structure of an access control policy . 46
5.10 Example of an access control policy . 46
5.11 Structure of a validity policy . 47
5.12 Example of a validity policy . 47
5.13 3-tier architecture . 48
5.14 3-tier protocol . 49
5.15 Interface of the logic tier . 50

6.1 Tier interactions for proposing a configuration 58
6.2 Tier interactions for approving a configuration request 58
6.3 Tier interactions for retrieving configuration requests 59
6.4 Tier interactions for acknowledging a configuration request 59
6.5 Component dependencies on the logic tier 62

List of Tables

4.1 Comparison of related work . 34

6.1 Entities and Docker services of the exemplary Fabric network 55
6.2 Commands, arguments and flags of the Command-Line Interface 61

7.1 Overview of stand-alone tools for applying configuration scripts 67
7.2 Fulfillment of the security requirements 73

8.1 Final overview of the system’s capabilities 82

Chapter 1

Introduction

Our work discusses reasons and consequences of IT attacks caused by insiders like fraud-
ulent administrators and introduces a novel approach for managing configurations in a
trustworthy manner based on Distributed Ledger Technology (DLT). In the following,
we explain the motivation behind our work and state its goals, followed by a short
outline of the thesis’ structure.

1.1 Motivation

Nowadays, IT systems become more and more complex. This is not only caused by an
increasing amount of features, but also by a growing interconnection of multiple systems,
leading to new challenges for managing, configuring and securing them. Elaborate
toolsets and frameworks are necessary to cope with this administrative effort. They try
to reduce complexity and assist administrators in maintaining the system landscape,
implementing security guidelines and reacting to imminent threats.

However, a well-configured and secure system should not only prevent and fight attacks
on the software and infrastructure itself, but also those that involve the abuse of ad-
ministrative privileges. Advanced Persistent Threats (APTs) describe individual and
precisely prepared attacks targeted to a specific entity [12, p. 3], like the administrator
of an organization. After the entity has been compromised, the attackers are able to
abuse the administrative privileges, for instance by stealing sensitive information or by
causing severe damage to the system landscape.

Apart from that, administrators can make mistakes by accident. Furthermore, they
can go rogue and harm their employer deliberately. In both cases, the misuse of their

Chapter 1: Introduction

administrative privileges is likely to cause severe damage to the IT systems they are
responsible for. Logging and auditing systems provide means to detect anomalies of
such kind, but typically in hindsight only. Moreover, administrative privileges often
allow to bypass or disable common security measures, like access control, an Intrusion
Detection System (IDS) or solutions for Security Information and Event Management
(SIEM).

This is where our approach for trustworthy configuration management comes into play.
We aim to mitigate and avoid the attacks and incidents described above with a config-
uration management system that establishes control over the actions of administrators
and effectively restrains their privileges.

1.2 Goals

The goal of this work is to design and implement a configuration management sys-
tem that enforces a configuration change to be explicitly reviewed and approved by
independent auditors. For that purpose, we conduct a configuration management pro-
cess requiring Multi-Party Authorization (MPA) to achieve Byzantine Fault Tolerance
(BFT) against attacks and failures caused by an administrator’s configuration change.
Only after a configuration change has been authorized by a set of experts, the targeted
devices retrieve it from our system and apply it locally. We call our system TANCS,
referring to a Tamper-Resistant and Auditable Network Configuration System.

The different parties that need to authorize a configuration change can be specified on a
per-device basis, making it possible to take into account the criticality of a device. For
the whole configuration management process, we guarantee accountability and trace-
ability: every management operation performed with our system is cryptographically
associated with an actor and recorded in an append-only log. As our system is de-
signed to be tamper-resistant, it even prevents entities with administrative privileges
from manipulating or negatively affecting its service.

To ensure that administrators cannot continue to access and configure the target devices
directly, the devices have to be locked appropriately. This involves the shutdown of
network services that allow remote logins, such as SSH, and the reduction of system
accounts with administrative privileges to a minimum. Depending on the criticality of
the device, however, it may still be necessary to be able to administrate it directly in
cases of emergency.

2

1.3 Outline

The technical basis for our system is provided by Distributed Ledger Technology (DLT).
Thereby, we are able to conduct the configuration management process in a decentralized
and unforgeable manner. Additionally, DLT offers the ability to manage configurations
for infrastructure shared across different stakeholders which only share a limited amount
of trust. A typical example includes two or more organizations that want to run and
administer an IT service collectively, with each of them contributing own infrastructure
elements and application instances to it.

1.3 Outline

The thesis is structured as follows: chapter 2 introduces background information on
the subjects of Configuration Management (CM), Multi-Party Authorization (MPA)
and Distributed Ledger Technology (DLT). In chapter 3, we analyze the basic problem,
formulate requirements for our system and propose different approaches to choose from,
before chapter 4 presents existing work related to our topic. Our system’s high-level
design is explained in chapter 5, followed by the implementation in chapter 6. We
evaluate our system with respect to interoperability, performance and security in chapter
7, before we conclude in chapter 8.

3

Chapter 2

Background

This chapter introduces the fundamentals needed for understanding our work. It covers
the concept of Configuration Management, an authorization model for multiple parties,
and the characteristics and implementations of Distributed Ledger Technology.

2.1 Configuration Management

Configuration Management (CM) is a broadly defined concept for establishing, orga-
nizing and maintaining the configuration of an artifact throughout its whole lifecycle.
Although the term is used in a multitude of sectors, including civil engineering and
military services, we only consider configuration management for software, also known
as Software Configuration Management (SCM). This discipline is highly relevant for our
work, since it deals with configurations for applications, like a web server, as well as
with configurations relevant to infrastructure components, such as firewall rules.

2.1.1 Concept

Managing configurations for software is a complex and critical task. It includes not
only the management of settings and operational modes of a software, but also its
introduction, installation and replacement. As soon as the number of artifacts to manage
increases, the establishment of a configuration management process becomes inevitable.
Only with such a well-defined process, consistency, continuity and changeability can be
guaranteed for a software and its configuration.

Chapter 2: Background

2.1.2 Challenges

Configuration Management (CM) comes along with several challenges as mentioned by
Morris [52, chap. 1], with the most important ones for our work described below.

Consistency

The configuration of infrastructure components providing the same service should be
consistent. A typical example is a group of server instances behind a load balancer.
Every server instance should run the same version of the server software together with
the same configuration. However, some parts of the configuration may differ, like those
needed for identifying an instance.

Consistency is essential for avoiding configuration drifts, a pattern that describes com-
ponents which have initially been set up with the same configuration, but got configured
individually over time. Furthermore, consistency is an important prerequisite for au-
tomation. Only if each component of a service is configured consistently, it will be
convenient and safe to employ an automated process that adapts their configuration
and sets up new components.

Continuity

A service provided by infrastructure components should be continuously available. No
configuration change should lead to a disruption of the service. The continuity principle
usually includes Disaster Recovery (DR), a process that is triggered in case of incidents
beyond the administrators’ control, like an unexpected hardware failure, and takes
measures to guarantee the service’s continuity.

Changeability

It should be possible to change the configuration of a service and its components at
any time with as minimal effort as possible. Therefore, applying configuration changes
should be a routine task that is well-practised and guided by a configuration manage-
ment framework. Applying small changes one by one should be preferred over applying
a huge set of changes at one go.

Testability

It should be possible to easily test a configuration change before applying it to the
production environment. Consequently, configuration changes should be applied to a

6

2.1 Configuration Management

dedicated testing environment beforehand. The testing process may be supported by
the configuration management framework.

Version Control

All configuration changes should be put under version control in order to understand
who configured what in which way. This information may also be used for conducting
an auditing process. Besides, it simplifies the reproducibility of misconfigurations and
their rollback.

Documentation

All configuration changes should be documented. In the simplest case, the documenta-
tion is written and maintained manually. Since documentations can become outdated
quickly, configuration management frameworks should provide means to easily manage
and adapt the documentation.

2.1.3 Approaches

A configuration management process can be implemented in different ways. For small
environments, it may suffice to conduct it manually. In contrast, interactive approaches
provide a configuration management process guided and executed by dedicated manage-
ment tools, while Infrastructure as Code (IaC) is a paradigm to automatically configure
software via human- and machine-readable configuration scripts.

Manual Approaches

A configuration management process may be conducted manually. However, this ap-
proach is feasible for small environments only, like a landscape consisting of a few stand-
alone servers. It is still possible to meet every challenge described in section 2.1.2, but
the manual operation requires a high degree of coordination within the administration
team.

Interactive Approaches

With an interactive approach, the configuration management process is guided and
executed by a dedicated configuration management framework. It provides a unified
user interface for the administration team to manage the configurations of a multitude
of services and components. The framework assists the user in meeting the challenges

7

Chapter 2: Background

described in section 2.1.2 and may offer additional features, like advanced access control
and monitoring.

Infrastructure as Code

Infrastructure as Code (IaC) is a paradigm to configure a dynamic infrastructure envi-
ronment via human- and machine-readable configuration scripts [52, p. 5]. In contrast
to other approaches, it allows for a high degree of automation. IaC is suitable for
managing large environments with little effort and therefore solves the scaling problems
for configuration management that came along with the concepts of virtualization and
Infrastructure as a Service (IaaS).

Concept: With IaC, configuration scripts are applied to a set of targets. The scripting
language differs depending on the framework and supports an imperative or declarative
style or a mixture of both. In contrast to imperative scripts, declarative scripts describe
what configuration has to be applied and not how it has to be applied. Consequently,
idempotence can be achieved easily with a declarative approach, i.e. applying the same
script more than once to a target leads to the same result.

Since several of these scripting languages are optimized to be human-readable, the
configuration scripts are usually self-documenting. No extensive documentation that
can become outdated is needed. Furthermore, even users without a deep technical
knowledge are able to understand the definition file.

An IaC framework can be operated in two different modes: push and pull. While
configurations are delivered to the targets by the management framework in the first
case, targets retrieve configurations from the management framework on their own in the
latter case. Depending on the framework and the operating mode, it may be necessary
to install additional software on the targets that handles the communication with the
management framework.

Continuous Configuration Automation (CCA) is a concept based on IaC and aims to
automate the tasks performed with IaC frameworks [24], similar to the goals that are
pursued with Continuous Integration (CI) and Continuous Delivery (CD) in the devel-
opment and operations sector.

Frameworks: A wide variety of IaC frameworks is available, with the most popular
ones being Chef, Puppet and Ansible. Its intended use cases, scripting languages and
operation modes differ, which makes it necessary to carefully evaluate which one fits best

8

2.1 Configuration Management

for the environment to manage. For that purpose, Delaet et al. provide an extensive
comparison framework that proposes a multitude of evaluation properties to consider
when adopting a configuration management tool [20].

Chef Chef is a widely-used IaC framework implemented in Ruby and Erlang and was
initially released in 2009 [17]. It uses a Domain-Specific Language (DSL) based on
Ruby for its configuration scripts. A single configuration is expressed as a recipe, with
multiple recipes combined into a cookbook. The DSL supports anything that can be
done with Ruby and therefore can be seen as a full-featured programming language.
Nonetheless, the language can be used in a declarative way: different resources that
come along with different actions can be used to define a desired state of a target, as
shown in figure 2.1. Chef has to be installed on both a server and a client and follows
the pull mechanism. The software comprises a large toolset together with community
features, including a testing suite and a public repository with thousands of predefined
cookbooks for well-known software.

1 httpd_service 'default ' do
2 action [: create , : start]
3 end
4
5 httpd_config 'default ' do
6 source 'mysite .cnf.erb '
7 notifies :restart , 'httpd_service [default]'
8 action : create
9 end

Figure 2.1: Example of a set of Chef recipes [16], with the first one creating and starting a new httpd
instance and the second one configuring it with a Ruby-based configuration file template

Puppet Puppet, with its initial release in 2005, brings its own declarative configura-
tion language inspired by the Nagios configuration file format [60]. Puppet follows the
client-server architecture, with the client denoted by agent and the server denoted by
master. The client fetches configurations from the server and therefore conducts a pull
mechanism. Language files are called manifests and contain a set of resource declara-
tions with a type, a title and attributes. The latter describe the desired state of the
resource. Figure 2.2 shows an exemplary manifest with several resource declarations.

Ansible Ansible is an IaC framework written in Python and was initially released in
2012 [3]. Configurations are declared in playbooks. Each playbook may comprise several
plays, which in turn may include several tasks. Playbooks are not expressed using a

9

Chapter 2: Background

1 package { 'ntp ':
2 ensure => installed ,
3 }
4
5 service { 'ntp ':
6 name => 'ntp ',
7 ensure => running ,
8 enable => true ,
9 subscribe => File['ntp.conf '],

10 }
11
12 file { 'ntp.conf ':
13 path => '/etc/ntp.conf ',
14 ensure => file ,
15 require => Package ['ntp '],
16 source => " puppet :/// modules /ntp/ntp.conf",
17 }

Figure 2.2: Example of a Puppet manifest [58], containing resource declarations of the types package,
service and file, with the first one ensuring that the ntp package is installed, the second one ensuring
that the ntp service is running and the third one configuring it with a file stored on the Puppet master

script or programming language, but with declarations in the YAML syntax. That way,
playbooks remain simple to read, even for non-programmers, and can easily be designed
to support idempotence. Each play is targeted to a set of hosts which are managed in
an inventory file that contains their IP addresses and domain names. Furthermore, it
is possible to define groups of hosts. Figure 2.3 shows an exemplary playbook with a
single play and several tasks targeted to a host group.

The main difference between Ansible and other IaC frameworks is its agentless architec-
ture: no additional software needs to be installed on the targets to apply configurations
to, referred to as managed nodes in the Ansible terminology. Consequently, Ansible
follows the push mechanism: a control machine runs a playbook by directly accessing
the managed nodes via SSH. Additionally, the framework supports a pull mechanism
where managed nodes retrieve playbooks from a version-controlled repository and run
them locally.

2.2 Multi-Party Authorization

Multi-Party Authorization (MPA) is a security model based on redundant supervision.
It requires multiple parties to authorize a certain action. Without the authorization of
multiple parties, the action is not allowed to be carried out. Before parties authorize
an action, it is their responsibility to carefully review and assess it. The requirements
for an action to become finally authorized can be formulated in a policy or negotiated
dynamically. Typical requirements comprise a minimum number of authorizers, a set

10

2.2 Multi-Party Authorization

1 ---
2 - hosts: webservers
3 vars:
4 http_port: 80
5 max_clients: 200
6 remote_user: root
7 tasks:
8 - name: ensure apache is at the latest version
9 yum: name=httpd state=latest

10 - name: write the apache config file
11 template: src=/srv/httpd.j2 dest =/etc/httpd.conf
12 notify:
13 - restart apache
14 - name: ensure apache is running (and enable it at boot)
15 service: name=httpd state=started enabled=yes
16 handlers:
17 - name: restart apache
18 service: name=httpd state=restarted

Figure 2.3: Example of an Ansible playbook [6], with a single play targeted to the host group web-
servers, and httpd-related tasks to check its version, to write a template-based configuration file with a
subsequent restart, and to finally check if it is running

of specific authorizers, role-based properties or any combination of these criteria, like
requiring the authorization from the department manager and at least k administrators
for a major software upgrade.

MPA can be used to protect critical systems from attacks and mistakes of individuals,
like administrative environments and storage systems for critical data. Depending on
the particular use case, it may be desirable to ensure accountability and traceability
for the whole authorization process, for instance by employing a logging and auditing
system.

Lin introduces a formal definition of MPA in her PhD thesis [35, sec. 2.3]. According
to that, the n-party authorization problem is a tuple defined as follows:

(e0, m1, ..., mn, A, M, Z, S,≺)
A, M, Z ⊆ N = {1, ..., n}

≺ : N → N

(2.1)

e0 is the entity that initiates the authorization and m1, ..., mn are n different names of
entities that are known to e0. A represents the set of authorizers, i.e. the entities that
grant the authorization. M represents the set of resource managers, i.e. the entities that
enforce the authorization, like a document management system. Z represents the set of
authorizees, i.e. the entities that is granted the authorization, like a printing service. S

11

Chapter 2: Background

denotes an authorization scope, i.e. a set of resources and an operation defined on them,
like reading files. ≺ defines the order of the authorizations to be granted by entities, i.e.
i ≺ j means that ei should grant the authorization before ej . The meta information of
the actual authorization request is described by (m1, ..., mn, A, M, Z, S,≺).

For a protocol to solve the n-party authorization problem, Lin defines the following four
properties to be met:

1. Agreement: honest entities agree on the authorization request’s content

2. Validity: honest entities process the authorization request initiated by e0, without
any modifications

3. Temporal order: authorizations are granted in the order defined by ≺

4. Non-triviality: the protocol is not allowed to simply abort

A simple example for an authorization request looks as follows: the initiator, e0, is a
printing service. m1 is the name of the printing service (which also corresponds to e1),
m2 is the name of a document management system (e2), and m3 is the name Alice (e3).
Alice is the authorizer, therefore A = {3}. The document management system is the
resource manager, therefore M = {2}. The printing service is the authorizee, therefore
Z = {1}. The authorization scope S deals with reading documents. Finally, the order is
defined as 3 ≺ 2 and 2 ≺ 1. Consequently, Alice should grant the authorization before
the document management system, followed by the printing service.

2.3 Distributed Ledger Technology

Distributed Ledger Technology (DLT) is a technology for managing a ledger in a peer-
to-peer network and without the need for a central authority. It became increasingly
popular after Nakamoto had published the concept of a DLT-based electronic cash
system called Bitcoin in 2008 [53], which utilizes a blockchain as data structure and Proof
of Work (PoW) as consensus mechanism. From that time on, plenty of research has
been conducted in this field, exploring not only use cases for electronic cash systems, but
also covering generalized approaches, like the distributed execution of smart contracts.

2.3.1 Concept

A distributed ledger can be seen as a decentralized database with a global state, as
stated by Natarajan et al. in their report for the World Bank [54, chap. 1]. Although,

12

2.3 Distributed Ledger Technology

in its original definition, a ledger is a kind of journal that permanently keeps track of
debits, credits and the resulting balance of a customer’s account, a digital ledger is
basically able to cope with any kind of data record. These data records are appended in
a sequential order and in an unerasable and unforgeable way. The ledger is collectively
maintained by multiple peer nodes that need to reach a consensus on its state. Neither
a central authority nor any other trusted third party is involved in the management of
the ledger. Furthermore, DLT aims to prevent a collusion between possibly malicious
peers from effectively manipulating the ledger.

All peer nodes store an identical copy of the ledger and communicate via a broadcast
model that is usually implemented in a best-effort manner, like gossip. A participant of
the network can initiate a new transaction that eventually will lead to a modification of
the ledger and its state. Only valid transactions can lead to a modification of the ledger’s
state. Common validity checks include, for instance, the double-spending problem, i.e.
that no asset is spent more than once by its owner. The consensus algorithm decides
which transactions are appended to the ledger in which order. Its implementation differs
depending on the specific distributed ledger system. Typical implementations are Proof
of Work (PoW), Proof of Stake (PoS), and consensus models based on Byzantine Fault
Tolerance (BFT).

2.3.2 Approaches

A distributed ledger can be operated and implemented in different ways. A major dif-
ferentiation is made between unpermissioned and permissioned ledgers: while anyone
can join the corresponding peer-to-peer network and participate in the management of
the ledger in the first case, permissioned ledgers restrict the participation to a specific
set of entities. A typical example for an unpermissioned ledger is the Bitcoin payment
system, whereas so-called corporate ledgers between two or more organizations used for
transferring business assets and negotiating contracts belong to the domain of permis-
sioned ledgers. Additionally, public ledgers are distinguished from private ledgers: the
first type grants read access to everyone, even if the ledger is permissioned, but the
second type prevents unauthorized entities from accessing the ledger in any case, even
for read attempts.

Currently, there are two major ways of implementing a distributed ledger: with a
blockchain or with a Directed Acyclic Graph (DAG). At the time of writing this thesis,
most of the ledger systems are using a blockchain. As the name implies, a blockchain
is a continuously growing chain of blocks. Each block comprises a set of transactions
and a cryptographically secure identifier of the previous block in the chain, usually a

13

Chapter 2: Background

hash value. That way, all blocks are connected to a chain in an unforgeable manner.
For a blockchain-based distributed ledger, the consensus algorithm running on the peer
nodes typically decides which peer is allowed to append the next block containing a
set of new transactions to the chain. Until now, the most prominent approach is PoW,
which is based on a time- and resource-consuming competition to solve a cryptographic
puzzle by trying to find a hash value with certain properties. The winner of the com-
petition is then allowed to append a new block and usually receives a reward for the
work. However, there are prospects of more efficient consensus algorithms, like PoS.

A different approach for implementing a distributed ledger involves using a DAG. The
cryptocurrency system IOTA designed for the Internet of Things (IoT) and proposed
by Popov in 2017 [57] is a prominent example in this field. Popov introduces a tangle
graph, with its vertices representing transactions and its edges representing approvals.
Each new transaction must approve 2 (or in general k) other transactions. The main
idea of this approach is to require an issuer of a new transaction to approve other
valid transactions and therefore contribute to the network’s continuity and security.
According to Popov, advantages of this approach over a blockchain are a significant
reduction of latency, resource consumption and transaction fees, making the system
suitable for micropayments.

2.3.3 Implementations

Due to the success of the Bitcoin payment system, a considerable number of DLT
implementations has emerged in recent years. In the following, we introduce the most
prevalent ones.

Bitcoin

The Bitcoin payment system is based on a public and unpermissioned distributed ledger
that is implemented with a blockchain [53]. The consensus on new blocks is reached via
PoW. Each block, limited in its size, contains a set of transactions. Each transaction
describes a flow of Bitcoin units from at least one sender address, the so-called input,
to at least one receiver address, the so-called output. The inputs of a transaction must
be unspent and at least as great as the outputs. Each participant owns a wallet that
includes at least one pair of a public and private key. A public key is used for the
calculation of a Bitcoin address, while a private key is used to sign a transaction.

After the participant has signed the transaction, it is distributed to other participants
with a flooding algorithm. Participants willing to provide computational power for the

14

2.3 Distributed Ledger Technology

PoW, the so-called miners, gather new transactions, put them into a block and try to
find a hash value that is below a certain a threshold. The hash value is calculated from
the block header, which contains a nonce that is adapted for each try. Once the miner
has found a valid hash value, the new block is spread in the network. If more than one
block has been mined, the participants choose the longest blockchain, i.e. the blockchain
with the highest mining difficulty. The mining difficulty is inversely proportional to the
threshold: the higher the mining difficulty, the lower the threshold. Since the network’s
overall computational power increases steadily, the mining difficulty is increased, too.
To compensate their work, miners receive a reward in the form of Bitcoin units.

No central authority is involved in the payment process and the management of the
network. Instead, the system is based on strong cryptography and the trust in a majority
of the participants to follow the Bitcoin protocol. However, Bitcoin comes with several
drawbacks. Since every transaction is publicly visible in the Bitcoin network, it is
possible to trace the cash flow of a single participant. As a mitigation, participants
can generate arbitrarily many new key pairs and therefore addresses to obfuscate their
payment history. Another downside is the network’s resource consumption: the mining
process consumes a significant amount of time and energy. Consequently, it can take
several minutes for a Bitcoin transaction to be processed. For a transaction with a
substantial amount of Bitcoin units, it is even recommended to wait up to one hour.

Ethereum

Ethereum is a distributed smart contract platform proposed by Wood et al. in 2014
[64]. It is based on a public distributed ledger that is implemented with a blockchain.
At the time of writing this thesis, the consensus on new blocks is reached via PoW, but
a migration to PoS is planned for the near future.

Although Ethereum has got its own currency, called Ether, it is more than just a
cryptocurrency platform: the network offers the ability to execute smart contracts.
A smart contract is a computer program that verifies and enforces a kind of digital
contract. Typical examples include the handling of a fund-raising campaign, where
funds are collected from different investors and payed out to the recipient only if a
certain threshold has been exceeded, or a digital voting system to reach a decision on a
certain topic.

In the Ethereum network, an account can either be controlled by a user or by a contract.
Users can transfer Ether among each other, but also to a contract and thereby trigger
its execution. The amount of Ether needed to trigger the execution depends on the
contract, in particular on its complexity and number of operations, and can be seen as

15

Chapter 2: Background

the execution fee that is credited to the miners. A contract is able to store arbitrary
data, transfer Ether to other accounts and even interact with other contracts. Contracts
are stored in the ledger and run by all participants of the network using the Ethereum
Virtual Machine (EVM). Typically, they are written in Solidity, a Turing-complete pro-
gramming language specifically designed for that purpose. Figure 2.4 shows a minimal
example of a smart contract in Solidity.

1 pragma solidity ^0.4.0;
2
3 contract SimpleStorage {
4 uint storedData ;
5
6 function set(uint x) public {
7 storedData = x;
8 }
9

10 function get () public constant returns (uint) {
11 return storedData ;
12 }
13 }

Figure 2.4: Example of a smart contract written in Solidity, storing a single unsigned integer that can
be read and written by everyone

Aside from Ethereum’s ability to execute smart contracts, there are other advantages
over systems like Bitcoin. The latency for creating a new block is considerably lower
and in the range of a dozen seconds. Moreover, the fees for an Ethereum transaction
depend on its computational complexity and storage requirement, as opposed to Bitcoin
fees that are primarily determined by the block size. However, there are also drawbacks
of Ethereum: smart contracts must be run by all participants of the network, leading
to a multitude of redundant computations.

MultiChain

MultiChain is a private and permissioned distributed ledger system introduced by
Greenspan in 2015 [27]. Different ledger instances can be created for different purposes
and participants to achieve separation of concerns and to guarantee confidentiality. Mul-
tiChain is implemented with a blockchain and compatible with the Bitcoin ecosystem.
In particular, a MultiChain node can act as a node in the Bitcoin network.

It does not a provide a cryptocurrency out of the box, but allows to issue and transfer
custom assets. An asset can represent any quantifiable resource, like a digital currency,
and can be enriched with arbitrary metadata. Additionally, MultiChain offers key-
value based data storages called streams. Once a stream has been created, interested

16

2.3 Distributed Ledger Technology

participants can subscribe and write to it. In order to efficiently access the contents of
a stream, an index is created on the node of each subscriber.

MultiChain comes with a fine-granular permission management. Among others, there
are permissions for administrating, mining, connecting to a network, sending and re-
ceiving transactions, issuing assets, creating streams, and writing to a stream. Ordinary
transactions with special metadata are used for granting and revoking permissions. It
is even possible to grant permissions temporarily, i.e. for a specific number of blocks.
A certain proportion of administrators has to agree before a permission change can
take place. Different configuration parameters define the proportion required for each
permission type.

The mining permission is the basis for the blockchain’s consensus model. Although
every participant with this permission is able to create a new block, none of them can
monopolize the mining process. A parameter called mining diversity with a range be-
tween zero and one determines how the creation of new blocks is distributed among the
miners. For that, a parameter called spacing is calculated by multiplying the mining
diversity with the number of miners and rounding up. If the miner of the new block
mined one of the previous spacing-1 blocks, the new block is invalid. Due to its per-
mission management, MultiChain requires no PoW for the block consensus. Moreover,
transaction fees and mining rewards are set to zero by default, but can be adjusted for
each ledger instance individually, if desired.

MultiChain can be seen as a private and decentralized database. Since new blocks are
created by a set of trusted actors, consensus algorithms like PoW become obsolete.
Therefore, the frequency for creating new blocks can be significantly higher than in
systems like Bitcoin or Ethereum. However, the use cases of private and permissioned
ledgers differ and are restricted to environments with preselected participants.

Hyperledger

Hyperledger is an international umbrella project for DLT and was initiated by the Linux
Foundation in 2015. Its subprojects are released under Free and Open-Source Software
(FOSS) licenses and focused on corporate blockchain technologies. In the following, we
present two of the most important projects.

Sawtooth: Hyperledger Sawtooth is an “enterprise blockchain platform for building
distributed ledger applications and networks” [44]. One of the core features is its smart
contract engine that supports a variety of languages, including Go, JavaScript and

17

Chapter 2: Background

Python, and that even can be used for making decisions on the blockchain’s configura-
tion. Furthermore, smart contracts written in Ethereum’s Solidity are supported. To
increase the block creation frequency, Sawtooth’s transaction execution engine allows
to process multiple transactions in parallel.

The consensus model can be exchanged dynamically at runtime. As a unique feature,
Sawtooth supports Proof of Elapsed Time (PoET), a novel approach to achieve dis-
tributed consensus in an efficient way [30]. It utilizes a trusted execution environment
to conduct a leader election. Each competitor samples a random value and waits for
an amount of time determined by that value. The competitor with the smallest sample
becomes the leader and is allowed to create the next block. In order to prevent com-
petitors from forging the sample, the whole process is executed in a hardware-protected
environment. For verifying that the competitor effectively waited the required amount
of time, the protected environment provides a cryptographically secured proof.

As PoET was initially proposed by Intel, it is currently based on their Software Guard
Extensions (SGX) supported by several Intel CPUs. However, new problems arise with
this solution: all participants have to trust the manufacturer, in this case Intel, intro-
ducing a central authority for a technology aimed at decentralization.

Fabric: Hyperledger Fabric is a framework for operating a private and permissioned
distributed ledger with a focus on modularity and extensibility [2, 51]. The building
blocks of a Fabric network are peer nodes that execute smart-contract based transac-
tions and an ordering service that broadcasts a block of ordered transactions. These
transactions affect the ledger state stored on the peer nodes.

Consensus The consensus model of Fabric consists of three subsequent phases: the
endorsement phase is driven by an endorsement policy upon which peers endorse a trans-
action, while the ordering phase determines the order of transactions to be committed
to the ledger. Finally, the validation phase verifies the correctness of the endorsement
policy and the transactions’ results. Fabric allows to precisely adjust the configuration
and behaviour of each of these phases.

Chaincode The business logic of an application running on top of a Fabric network
is written in chaincode, which is similar to a smart contract [38]. Currently, it is only
possible to implement chaincode in Go and JavaScript, but support for other languages
like Java will be available in the near future. Figure 2.5 shows a simple example of a
chaincode implementation in Go. A chaincode is installed on a set of endorsing peers,

18

2.3 Distributed Ledger Technology

together with a dedicated endorsement policy that specifies which peers have to simulate
and endorse any transaction on the chaincode.

1 package main
2
3 // SimpleAsset implements a simple chaincode to manage an asset
4 type SimpleAsset struct {}
5
6 func (t * SimpleAsset) Init(stub shim. ChaincodeStubInterface) peer. Response {
7 // Initialize the asset
8 // ...
9 return shim. Success (nil)

10 }
11
12 func (t * SimpleAsset) Invoke (stub shim. ChaincodeStubInterface) peer. Response {
13 fn , args := stub. GetFunctionAndParameters ()
14
15 var result string
16 if fn == "set" {
17 result , _ = set(stub , args)
18 } else {
19 result , _ = get(stub , args)
20 }
21
22 return shim. Success ([] byte(result))
23 }
24
25 func set(stub shim. ChaincodeStubInterface , args [] string) (string , error) {
26 stub. PutState (args [0] , [] byte(args [1]))
27 return args [1] , nil
28 }
29
30 func get(stub shim. ChaincodeStubInterface , args [] string) (string , error) {
31 value , _ := stub. GetState (args [0])
32 if value == nil {
33 return "", fmt. Errorf (" Asset not found : %s", args [0])
34 }
35 return string (value), nil
36 }

Figure 2.5: Example of a Fabric chaincode in Go, implementing a simple asset accessible by a key,
with operations to set and get it

Transaction Flow Figure 2.6 illustrates the flow of a transaction in a Fabric network,
based on the official documentation [49]. A transaction creates or modifies a data record
stored in the ledger, which consists of a blockchain and a state database. To modify the
ledger, a client invokes a certain operation of the chaincode by sending a transaction
proposal to the endorsing peers that have the chaincode installed (1). Each of them
simulates and endorses the operation (2), i.e. without modifying the ledger, and returns
the signed execution result in the form of an endorsement to the client (3). If all results
match, the client will send the transaction together with the set of endorsements to the
ordering service (4), a composite of several independent nodes that gathers transactions

19

Chapter 2: Background

from all clients and eventually puts them into a block that is delivered to all peers in
the network (5). Each peer receiving the block, now in the role of a committing peer,
appends the whole block to its blockchain copy. Afterwards, the peer checks the validity
of each transaction in the block, i.e. if the endorsement policy is fulfilled, the execution
results of the different peers match and no double-spending or read-write conflict has
taken place. If this holds, the peer will apply the transaction’s execution result to its
copy of the state database (6).

Client

Peer #0

Peer #1

Peer #2

Ordering
Service

3
. T

R
A

N
S

A
C

T
IO

N
-E

N
D

O
R

S
E
D

2. Simulate
and Endorse

4
.

B
R

O
A

D
C

A
S

T
(E

n
d

o
rs

e
m

e
n

t)

6. Validate
and Commit

Peer #3

Chaincode A
Endorsement Policy a

Chaincode A
Endorsement Policy a

Chaincode A
Endorsement Policy a

Chaincode A
Endorsement Policy a

5.
 D

EL
IV

ER

1. P
ROPOSE

a

c

b

d

Figure 2.6: Transaction flow in a Fabric network, starting with a transaction proposal of the client
(1), followed by the simulation and endorsement of the endorsing peers (2), their single endorsements
returned to the client (3), the set of endorsements broadcasted to the ordering service consisting of
several orderer nodes (4), the delivery of a new block including the transaction to the peers (5), and
finally the transaction’s validation and commitment (6)

Endorsement Policy An endorsement policy defines the requirements for a trans-
action on a chaincode to be successfully endorsed. It is is described by principals and
threshold gates [42]. A principal corresponds to an entity that is expected to endorse
a transaction, such as an endorsing peer. A threshold gate is defined by an integer

20

2.3 Distributed Ledger Technology

threshold and either a set of principals or another set of threshold gates. The threshold
itself indicates how many principals or nested gates have to be satisfied. There are also
shorthand notations for conjunctions and disjunctions. Figure 2.7 shows some typical
examples of endorsement policies.

1 # A peer of Org1MSP and a peer of Org2MSP must endorse
2 T(2, 'Org1MSP .peer ', 'Org2MSP .peer ')
3 # Shorthand
4 AND('Org1MSP .peer ', 'Org2MSP .peer ')
5
6 # Either a peer of Org1MSP must endorse ,
7 # or a peer of Org2MSP and a peer of Org3MSP
8 T(1, 'Org1MSP .peer ', T(2, 'Org2MSP .peer ', 'Org3MSP .peer '))
9 # Shorthand

10 OR('Org1MSP .peer ', AND('Org2MSP .peer ', 'Org3MSP .peer '))

Figure 2.7: Exemplary endorsement policies for a Fabric chaincode

Membership Service Provider (MSP) For managing identities and permissions,
Fabric provides the concept of a Membership Service Provider (MSP) [45]. Each stake-
holder participating in a Fabric network can be represented by a separate MSP.

An MSP defines governance rules for validating identities on the one hand and for
generating and verifying signatures on the other hand. It represents a member, i.e. a
legally separate entity such as a consortium, an organization or an Organizational Unit
(OU). In order to validate identities based on a Public Key Infrastructure (PKI), the
MSP is associated with at least one Certificate Authority (CA). Different configuration
parameters can be specified for that purpose, like self-signed certificates for root CAs,
certificates for intermediate CAs, and Certificate Revocation Lists (CRLs). Generally,
an identity is assumed to be valid for an MSP if its certificate has a valid path to one
of the root CAs and is not included in any CRL [46].

Channels A channel is a private subnet and can conceptually be seen as a completely
separated ledger instance [40]. It consists of members, joined peers, connected clients,
contributed orderer nodes, chaincode applications and the ledger itself. The participants
must be authenticated and authorized to transact on a channel. Each channel provides
confidentiality between the participants.

For each channel a member subscribes to, the member owns a set of peers. At least
one of these peers serves as an anchor peer that the other peers communicate with to
discover all participants of the channel. Furthermore, the member algorithmically elects
a leading peer that communicates with the ordering service on behalf of the member.

21

Chapter 2: Background

Ordering Service The ordering service orders transactions into a block [36]. It
consists of orderer nodes that may belong to different channels and typically operates
network-wide, i.e. for different channels. Its implementation is easily exchangeable.

Two implementations are currently available. On the one hand, there is a solo ordering
service, consisting of a single orderer node. It is recommended for testing purposes only,
since it is a single point of failure. On the other hand, there is an implementation based
on Apache Kafka, a distributed publish-subscribe stream processing platform with a
focus on crash tolerance and high throughput.

At the time of writing this thesis, an ordering service implementation providing Byzan-
tine Fault Tolerance (BFT) is under development, but not yet finished. Currently, only
a proof-of-concept implementation of a BFT ordering service is available [62]. It em-
ploys several orderer nodes and can cope with less than one third of faulty nodes. The
prototype was contributed by an independent team of developers from the University
of Lisbon and is based on their free Java library BFT-SMaRt [11], which focuses on
the achievement of high performance similar to the Practical Byzantine Fault Tolerance
(PBFT) approach by Castro et al. [14].

22

Chapter 3

Analysis

This chapter analyzes and describes the basic problem that we aim to address with our
work. To solve the problem, we present the functional and non-functional requirements
for a novel configuration management process and propose different approaches for
designing and implementing it.

3.1 Basic Problem

As the management and administration of an IT environment is critical with respect to
safety and security, it is crucial to base this discipline on a sophisticated and technically
mature authentication and authorization concept. Consequently, only administrators
with a professional knowledge and experience should be allowed to make significant
changes to a system. However, the assignment of administrative privileges carries serious
risks: without further precautions, administrators typically have comprehensive control
over the system they are responsible for, with the danger of causing severe damage to
it. On the one hand, administrators can make accidental faults. On the other hand,
damage can be caused deliberately, either by a disloyal administrator or by an external
attacker that successfully has compromised an administrator’s account.

In the recent past, more and more attention has been drawn to the fight against insider
threats [61]. Although there are varying definitions for this kind of threat, a common
characteristic is the misuse of privileges granted to a current or former employee or
associate [29, sec. 1.2]. The attacker’s motivation can be diverse, ranging from the
frustration after having been suspended to the espionage on behalf of a competitor. Since
insiders have a detailed knowledge of the organization’s IT environment and usually do

Chapter 3: Analysis

not need to bypass a firewall or an Intrusion Detection System (IDS), these attacks are
hard to detect. A multitude of countermeasures is required to effectively prevent and
defeat them, limited not only to technical solutions like access control and monitoring,
but also covering sociological and organizational approaches like reducing the motivation
for attacks and establishing a different corporate culture [29, sec. 5].

In contrast, external attackers try to infiltrate an organization by compromising em-
ployees who are assigned administrative privileges. For that, they specifically target
an individual victim with sophisticated methods, typically by implanting tailored mal-
ware. After the attackers have gained access to the victim’s account, they abuse the
administrative privileges for a lengthy period of time in order to steal critical data or
to cause damage to the organization. This attack model, also known as Advanced Per-
sistent Threat (APT), was first described by the United States Air Force in 2006 [12, p.
3]. Many of these attacks are based on social engineering. While spear phishing deals
with highly personalized phishing e-mails, water holing is based on the manipulation of
websites the victim regularly visits. Another approach called baiting involves actions in
the real world: attackers leave physical media like memory sticks infected with malware
at locations where the victim is likely to find it, expecting that it will be plugged in a
worthwhile target computer.

The fundamental problem concerning both kinds of attacks is the involvement of ad-
ministrative privileges. These privileges do not only allow to read critical data and to
modify configurations, but also often provide the ability to circumvent or disable the
security measures established to secure the IT environment, like access control, logging
mechanisms, an Intrusion Detection System (IDS) or solutions for Security Information
and Event Management (SIEM). If the administration of the IT environment is not
distributed to several administrators, the access to a single administrator account will
presumably suffice to perform a successful attack with severe consequences.

3.2 Requirements

To mitigate the problem described in section 3.1, we present a configuration manage-
ment process that restrains the power of a single administrator and distributes it to a
quorum of administrators in a tamper-resistant way. In the following, we formulate the
functional and non-functional requirements for this process.

24

3.2 Requirements

3.2.1 Multi-Party Authorization

For conducting the configuration management process, we leverage the principle of
Multi-Party Authorization (MPA), as described in section 2.2. Thereby, each configu-
ration must undergo a validation procedure, where it is reviewed and approved by a set
of independent experts. Only after a configuration has been successfully validated, it is
applied to its targets.

The conditions required for a configuration to become valid can be specified per target,
making it possible to take into account the different criticalities of targets. Depending
on the specified conditions, multiple parties have to reach a consensus on the validity
of a configuration, for instance by requiring m out of n experts to review and approve
a configuration, with n > m > 1. That way, faulty or malicious configurations can be
effectively revealed and averted.

3.2.2 Authentication

As a prerequisite for enforcing authorization, all subjects that are involved in the config-
uration management process have to be authenticated. This covers the confirmation of
the subject’s identity as well as the actual authentication mechanism, preferably taking
into account multiple authentication factors like knowledge and possession.

3.2.3 Accountability and Non-Repudiation

All subjects that are involved in the configuration management process must be ac-
countable for their actions. This includes the principle of non-repudiation, preventing
subjects from denying their actions in hindsight.

On a technical level, accountability and non-repudiation are ensured using asymmetric
cryptography: each action must be digitally signed by the corresponding subject.

3.2.4 Traceability

To understand which subject configured which target in what way, all actions of the
configuration management process must be traceable via an event history. For every
action, it is required to record its initiator and its date and time. This applies to the
submission as well as to the approval of configurations.

25

Chapter 3: Analysis

3.2.5 Tamper-Resistance

The configuration management process must be conducted in a tamper-resistant way.
No attacker must be able to manipulate the input, the execution or the output of the
process. Besides, manipulation attempts must be able to be detected reliably.

Protected Execution

The execution of the configuration management process must take place in a protected
environment that is resistant to manipulations and intrusions. Even the abuse of ad-
ministrative privileges must not be able to influence the execution of the process.

Unerasable and Unforgeable Storage

All data related to the configuration management process must be stored in an unerasable
and unforgeable way. For this purpose, the creation, modification and erasure of data
records is exclusively controlled by the configuration management process that is exe-
cuted in a protected environment. No data records must be created, modified or erased
unauthorizedly. In particular, it must not be possible to erase data records from the
event history, but only append records to it.

3.2.6 Locking

To prevent administrators from bypassing the configuration management process, all
managed targets must be locked appropriately. In particular, no one must be able
to directly access the targets with administrative privileges. Adequate technical mea-
sures include, among others, the shutdown of network services that allow remote logins.
However, a direct access in case of emergency may still be provided.

3.2.7 Resilience

The configuration management process should be resilient to attacks and failures. In
particular, a temporary outage of a subset of components should not disrupt the overall
service. Moreover, errors occurring during the configuration management process should
be handled gracefully and not result in an undesired and inconsistent state.

26

3.3 Design Choices

3.2.8 Automation

To a certain extent, the configuration management process should be automatable.
Therefore, an Application Programming Interface (API) should be provided that is
conveniently accessible for other software components, such as a Continuous Configu-
ration Automation (CCA) service. The degree of automation depends on the specific
use case. Typically, it is reasonable to apply valid configurations to the targets auto-
matically. However, further steps of the process may be automated, either entirely or
partially, like the approval of a configuration.

3.2.9 Interoperability

It should be easy to integrate and embed the configuration management process into
the existing IT landscape of an organization. On the one hand, this refers to the
management of identities. Identities and roles needed for conducting the configuration
management process, like administrators and target devices, may be provided by an
existing identity management system. On the other hand, this covers the interaction
with existing configuration management frameworks, as introduced in section 2.1. It
is reasonable to utilize their powerful script languages to express configurations in a
human- and machine-readable way. Moreover, these frameworks can act as a post-
processor for our configuration management process: after a configuration has been
validated in a tamper-resistant way, it is handed over to such a framework in order to
actually apply it to a target.

3.3 Design Choices

Different approaches can be chosen for designing and implementing the configuration
management process. The centerpiece of this work is to leverage Distributed Ledger
Technology (DLT) for that purpose. Subsequently, we specify the possible choices in
greater detail.

3.3.1 Process Design

The configuration management process can be designed in several ways. Generally
speaking, it consists of a sequence of process steps. Each process step is initiated by
a subject, for instance an administrator, and has a clearly defined set of inputs and
outputs, leading to a state change of an object, for instance a configuration. To design

27

Chapter 3: Analysis

and document the process, purpose-built description languages can be used, like Event-
Driven Process Chains (EPCs) and UML Activity Modeling.

In order to achieve MPA for configurations, two process steps are of particular impor-
tance: propose a new configuration one the one hand and approve it on the other hand.
That way, multiple parties are able to authorize a configuration. Depending on the spe-
cific use case, further process steps may be useful, for instance to explicitly disapprove
a configuration or to handle its activation on a target.

3.3.2 Distributed Ledger Technology

Distributed Ledger Technology (DLT) can provide the basis for conducting the config-
uration management process trustworthily. In contrast to a centralized solution where
the users have to trust a single operator, DLT allows to perform the process in a de-
centralized and distributed way, preventing an individual participant from being able
to manipulate or forge the process and its outcomes.

This can be achieved in two respects: on the one hand, the distributed ledger stores
the inputs and outputs of the process. An invocation of the configuration management
process leads to a new transaction, which will be included in the ledger as soon as a new
consensus has been reached. Due to the characteristics of DLT, this takes place in an
unerasable and unforgeable manner: DLT implementations like blockchains guarantee
that existing transactions are neither erased nor modified, while the redundant and
distributed peer-to-peer architecture prevents manipulations and single points of failure.

On the other hand, DLT can provide means to execute the process in the peer-to-
peer network itself, typically in the form of a smart contract. With that approach,
the distributed ledger does not only manage the inputs and outputs of the process,
but also its procedural implementation and execution. Consequently, the transparency,
trustworthiness and legal compliance of the process are increased.

With DLT, it is possible to meet the security requirements defined in section 3.2, in-
cluding accountability, traceability and tamper-resistance. As a beneficial side effect,
the peer-to-peer network of a distributed ledger can also contribute to assure resilience.

3.3.3 Identity Management

Before subjects of an organization can participate in our configuration management
process, they need to be authenticated. To reach this goal, there are two basic ap-

28

3.3 Design Choices

proaches: either by establishing a separate identity management system particularly for
the configuration management process, or by reusing and connecting an existing one.

Most organizations operate a centralized identity management system that confirms
identities based on personal data, assigns roles and permissions, and implements the
actual authentication mechanisms, for instance by using public key cryptography. In
practice, the design and implementation of such a system can vary considerably: while
some organizations run a simple directory service accessible via LDAP, others manage
a whole Public Key Infrastructure (PKI) with internal Certificate Authorities (CAs).

To integrate such an identity management system into our process, both components
have to communicate over a secured and clearly defined interface. Moreover, it may
be advisable to create specific roles for the subjects participating in the configuration
management process, like roles for approvers and targets.

However, the implications of using an existing identity management system have to be
considered carefully. If an individual administrator has write access to the identity man-
agement system, it will be trivial to circumvent the Multi-Party Authorization (MPA)
established by our process, simply by creating new identities or modifying existing ones
as needed.

3.3.4 Configurations

In practice, administrators have to deal with a wide variety of configuration types and
formats. In our work, we want to manage configurations of arbitrary types and formats,
independent of specifics of the managed systems and environments. In the following,
we describe different approaches for that purpose.

Format and Type

Commonly, configurations represent a system’s state and behaviour in a human- and
machine-readable format. However, many systems and applications define own formats
and semantics for their configurations. Typical examples include the custom configu-
ration format of the Apache HTTP Server that is based on a large set of configuration
directives, and the table format of the Linux packet filter iptables. Although there
are efforts for establishing standardized serialization formats for configurations, like
XML and YAML, the interpretation of the semantics of a configuration often remains
application-specific.

29

Chapter 3: Analysis

By introducing an explicit typing of configurations, it is possible to manage configura-
tions of different formats and for different applications. For that, each configuration is
enriched with a type and further metadata necessary to handle the configuration and to
differentiate the configuration management process appropriately. With reference to the
examples above, it is then possible to declare separate configuration types for Apache
HTTP Server and iptables. In addition, it may be useful to introduce dedicated types
for meta configuration formats, like Chef recipes and Ansible playbooks.

Activation

After a configuration has been authorized using our configuration management process,
it is finally applied to its targets. In a modest way, this can be achieved without the
assistance of comprehensive toolsets, for instance by simply writing a configuration file
to its intended location or by executing a configuration shell script. However, these
approaches quickly reach their limits, as they can hardly provide error handling and
recovery, trigger events for pre- and post-processing, and guarantee to always leave the
target in a consistent state.

As soon as the complexity of the configurations and the managed systems increases,
it is recommended to employ configuration management frameworks, as introduced in
section 2.1. They do not only solve the problems mentioned before, but also offer plenty
of additional features, like declarative configuration approaches and the management
of whole IT landscapes. Furthermore, they provide unified languages for managing
configurations on a meta-level, supporting many applications and environments with
different configuration formats at one go.

For that purpose, our configuration management process must be able to communicate
with such a framework via a well-defined interface. In particular, the configuration
management framework should be triggered automatically once a configuration has
been authorized by our process.

30

Chapter 4

Related Work

An integral part of any management framework is a proper concept for authentication
and authorization. That way, only subjects with the appropriate permissions can make
changes to the managed system, resulting in a higher level of security and accountability.
To limit the power of individual subjects, organizations can employ the principle of
redundant supervision, for instance by implementing Multi-Party Authorization (MPA)
as described in section 2.2. In the following, we take a look at existing solutions for
reviewing and approving changes in such a way, with an overview given in table 4.1.

Although a majority of configuration management frameworks provides mechanisms for
access control, most of them do not offer an integrated review and approval process for
configurations [20, sec. 3.3.6 a. 3.3.7]. For some frameworks, commercial extensions
are available that allow the enforcement of generic workflows, like Ansible Tower [5].
However, these workflow engines are not specifically designed for reaching a Byzantine
fault-tolerant consensus on configuration changes.

Vanbrabant et al. present a workflow enforcement system called ACHEL [63] that uti-
lizes a Distributed Version Control System (DVCS) such as Git. ACHEL is able to
establish an authorization workflow for configurations administered with a configura-
tion management framework like Chef, Puppet or Ansible. For modelling access control
rules and authorization workflows, ACHEL provides a custom-built but yet powerful
policy language, which is even able to consider the semantics of configuration changes.
Each participant, that is either represented by a user or a configuration management
framework itself, controls a dedicated repository. If a user wants to conduct a config-
uration change that requires an authorization workflow, she adds that change to her
repository and contacts other users via an existing communication channel, like e-mail

Chapter 4: Related Work

or instant messaging. These users are defined in a policy and serve as authorizers. Thus,
they are responsible for reviewing the change. If they agree, they will sign the change
and add it to their individual repositories. The requesting user will then collect these
signatures and push it to the repository of the configuration management framework,
which will verify if the conducted authorization workflow conforms to the respective
policy.

There are two major conceptual differences between ACHEL and our work: on the one
hand, we employ a distributed and tamper-resistant ledger with a global state and a
comprehensive log of all configuration-related data records and operations. In contrast,
ACHEL’s design is based on separate repositories per user that are not synchronized.
Furthermore, each authorized configuration ends up in the repository of the configu-
ration management framework, which acts as a single and centralized database and in
turn can be manipulated by its administrator. On the other hand, ACHEL is based
on a different trust model: in contrast to our work, ACHEL requires a single party to
govern and operate the whole system, which all participants need to trust in. Therefore,
it provides no means to manage configurations for infrastructure shared across partici-
pants that only share a limited amount of trust, like different organizational units or a
consortium of several organizations.

In the field of Change Management, the term change control refers to a process that
governs the introduction and implementation of changes for a managed environment. It
is closely connected with the fields of Quality Management (QM) and Project Manage-
ment (PM). Consequently, the change control process is not restricted to software and
configuration changes, but also includes organizational and regulatory changes. Accord-
ing to a definition of the Council of Europe, change control “ensures that changes are
appropriately identified, planned, documented, validated (where relevant), approved,
verified and traceable” [22, sec. 4], with the goal to “prevent risks to the quality and
safety of results” [22, sec. 1]. However, most change management frameworks are re-
leased under non-free licenses and intended for commercial purposes only. Furthermore,
they are not tailored to the management of software configuration changes, but cover
the whole spectrum of IT Service Management (ITSM). A prominent example, with a
feature-limited edition released under the GNU Affero General Public License (AGPL),
is the OTRS framework [56].

A completely different approach for conducting an auditing process is described by a
formal concept called transparency overlays. It was proposed by Chase and Meiklejohn
in 2016 [15]. A transparency overlay can be operated on top of any IT system in order to
make its actions publicly auditable. Concrete examples include Certificate Transparency
(CT) [34], a framework for auditing certificates issued by a Certificate Authority (CA),

32

and the Bitcoin payment system. CT became increasingly popular as a defense against
rogue and compromised CAs after numerous media reports on the unauthorized issuance
of certificates in 2011 [13].

For their approach, Chase and Meiklejohn define a Dynamic List Commitment (DLC),
which represents a commitment to a list of arbitrary elements, typically in the form
of a Merkle tree. The only way to modify the list is to append a new element to it.
Furthermore, it can be proven that a given element is in the list. To actually run a
transparency overlay on top of an existing system, one needs to operate a log server,
an auditor and a monitor. In order to avoid a single point of failure, each component
can be operated redundantly. The log server stores events produced by the system in
a public log that is implemented with a Merkle tree. The auditor verifies that specific
events are contained in the log, without needing to hold the entire log available. The
monitor is responsible for identifying and reporting events of interest, for instance those
that appear unusual or suspicious. Finally, auditor and monitor corporate to make
subjects publicly accountable for their actions.

Based on this concept, Hof and Carle proposed a transparency and auditing system for
the distribution of software updates, in particular for Debian’s package management
system APT [28]. Although the integrity of updates performed with APT is secured
with cryptographic signatures, there are still attack scenarios on the update process that
are hard to detect. One of them is the targeted backdoor attack that aims to deliver a
correctly signed but manipulated update to a preselected victim, while all other users
are served with the regular update. In that scenario, the package maintainers have
little interest to reveal that they have been compromised. Since the attack leaves a
trail in the log, however, it can be easily detected by auditors and monitors. As an
additional feature, the transparency system is able to verify the binding between an
update’s source and binary code and thereby discloses faults and manipulations in the
build process.

Although the security goals of transparency overlays and our work are similar, namely
to ensure the compliance and accountability of a system’s actions in a tamper-resistant
manner, the approaches are quite different: while transparency overlays are focused
on auditing actions in hindsight, our work deals with reviewing and approving actions
before they can take place. This aspect, together with the foundation on Distributed
Ledger Technology (DLT), make our work unique.

33

Chapter 4: Related Work

Ansible ACHEL Transparency
Overlays

Authorization X X
Multi-Party Authorization (X)1 X
Auditability (X)2 X X
Tamper-Resistance (X)3 X
Distributed process execu-
tion and data storage X

Logically centralized con-
figuration repository
Federated configuration
management across stake-
holders’ boundaries
Semantic interpretation of
configurations X

Resistance to compromisa-
tion of targets

Table 4.1: Comparison of related work regarding the objectives pursued by our approach

1 enforcement of generic workflows via plug-ins
2optional via built-in logging mechanisms
3attackers may be able to embezzle configuration proposals, since there is no logically centralized con-
figuration repository

34

Chapter 5

Design

In this chapter, we introduce the high-level design of TANCS. It describes our system
on a conceptual level and does not depend on a specific Distributed Ledger Technology
(DLT), making it re-usable for different environments and implementations.

The chapter is structured as follows: first, we give an overview of the overall design,
followed by a detailed description of our configuration management process. Then,
we introduce the subjects and objects involved in our system. Lastly, we present the
multi-tier architecture our system is based on.

5.1 Overview

Our system is designed to manage configurations based on the principle of Multi-Party
Authorization (MPA). Consequently, a configuration is never applied to a target directly,
but has to undergo a configuration management process controlled by our system first.
The UML use case diagram in figure 5.1 gives an overview of the system interactions
taking place on a conceptual level.

For conducting the configuration management process, our system stores configuration
requests in an unforgeable, traceable and unerasable manner. A configuration request
(CR) is a request to apply a certain configuration to a set of targets. The configuration
itself is represented as a human- and machine-readable description of the targets’ state.

Different subjects interact with our system to conduct configuration management op-
erations. We provide operations to propose, approve, retrieve and acknowledge a CR.

Chapter 5: Design

These operations affect the state of the respective CR. As soon as the CR becomes
valid, its configuration can be applied to its set of targets.

To verify the identity of the subjects, our system communicates with an external identity
provider. An identity provider is responsible for authenticating subjects. For that, it
may interoperate with existing IT systems, such as a Public Key Infrastructure (PKI).
After the identity provider has authenticated a subject, our system checks if the subject
is entitled to conduct the claimed configuration management operation.

For that purpose, authorization rules are defined by two different kinds of attribute-
based policies: an access control policy (ACP) specifies who is allowed to propose a
configuration for a set of targets, while a validity policy (VP) stipulates the requirements
for a CR to become valid. A policy evaluator, which can be operated internally or
provided by an external component, decides if an artifact fulfills a policy.

Our design involves another external component: in order to apply a valid configu-
ration to a target, we utilize a handler. Typically, this handler is implemented by a
configuration management framework, as introduced in section 2.1, and executed on
the target itself. With that approach, even configurations based upon the features of
such a framework can be managed with our system.

apply

Handler

Policy Evaluator

evaluate VP

evaluate ACP

authenticate Identity Provider

Target

Proposer

acknowledge

retrieve

approve

propose

System

Approver

Figure 5.1: System interactions on a conceptual level, illustrated with an UML use case diagram

36

5.2 Configuration Management Process

5.2 Configuration Management Process

The configuration management process comprises operations to propose, approve, re-
trieve and acknowledge a CR. In the following, each operation is described in detail and
illustrated with an Event-Driven Process Chain (EPC).

5.2.1 Propose

A proposer proposes a new configuration together with a set of targets to the system,
as depicted in figure 5.2. After the identity provider has successfully performed the
authentication, the system checks if the subject is permitted to propose a configuration
according to the access control policy (ACP) of the specified targets. If this holds, it
will add a new CR containing the configuration to the repository. Initially, the state of
the CR is set to proposed.

5.2.2 Approve

After a configuration has been proposed, an approver reviews the CR. If the review
succeeds, the approver will approve the CR, as depicted in figure 5.3. Provided that
the authentication of the subject has been successful, the system adds the approval to
the CR. Then, it checks if the CR became valid according to the validity policy (VP)
of the targets. If this holds, it will update the CR’s state to valid.

5.2.3 Retrieve

Subjects retrieve CRs from the system, as depicted in figure 5.4. Internally, the matching
CRs are read from the system’s repository and returned to the inquirer. Different filters
can be specified for retrieving CRs, for instance to match a certain state or a particular
set of targets. The retrieval can be initiated manually or triggered by an event.

A typical use case includes targets that retrieve a valid CR destined for themselves in
order to apply the configuration locally. Furthermore, approvers have to retrieve a CR
before being able to review and approve it.

37

Chapter 5: Design

Figure 5.2: EPC model for propose

Figure 5.3: EPC model for approve

38

5.2 Configuration Management Process

Figure 5.4: EPC model for retrieve

Figure 5.5: EPC model for acknowledge

39

Chapter 5: Design

5.2.4 Acknowledge

After having applied the configuration locally, each target acknowledges the CR, as
depicted in figure 5.5. Internally, the system adds each acknowledgement to the CR.
As soon as all targets have acknowledged it, the system updates the CR’s state to
acknowledged.

5.3 Subjects

Different kinds of subjects interact with our system. Understanding the relationships
between these subjects is crucial for understanding the system’s design and functionality.

5.3.1 Proposer

A proposer proposes a new configuration for a set of targets. Typically, an organization’s
administrator takes the role of a proposer. To submit the configuration to the system,
the proposer has to be authenticated. Furthermore, the proposer needs to be explicitly
authorized to address the specified targets.

5.3.2 Approver

An approver approves a configuration that has been proposed by a proposer beforehand.
It is the responsibility of the approver to carefully review the configuration and perform
tests on it, for instance that the configuration is syntactically and semantically correct
or that it does not violate security guidelines.

Approvers may either be human experts or software components, the latter providing
the possibility of semi or fully automated approvals. In practice, several approvals from
different approvers are required to make a configuration valid.

5.3.3 Target

A target is the entity that has to be configured, for instance a workstation or server,
also referred to as managed device. It does not matter if it exists physically or only
virtually. It retrieves a valid configuration targeted to itself from the system and applies
it locally. Afterwards, the target submits an acknowledgement to the system to state
that it has applied the configuration.

40

5.4 Objects

5.4 Objects

Subsequently, we describe the different objects needed for the functionality of our sys-
tem. Instances of these objects are stored in the system’s repository.

5.4.1 Configuration Request

A configuration request (CR) is the essential object of our system. It is a request to
apply a configuration to a set of targets. In the following, the structure and the lifecycle
of a CR are described in detail.

Structure

Each CR has a unique identifier and holds its current state. Furthermore, it contains
a proposal, a set of approvals and a set of acknowledgments. Figure 5.6 illustrates the
internal structure of a CR with an Entity-Relationship Model (ERM), while figure 5.7
shows an exemplary instance of a CR represented in JSON.

Proposal: The proposal contains the actual configuration and the set of targets. It is
time-stamped and linked to exactly one proposer. The configuration is represented by
a serialization type and the serialized data itself.

Approval: An approval expresses that an approver has approved the CR. It is time-
stamped and linked to exactly one approver. It may come with custom test attributes
for stating that the approver has performed additional tests with respect to the CR.
These attributes can be matched in a policy.

Acknowledgment: An acknowledgement expresses that a target has applied the con-
figuration stored in the CR. It is time-stamped and linked to exactly one target.

41

Chapter 5: Design

CR

stateid

matches

CRFilter

type

targets

state

id

n

m

has Proposal

timestamp

1
1

has

Configuration

data

type

n

1

by Proposer
n

1

for

Target

n

m

has

Approval

timestamp

1

n

by Approver
n

1

with

Test

result

id

1

n

has

Acknowledgement

timestamp

1
n

by
n

1

is-a Subject

name domain

Figure 5.6: Structure of a CR, illustrated with an ERM

42

5.4 Objects

1 {
2 "id": "CR_x",
3 " state ": " acknowledged ",
4 " latestStateChangeTimestamp ": "2018 -01 -07 T09 :11:25 Z",
5 " proposal ": {
6 " timestamp ": "2018 -01 -07 T09 :05:10 Z",
7 " proposer ": {
8 "name": " ProposerA ",
9 " domain ": "Org1"

10 },
11 " targets ": [
12 {
13 "name": " DeviceI ",
14 " domain ": "Org1"
15 }
16],
17 " configuration ": {
18 "type": " ansiblePlaybook ",
19 "data": "..."
20 }
21 },
22 " approvals ": [
23 {
24 " timestamp ": "2018 -01 -07 T09 :07:15 Z",
25 " approver ": {
26 "name": " ApproverA ",
27 " domain ": "Org1"
28 },
29 " tests ": [
30 {
31 "id": " integrationTest ",
32 " result ": " passed "
33 }
34]
35 },
36 {
37 " timestamp ": "2018 -01 -07 T09 :09:20 Z",
38 " approver ": {
39 "name": " ApproverB ",
40 " domain ": "Org2"
41 }
42 }
43],
44 " acknowledgements ": [
45 {
46 " timestamp ": "2018 -01 -07 T09 :11:25 Z",
47 " target ": {
48 "name": " DeviceI ",
49 " domain ": "Org1"
50 }
51 }
52]
53 }

Figure 5.7: Example of a CR, represented in JSON

43

Chapter 5: Design

Lifecycle

Each CR has a lifecycle, expressed by the states proposed, valid, acknowledged and
outdated. The UML state machine in figure 5.8 visualizes the state transitions of a CR
induced by operations of our configuration management process.

The initial state of a CR is proposed, indicating that it has been submitted by a proposer,
but not been processed any further. For each approver that approves the CR, a new
approval gets added to the CR. As soon as the set of approvals fulfills the validity policy
(VP) of the targets, the CR’s state is updated to valid. Then, the targets apply the CR
locally and acknowledge it, each time resulting in a new acknowledgement added to the
CR. After all targets have acknowledged the CR, its status is updated to acknowledged.

As part of its initialization, each target is allowed to propose its initial ACP and its
initial VP to the system. The corresponding CRs, and therefore both initial policies,
become valid immediately, since there are no other policies to evaluate against.

outdated acknowledged

validproposed

acknowledgeapprove

 outdate acknowledge
 [by all targets]

approve

[VP fulfilled]

propose

[ACP fulfilled and no valid CR]

Figure 5.8: State transitions of a CR, illustrated with an UML state machine

To prevent race conditions and to ensure that each configuration is proposed with respect
to a well-defined state of the targets, only one CR can become valid for the same set of
targets at the same time.

This goal is achieved in two ways: on the one hand, if there are several CRs in the
proposed state for a set of targets and one of them becomes valid, the state of the
other proposed CRs for these targets will be set to outdated. Outdated CRs cannot be
processed any further, but can still be retrieved from the system’s repository.

On the other hand, further configurations cannot be proposed for the respective targets
as long as there is a valid CR targeted to them. Only after this CR has been acknowl-
edged by all of its targets and its state has transitioned from valid to acknowledged,
new CRs can be proposed.

44

5.4 Objects

5.4.2 Policies

We introduce two different kinds of policies to describe the relationships between CRs,
proposers, approvers and targets. Policies can be defined for a single target or a set
of targets. Changes to policies are handled as ordinary CRs, guaranteeing the same
principles that hold for normal configuration changes, like redundant supervision, ac-
countability and traceability.

The definition and evaluation of the policies are based on Attribute-Based Access Con-
trol (ABAC). This concept allows to match ordinary attributes of entities with those
defined in the policy, for instance the name and domain of a subject, providing a high
degree of flexibility for almost any operational environment.

Access Control Policy

An access control policy (ACP) defines which subjects are allowed to propose a CR for
which targets. Consequently, our system checks if a proposer is allowed to propose a CR
according to the ACP of the targets. If the result is positive, the CR will be created.

Figure 5.9 illustrates the structure of an ACP in an Entity-Relationship Model (ERM),
while figure 5.10 shows an exemplary instance. An ACP is specified for a set of targets
and comes with a set of rules, each of them for a different configuration type. A rule
contains a set of filters, each of them matching one or several proposers. The matching
criteria are names or domains of proposers, or the conjunction of both.

Validity Policy

A validity policy (VP) defines which requirements have to be met for a CR to become
valid. Each time a CR is approved, our system checks if the set of approvals satisfies
the VP of the targets. If the result is positive, it will update the CR’s status to valid.

Figure 5.11 illustrates the structure of a VP in an Entity-Relationship Model (ERM),
while figure 5.12 shows an exemplary instance. Similar to an ACP, a VP is specified
for a set of targets and comes with a set of rules, again each of them for a different
configuration type. Each rule is linked to exactly one requirement.

Currently, there is support for a requirement that stipulates the fulfillment of m out of
n filters, allowing to model a simple majority consensus with respect to the validity of a
CR. Such a filter matches one or several approvals of a CR, based on the approver and
the tests. For approvers, the matching criteria are names or domains, or the conjunction
of both. A test is matched with respect to its identifier as well as its result.

45

Chapter 5: Design

ACP for Target
n

m is-a Subject

domain

name

has

Rule

configurationType

1

n

has Filter proposer
1

n

domain

name

matches

Proposer

n

m

Figure 5.9: Structure of an ACP, illustrated with an ERM

1 {
2 " targets ": [
3 {
4 "name": " DeviceI ",
5 " domain ": "Org1"
6 }
7],
8 " rules ": [
9 {

10 " configurationType ": " ansiblePlaybook ",
11 " proposers ": [
12 {
13 "name": " ProposerA ",
14 " domain ": "Org1"
15 },
16 {
17 "name": " ProposerB ",
18 " domain ": "Org2"
19 }
20]
21 }
22]
23 }

Figure 5.10: Example of an ACP, represented in JSON, targeting a single device and entitling two
dedicated proposers of different organizations

46

5.4 Objects

VP for Target
n

m is-a Subject

domain

name

has

Rule configurationType

1

n

has

MOfRequirement

m

1

1

has Filter

approver tests

1
n

domain

name

matches

Approver

n

m

matches

Test

result

id

n

m

Figure 5.11: Structure of a VP, illustrated with an ERM

1 {
2 " targets ": [
3 { "name": " DeviceI ", " domain ": "Org1" }
4],
5 " rules ": [
6 {
7 " configurationType ": " ansiblePlaybook ",
8 " mOfRequirement ": {
9 "m": 2,

10 " filters ": [
11 {
12 " approver ": { "name": " ApproverA ", " domain ": "Org1" },
13 " tests ": [{ "id": " integrationTest ", " result ": " passed " }]
14 },
15 {
16 " approver ": { " domain ": "Org2" }
17 }
18]
19 }
20 }
21]
22 }

Figure 5.12: Example of a VP, represented in JSON, targeting a single device and requiring two filters
to be matched, one of them for a dedicated approver of Org1 together with a specific test, and the other
for any approver of Org2

47

Chapter 5: Design

5.5 3-Tier Architecture

We propose a 3-tier architecture with a presentation tier, a logic tier and a data tier,
as depicted in figure 5.13. Each tier provides an interface for the next highest tier and
can be deployed and implemented independently from the others. With this approach,
our system can be operated with different infrastructure and in different environments
without having to change the overall architecture.

Presentation Tier

Logic Tier

Data Tier

write read

propose approve retrieve acknowledge

func main() {
 t := make(chan bool)
 go timeout(t)

 ch := make(chan string)
 go readword(ch)

 select {
 case word := <-ch:
 fmt.Println("Received", word)
 case <-t:
 fmt.Println("Timeout.")
 }
}

package main

func readword(ch chan string) {
 fmt.Println("Type a word and enter.")
 var word string
 fmt.Scanf("%s", &word)
 ch <- word
}

func timeout(t chan bool) {
 time.Sleep(5 * time.Second)
 t <- true
}

Figure 5.13: 3-tier architecture, consisting of the presentation tier, the logic tier and the data tier

The three tiers communicate over a well-defined protocol, which is based on the respec-
tive operations provided by the tiers. Figure 5.14 gives a high-level overview of that
protocol in an UML sequence diagram, comprising the proposal, approval, retrieval
and acknowledgement of a CR. In particular, it illustrates the characteristic of Multi-
Party Authorization (MPA) introduced by our system: a target applies a configuration
only after several approvers have reviewed and approved a configuration that had been
proposed beforehand.

48

5.5 3-Tier Architecture

ProposerA

write

proposed

configuration request

DeviceI

Apply configuration

read

Logic Tier

Propose configuration propose

Retrieve valid
configuration request retrieve

Approver[A..Z]

. . .

loop

Retrieve configuration request

approve writeApprove configuration request

approved

acknowledged

acknowledge write
Acknowledge

configuration request

Presentation Tier Data Tier

Figure 5.14: High-level overview of the 3-tier protocol, illustrated with an UML sequence diagram

49

Chapter 5: Design

5.5.1 Presentation Tier

The presentation tier serves as a user interface and usually runs on the clients. Different
implementations for different purposes are possible here, including but not limited to

• a Command-Line Interface (CLI)

• a Representational State Transfer (REST) API

• a Graphical User Interface (GUI)

It communicates with the logic tier on behalf of the users and therefore enables them
to perform the operations offered by it, namely to propose, approve, retrieve and ac-
knowledge CRs. Additionally, the presentation tier may offer more complex operations
based on the logic tier’s operations, for instance by aggregating CRs or by calculating
statistics.

5.5.2 Logic Tier

The logic tier handles the system’s business logic and is accessed by the presentation
tier. Its interface provides operations to propose and approve CRs on the hand and
to retrieve and acknowledge them on the other hand. Therefore, it is responsible for
managing the CRs. To persist the CRs, the logic tier accesses the data tier. Figure
5.15 shows the abstract and implementation-independent description of the logic tier’s
interface in the Interface Definition Language (IDL) [55].

1 interface Logic {
2
3 exception Error {};
4
5 CR propose (Configuration configuration , sequence <Target > targets)
6 raises (Error);
7
8 void approve (string crID , sequence <Test > tests)
9 raises (Error);

10
11 sequence <CR > retrieve (CRFilter filter)
12 raises (Error);
13
14 void acknowledge (string crID)
15 raises (Error);
16
17 }

Figure 5.15: Interface of the logic tier, described in the IDL, basing upon the custom data types
defined in figure 5.6

50

5.6 Conclusion

The deployment of the logic tier depends on the infrastructure and the intended use
case of the system. It can be deployed in a traditional way to an application server.
Alternatively, it can be deployed to a distributed execution environment, like a peer-to-
peer network with a smart contract engine.

5.5.3 Data Tier

The data tier is responsible for persisting the data of the system. Its two operations
allow the next highest tier to write to and to read from the underlying storage, such as
a distributed ledger.

It solely depends on the implementation of the data tier how the data storage is man-
aged. If a traditional database management system was employed, the data objects
would simply be written to and read from the database.

By basing the data tier upon a distributed ledger managed by a peer-to-peer network,
however, we can ensure unforgeability, traceability and unerasability for write and read
operations by design. Only after a ledger transaction has reached consensus in the
network, the ledger state is updated accordingly. A single participant of the network
is not able to forge a transaction. Furthermore, the blockchain-based transaction log,
which is stored on the peer nodes and includes all transactions in a sequential order,
ensures that all changes to the ledger state remain traceable and cannot be erased.

5.6 Conclusion

In this chapter, we have described the conceptual architecture of our system. It is
designed to support different ways of deploying and implementing the 3 tiers. The cen-
terpiece of this work is to utilize the characteristics of a blockchain-based distributed
ledger for providing a configuration management system based on Multi-Party Au-
thorization (MPA) and an unforgeable, traceable and unerasable data storage. The
following chapter offers a concrete implementation for that purpose.

51

Chapter 6

Implementation

In this chapter, we present the implementation of TANCS. It follows the high-level
design introduced in chapter 5 and serves as a proof of concept.

6.1 Overview

The implementation of TANCS is based on the 3-tier architecture described in chapter 5
and written in Go1 1.92. The presentation tier runs on the client and offers a Command-
Line Interface (CLI) that can be used by any actor which takes the role of a proposer, an
approver or a target. The essential part in our implementation, however, plays Hyper-
ledger Fabric. The logic as well as the data tier run in a Fabric network, composed of a
set of peers and an ordering service. The whole business logic is executed as chaincode
on the peers. Our implementation includes two chaincodes: the management chaincode
(MGTCC) responsible for proposing, approving, retrieving and acknowledging a CR,
and the policy evaluation chaincode (PECC) responsible for evaluating if an artifact
fulfills an ACP and a VP, respectively. Finally, the data tier corresponds to the ledger
managed by the peers, consisting of the blockchain and the state database.

It is crucial to understand that we utilize Hyperledger Fabric in two ways: on the
one hand, the Fabric network serves as the distributed execution environment for the
system’s business logic. On the other hand, the distributed ledger of the Fabric network

1 https://golang.org/

2 https://golang.org/doc/go1.9/

https://golang.org/
https://golang.org/doc/go1.9/

Chapter 6: Implementation

serves as the repository for the system’s data. With that approach, we can ensure
unforgeability, traceability and unerasability for the operations as well as the data by
design. Furthermore, we do not depend on a single trusted third party to run and
administrate the system. With this in mind, it is even possible to manage configurations
for infrastructure shared across stakeholders that only share a limited amount of trust,
like a consortium of different organizations.

We choose Ansible as a configuration management framework since its configuration
scripts, the so-called playbooks, are written in an easy to understand, declarative script-
ing language and support idempotence. A playbook is the actual payload of a CR and
stored in its proposal. After a target has retrieved a valid CR from our system, the
playbook is applied locally to that target. However, Ansible can be replaced by any
other configuration management framework with very few adjustments, as our system
does not depend on a specific configuration format.

Our implementation is available on LRZ GitLab1. A comprehensive overview of its
package structure is given in appendix A.1.1. The whole implementation is licensed un-
der the GNU Affero General Public License (AGPL) v3. Besides the copyleft principle,
this license ensures that users have the right to obtain a copy of the software’s source
code even if it is operated as a remote service.

6.2 Deployment

Before being able to operate our system, a Fabric network with a set of peers and an
ordering service has to be set up. Furthermore, the chaincodes that handle the system’s
business logic have to be installed on a subset of these peers, the endorsing peers. For
conducting the setup and deployment process, our implementation includes a Docker2

infrastructure and a purpose-built bootstrapper. Together, they provide an environment
for testing and demonstration purposes than can be customized and extended easily.

On the one hand, the Docker infrastructure spans an exemplary Fabric network involving
two organizations with one peer each. The supplied cryptographic material and network
configuration have been generated with the official toolchain of the Fabric project, in
particular using cryptogen and configtxgen. On the other hand, the bootstrapper is
responsible for creating a new channel, joining the organizations’ peers to that channel,

1 https://gitlab.lrz.de/tumi8/trustworthyconfigmanagement/

2 https://www.docker.com/

54

https://gitlab.lrz.de/tumi8/trustworthyconfigmanagement/
https://www.docker.com/

6.2 Deployment

and finally installing and instantiating our chaincodes. It is designed to be idempotent.
Therefore, it can be re-run on an already bootstrapped network, being able to detect
only the changes that have to be applied. This is especially useful for joining new
organizations or peers to an existing network and for upgrading chaincodes installed on
peers to a new version.

With this setup, it is possible to pursue a configuration management process across
the boundaries of different stakeholders. This typically involves an endorsement policy
that requires endorsements from peers of all participating stakeholders. If, for instance,
the system manages configurations for targets that belong to different organizational
units, the endorsement policies may specify that a transaction has to be endorsed by at
least one peer of each organizational unit to prevent one unit from acting maliciously
by manipulating execution results.

Table 6.1 gives an overview of the exemplary Fabric network, covering the entities and
the corresponding Docker services. We employ a solo ordering service that is suitable
for testing purposes only, as it is a single point of failure. The peers of the organizations
Org1 and Org2 endorse transactions for the chaincodes MGTCC and PECC installed
on them. To enable rich queries with respect to the ledger data, the state databases
for both peers are managed by the document-oriented database software CouchDB1.
A dedicated Docker service is provided for the bootstrapper. As soon as this service
is started, the bootstrapper begins to initialize the network. Clients can access the
network via the CLI service, which comes with an installation of the CLI together with
exemplary client identities.

Entity Unit Responsibility Docker
Service Image

Orderer OrdererOrg Solely orders
transactions

orderer1 fabric-orderer

Peer0 Org1 Endorses
transactions

org1peer0 fabric-peer
org1peer0couchdb fabric-couchdb

Peer0 Org2 Endorses
transactions

org2peer0 fabric-peer
org2peer0couchdb fabric-couchdb

Bootstrapper Bootstraps the
network

bootstrapper fabric-baseimage

Client Runs the CLI cli fabric-baseimage

Table 6.1: Entities and Docker services of the exemplary Fabric network

1 https://couchdb.apache.org/

55

https://couchdb.apache.org/

Chapter 6: Implementation

6.3 Tiers

In the following, we explain the interactions of the different tiers in our implementation
and illustrate them with UML sequence diagrams. Later on, we describe the implemen-
tation of each tier in detail.

6.3.1 Interactions

At the beginning of each configuration management workflow, a proposer proposes a
configuration via the CLI, as depicted by step 1.1 in figure 6.1. The command’s argu-
ments are the targets and the configuration data itself, for instance in the form of an
Ansible playbook. The CLI parses and interprets the command and calls the logic tier
by invoking the propose operation of the MGTCC (1.2). The MGTCC first checks if
the proposer is permitted to propose a configuration for the specified targets according
to the corresponding ACP. For this, it calls the evaluateACP operation of the PECC
(1.3). If the PECC returns a positive result, a new CR will be created and put into the
ledger (1.4).

The chaincode invocation in step 1.2 leads to a transaction flow in the Fabric network
that is not shown in the figure, but has been described in figure 2.6 of section 2.3.3. Here,
the proposer serves as the client in the Fabric network and sends a transaction proposal
to the endorsing peers, which simulate the propose operation and return their respective
endorsement to the client. Afterwards, the client sends the transaction together with
the endorsements to the ordering service, which will eventually broadcast a new block to
all peers of the network to be appended to their blockchain copies. The peers check the
transaction’s validity and, if fulfilled, finally write the CR contained in the transaction
to their copy of the state database. Subsequently, the proposer is notified that the CR
has been successfully proposed.

Figure 6.2 shows the approval of a CR: after the approvers have noticed a new pend-
ing CR, either by manually retrieving it from the system (2.1) or by getting notified
dynamically, they review the CR. If they agree to the configuration change, they call
the CLI to approve the CR (2.2). The CLI again parses and interprets the command
and hands it over to the logic tier to invoke the approve operation of the MGTCC
(2.3). The MGTCC adds the new approval to the set of approvals contained in the CR.
Then, it calls the evaluateVP operation of the PECC to check if the CR is already valid
according to the corresponding VP (2.4). If the PECC returns a positive result, the
MGTCC will change the CR’s status to valid. Then, it puts the modified CR into the
ledger (2.5). The transaction flow in the Fabric network is analogous to the invocation

56

6.3 Tiers

of the propose operation. Eventually, the approver will be notified that the approval
succeeded.

To retrieve CRs matching a set of specified criteria, a subject calls the respective CLI
operation, as depicted by step 3.1 in 6.3. The CLI again calls the logic tier (3.2). Since
retrieving a CR does not modify it, it is sufficient to perform a query using the retrieve
operation of the MGTCC that actually gets the CR from the ledger (3.3). This time, the
transaction flow just involves the endorsing peers which simulate the retrieve operation
and return the signed query results to the client. Then, the client verifies that the
results match. Usually, queries do not lead to transactions sent to the ordering service
and committed to the peers.

Finally, figure 6.4 shows the acknowledgement of a CR: after having retrieved a valid
CR (4.1), the target applies the configuration locally (4.2), for instance by utilizing a
configuration management framework like Ansible. In case of success, the target ac-
knowledges the CR (4.3), followed by the call of the logic tier (4.4). The acknowledge
operation of the MGTCC adds a new acknowledgement to the CR’s set of acknowledge-
ments. After each of the targets has acknowledged the CR, the MGTCC changes the
CR’s state to acknowledged. Then, it puts the modified CR into the ledger (4.5).

6.3.2 Presentation Tier

The presentation tier is implemented in Go and provides a Command-Line Interface
(CLI) compatible to the GNU Coding Standards [25]. The well-maintained library
kingpin1 by Alec Thomas is used for parsing the command-line arguments and flags.

Extensive documentation and usage instructions are offered by the built-in help com-
mand. The excerpt in table 6.2 gives an overview of the commands, arguments and flags
of the CLI. All configuration management operations are bundled into a single program,
simplifying the deployment to the different users like proposers, approvers and targets.

For every operation, a set of general flags must be specified. On the one hand, it
is required to name an identity-provider with optional initialization parameters.
The CLI is able to deal with arbitrary identity providers that implement a particular
interface. Currently, it supports Hyperledger Fabric as an identity provider. The given
identity, in combination with the appropriate identity-authentication data such
as a password or a key, is then authenticated with respect to the given identity provider.

1 https://gopkg.in/alecthomas/kingpin.v2

57

https://gopkg.in/alecthomas/kingpin.v2

Chapter 6: Implementation

1.1: propose playbook.yaml
--target=...

1.2: invoke(MGTCC, "propose", ...)

1.3:
invoke(PECC,
"evaluateACP",
...)

1.4: putState("CR_x", ...)

CR_x

Proposer

CLI
:PresentationTier

SmartContractEngine
:LogicTier

Ledger
:DataTier

Figure 6.1: Tier interactions for proposing a configuration, illustrated with an UML sequence diagram

2.1: retrieve --state=proposed

2.2: approve CR_x --test=...

2.3: invoke(MGTCC, "approve", ...)

2.4:
invoke(PECC,
"evaluateVP",
...)

2.5: putState("CR_x", ...)

approved

Approver

CLI
:PresentationTier

 . . .

SmartContractEngine
:LogicTier

Ledger
:DataTier

Figure 6.2: Tier interactions for approving a CR, illustrated with an UML sequence diagram

58

6.3 Tiers

3.1: retrieve
--state=...
--target=...
--type=...

3.2: query(MGTCC,
"retrieve", ...)

3.3: getState(...)

CR(s)

Subject

CLI
:PresentationTier

SmartContractEngine
:LogicTier

Ledger
:DataTier

Figure 6.3: Tier interactions for retrieving CRs, illustrated with an UML sequence diagram

4.1: retrieve
--state=valid
--target=...

4.2:
apply
CR_x

4.3: acknowledge CR_x

4.4: invoke(MGTCC,
"acknowledge", ...)

4.5: putState("CR_x", ...)

acknowledged

Target

CLI
:PresentationTier

 . . .

SmartContractEngine
:LogicTier

Ledger
:DataTier

Figure 6.4: Tier interactions for acknowledging a CR, illustrated with an UML sequence diagram

59

Chapter 6: Implementation

On the other hand, it is required to specify a client, again with optional initialization
parameters. A client is the software component that actually implements the business
logic. Since our architecture does not depend on a specific implementation of the busi-
ness logic, the CLI can communicate with arbitrary clients via a well-defined interface.
At the time of writing this thesis, a client implementation for Hyperledger Fabric based
on chaincodes is available.

The CLI allows users to execute the configuration management operations propose,
approve, retrieve and acknowledge, as introduced in chapter 5. Moreover, it provides
a subscribe operation, which runs as a daemon and outputs occurring CRs that match
the specified criteria, like state and targets. Internally, the event architecture of Fabric
is used to get notified of new CRs. For each subscription, a handler can be specified to
handle the matching CRs. A handler is an executable program that is passed a matching
CR and optional arguments. The handling procedure can be influenced in several ways:
it is possible to pass the entire CR or just its configuration to the handler, either as a file
path argument or via the standard input. If the auto-acknowledge mode is enabled,
successfully handled CRs will be automatically acknowledged to the system.

A concrete example for a handler is the command-line tool ansible-playbook which is
part of the Ansible suite. It runs a given playbook locally. For that, the tool expects a
path to a locally stored playbook file. Moreover, it supports several optional parameters
that influence its behaviour. Together with a subscription to valid CRs addressed to it-
self, a target is then able to run the contained playbooks automatically, and additionally
submit acknowledgements in the auto-acknowledge mode.

6.3.3 Logic Tier

For the logic tier, we provide an implementation that conducts the configuration man-
agement process in a tamper-resistant way by leveraging Hyperledger Fabric as a smart
contract engine. The tier is accessed by the CLI or any other implementation of the
presentation tier.

API and Components

Our API consists of two Go-specific interfaces: the Client interface represents the actual
business logic and supports the configuration management operations propose, approve,
retrieve and acknowledge. It is based on the abstract IDL interface introduced in section
5.5.2 and is directly accessed by the presentation tier. The IdentityProvider interface

60

6.3 Tiers

Commands Arguments Flags
identity name@domain
identity-authentication ... string
identity-provider fabric
identity-provider-initialization ... string
client fabric
client-initialization ... string

help

propose configuration file target ... name@domain ...
type acp|vp|ansiblePlaybook

approve id string test ... id:result

retrieve

id string
state proposed|valid|acknowledged|outdated
target ... name@domain ...
type acp|vp|ansiblePlaybook
print-no-header bool
print-null bool
print-raw-id bool
print-raw-configuration-data bool

acknowledge id string

subscribe

id string
state proposed|valid|acknowledged|outdated
target ... name@domain ...
type acp|vp|ansiblePlaybook
handler file
handler-argument ... string
pass-entire-cr bool
pass-via-stdin bool
auto-acknowledge bool
exit-on-error bool

Table 6.2: Excerpt of the CLI’s commands, arguments and flags

serves as a communication endpoint to the employed identity provider and supports a
single operation, namely to authenticate a given subject.

We offer concrete implementations of these interfaces based on Hyperledger Fabric
1.1.01: the component fabricClient is an implementation of Client and executes the
configuration management operations by invoking chaincodes in a Fabric network, while
the component fabricIdentityProvider is an implementation of IdentityProvider
and employs the PKI-based user identities that are defined in the configuration of a
Fabric network.

1 https://github.com/hyperledger/fabric/releases/tag/v1.1.0/

61

https://github.com/hyperledger/fabric/releases/tag/v1.1.0/

Chapter 6: Implementation

The communication between a client and the actual nodes of the Fabric network, in
particular the peer and orderer nodes, is carried out by fabric-sdk-go1, the official Soft-
ware Development Kit (SDK) for Hyperledger Fabric and Go. At the time of writing
this thesis, a stable release is not yet available. However, the developers offer an alpha
version that we employ in our implementation. The UML component diagram in figure
6.5 illustrates the relationships between fabricClient, fabricIdentityProvider and
the SDK.

We make use of the two most elementary operations of the SDK: invoke triggers a
chaincode invocation in a Fabric network with the aim to modify the ledger, while query
only triggers a chaincode invocation for reading from the ledger, without involving a
transaction to be committed to the peers. Although a read operation does not modify
the ledger, it is yet possible to process it as an ordinary transaction using invoke. With
that approach, the ledger additionally contains a history of read operations. However,
this may have negative effects on the overall performance due to the high number of
read accesses compared to write accesses.

Presentation

fabricfabric-sdk-go

fabricIdentityProvider

fabricClient

 Client

 IdentityProvider

Figure 6.5: Component dependencies on the logic tier, illustrated with an UML component diagram

1 https://gopkg.in/hyperledger/fabric-sdk-go.v0

62

https://gopkg.in/hyperledger/fabric-sdk-go.v0

6.3 Tiers

Chaincodes

The implementation of the logic tier is split into two independent chaincodes, both
written in Go: on the one hand, the management chaincode (MGTCC) implements
the operations propose, approve, retrieve and acknowledge. Each of these operations
conforms to the respective process model introduced in section 5.2.

On the other hand, the policy evaluation chaincode (PECC) implements the operations
evaluateACP and evaluateVP. The first operation determines if a proposer is permitted
to propose a configuration for a set of targets according to a given ACP, while the latter
determines if a CR is valid according to a given VP. For that, the PECC is invoked by
the MGTCC dynamically at runtime.

6.3.4 Data Tier

The data tier is represented by the ledger of a Fabric network itself, consisting of
the actual blockchain and the state database. The data tier’s abstract operations
introduced in section 5.5 refer to the two elementary operations of Fabric’s interface
shim.ChaincodeStubInterface [48]: while write is implemented by the operation Put-
State, read is implemented by the operation GetState.

PutState is aimed to store the given key-value pair in the ledger. For that, it adds
the pair to the writeset of the transaction proposal. In contrast, GetState is aimed to
read a key-value pair from the ledger. Consequently, the key is added to the readset
of the transaction proposal. As described in section 2.3.3, modifications to the ledger
only take place after the transaction proposal with the read/writeset has been properly
endorsed, processed by the ordering service and finally validated by the peers.

63

Chapter 7

Evaluation

This chapter evaluates the interoperability, performance and security of TANCS, con-
sidering its high-level design as well as its implementation based on Hyperledger Fabric.
For that purpose, the requirements defined in chapter 3 serve as a reference.

7.1 Interoperability

To effectively make use of a new system, it must be able to interoperate with the existing
systems of an IT landscape. In our case, this involves the management and authenti-
cation of identities, the specification and evaluation of policies, and the communication
with established configuration management frameworks.

7.1.1 Identity Management

Both the design and implementation of our system provide the possibility to commu-
nicate with an arbitrary identity provider via a well-defined interface of the logic tier.
Essentially, the interface consists of an authenticate method that expects the identifier
of a subject together with generic authentication data, for instance represented by a
password or a private key. Protocols for challenge-response authentication are not yet
supported, but may be added in the future.

Different implementations for that interface are possible, for instance one based on
an LDAP-compatible directory service operated by an organization. Since our goal is
to conduct a configuration management process based on Multi-Party Authorization
(MPA) in a tamper-resistant way, however, it is crucial to ensure that the process

Chapter 7: Evaluation

cannot be compromised due to a weakly secured and easily attackable identity provider.
Typical examples include identity providers that are fully centralized, or those that are
comprehensively accessible by administrators whose rights our system aims to restrain.
That is why all participating stakeholders, for instance a consortium of organizations,
have to control and operate their own identity management in a secured way.

However, there are alternative approaches to traditional identity management. The
field of decentralized identity management is in the spotlight of current research and
development, with an overview of existing solutions given by Dunphy and Petitcolas
[21]. First approaches in this field have been taken with Namecoin [33] in 2011 and
Blockstack [1] in 2013. The basis for a decentralized name system is typically provided
by a public peer-to-peer network which is large enough not to be taken over easily by
attackers. The name system itself can be built on top of such a network as a virtual chain
together with a state machine for domain names, with the different states representing
unregistered, registered and revoked names. Internally, names and namespaces can be
stored in zone files similar to those of DNS. To register a new name, users follow a
dedicated registration protocol which may include the payment of a registration fee to
the creator of the next block. Current research deals with solving a range of efficiency
and scalability issues of these approaches, for instance concerning the system’s caching
behaviour and the amount of data to be stored by a node.

7.1.2 Policy Evaluation

Our implementation comes with a basic policy language as well as a basic implementa-
tion of a policy evaluator compatible to it. In the future, further use cases may arise for
our system, potentially requiring the support of a more powerful policy language and
evaluator. That is why our system accesses the policy evaluator in use via a well-defined
interface, making it possible to easily employ a different implementation, which in turn
may be based on an existing and comprehensive policy framework, such as the Policy
Machine presented by the National Institute of Standards and Technology (NIST) as
part of their standardization project Next Generation Access Control (NGAC) [23].

7.1.3 Configuration Management

For applying configurations to targets, our system is able to conveniently interoperate
with configuration management frameworks such as Ansible, Puppet or Chef. The
communication with those frameworks takes place on the presentation tier of our system,
particularly in the implementation of the Command-Line Interface (CLI): technically

66

7.1 Interoperability

based on the event architecture of Hyperledger Fabric, it allows clients to subscribe to
incoming CRs matching a specified filter.

Fabric’s event architecture provides an efficient and flexible way for clients to get notified
if new blocks are added to the ledger, specific transactions are committed, or custom
chaincode events are triggered during the execution of a chaincode. In our implementa-
tion, the management chaincode (MGTCC) produces a chaincode event for each state
update of each CR. Clients can then subscribe to that kind of event.

If an incoming CR matches the specified filter, the presentation tier will hand it over to a
specified handler, which basically is an arbitrary executable program. All configuration
management frameworks introduced in section 2.1 provide stand-alone tools for applying
their configuration scripts locally to targets. Table 7.1 gives an overview of the available
tools, each of them officially maintained by the framework’s development team and
compatible with the handler interface of our system.

Framework Tool Description
Ansible ansible-playbook “Runs Ansible playbooks, executing the

defined tasks on the targeted hosts” [4]
Puppet puppet apply “Applies a standalone Puppet manifest

to the local system” [59]
Chef chef-solo “Executes chef-client in a way that does

not require the Chef server in order to con-
verge cookbooks” [18]

Table 7.1: Overview of stand-alone tools for applying configuration scripts, compatible with the handler
interface of our system

By employing our system as the exclusive management and storage component for con-
figurations and by narrowing the purpose of the presented configuration management
frameworks to just apply configuration scripts to targets, many of their functionalities
are not utilized any more. That is why other ways of interoperating with these frame-
works might be worth considering, such as synchronizing the valid configurations stored
in our system with the configuration repository offered by some frameworks. Moreover,
several frameworks include comprehensive features for managing the device infrastruc-
ture itself. These capabilities might be leveraged in our system, for instance to provide
the identities of targets.

67

Chapter 7: Evaluation

7.1.4 Reusability

As stated in chapter 5, the design of our system is reusable for different implementations
and environments. In particular, the 3-tier architecture allows to exchange and adapt
the implementation of a tier independently from the others. Consequently, other dis-
tributed ledger frameworks than Hyperledger Fabric can be employed, like Hyperledger
Sawtooth. The application logic, currently implemented as Fabric chaincode, and the
bootstrapper must then be adapted to the architecture of the other framework. At the
end of the day, however, major parts of our implementation can be reused.

If the intended distributed ledger framework provides no execution environment, for
instance in the form of a smart contract engine, the application logic, residing on the
logic tier, will have to be executed on the clients. Then, the framework will only operate
on the data tier, providing a distributed and tamper-resistant data storage. MultiChain,
as introduced in section 2.3, is an example for such a framework.

Deploying our system to a public and unpermissioned distributed ledger framework like
Ethereum is a much more challenging task. Typically, this approach only has benefits
if the configuration of a certain infrastructure has to be justified to the public. Our
application logic would have to be translated to an Ethereum smart contract written
in Solidity. Since the authorization process of our system is based on authenticated
identities, each identity would have to be linked to an Ethereum account. Alternatively,
the authorization process could be altered to an anonymous voting process. With respect
to confidentiality, it may not be desirable to publish security-relevant configurations in
a public ledger, hence requiring the encryption or hashing of the data. Lastly, it would
have to be clarified how the payment of the Ethereum transaction fees can be organized.

7.2 Performance

Configuration management is strongly interconnected with the fields of software devel-
opment and operation. Thus, it needs to be responsive and to steadily provide feedback
to users and associated software systems. In the following, we describe factors and
solutions that affect the responsiveness and performance of our system.

7.2.1 Latency by Multi-Party Authorization

To enforce Multi-Party Authorization (MPA) with respect to a proposed configuration,
we conduct a configuration management process consisting of several steps and requiring
actions by different subjects. Since different subjects specified in the targets’ validity

68

7.2 Performance

policy (VP) have to approve a configuration, there is no upper time limit for a config-
uration to become valid. The same holds for the targets to apply and acknowledge a
valid configuration, although this task can be fully automated.

Therefore, an arbitrarily long period of time can pass between the proposal of a con-
figuration and its activation on the intended targets. Depending on the use case of our
system, it may be necessary to reduce or otherwise influence this kind of response time,
for instance by introducing an expiry mechanism for CRs. If a CR did not become valid
within a specified period of time, its state would be set to outdated automatically, with
no possibility to modify that particular CR ever again. Of course, this measure does
not necessarily lead to an accelerated approval process, but provokes a new state for a
pending CR that can be reacted to, for instance by adapting the involved policies or by
proposing a different configuration.

7.2.2 Latency by Distributed Ledger Technology

Another kind of latency is induced by the use of Distributed Ledger Technology (DLT)
itself. Our system’s execution and storage model leverages the distributed and decen-
tralized character of a peer-to-peer network, introducing a significant overhead regarding
the communication, coordination and synchronization within in the network. In par-
ticular, operations are executed redundantly by design to prevent participants from
acting maliciously. Compared to DLT frameworks based on time-consuming consensus
mechanisms like Proof of Work (PoW), however, the latency induced by the consensus
mechanism of Hyperledger Fabric is negligible.

In contrast to the response time caused by our MPA-based process, the latency of DLT
can be easily controlled on a technical level. Increasing the capacity and efficiency of
the participants’ hardware and software can already lead to a significant reduction.
This involves the employment of up-to-date CPUs and sufficient amounts of memory
for the endorsing peers of a Fabric network, but also slim and scalable protocols for
their communication with each other.

Storage Model

In our current implementation, the actual configuration data is stored in the ledger
directly. This allows to guarantee unerasability and unforgeability of the configuration
data out of the box. However, all data records are stored redundantly on each partici-
pating peer. This might be unproblematic for a small amount of configuration data, but
can quickly lead to serious performance and capacity issues once the amount increases.

69

Chapter 7: Evaluation

As an alternative, the ledger may only store a URI to the configuration data together
with a hash value of the data. An external storage provider, such as a cloud service,
would then be responsible for storing the configuration data permanently and with a
focus on high availability. Every time the data would be retrieved from the external
provider, its integrity would have to be checked using the hash value stored in the ledger.

Ledger Pruning

Independent of the concrete storage model, there may be the need to prune the ledger.
Since the ledger constantly grows, the required disk space increases. This is especially
problematic for peers hosted on machines with a limited amount of disk space, like single-
board computers or embedded systems. Planned to be implemented in future versions
of Hyperledger Fabric, the developers describe an approach that allows to maintain an
abstraction of the ledger’s blockchain containing valid transactions only [37]. Invalid
transactions are omitted, as they are irrelevant for the ledger state.

To increase the performance and to decrease the required disk space, further kinds of
abstractions are imaginable. A typical example would be a peer that does not store a
full ledger copy starting with the genesis block itself. Instead, its copy would start with
a successive block that has been verified to serve as a trustworthy starting point.

State Database

As introduced in section 2.3.3, a ledger in Hyperledger Fabric consists of the actual
blockchain and a state database. The latter represents the current state of the ledger,
which results from applying the valid transactions of the chain’s blocks in consecutive
order. From a conceptual point of view, the state database is not necessary, but it
provides means to efficiently query the ledger. Generally, Fabric’s architecture allows
to conveniently exchange the database implementation in use. We choose CouchDB1,
since it currently is the only supported database being able to cope with rich queries.
With these type of queries, it is not only possible to retrieve data records by their keys,
but by a set of arbitrary attributes.

The database architecture of CouchDB is document-oriented, with its query model
based on MapReduce [19], a framework for efficiently processing big amounts of data in
a distributed and parallelized manner. CouchDB allows its users to define the map and
reduce routines in so-called views. At the time of writing this thesis, however, Fabric

1 https://couchdb.apache.org/

70

https://couchdb.apache.org/

7.3 Security

offers no integrated feature to manage and access those views. As an alternative, Fabric
provides integrated support for CouchDB’s ad-hoc query functionality. It is based on
the Mango query language1 with its declarative JSON syntax, that in turn was inspired
by MongoDB. CouchDB provides a Representational State Transfer (REST) API to
perform such queries [7]. To optimize the query time, the API also offers the possibility
to create custom indexes. Internally, those indexes are again based on views. Index
definitions can be shipped with every Fabric chaincode, leading to an automatic creation
of the indexes once the chaincode is instantiated.

Internally, CouchDB implements Multi-Version Concurrency Control (MVCC) by em-
ploying an append-only storage model [9]. New versions of documents are appended to
an ever-growing B+ tree, without the old ones being deleted. With that approach, no
locking system has to be introduced for allowing simultaneous read and write operations,
potentially leading to a better performance. However, this requires more disk space,
especially when storing large amounts of data that gets changed regularly. That is why
CouchDB offers a compaction mechanism which compresses the database by discarding
old revisions of documents [8].

7.3 Security

There is a range of factors affecting the security of our system. In the following, we
evaluate our system with respect to the fulfillment of the security requirements defined
in chapter 3, discuss the role of policies, and provide suggestions for managing software
vulnerabilities and auditing processes.

7.3.1 Fulfillment of Security Requirements

The security requirements defined in section 3.2 are fulfilled in complementary ways on
different levels of our system. We differentiate between two levels: on the one hand, we
assess the application logic, which includes the logic executed on the clients as well as
the chaincode logic executed on the peers. On the other hand, we consider Hyperledger
Fabric itself, taking into account its architecture together with the security properties
it provides. Table 7.2 gives an overview of how the different requirements are fulfilled
on these two levels.

1 https://github.com/cloudant/mango/

71

https://github.com/cloudant/mango/

Chapter 7: Evaluation

First of all, our application logic is responsible for performing the authentication. Every
subject participating in our system has to be authenticated beforehand via an identity
provider. In our implementation, we utilize the identities and authentication mecha-
nisms provided by the Fabric network in use.

The application logic takes also part in providing accountability and traceability. Every
configuration management operation, like proposing or approving, is associated with
the subject in charge and stored in the corresponding CR together with a timestamp,
resulting in a history of operations. On a technical level, Fabric is responsible for
generating and verifying the cryptographic signatures of the corresponding transactions
and for providing a traceable data storage.

Multi-Party Authorization (MPA) for configurations is again handled by our application
logic. A target-dependent validity policy (VP) specifies requirements for configurations
to become valid. Requiring m of n approvals for a configuration to become valid, with
n > m > 1, prevents a single administrator from validating a configuration and therefore
from causing damage. Fabric is not involved in the actual MPA process, but handles
the corresponding transactions.

Finally, tamper-resistance, particularly including protected execution as well as unerasable
and unforgeable data storage, is provided by Fabric. This involves the execution of
chaincode on multiple peers according to the specified endorsement policy that requires
k of l endorsements, again with l > k > 1. With that approach, no single peer is able to
forge an execution result. Furthermore, Fabric is responsible for ordering the endorsed
transactions. The employment of a single orderer node is suitable for testing purposes
only, as the compromisation of this single node leads to a compromisation of the whole
system. Instead, the ordering service has to consist of several orderer nodes that com-
municate via a Byzantine Fault Tolerance (BFT) protocol. Consequently, less than one
third of the orderer nodes can act maliciously without affecting the functioning of the
system. At the time of writing this thesis, there is only a proof-of-concept implemen-
tation of a BFT ordering service available [62], but an official one for productive use is
under development.

Generally speaking, both the number of peers and orderer nodes influence the security of
the overall system: the less nodes there are in the Fabric network, the easier it becomes
for an attacker to compromise the system.

72

7.3 Security

Requirement Level Means Instantiation
Authentication AL Identity Provider Utilization of Fabric

client identities
Accountability AL Association of each

operation with subject
in charge

Recording of proposer,
approver, acknowledger

FAB Cryptography Generation and
verification of
signatures

Traceability AL History of operations
for each CR

Recording of
configuration proposal,
list of approvals, list of
acknowledgements

FAB Traceable and
unforgeable storage

Distributed ledger

Multi-Party Autho-
rization (MPA) of
configurations

AL Enforcement of validity
policy (VP) stipulating
multiple parties

VP requiring m of n
approvals

Tamper-Resistance FAB Endorsement of
transactions by
multiple peers

Endorsement policy
requiring k of l
endorsements

Ordering of
transactions by
multiple orderers

Ordering service
guaranteeing Byzantine
Fault Tolerance (BFT)

Table 7.2: Fulfillment of the security requirements on different levels, differentiating between Appli-
cation Logic (AL) and Hyperledger Fabric (FAB)

7.3.2 Policy Model

In our system, decisions with respect to the proposal and approval of configurations
are taken on the basis of Attribute-Based Access Control (ABAC). For that, an access
control policy (ACP) or a validity policy (VP) has to be evaluated against a given
artifact, such as a new configuration or a new approval. Defining requirements for a
policy language and a policy evaluator on the one hand and integrating them into a
system on the other hand is a non-trivial and security-relevant task. Vulnerabilities
and uncontrollable complexity regarding policies and their evaluation can quickly break
essential security properties such as authenticity, accountability and controlled access,
as Jebbaoui et al. showcase in their study on the eXtensible Access Control Markup
Language (XACML) [31].

73

Chapter 7: Evaluation

Therefore, our system uses a policy language and policy evaluator that both are designed
and implemented in a reductionistic and minimalist way. The reduced complexity allows
us to guarantee the properties and requirements defined in chapter 3 and to test the
evaluation routines comprehensively. Nevertheless, the users themselves are responsible
for specifying policies that suit their security requirements. Therefore, special care has
to be taken to avoid the specification of unsuitable and weak policies.

To conduct the actual evaluation of the policies, namely the ACPs and VPs, our Fabric-
based implementation comes with a separate chaincode, the policy evaluation chaincode
(PECC). This ensures separation of concerns, making it possible to deploy the PECC
to peers dedicatedly responsible for policy evaluation, to apply stricter endorsement
policies, and even to conduct the policy evaluation in a separate Fabric channel for
confidentiality reasons. As mentioned in section 7.1.2, the implementation of the eval-
uator itself can be extended and exchanged conveniently. That way, even approaches
providing means to prove the correctness of security policies can be employed, such as
the formalization approach outlined by Battiato et al. [10].

7.3.3 Vulnerability Management

The way of dealing with software vulnerabilities can have an essential impact on a
system’s security. In particular, developers and operators of a system have to keep in
mind that no software is perfect and vulnerabilities can be revealed at any time.

Hyperledger Fabric provides integrated mechanisms for managing the lifecycle of a
chaincode. If vulnerabilities in one of our chaincodes are found, these mechanisms
will allow to deploy an updated version of the chaincode to the network’s peers and to
perform the corresponding upgrade transaction. That way, flaws in chaincodes can be
eliminated in an effective and efficient way. Peers may refuse the installation of a new
chaincode version. To be independent of such peers, it is reasonable to spawn additional
peers or to adapt the chaincode’s endorsement policy.

Similar to the endorsement of ordinary chaincode transactions, transactions for instan-
tiating or upgrading a deployed chaincode have to be endorsed by the participants of
the channel [39]. Fabric utilizes separate and customizable policies for these transac-
tions. That way, a consensus for the instantiation or upgrade of a chaincode itself needs
to be reached, which in turn mitigates attacks by individuals, like those aimed at the
compromisation of the chaincode implementation.

For curing vulnerabilities in our client logic, such as the CLI and the API, one has to
establish an upgrade management process for these components, which is currently not

74

7.3 Security

available. To ensure the compliance with standards and best practices, it is advisable
to employ a well-known and mature packet management system such as Debian’s APT.
Then, updates of the client logic can easily be deployed to the subjects interacting with
our system, consisting of proposers, approvers and targets. With that approach, it is
even possible to fully automate the deployment process.

Lastly, vulnerabilities in Hyperledger Fabric itself have to be managed. Since Fabric
serves as the foundation of our implementation, security flaws in the framework can
quickly endanger crucial security requirements, such as tamper-resistance and trace-
ability. The developers of Fabric describe a step-by-step procedure for upgrading the
orderer and peer nodes to the latest versions available [50]. At the time of writing this
thesis, there is no automated upgrade process for the Fabric components. Consequently,
major parts of the process must be conducted manually, which is time-consuming and
error-prone. However, the upgrade process can be supported by the Docker toolset, as
the orderer and peer instances are typically managed with Docker.

We cannot make a general statement about the impact of particular vulnerabilities. In
the worst case, a vulnerability can break essential security properties of our system,
regardless of whether it originates from the implementation of chaincodes, the client
logic or Fabric itself. Therefore, the different stakeholders participating in an instance
of our system are responsible for keeping their peers, orderers and clients up to date, at
best by enforcing an effective and efficient software upgrade process.

7.3.4 Auditing

Since Distributed Ledger Technology (DLT) inherently provides transparency and un-
forgeability with respect to the performed transactions, the participants are able to
perform a convenient and reliable auditing process. Whenever there is the suspicion
of a security-relevant incident or anomaly to have occurred, DLT provides means to
investigate and analyze who has performed which transactions. Those incidents may
result from the employment of weak policies, from a collusion of several participants in
order to bypass security measures, or from errors in the chaincode and client logic itself.

With respect to Hyperledger Fabric, there are different ways to perform such an auditing
process. The most elementary way is to use the official command-line tools, in particular
peer channel to fetch blocks of a network’s channel [47] and configtxlator to trans-
late the blocks into a human-readable representation [41]. Working with these low-level
tools can help to understand the internals of the ledger, but usually is inefficient for
frequent and comprehensive audits.

75

Chapter 7: Evaluation

Hyperledger Explorer1 is a comprehensive suite for investigating the internals of a Fabric
network. It is an official Hyperledger project and hosted by the Linux Foundation. After
having been set up on a server or locally on a client machine, Explorer is accessible as
a web service, consisting of a Graphical User Interface (GUI) and a Representational
State Transfer (REST) API. The suite allows not only to conveniently inspect blocks
and transactions of a network’s channel, but also to retrieve detailed information on the
nodes itself, such as their status and the chaincodes installed on them.

7.4 Limitations

As with every work, there are limitations to keep in mind when employing our sys-
tem. The awareness and handling of these limitations is relevant for understanding and
guaranteeing the security properties of our system.

7.4.1 Security Risks of Policies

First of all, we cannot effectively prevent weak or misused policies from mitigating
certain security properties, since the design of particular policies highly depends on the
environmental conditions and use cases where our system is employed. If our chaincodes
are set up together with endorsement policies that violate certain security measures, for
instance by requiring endorsements only from peers of the first organization and ignoring
the second, the tamper-resistance provided by the Fabric network will be considerably
weakened. The same holds for the policies on the application level, ACPs and VPs: if
the number of approvals required for a set of targets, denoted by m, is set too low, it
will be easier to activate malicious or flawed configurations. Similarly, attackers may
exploit that some policies or policy rules are less strict than others and try to force an
evaluation against the weaker one. Our simplistic approach with respect to the policy
language and the policy evaluator contributes to obviate these attacks.

7.4.2 Collusion of Participants

Another limitation originates from the nature of distributed consensus systems: a col-
lusion of a sufficiently large amount of participants can dominate the consensus process

1 https://www.hyperledger.org/projects/explorer/

76

https://www.hyperledger.org/projects/explorer/

7.4 Limitations

and therefore break security properties like tamper-resistance and Multi-Party Autho-
rization (MPA). If multiple entities secretly agree upon the manipulation of a chain-
code’s execution result or upon the approval of a malicious configuration, there will be
a reasonable chance that they are successful. Stronger policies and a larger amount of
entities operating and controlling the consensus process can mitigate this kind of threat,
but cannot eliminate it. Since the network provides transparency with respect to all
conducted transactions and operations, however, it is possible to establish a frequent
and automated auditing process in order to detect anomalies in hindsight. Based on
this evidence, measures can be taken to address organizational and structural problems.

7.4.3 Compromisation of Targets

After multiple parties have authorized a configuration, it is automatically applied to
the intended targets by the handler daemon that is shipped with our implementation.
To guarantee the security properties of our system, it is crucial to ensure that only
authorized configurations are applied. To prevent the activation of unauthorized con-
figurations, the targets have to be locked, for instance by disabling remote shell access
and by preventing any kind of physical access. As a consequence, nobody must be able
to access the targets with administrative privileges directly. However, a target remains
a critical point of failure: if attackers are able to effectively compromise it, no matter
whether they operate from inside or outside, they will be able to manipulate its config-
uration at will. Currently, our solution cannot mitigate the compromisation of targets.
Future approaches may address this issue on other levels, for instance by operating
the same service redundantly on multiple targets, providing some kind of automated
fallback in the case of a misconfiguration.

7.4.4 Consistency, Availability and Partition Tolerance

For every distributed storage system, one has to consider limitations with respect to the
consistency, availability and partition tolerance it provides. The CAP theorem, which
was proposed by Brewer in 1998 and formally proved by Gilbert and Lynch in 2002 [26],
states that only two of these three properties can be fulfilled for a distributed storage
system simultaneously. Consistency denotes that all nodes are able to receive the same
data at the same point of time, whereas availability implies that every request has to
result in a non-error response. Lastly, partition tolerance connotes that the system
continues to operate even if the communication between arbitrary nodes is disturbed or
broken. Since a peer-to-peer network as employed by Fabric has to cope with network
outage, it must provide partition tolerance. According to the CAP theorem, there will

77

Chapter 7: Evaluation

be two choices left if partitioning occurs: sacrificing availability and thus obtaining a
CP system, or sacrificing consistency and thus obtaining an AP system. In practice,
however, this is not a decision that is made a priori. Instead, the system can have either
CP or AP characteristics depending on the kind of partition.

If the partition is of such a kind that a transaction cannot be fully endorsed according to
the endorsement policy and/or no consent between the orderer nodes can be established,
there will be an error and the ledger will not be updated at all, leading to no incon-
sistencies and thus CP. Hence, a deployment dependent on consistency has to establish
endorsement policies and ordering mechanisms that are in line with its real-world re-
quirements, preventing a ledger update if parties relevant for a certain transaction are
cut off. In the worst case, however, there may be a partition where a transaction can
be fully endorsed and a consent between the orderer nodes can be established, leading
to a ledger update on the nodes of that partition only, which provokes inconsistencies
and thus AP. But after the partitioning has been resolved, the nodes of the other par-
titions are able catch up on the updated ledger state by performing synchronization
mechanisms, for instance via Fabric’s built-in gossip data dissemination protocol [43].

7.5 Trade-Offs

With respect to the performance and security of our system, trade-offs have to be made.
In general, it is not possible to achieve a maximum of performance and security at the
same time, as both properties behave dichotomously to each other. A particular setup
of our system may strengthen the security it provides while simultaneously decreasing
its performance. In contrast, there are setups that focus on a higher performance, but
cannot guarantee an equally high level of security. There is no silver bullet for this
problem: the requirements in terms of performance and security have to be evaluated
and implemented for each use case and IT environment separately.

The first trade-off has to be made regarding the ACPs and VPs in use. Generally
speaking, stricter policies introduce a higher latency for the overall authorization pro-
cess: with a strict ACP, the number of administrators entitled to propose a new con-
figuration is limited to a minimum. On the one hand, this may increase security, as
less administrators are able to propose faulty or malicious configurations. On the other
hand, latency may increase, since the proposal of a configuration depends on a small
set of actors. The same holds for a strict VP: requiring many participants to review
and approve a configuration, including a variety of tests to perform, strengthens the

78

7.6 Future Work

principle of redundant supervision and weakens the power of an individual, but leads
to an increased processing time due to the high number of parties involved.

Another trade-off arises regarding the structure and setup of the Fabric network it-
self: only a sufficiently large number of endorsing peers and orderer nodes can provide
tamper-resistance with respect to the execution of the configuration management pro-
cess and the storage of data. If only few nodes are employed, the barrier for collusions
and compromisations will be significantly lower. The specific amount of network nodes
again depends on the use case, ranging from less than ten for small environments to
several dozens for larger ones. However, a larger network comes at a price: reaching a
consensus between a high number of nodes typically raises the computation and com-
munication overhead, leading to negative effects on the overall performance. Besides,
the employment of additional nodes may lead to an increase in operational expenses.

7.6 Future Work

On the basis of our system’s design and implementation, there is future work to be
done. In this section, we focus on further concepts for interpreting the semantics of
configurations and for handling emergency cases.

7.6.1 Semantic Interpretation of Configurations

Currently, our system is not able to interpret the semantics of configurations. Al-
though there is support for different configuration types, we are not able to reliably
and precisely determine which software is configured in which respect by a proposed
configuration. However, this semantic information could be highly useful for differenti-
ating the authorization process: an iptables configuration unblocking a certain network
port, for instance, may require the authorization of a larger number of parties than a
configuration of the Apache HTTP Server adapting the log level.

The declarative and powerful configuration languages of well-known configuration man-
agement frameworks such as Ansible can provide a solid basis for a semantic analysis:
depending on the configuration modules and directives used, it is possible to assess the
targeted software and the configuration’s impact. Our policy model consisting of ACPs
and VPs can then be extended to take into account these attributes.

79

Chapter 7: Evaluation

7.6.2 Emergency Cases

Another aspect not covered by our approach is the handling of emergency cases. Ac-
cording to our definition, an emergency case requires the immediate activation of a
configuration change on a set of targets, without the enforcement of a time-consuming
authorization process. Typical examples include the repair of a broken configuration
that has led to an outage or vulnerability of vital parts of the IT landscape, in particular
at times when no other administrators are available to review and approve that change,
such as at night-time.

Each organization must decide on their own if they want to allow the execution of
such an emergency procedure, since this feature involves the danger of being misused:
the possibility to circumvent the principle of Multi-Party Authorization (MPA) in an
emergency can lead to an even worse emergency if an attacker or amateur is at work.

There are two fundamental approaches to implement an emergency procedure. The
first one is purely software-based: the propose operation of our system’s management
process would be enriched with an emergency flag. If this flag was set by a proposer,
the corresponding CR would become valid immediately. Due to the transparency pro-
vided by the Distributed Ledger Technology (DLT), every operation performed as part
of an emergency procedure would still be recorded in an unerasable and unforgeable
way. Therefore, the necessity and consequences of an emergency procedure could be
audited in hindsight. As an additional measure, our system could send a notification
of the ongoing incident to an external system responsible for Security Information and
Event Management (SIEM). Nevertheless, it is advisable to restrict the capabilities of
an emergency procedure as much as possible. On the one hand, this may involve time-
based restrictions, for instance by allowing emergency procedures only at that times of
the day where very few administrators are available. On the other hand, only prede-
fined configurations may be selectable for emergencies, like one that shuts down critical
devices of the IT landscape to prevent vulnerabilities from being exploited.

The other approach involves physical actions and, as a last resort, is always feasible: in
cases of emergency, the corresponding devices are accessed physically by an administra-
tor. Physical access barriers such as a locking system may have to be passed to access
critical devices. In order to disclose and document the physical access, some form of
physical sealing can be introduced. After an administrator has opened a sealed envelope
containing a key for the physical emergency access, for instance, evidence is created for
third parties and auditors that an emergency procedure must have taken place.

80

Chapter 8

Conclusion

In conclusion, our research contributes a novel way of configuration management for
networked devices. We designed and implemented TANCS, a Tamper-Resistant and
Auditable Network Configuration System. By basing our system on the principle of
Multi-Party Authorization (MPA), we require multiple administrators to review and
approve a configuration change before it can be applied to the targeted devices. There-
fore, no individual administrator is able to decide on a critical configuration on its own,
mitigating insider attacks as well as accidental failures. To provide tamper-resistance
with respect to the management process and the configuration storage, we leverage
Distributed Ledger Technology (DLT). In particular, we employ Hyperledger Fabric, a
DLT framework providing a distributed smart contract engine and a distributed ledger.
With that approach, even the abuse of an individual’s administrative privileges cannot
negatively affect the operability of our system.

For a real-world deployment of TANCS, several security-relevant aspects have to be con-
sidered. On the one hand, the requirements for a configuration change to become valid
need to be adapted to the target environment, since our system cannot protect against
weak policies. Highly critical IT environments, like those in health care institutions or
airplanes, are typically in need of stricter conditions for the validity of a configuration
change than ordinary environments. On the other hand, the setup and structure of the
Fabric network itself needs to reflect the real world’s trust model: if several participants,
who only share a limited amount of trust between each other, jointly manage the con-
figurations for their device infrastructure, each participant will have to contribute own
nodes to the Fabric network in order to understand, execute and audit the configuration
management operations. Besides, the number of nodes in the Fabric network has to be
sufficiently large to reduce the risk of compromisation and collusion.

Compared to the related approaches presented in chapter 4, TANCS combines a unique
set of security properties into one system, as illustrated in the final overview in table 8.1.
TANCS does not only offer MPA and auditability for configuration changes, as several
others do, but also guarantees tamper-resistance due to the distributed process execution
and data storage, while simultaneously providing a logically centralized configuration
repository. Moreover, it allows to conduct federated configuration management across
the boundaries of different stakeholders, which is especially useful for IT landscapes
managed by multiple independent parties with limited trust, but joint responsibilities.

TANCS Ansible ACHEL Transparency
Overlays

Authorization X X X
Multi-Party Authorization X (X) X
Auditability X (X) X X
Tamper-Resistance X (X) X
Distributed process execu-
tion and data storage X X

Logically centralized con-
figuration repository X

Federated configuration
management across stake-
holders’ boundaries

X

Semantic interpretation of
configurations X

Resistance to compromisa-
tion of targets

Table 8.1: Final overview of the system’s capabilities, based on the findings presented in table 4.1

Our long-term vision is to expand the principle of MPA to several other areas. A highly
relevant use case involves the certification process prevalent in Public Key Infrastruc-
tures (PKIs), which currently is conducted in a centralized manner and without the
approval of multiple independent parties. By establishing a process where multiple
Certificate Authorities (CAs) have to sign a requester’s public key before it becomes
regarded as valid by operation systems and web browsers, malicious behaviour regard-
ing the issuance of certificates, as encountered regularly in the past, can be effectively
restrained. In an even broader sense, we envision to design a generic and reusable
service architecture, offering the principle of MPA in a tamper-resistant manner and
with a focus on the efficient and convenient deployment to a multitude of different IT
environments, such as the Internet of Things (IoT).

82

Chapter A

Appendix

A.1 Implementation

A.1.1 Structure of Go Packages

model comprises type definitions for all artifacts, to-
gether with their methods

logic Logic Tier

api provides interfaces Client, IdentityProvider
and Identity

fabric comprises the implementation based on Hy-
perledger Fabric, including fabricClient and
fabricIdentityProvider

cc comprises chaincodes, including manifest def-
initions

mgtcc main package of management chaincode
(MGTCC)

mgt implementation of MGTCC

pecc main package of policy evaluation chaincode
(PECC)

pe implementation of PECC

Chapter A: Appendix

lib comprises utility libraries independent of spe-
cific implementations of the logic tier

codec comprises decoders and encoders for Remote
Procedure Calls (RPCs) and storage providers

rpcdecoder decoder for RPCs, based on JSON

rpcencoder encoder for RPCs, based on JSON

storagedecoder decoder for storage providers, based on JSON

storageencoder encoder for storage providers, based on JSON

policyevaluator interface of an evaluator for ACPs and VPs,
together with a basic implementation

policysanitychecker sanity checker for ACPs and VPs, w.r.t. well-
formedness

presentation Presentation Tier

cli provides the Command-Line Interface (CLI),
using the library kingpin

crhandler interface and implementation to handle a CR,
i.e. to pass it to an external program

exithandler interface and implementation to manage exit
signals for the applications on the presentation
tier

printer interface and implementation of a thread-safe
and convenient printer

uihandler interface and implementation for instantiating
and initializing an identity provider, an iden-
tity and a client, serving as intermediary be-
tween the presentation and the logic tier

86

A.1 Implementation

network comprises modules and artifacts for setting up
a Fabric network

bootstrapper bootstrapper for creating channels, joining
peers, and installing and instantiating chain-
code in a Fabric network

docker comprises the configuration for the Docker ser-
vices

fixtures comprises configurations for fabric-sdk-go and
fabric, including cryptographic material and
configuration transactions

test comprises comprehensive unit and end-to-end
tests

logic comprises tests for the logic tier

fabric comprises tests for the logic tier’s implemen-
tation based on Hyperledger Fabric

cc comprises end-to-end tests for the chaincodes
MGTCC and PECC, executable locally with-
out a Fabric network

lib comprises tests for the logic tier’s libraries

policyevaluator comprises unit tests for evaluating different
ACPs and VPs w.r.t. different artifacts

policysanitychecker comprises unit tests for checking the well-
formedness of different ACPs and VPs

model comprises unit tests for decoding and instan-
tiating CRs, ACPs and VPs

samples comprises exemplary Ansible playbooks, CRs,
ACPs and VPs

87

Bibliography

[1] Muneeb Ali et al. Blockstack: A New Internet for Decentralized Applications. 2017.
url: https://blockstack.org/whitepaper.pdf (visited on 05/09/2018).

[2] Elli Androulaki et al. “Hyperledger Fabric: A Distributed Operating System for
Permissioned Blockchains”. In: EuroSys (2018). url: https://arxiv.org/pdf/

1801.10228.pdf (visited on 04/28/2018).
[3] Ansible, Inc. Ansible Documentation. url: https://docs.ansible.com/ (visited

on 02/20/2018).
[4] Ansible, Inc. ansible-playbook - Ansible Documentation. url: https://docs.

ansible.com/ansible/latest/ansible-playbook.html (visited on 03/22/2018).
[5] Ansible, Inc. Ansible Tower - Ansible Documentation. url: https://docs.

ansible.com/ansible/latest/tower.html (visited on 03/03/2018).
[6] Ansible, Inc. Intro to Playbooks. url: https://docs.ansible.com/ansible/

latest/playbooks_intro.html (visited on 02/20/2018).
[7] Apache Software Foundation. 10.3.6. /db/_find - Apache CouchDB 2.1 Documen-

tation. url: http://docs.couchdb.org/en/latest/api/database/find.html

(visited on 03/23/2018).
[8] Apache Software Foundation. 5.1. Compaction - Apache CouchDB 2.1 Documen-

tation. url: http://docs.couchdb.org/en/latest/maintenance/compaction.

html (visited on 03/23/2018).
[9] Apache Software Foundation. The Power of B-trees. url: https://guide.

couchdb.org/draft/btree.html (visited on 05/12/2018).
[10] Sebastiano Battiato, Giampaolo Bella, and Salvatore Riccobene. “Should We

Prove Security Policies Correct?” In: Proceedings of the 1st International Work-
shop on Electronic Government and Commerce: Design, Modeling, Analysis and
Security. 2004, pp. 56–65. url: http://citeseerx.ist.psu.edu/viewdoc/

download?doi=10.1.1.224.8852&rep=rep1&type=pdf (visited on 03/21/2018).

https://blockstack.org/whitepaper.pdf
https://arxiv.org/pdf/1801.10228.pdf
https://arxiv.org/pdf/1801.10228.pdf
https://docs.ansible.com/
https://docs.ansible.com/ansible/latest/ansible-playbook.html
https://docs.ansible.com/ansible/latest/ansible-playbook.html
https://docs.ansible.com/ansible/latest/tower.html
https://docs.ansible.com/ansible/latest/tower.html
https://docs.ansible.com/ansible/latest/playbooks_intro.html
https://docs.ansible.com/ansible/latest/playbooks_intro.html
http://docs.couchdb.org/en/latest/api/database/find.html
http://docs.couchdb.org/en/latest/maintenance/compaction.html
http://docs.couchdb.org/en/latest/maintenance/compaction.html
https://guide.couchdb.org/draft/btree.html
https://guide.couchdb.org/draft/btree.html
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.224.8852&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.224.8852&rep=rep1&type=pdf

[11] Alysson Bessani, João Sousa, and Eduardo E. P. Alchieri. “State Machine Repli-
cation for the Masses with BFT-SMaRt”. In: Proceedings of the 2014 44th An-
nual IEEE/IFIP International Conference on Dependable Systems and Networks.
DSN ’14. Washington, DC, USA: IEEE Computer Society, 2014. url: https:

//www.di.fc.ul.pt/~bessani/publications/dsn14-bftsmart.pdf (visited
on 05/12/2018).

[12] Beth E. Binde, Russ McRee, and Terrence J. O’Connor. Assessing Outbound
Traffic to Uncover Advanced Persistent Threat. 2011. url: https://www.sans.

edu/student- files/projects/JWP- Binde- McRee- OConnor.pdf (visited on
02/27/2018).

[13] Peter Bright. Another fraudulent certificate raises the same old questions about
certificate authorities. 2011. url: https://arstechnica.com/information-

technology/2011/08/earlier-this-year-an-iranian/ (visited on 03/04/2018).
[14] Miguel Castro and Barbara Liskov. “Practical Byzantine Fault Tolerance and

Proactive Recovery”. In: ACM Transactions on Computer Systems (TOCS) 20.4
(Nov. 2002), pp. 398–461. url: http://pages.cs.wisc.edu/~remzi/Classes/

739/Papers/p398-castro.pdf (visited on 04/08/2018).
[15] Melissa Chase and Sarah Meiklejohn. Transparency Overlays and Applications.

London, United Kingdom, 2016. url: https://eprint.iacr.org/2016/915.pdf

(visited on 03/03/2018).
[16] Chef Software, Inc. chef-cookbooks/httpd: Library cookbook with Apache httpd

primitives. url: https://github.com/chef- cookbooks/httpd/ (visited on
02/20/2018).

[17] Chef Software, Inc. Chef Docs. url: https : / / docs . chef . io/ (visited on
02/20/2018).

[18] Chef Software, Inc. chef-solo - Chef Docs. url: https://docs.chef.io/chef_

solo.html (visited on 03/22/2018).
[19] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified Data Processing on

Large Clusters. San Francisco, CA, USA, 2004. url: https://research.google.

com/archive/mapreduce-osdi04.pdf (visited on 03/23/2018).
[20] Thomas Delaet, Wouter Joosen, and Bart Vanbrabant. “A Survey of System Con-

figuration Tools”. In: Proceedings of the 24th International Conference on Large
Installation System Administration. LISA’10. San Jose, CA: USENIX Associa-
tion, 2010, pp. 1–8. url: https://www.usenix.org/legacy/event/lisa10/

tech/full_papers/Delaet.pdf (visited on 03/06/2018).

90

https://www.di.fc.ul.pt/~bessani/publications/dsn14-bftsmart.pdf
https://www.di.fc.ul.pt/~bessani/publications/dsn14-bftsmart.pdf
https://www.sans.edu/student-files/projects/JWP-Binde-McRee-OConnor.pdf
https://www.sans.edu/student-files/projects/JWP-Binde-McRee-OConnor.pdf
https://arstechnica.com/information-technology/2011/08/earlier-this-year-an-iranian/
https://arstechnica.com/information-technology/2011/08/earlier-this-year-an-iranian/
http://pages.cs.wisc.edu/~remzi/Classes/739/Papers/p398-castro.pdf
http://pages.cs.wisc.edu/~remzi/Classes/739/Papers/p398-castro.pdf
https://eprint.iacr.org/2016/915.pdf
https://github.com/chef-cookbooks/httpd/
https://docs.chef.io/
https://docs.chef.io/chef_solo.html
https://docs.chef.io/chef_solo.html
https://research.google.com/archive/mapreduce-osdi04.pdf
https://research.google.com/archive/mapreduce-osdi04.pdf
https://www.usenix.org/legacy/event/lisa10/tech/full_papers/Delaet.pdf
https://www.usenix.org/legacy/event/lisa10/tech/full_papers/Delaet.pdf

[21] Paul Dunphy and Fabien A.P. Petitcolas. “A First Look at Identity Management
Schemes on the Blockchain”. In: IEEE Security and Privacy Magazine (2018).
url: https://arxiv.org/pdf/1801.03294.pdf (visited on 03/21/2018).

[22] European Directorate for the Quality of Medicines. Change Control. Stras-
bourg, France, 2017. url: https://www.edqm.eu/sites/default/files/

recommandation- omcl_16_122_r_change_control_web_publication.pdf

(visited on 03/03/2018).
[23] David Ferraiolo, Serban Gavrila, and Wayne Jansen. Policy Machine: Features,

Architecture, and Specification. 2014. url: https : / / nvlpubs . nist . gov /

nistpubs/ir/2014/NIST.IR.7987.pdf (visited on 04/09/2018).
[24] Colin Fletcher and Terrence Cosgrove. Innovation Insight for Continuous Config-

uration Automation Tools. 2015.
[25] Free Software Foundation, Inc. GNU Coding Standards: Command-Line Inter-

faces. 2016. url: https : / / www . gnu . org / prep / standards / html _ node /

Command_002dLine-Interfaces.html (visited on 03/14/2018).
[26] Seth Gilbert and Nancy Lynch. “Brewer’s Conjecture and the Feasibility of Consis-

tent, Available, Partition-Tolerant Web Services”. In: SIGACT News 33.2 (June
2002), pp. 51–59. issn: 0163-5700. url: https://www.comp.nus.edu.sg/

~gilbert/pubs/BrewersConjecture-SigAct.pdf (visited on 04/04/2018).
[27] Gideon Greenspan. MultiChain Private Blockchain - White Paper. 2015. url:

https : / / www . multichain . com / download / MultiChain - White - Paper . pdf

(visited on 02/25/2018).
[28] Benjamin Hof and Georg Carle. Software Distribution Transparency and Au-

ditability. 2017. url: https://arxiv.org/pdf/1711.07278.pdf (visited on
03/03/2018).

[29] Jeffrey Hunker and Christian W. Probst. “Insiders and Insider Threats - An
Overview of Definitions and Mitigation Techniques”. In: Journal of Wireless Mo-
bile Networks, Ubiquitous Computing, and Dependable Applications (JoWUA) 2.1
(Mar. 2011), pp. 4–27. url: http://isyou.info/jowua/papers/jowua-v2n1-

1.pdf (visited on 03/06/2018).
[30] Intel Corporation. PoET 1.0 Specification - Sawtooth v1.0.1 documentation. 2017.

url: https://sawtooth.hyperledger.org/docs/core/releases/latest/

architecture/poet.html (visited on 02/26/2018).
[31] Hussein Jebbaoui et al. “Semantics-based Approach for Detecting Flaws, Conflicts

and Redundancies in XACML Policies”. In: Comput. Electr. Eng. 44.C (May
2015), pp. 91–103. issn: 0045-7906. doi: 10.1016/j.compeleceng.2014.12.012.

91

https://arxiv.org/pdf/1801.03294.pdf
https://www.edqm.eu/sites/default/files/recommandation-omcl_16_122_r_change_control_web_publication.pdf
https://www.edqm.eu/sites/default/files/recommandation-omcl_16_122_r_change_control_web_publication.pdf
https://nvlpubs.nist.gov/nistpubs/ir/2014/NIST.IR.7987.pdf
https://nvlpubs.nist.gov/nistpubs/ir/2014/NIST.IR.7987.pdf
https://www.gnu.org/prep/standards/html_node/Command_002dLine-Interfaces.html
https://www.gnu.org/prep/standards/html_node/Command_002dLine-Interfaces.html
https://www.comp.nus.edu.sg/~gilbert/pubs/BrewersConjecture-SigAct.pdf
https://www.comp.nus.edu.sg/~gilbert/pubs/BrewersConjecture-SigAct.pdf
https://www.multichain.com/download/MultiChain-White-Paper.pdf
https://arxiv.org/pdf/1711.07278.pdf
http://isyou.info/jowua/papers/jowua-v2n1-1.pdf
http://isyou.info/jowua/papers/jowua-v2n1-1.pdf
https://sawtooth.hyperledger.org/docs/core/releases/latest/architecture/poet.html
https://sawtooth.hyperledger.org/docs/core/releases/latest/architecture/poet.html
http://dx.doi.org/10.1016/j.compeleceng.2014.12.012

url: http://csm.beirut.lau.edu.lb/~rharaty/pdf/J4.pdf (visited on
03/21/2018).

[33] Daniel Kraft et al. Namecoin Wiki. url: https://wiki.namecoin.org/ (visited
on 05/09/2018).

[34] Ben Laurie, Adam Langley, and Emilia Kasper. RFC 6962 - Certificate Trans-
parency. 2013. url: https://tools.ietf.org/html/rfc6962/ (visited on
03/03/2018).

[35] Wenjie Lin. “Secure Multi-Party Authorization in Clouds”. PhD thesis. The Ohio
State University, 2015. url: https://etd.ohiolink.edu/!etd.send_file?

accession=osu1429041745 (visited on 03/06/2018).
[36] Linux Foundation. Architecture Explained - hyperledger-fabricdocs master doc-

umentation. Ordering service nodes (Orderers). url: https://hyperledger-

fabric.readthedocs.io/en/release-1.1/arch-deep-dive.html#ordering-

service-nodes-orderers (visited on 03/25/2018).
[37] Linux Foundation. Architecture Explained - hyperledger-fabricdocs master docu-

mentation. Validated ledger and PeerLedger checkpointing (pruning). url: https:

/ / hyperledger - fabric . readthedocs . io / en / release - 1 . 1 / arch - deep -

dive.html#post-v1-validated-ledger-and-peerledger-checkpointing-

pruning (visited on 03/23/2018).
[38] Linux Foundation. Chaincode for Developers - hyperledger-fabricdocs master docu-

mentation. url: https://hyperledger-fabric.readthedocs.io/en/release-

1.1/chaincode4ade.html (visited on 03/25/2018).
[39] Linux Foundation. Chaincode for Operators - hyperledger-fabricdocs master doc-

umentation. Instantiate. url: https://hyperledger-fabric.readthedocs.io/

en/release-1.1/chaincode4noah.html#instantiate (visited on 05/11/2018).
[40] Linux Foundation. Channels - hyperledger-fabricdocs master documentation. url:

https://hyperledger-fabric.readthedocs.io/en/release-1.1/channels.

html (visited on 03/25/2018).
[41] Linux Foundation. configtxlator - hyperledger-fabricdocs master documentation.

url: https : / / hyperledger - fabric . readthedocs . io / en / release - 1 . 1 /

commands/configtxlator.html (visited on 04/06/2018).
[42] Linux Foundation. Endorsement policies - hyperledger-fabricdocs master docu-

mentation. url: https://hyperledger-fabric.readthedocs.io/en/release-

1.1/endorsement-policies.html (visited on 03/25/2018).
[43] Linux Foundation. Gossip data dissemination protocol - hyperledger-fabricdocs

master documentation. url: https://hyperledger-fabric.readthedocs.io/

en/release-1.1/gossip.html (visited on 04/04/2018).

92

http://csm.beirut.lau.edu.lb/~rharaty/pdf/J4.pdf
https://wiki.namecoin.org/
https://tools.ietf.org/html/rfc6962/
https://etd.ohiolink.edu/!etd.send_file?accession=osu1429041745
https://etd.ohiolink.edu/!etd.send_file?accession=osu1429041745
https://hyperledger-fabric.readthedocs.io/en/release-1.1/arch-deep-dive.html#ordering-service-nodes-orderers
https://hyperledger-fabric.readthedocs.io/en/release-1.1/arch-deep-dive.html#ordering-service-nodes-orderers
https://hyperledger-fabric.readthedocs.io/en/release-1.1/arch-deep-dive.html#ordering-service-nodes-orderers
https://hyperledger-fabric.readthedocs.io/en/release-1.1/arch-deep-dive.html#post-v1-validated-ledger-and-peerledger-checkpointing-pruning
https://hyperledger-fabric.readthedocs.io/en/release-1.1/arch-deep-dive.html#post-v1-validated-ledger-and-peerledger-checkpointing-pruning
https://hyperledger-fabric.readthedocs.io/en/release-1.1/arch-deep-dive.html#post-v1-validated-ledger-and-peerledger-checkpointing-pruning
https://hyperledger-fabric.readthedocs.io/en/release-1.1/arch-deep-dive.html#post-v1-validated-ledger-and-peerledger-checkpointing-pruning
https://hyperledger-fabric.readthedocs.io/en/release-1.1/chaincode4ade.html
https://hyperledger-fabric.readthedocs.io/en/release-1.1/chaincode4ade.html
https://hyperledger-fabric.readthedocs.io/en/release-1.1/chaincode4noah.html#instantiate
https://hyperledger-fabric.readthedocs.io/en/release-1.1/chaincode4noah.html#instantiate
https://hyperledger-fabric.readthedocs.io/en/release-1.1/channels.html
https://hyperledger-fabric.readthedocs.io/en/release-1.1/channels.html
https://hyperledger-fabric.readthedocs.io/en/release-1.1/commands/configtxlator.html
https://hyperledger-fabric.readthedocs.io/en/release-1.1/commands/configtxlator.html
https://hyperledger-fabric.readthedocs.io/en/release-1.1/endorsement-policies.html
https://hyperledger-fabric.readthedocs.io/en/release-1.1/endorsement-policies.html
https://hyperledger-fabric.readthedocs.io/en/release-1.1/gossip.html
https://hyperledger-fabric.readthedocs.io/en/release-1.1/gossip.html

[44] Linux Foundation. Introduction - Sawtooth v1.0.1 documentation. url: https:

//sawtooth.hyperledger.org/docs/core/releases/latest/introduction.

html (visited on 02/26/2018).
[45] Linux Foundation. Membership Service Providers (MSP) - hyperledger-fabricdocs

master documentation. url: https://hyperledger-fabric.readthedocs.io/

en/release-1.1/msp.html (visited on 03/25/2018).
[46] Linux Foundation. MSP Identity Validity Rules - hyperledger-fabricdocs master

documentation. url: https://hyperledger- fabric.readthedocs.io/en/

release-1.1/msp-identity-validity-rules.html (visited on 03/25/2018).
[47] Linux Foundation. peer channel - hyperledger-fabricdocs master documentation.

url: https : / / hyperledger - fabric . readthedocs . io / en / release - 1 . 1 /

commands/peerchannel.html (visited on 04/06/2018).
[48] Linux Foundation. shim - GoDoc. type ChaincodeStubInterface. url: https:

/ / godoc . org / github . com / hyperledger / fabric / core / chaincode / shim #

ChaincodeStubInterface (visited on 05/13/2018).
[49] Linux Foundation. Transaction Flow - hyperledger-fabricdocs master documen-

tation. url: https://hyperledger- fabric.readthedocs.io/en/release-

1.1/txflow.html (visited on 03/25/2018).
[50] Linux Foundation. Upgrading Your Network Components - hyperledger-fabricdocs

master documentation. url: https : / / hyperledger - fabric . readthedocs .

io/en/release- 1.1/upgrading_your_network_tutorial.html (visited on
04/06/2018).

[51] Linux Foundation. Welcome to Hyperledger Fabric - hyperledger-fabricdocs master
documentation. url: https://hyperledger- fabric.readthedocs.io/en/

release-1.1/ (visited on 03/25/2018).
[52] Kief Morris. Infrastructure as Code: Managing Servers in the Cloud. O’Reilly

Media, 2016. isbn: 9781491924358.
[53] Satoshi Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System. 2008. url:

https://bitcoin.org/bitcoin.pdf (visited on 02/23/2018).
[54] Harish Natarajan, Solvej Karla Krause, and Helen Luskin Gradstein. Distributed

Ledger Technology (DLT) and Blockchain. Washington, D.C., USA, 2017. url:
http://documents.worldbank.org/curated/en/177911513714062215/pdf/

122140 - WP - PUBLIC - Distributed - Ledger - Technology - and - Blockchain -

Fintech-Notes.pdf (visited on 02/23/2018).
[55] Object Management Group. Interface Definition Language, v4.1. 2017. url:

https://www.omg.org/spec/IDL/4.1/PDF/ (visited on 03/16/2018).

93

https://sawtooth.hyperledger.org/docs/core/releases/latest/introduction.html
https://sawtooth.hyperledger.org/docs/core/releases/latest/introduction.html
https://sawtooth.hyperledger.org/docs/core/releases/latest/introduction.html
https://hyperledger-fabric.readthedocs.io/en/release-1.1/msp.html
https://hyperledger-fabric.readthedocs.io/en/release-1.1/msp.html
https://hyperledger-fabric.readthedocs.io/en/release-1.1/msp-identity-validity-rules.html
https://hyperledger-fabric.readthedocs.io/en/release-1.1/msp-identity-validity-rules.html
https://hyperledger-fabric.readthedocs.io/en/release-1.1/commands/peerchannel.html
https://hyperledger-fabric.readthedocs.io/en/release-1.1/commands/peerchannel.html
https://godoc.org/github.com/hyperledger/fabric/core/chaincode/shim#ChaincodeStubInterface
https://godoc.org/github.com/hyperledger/fabric/core/chaincode/shim#ChaincodeStubInterface
https://godoc.org/github.com/hyperledger/fabric/core/chaincode/shim#ChaincodeStubInterface
https://hyperledger-fabric.readthedocs.io/en/release-1.1/txflow.html
https://hyperledger-fabric.readthedocs.io/en/release-1.1/txflow.html
https://hyperledger-fabric.readthedocs.io/en/release-1.1/upgrading_your_network_tutorial.html
https://hyperledger-fabric.readthedocs.io/en/release-1.1/upgrading_your_network_tutorial.html
https://hyperledger-fabric.readthedocs.io/en/release-1.1/
https://hyperledger-fabric.readthedocs.io/en/release-1.1/
https://bitcoin.org/bitcoin.pdf
http://documents.worldbank.org/curated/en/177911513714062215/pdf/122140-WP-PUBLIC-Distributed-Ledger-Technology-and-Blockchain-Fintech-Notes.pdf
http://documents.worldbank.org/curated/en/177911513714062215/pdf/122140-WP-PUBLIC-Distributed-Ledger-Technology-and-Blockchain-Fintech-Notes.pdf
http://documents.worldbank.org/curated/en/177911513714062215/pdf/122140-WP-PUBLIC-Distributed-Ledger-Technology-and-Blockchain-Fintech-Notes.pdf
https://www.omg.org/spec/IDL/4.1/PDF/

[56] OTRS, Inc. OTRS Comparison. 2017. url: https://www.otrs.com/wp-

content / uploads / 2017 / 11 / 019 - EN _ Comparison _ OTRS _ 6 . pdf (visited on
03/03/2018).

[57] Serguei Popov. The Tangle. 2017. url: https://iota.org/IOTA_Whitepaper.

pdf (visited on 02/23/2018).
[58] Puppet. Language: Basics. url: https://puppet.com/docs/puppet/5.4/lang_

summary.html (visited on 02/20/2018).
[59] Puppet. Man Page: puppet apply - Puppet (PE and open source) 5.5 | Puppet.

url: https://puppet.com/docs/puppet/latest/man/apply.html (visited on
03/22/2018).

[60] Puppet. Puppet Documentation. url: https://puppet.com/docs/ (visited on
02/20/2018).

[61] Robert N. Rose. The Future Of Insider Threats. 2016. url: https://www.

forbes.com/sites/realspin/2016/08/30/the-future-of-insider-threats/

(visited on 03/06/2018).
[62] João Sousa, Alysson Bessani, and Marko Vukolić. A Byzantine Fault-Tolerant Or-

dering Service for the Hyperledger Fabric Blockchain Platform. Lisbon, Portugal,
2017. url: https://arxiv.org/pdf/1709.06921.pdf (visited on 04/09/2018).

[63] Bart Vanbrabant, Thomas Delaet, and Wouter Joosen. “Federated Access Control
and Workflow Enforcement in Systems Configuration”. In: Proceedings of the
23rd Conference on Large Installation System Administration. Leuven, Belgium:
DistriNet, Dept. of Computer Science, KU Leuven, 2009. url: https://www.

usenix . org / legacy / event / lisa09 / tech / full _ papers / vanbrabant . pdf

(visited on 04/03/2018).
[64] Gavin Wood. Ethereum Yellow Paper: a formal specification of Ethereum, a pro-

grammable blockchain. 2014. url: https://ethereum.github.io/yellowpaper/

paper.pdf (visited on 02/25/2018).

94

https://www.otrs.com/wp-content/uploads/2017/11/019-EN_Comparison_OTRS_6.pdf
https://www.otrs.com/wp-content/uploads/2017/11/019-EN_Comparison_OTRS_6.pdf
https://iota.org/IOTA_Whitepaper.pdf
https://iota.org/IOTA_Whitepaper.pdf
https://puppet.com/docs/puppet/5.4/lang_summary.html
https://puppet.com/docs/puppet/5.4/lang_summary.html
https://puppet.com/docs/puppet/latest/man/apply.html
https://puppet.com/docs/
https://www.forbes.com/sites/realspin/2016/08/30/the-future-of-insider-threats/
https://www.forbes.com/sites/realspin/2016/08/30/the-future-of-insider-threats/
https://arxiv.org/pdf/1709.06921.pdf
https://www.usenix.org/legacy/event/lisa09/tech/full_papers/vanbrabant.pdf
https://www.usenix.org/legacy/event/lisa09/tech/full_papers/vanbrabant.pdf
https://ethereum.github.io/yellowpaper/paper.pdf
https://ethereum.github.io/yellowpaper/paper.pdf

FIN.1

1For now.

	Introduction
	Motivation
	Goals
	Outline

	Background
	Configuration Management
	Concept
	Challenges
	Approaches

	Multi-Party Authorization
	Distributed Ledger Technology
	Concept
	Approaches
	Implementations

	Analysis
	Basic Problem
	Requirements
	Multi-Party Authorization
	Authentication
	Accountability and Non-Repudiation
	Traceability
	Tamper-Resistance
	Locking
	Resilience
	Automation
	Interoperability

	Design Choices
	Process Design
	Distributed Ledger Technology
	Identity Management
	Configurations

	Related Work
	Design
	Overview
	Configuration Management Process
	Propose
	Approve
	Retrieve
	Acknowledge

	Subjects
	Proposer
	Approver
	Target

	Objects
	Configuration Request
	Policies

	3-Tier Architecture
	Presentation Tier
	Logic Tier
	Data Tier

	Conclusion

	Implementation
	Overview
	Deployment
	Tiers
	Interactions
	Presentation Tier
	Logic Tier
	Data Tier

	Evaluation
	Interoperability
	Identity Management
	Policy Evaluation
	Configuration Management
	Reusability

	Performance
	Latency by Multi-Party Authorization
	Latency by Distributed Ledger Technology

	Security
	Fulfillment of Security Requirements
	Policy Model
	Vulnerability Management
	Auditing

	Limitations
	Security Risks of Policies
	Collusion of Participants
	Compromisation of Targets
	Consistency, Availability and Partition Tolerance

	Trade-Offs
	Future Work
	Semantic Interpretation of Configurations
	Emergency Cases

	Conclusion
	Appendix
	Implementation
	Structure of Go Packages

	Bibliography

