
Department of Informatics
Technical University of Munich

TECHNICAL UNIVERSITY OF MUNICH

DEPARTMENT OF INFORMATICS

MASTER’S THESIS IN AUTOMOTIVE SOFTWARE ENGINEERING

A Trustworthy Lifecycle Management System for Student
Research Projects

Thomas Mauerer

Technical University of Munich
Department of Informatics

Master’s Thesis in Automotive Software Engineering

A Trustworthy Lifecycle Management System
for Student Research Projects

Ein vertrauenswürdiges Management System für
den Lebenszyklus studentischer

Forschungsarbeiten

Author: Thomas Mauerer
Supervisor: Prof. Dr.-Ing. Georg Carle
Advisor: Dr. Holger Kinkelin

Marcel von Maltitz, M.Sc.

Date: June 15, 2018

I confirm that this Master’s Thesis is my own work and I have documented all sources
and material used.

Garching, June 15, 2018
Location, Date Signature

Abstract

For a chair, offering, performing, grading and finally filing student theses is associated
with a considerable organizational effort. That is mainly due to the high number of
different tasks and parties that are all involved into each single thesis and that need to
work together in a coordinated way and synchronized in time. To support all involved
stakeholders, it would be helpful to have a tool that automates as many tasks - related
to the management of theses - as possible and assures that no tasks are left behind.
Beside of the functional aspects that are covered by such tool, it is required to focus on
non-functional requirements like privacy and security, since that tool has to deal with
critical data like final grades and personal information.

In this Master’s Thesis we describe the development of Chairman which is our solu-
tion for the demanded tool. We go through the entire process of software engineering.
We start by analyzing the functional and non-functional requirements as accurately
as possible, develop a suitable solution in theory and implement the software product
afterwards. Finally, we evaluate Chairman and compare it with similar systems.

The first contribution of this Master’s Thesis is a working version of the Chairman
management system. The solution features a carefully designed software architecture
which is essential to fulfill the requirements, especially the non-functional requirements.
The architecture is based on microservices which let us physically separate critical from
non-critical data. This is useful for creating a privacy-preserving system that provides
data protection even in cases when an attacker has got access to the database. Apart
from that, microservices help on structuring the entire application in a way that allows
easy extensibility and maintainability.

Our second contribution is an accountability mechanism that shall prevent data misuse
and show who is responsible for several actions. The mechanism extracts actions from
the individual Chairman microservices, assigns these actions to responsible persons and
generates a stream of events in a well-defined format. Currently, our accountability
mechanism uses a MongoDB database for persisting these Chairman events. However,
we show how increased requirements concerning non-modifiability and non-erasability of
these accounting information can be reached by connecting our accounting mechanism
to a blockchain-based backend.

Zusammenfassung

Für Lehrstühle an der Universität stellt es einen beträchtlichen organisatorischen Auf-
wand dar, Studienarbeiten auszuschreiben, durchzuführen, zu benoten und anschließend
einzureichen. Hauptsächlich liegt dies daran, dass Studienarbeiten aus vielen einzelnen
Aufgaben bestehen und mehrere unterschiedliche Personen beteiligt sind, welche alle
aufeinander abgestimmt werden müssen. Um das Management zu vereinfachen, wäre
es hilfreich, ein entsprechendes Tool zu haben, das erstens so viele Aufgaben wie mög-
lich automatisiert und zweitens gewährleistet, dass keine Aufgaben vergessen werden.
Neben den funktionalen Aspekten eines solchen Tools, muss ein spezieller Fokus auf
nicht-funktionale Anforderungen wie Datenschutz und Angriffssicherheit gelegt werden,
da das Tool mit vertrauensvollen Daten umgehen muss. Beispiele für vertrauensvolle
Daten sind Abschlussnoten und persönliche Daten.

Diese Masterarbeit beschäftigt sich mit der Entwicklung eines solchen Managementsys-
tems namens Chairman, indem einmal der komplette Zyklus des Software Engineerings
durchlaufen wird. Als erstes werden konkrete Anforderungen hergeleitet. Danach wird
das System in der Theorie entwickelt und entworfen und anschließend in der Praxis um-
gesetzt. Zum Schluss wird ausgewertet, ob bzw. wie gut Chairman die Anforderungen
erfüllt. Zudem wird es mit ähnlichen, bestehenden Systemen verglichen.

Der erste Beitrag dieser Masterarbeit ist eine lauffähige Version von Chairman. Das ent-
wickelte System hat eine intelligent entworfene Softwarearchitektur, welche die Erfüllung
der meisten Anforderungen, insbesondere der nicht-funktionalen ermöglicht. Konkret
basiert die Architektur auf Microservices. Dadurch lässt sich eine saubere Trennung
zwischen kritischen und nicht-kritischen Daten erreichen. Dies ist notwendig, um Da-
tenschutz sogar gewährleisten zu können, falls ein Angreifer Zugang zur Datenbank
hat. Des Weiteren sind Microservices hilfreich zur Strukturierung des Gesamtsystems,
wodurch Erweiterbarkeit und Wartbarkeit des Systems deutlich verbessert werden.

Der zweite Beitrag dieser Masterarbeit ist die Entwicklung eines Mechanismus zum Auf-
zeigen von Verantwortlichkeiten und zum Verhindern von Datenmissbrauch. Im Eng-
lischen wird hierfür der Begriff Accountability verwendet. Der Mechanismus zeichnet
getätigte Nutzeraktionen auf, stellt einen konkreten Bezug zum entsprechenden Nutzer
her und speichert diese Informationen in einem zuvor definierten Format. Aktuell wird
eine MongoDB Datenbank zur Speicherung der Informationen verwendet. Allerdings
wird auch gezeigt, dass man mit Hilfe einer Blockchain höheren Anforderungen bzgl.
Unveränderbarkeit und Nicht-Löschbarkeit dieser Informationen gerecht werden kann.

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Approach & State of the Art . 1
1.3 Goals & Research Questions . 2
1.4 Methodology & Structure . 4

2 Background 5
2.1 Privacy & Security . 5
2.2 Technologies . 8

2.2.1 OAuth 2.0 . 8
2.2.2 Hyperledger Fabric . 9

2.3 Frameworks . 11
2.3.1 Spring Boot . 11
2.3.2 Angular . 12

3 Requirements Engineering 13
3.1 Functional Requirements . 13

3.1.1 Stakeholders in Chairman . 13
3.1.2 Lifecycle of a Thesis . 19

3.2 Non-Functional Requirements . 22

4 Analysis 25
4.1 Analysis of the Software Architecture . 25

4.1.1 Terminology . 25
4.1.2 First Approach (Monolithic) . 26
4.1.3 Refinement (Microservices) . 29

4.2 Authorization with OAuth 2.0 . 32
4.3 Accountability Analysis . 34

4.3.1 Definition of Chairman Events 34
4.3.2 Processing of Chairman Events 36

4.3.3 Database Solution . 37
4.3.4 Blockchain-Based Solution . 38

5 Design 41
5.1 Chairman Design . 41

5.1.1 Microservices . 41
5.1.2 Technologies . 45

5.2 Graphical Design . 46

6 Implementation 47
6.1 Overview . 47
6.2 Implementation Details . 49

6.2.1 Microservices . 49
6.2.2 Angular SPA . 60

6.3 Deployment . 61

7 Evaluation 63
7.1 Implementation of the Functional Requirements 63
7.2 Observance of the Non-Functional Requirements 64

7.2.1 Privacy, Security & Accountability 64
7.2.2 Flexibility, Extensibility & Maintainability 66
7.2.3 Usability . 66
7.2.4 Performance & Availability . 67

8 Related Work 69
8.1 Architectural Relation: Netflix . 69
8.2 Functional Relation . 70

8.2.1 Alfresco . 70
8.2.2 Campus Online . 72

9 Conclusion 73

A Abbreviations 75

B Graphical Mockups 77
B.1 Student Mockups . 77
B.2 Staff Member Mockups . 80
B.3 Professor & Secretary Mockups . 83

Bibliography 87

II

List of Figures

3.1 Lifecycle of a Student Thesis . 20

4.1 Monolithic Architecture . 27
4.2 Microservices Architecture . 31
4.3 OAuth 2.0 in Chairman . 33
4.4 Chairman Event . 35
4.5 Monitoring Service in Chairman . 36
4.6 Blockchain Infrastructure . 38

List of Tables

2.1 Security Patterns . 7
2.2 Transaction Flow in Hyperledger Fabric 10

3.1 Functional Requirements of Chairman 21
3.2 Relevance of the Functional Requirements 21
3.3 Non-Functional Requirements of Chairman 24

4.1 Authorization Code Grant Type Protocol 33
4.2 Actions in Chairman . 35

5.1 Dependency Structure Matrix of the Microservices 44
5.2 All Microservices of Chairman . 45

6.1 Spring Boot Applications Lookup Table 48

Chapter 1

Introduction

1.1 Motivation

Every year, a high number of students write their final papers (i.e. Bachelor/Master
theses) at universities. For instance, only at the chair of Network Architectures and
Services the number is already about 100 student theses per year. Apart from the
students themselves, there are many parties involved in a thesis and the organizational
management is associated with a high effort. That is mainly due to the high number
of different tasks that all need to be done in order to finish a thesis successfully. For
example, staff members need to write and publish theses descriptions, the secretary
needs to take care of registering a student, deadlines need to be observed, etc. Further-
more, students need to be able to download templates and publish their final results at
the chair’s website. For a smooth running, it is required that all involved parties work
together in a coordinated way and synchronized in time.

1.2 Approach & State of the Art

In order to handle the complexity of managing student theses, it would be helpful to
have some kind of tool that basically does three things: Firstly, it should automate
as many tasks as possible because that would drastically reduce the workload of the
individual parties. Secondly, it should centralize the management of theses. This would
simplify the cooperation of all involved parties, so that they can work together in a
synchronized way. Thirdly, it should be able to guarantee that no tasks are left behind.

Chapter 1: Introduction

Dr. Holger Kinkelin has already implemented a prototype - called Chairman - which is
running for almost three years now. Chairman is written in Python and is based on a
central subversion repository to which all involved parties have access. Due to privacy
reasons, each student is assigned a separated folder. Checking out other paths than
that specific folder is only possible for students if it has been explicitly allowed. Several
jobs, like e.g. sending emails, are already automated in Chairman.

A positive side effect of subversion is its accountability mechanism. That is because
subversion stores a version history which gives information about what changes were
made by which person at which time. This is a useful feature and is for example
required to guarantee transparency in the grading. If the final grade differs from the
grading proposal, it shall be accountable where the difference has come from.

However, since it is only a prototype, the current version has also many drawbacks. The
biggest problem is that Chairman is not able to guarantee that no tasks are left behind
because it does not cover the entire lifecycle of a thesis. The result is that use cases and
tasks respectively are missed. The complete registration process, which requires to fill
out registration documents and contracts, is for instance not included in Chairman at
all.

Secondly, there are some technical and general issues in the concrete implementation of
Chairman. One problem is subversion itself. The documentation of subversion states
that it is a "common misuse to treat [subversion] as a generic distribution system"
[42] which is basically its main job in Chairman. Apart from that, most students are
familiar with git, but not really with svn and many people have complained about
the stability of subversion under Linux. Another problem is that Chairman does not
utilize any database, but only stores flat files. This quickly becomes disorganized and
also limits the possibilities in some cases. Probably because there is no graphically
appealing user interface, some parts of Chairman are used only rarely by students and
staff members. An example of that is tracking the steps that are required for finishing a
thesis successfully, which currently requires to manually update a text file and commit
the changes.

1.3 Goals & Research Questions

We see that Chairman has been a good approach, but there are several improvements
required in order to make it a real management system for student theses. However,
instead of trying to enhance the current version, we start from scratch and focus on
scientifically sound methodologies this time. The ultimate goal is to develop a stable

2

1.3 Goals & Research Questions

and easily usable application that covers the entire lifecycle of a thesis, helps the stake-
holders in all situations and is completely platform independent. As a side effect of this,
Chairman acts as a red thread that tells the stakeholders which tasks need to be done
in order to finish a thesis successfully.

To achieve all these goals, it is not appropriate to start implementing directly, but rather
go through the entire process of Software Engineering and have a scientific foundation.
For this purpose, we want to explicitly answer the following scientific questions beside
of developing the actual system.

1. RQ1: How to make Chairman secure and privacy preserving?
Security and privacy are the main focus of this Master’s Thesis. However, since se-
curity and privacy are often contradicting to usability, we investigate this research
question only up to a point that is practically feasible. One should not forget that
the ultimate goal is to develop a system that is usable in production. At least,
we want to achieve that it is impossible for unauthorized persons to gain access
to private data or change it. This means that Chairman needs to clearly regulate
authorizations of different stakeholders and guarantee that each stakeholder can
only do what they are allowed to.

2. RQ2: How to address accountability in Chairman?
Since subversion is no longer used, we need to find another way to address ac-
countability in Chairman. Independently on how this mechanism will look like,
it must be guaranteed that all critical actions can be assigned to a concrete user
and it is not possible to deny an action.

3. RQ3: How to make Chairman flexible, extensible and maintainable?
At the moment, there are only a few stakeholders known. As more stakeholders or
at least use cases might be coming in the future, Chairman has to be implemented
in a flexible way that allows easy extensibility. Doing maintenance work must be
possible even for fellow students that are not familiar with all the internal details
of Chairman.

These research questions are continued and extended with more details in connection
with the non-functional requirements of Chairman in Section 3.2.

3

Chapter 1: Introduction

1.4 Methodology & Structure

According to the way Chairman is developed, the main part of this thesis follows the
Waterfall Software Lifecycle Model. Even though this model is often described as
outdated and superseded by agile methodologies, we still use it for the development of
Chairman. This is because agile models usually require a team, whereas Chairman is
basically a one-person project.

In the literature one can find many different variants of the Waterfall model. Some
variants have five, whereas others have six phases. Winston W. Royce, who is often
considered to be the founder of the Waterfall model [25], even had seven phases in the
original draft [37]. However, basically they are all the same: all models start with defin-
ing the requirements of the software/system, followed by the analysis and design
phase. Afterwards, the software is implemented, tested and maintained [37].

Requirements are described in Chapter 3. By analyzing the different stakeholders of
Chairman and the lifecycle of a thesis, we can derive functional and non-functional
requirements.

The analysis phase is part of Chapter 4. In this chapter we develop a solution that is
able to fulfill the requirements. We analyze different possibilities and stay as abstract
as possible in this phase.

Chapter 5 describes the design phase. Here, we become concrete and define exactly how
the solution needs to look like.

Chapter 6 describes the practical part of this Master’s Thesis and documents what has
been implemented.

Testing and maintaining have not received their own chapters, but are part of the eval-
uation which is described in Chapter 7.

Before the main part starts, Chapter 2 has been inserted which describes necessary
background information.

Finally, there is a chapter about related projects (Chapter 8) and the conclusion of this
Master’s Thesis (Chapter 9).

4

Chapter 2

Background

This chapter provides background information that is required for following the discus-
sions in the later parts of this Master’s Thesis.

2.1 Privacy & Security

Privacy and security are both terms with no clear definition. Article 7 of the European
Charter of Fundamental Rights states that everyone "has the right to respect for his
or her private and family life, home and communications" [19]. In our opinion, this
article is a good starting point for defining privacy in general, but is rather useless
when dealing with a data management system like Chairman. Article 8, which adds
the "right to the protection of personal data" [19], is better suited. In addition to that,
there is the General Data Protection Regulation (GDPR) which has come into effect
in Europe on May 25, 2018 [22]. Article 5 of the GDPR also uses the term personal
data and regulates principles related to processing of that data [22]. Which kind of
data is meant by that term is, however, not defined accurately in both documents.
Personally identifiable information, like name, age, address, etc. are often seen as data
that requires protection [17]. However, this is not enough in our estimation: the final
grade of a student, for instance, is something that does not identify a person, but
still requires protection. For this reason, we rather talk about privacy-relevant data or
critical data in this Master’s Thesis.

Chapter 2: Background

Security is often named in the same context as privacy, but it is important to keep
the two terms separated. Security concerns preventing attacks and is in fact more far-
reaching than privacy: indeed, security mechanisms should be used to make a system
privacy-preserving (see GDPR Art. 5, Par. 1 (f) [22]), but security mechanisms can also
have the objective to prevent attacks not aimed at stealing or changing critical data.

Over the years, many different principles and standards have been developed that should
be implemented in order to make a system secure and privacy-preserving. To target
privacy, one should at least implement the so-called Privacy Protection Goals which are
unlinkability, transparency and intervenability [36].

Unlinkability means that it must not be possible to link privacy-relevant data of one
domain with data of a different domain [17]. First of all, this can be achieved by
avoiding critical data at all. This means that critical data should only be collected if
really necessary and should be deleted afterwards [17]. Legally, this is confirmed by
GDPR Art. 5, Par. 1 (b,c) [22]. Secondly, by separation of contexts which could be a
physical separation or at least the usage of different identifiers [17]. Last but not least,
by anonymizing critical data [17] (see GDPR Art. 5, Par. 1 (e) [22]).

Transparency is a prerequisite for making a system verifiable and allow a user to un-
derstand why and when critical data is processed [36]. This is achieved with clear
documentations and explanations [17]. Even the source code of an application could be
made open source to allow verification [17]. Apart from that, logging and reporting can
help to make a system transparent [17].

Intervenability guarantees that users can always intervene processing of critical data
[17]. This is achieved by giving users the possibility to delete personal data of them-
selves, make corrective measures or stop data processing at all [17]. Changing specific
settings must be easily possible and not be hidden somewhere in the application [17].

As the pendent to the Privacy Protection Goals, there are the well-known Security
Protection Goals confidentiality, integrity and availability [36], which should be
implemented in order to make a system secure. However, we think that these goals are
too high-line and are not really helpful in practice. Yoder and Barcalow have come up
with several security patterns which are way more tangible in our opinion [44]. The
most important patterns (taken from [44]) are listed and explained in Table 2.1.

6

2.1 Privacy & Security

Making a system hundred percent secure and privacy-preserving is not achievable in
practice. If one can show that at least the introduced protection goals and security pat-
terns are implemented in a meaningful way, security and privacy are sufficiently covered.

Pattern Name Explanation
Single Access Point Entry to an application should be limited to a single point.

This makes it easier to secure a system since all users and
attackers respectively need to pass the single access point and
have no other option to get into the system.

Check Point Security policies may change from time to time. Hence, there
should only be one part in an application that is responsible
for checking the security policies. This makes it easier to re-
act to changing policies. An example of such policy is which
permission a normal user has in the application.

Roles Securing a multi-user application is hard to achieve if all users
have different permissions as to what they can do in the ap-
plication. Hence, all users should be organized into groups.
Security policies should then apply to an entire group, rather
than to individual users.

Session All parts of an application need to have a way to check the
permissions of the currently active user. Hence, there should
be a globally accessible object in which information about the
user is stored. This object could be created by the check point
and passed around to all parts when needed.

Limited View Users should not see more than they have the permission to.
The decision what a user can see should depend on the user’s
role which is stored in the session object.

Secure Access Layer A system is only as secure as its weakest link. Hence, an ap-
plication should be built around existing security mechanisms
that are at best proven to be secure. When communicating
over a network for example, one should use a TLS-secured
connection.

Table 2.1: Security Patterns

7

Chapter 2: Background

2.2 Technologies

This section describes background information about technologies that are relevant for
this Master’s Thesis. The first part is about an authorization framework called OAuth,
whereas the second part is about a framework for private/permissioned blockchains.

2.2.1 OAuth 2.0

OAuth 2.0 is a standardized authorization framework that mitigates a serious downside
of a classical client-server authentication [32]. The problem of the classical approach is
that a client needs to know the user credentials in order to access protected resources
on the server [23]. While this is fine for clients that belong directly to the application,
it is inadequate for third-party clients. That is because one should never share user
credentials with a third-party since this means that the third-party is able to operate
clients on their own without further control of the user. OAuth eliminates this disad-
vantage by introducing an access token that allows a client to access several resources
on the server, while the user credentials are never shared with the client [23].

This is achieved by separating between the role of the human user and the client at the
outset. A client can at most have the same authorizations as the human user, but never
more. All in all, OAuth specifies the following roles [23]:

1. Resource Owner: The entity - usually a person - that grants access to protected
resources. If the resource owner is a human, it is also called end-user.

2. Resource Server: The server that hosts the protected resources.

3. Client: The application that requests the protected resources with the resource
owner’s authorization.

4. Authorization Server: The server that authenticates the resource owner, ob-
tains authorization and issues access tokens to the client.

The way a client retrieves an access token from the authorization server can differ from
use case to use case. The specification defines the following four authorization grant
types [23]:

1. Authorization Code:
This is the most popular grant type. After authenticating themselves, a resource
owner retrieves a code from the authorization server that is transferred to the
client. The client then authenticates itself at the authorization server and uses
the code in order to obtain an access token.

8

2.2 Technologies

2. Implicit:
This is a simplified version of the authorization code type. Instead of retrieving
a code from the authorization server, the resource owner directly issues an access
token for the client. While this grant type is easier to achieve in many cases,
it has the downside that the client does not have to authenticate itself at the
authorization server.

3. Resource Owner Password Credentials:
In this grant type the client uses the resource owner’s credentials directly in order
to obtain an access token which means that the credentials have to be shared
with the client. This grant type should only be used if the client belongs to the
application and if there are no other options available.

4. Client Credentials:
In this grant type the client uses its own credentials in order to obtain an access
token. This is used in situations where the client itself is the resource owner or
when an arrangement with the authorization server and the resource owner has
been previously made.

Examples of OAuth providers are Facebook and Google. Due to these providers, third
party applications do not compellingly have to require a user to create an account.
Instead, existing Facebook or Google accounts can be used directly. Another use case
is to utilize OAuth in a distributed application where the individual components are
stateless and do not share a session that can be used for storing the user information.
With appropriate measures it is even possible to implement a Single Sign On mechanism
in the distributed application.

2.2.2 Hyperledger Fabric

Hyperledger Fabric is an open source framework for operating private and permissioned
blockchains. These kind of blockchains have the property that the participants are
known and have a clear identity. Futhermore, only authorized entities are capable of
writing data into the blockchain. The opposite are public blockchains which are for
example known from Bitcoin and Ethereum. In this type of blockchains anybody can
participate. [4]

A blockchain itself is a data structure that consists of blocks which are linked together
to a chain through several hash values. It is not possible to manipulate or delete blocks
without destroying the link to subsequent blocks. The blockchain technology requires a
distributed network where the individual nodes store a copy of the blockchain. [12]

9

Chapter 2: Background

The way the nodes agree on a common order of blocks is called consensus algorithm [12].
Many public blockchains rely on the so-called proof-of-work algorithm which requires
the nodes to solve a cryptographic puzzle [4]. In this point Hyperledger Fabric is ad-
vantageous since it uses a much more simple consensus algorithm. This basically works
by having a special entity - called orderer - which specifies the order and broadcasts
this information to all participants of the network [4].

Hyperledger Fabric defines three different roles for nodes in the network: clients, peers
and orderer. Details about the roles and the transaction flow in general can be found
in [4] or in the online documentation1. Somewhat simplified, the transaction flow works
as described in Table 2.2 [4]:

(1) A client sends a transaction proposal to a subset of all peers, called endorsers
or endorsing peers. The endorsement policy states which peers may act as
endorsers and how many endorsements are required for the transaction to be
accepted by the network.

(2) The endorsing peers execute the transaction proposal, put the results2 in a
proposal response and send that proposal response back to the client. The
results are called endorsements and are digitally signed by the peers with their
private keys.

(3) After the client has received enough endorsements, so that the endorsement
policy is satisfied, it creates the transaction, which in turn includes the en-
dorsements, and sends it to the orderer node.

(4) The orderer node takes the received transactions of all clients and brings them
into an arbitrary order. Multiple transactions are then packed together in a
block which is broadcast to all peers in the network.

(5) Finally, the peers validate the transactions inside the received block, and if
valid, append that block to their local copy of the blockchain. In particular,
these checks validate whether the endorsement policy is fulfilled.

Table 2.2: Transaction Flow in Hyperledger Fabric

1 https://hyperledger-fabric.readthedocs.io/en/release-1.1/

2 readset and writeset

10

https://hyperledger-fabric.readthedocs.io/en/release-1.1/

2.3 Frameworks

2.3 Frameworks

This section describes background information about frameworks which are used in the
practical part of this Master’s Thesis.

2.3.1 Spring Boot

Spring [40] in general is a Java framework which simplifies Java development in many
situations and is quite popular for being used in web development. Spring Boot [39] in
turn is a project within the Spring framework that enables faster results. This is for
instance achieved by completely omitting xml configuration files. Instead, Spring Boot
automatically configures projects based on annotations and import statements [39].

In contrast to classical Java web development, Spring Boot does not produce war files by
default, but instead fat jar files which include all required dependencies. This is conve-
nient because one can simply start applications by typing java -jar FILE_NAME.jar in
the command line and does not have to tinker with downloading dependencies, setting
up the execution environment and more. [39]

Spring Boot applications can be built with either Maven or Gradle. Apart from that,
Spring Boot includes a command line tool which is helpful for prototyping or setting up
new projects. [39]

The following listing (Listing 2.1) shows the famous hello world example implemented in
Spring Boot. The getIndex()method is mapped to the path "/" due to the @GetMapping
annotation. The returned string is directly rendered in the browser.

1 import [...]
2
3 @SpringBootApplication
4 public class DemoApplication {
5 @RestController
6 public static class IndexController {
7 @GetMapping ("/")
8 public String getIndex () {
9 return "Hello World";

10 }
11 }
12 public static void main(String [] args) {
13 SpringApplication .run(DemoApplication .class , args);
14 }
15 }

Listing 2.1: Hello World Example in Spring Boot

11

Chapter 2: Background

2.3.2 Angular

Angular [5] is a web framework for developing frontends and client applications in Type-
script which is a programming language based on JavaScript. Angular is the successor
of AngularJS and is developed by Google Inc. [7].

Angular enables a developer to build completely modular client applications by differ-
entiating between modules, components and services. Due to dependency injection, one
never has to instantiate services directly, but instead can simply let Angular inject the
services whenever needed. [5]

Another useful tool is the Angular command line tool, or short Angular CLI [6]. It
can be installed with npm and can be used in order to bootstrap Angular projects or
generate Angular modules, components and services. Apart from that, it can build the
application and run unit tests.

Angular is quite popular for Single Page Applications (SPA) which solve a problem
of traditional web applications. That is the rather bad user experience of those tradi-
tional applications since nearly all user actions require a complete site to be loaded. In
turn, this means that a user has to accept a high waiting period before the new site is
rendered. SPAs try to overcome this problem by loading all resources directly at the
start and only exchanging page components as needed. Usually, the initial request loads
an index.html file together with some JavaScript and CSS bundles. The entire page is
never reloaded. Only content, often in json format, is loaded afterwards. [27]

The advantage of this are short loading times which enable a fluid user experience.
However, the initial request in turn lasts longer and search engines have problems with
dynamically loaded contents. Hence, SPAs might have a worse page rank than tradi-
tional web applications. [27]

12

Chapter 3

Requirements Engineering

According to the Software Lifecycle Model, the first phase is about defining the require-
ments. The goal of this phase is the Requirements Specification which consists of
both, functional and non-functional requirements. Initially, we have agreed on develop-
ing the new Chairman as a web application.

3.1 Functional Requirements

We start this chapter with an analysis of the stakeholders and the thesis lifecycle in order
to find out which functional requirements need to be addressed by the new Chairman.
Non-functional requirements are analysed in Section 3.2.

3.1.1 Stakeholders in Chairman

In this section we identify the stakeholders of Chairman and find out which tasks need
to be done by the respective stakeholders. With this knowledge, we can then formulate
the functional requirements (FR) of Chairman.

3.1.1.1 Students

The main stakeholders are the students who want to write their thesis at the chair.
Basically, there are four tasks that need to be done by the students:

1. Fill out contracts and registration documents
Before a thesis can be written at all, a student needs to sign a contract with the
chair. This contract regulates for instance that the chair is allowed to use and

Chapter 3: Requirements Engineering

utilize results of the thesis and that the final result can be published. Furthermore,
a registration document needs to be handed in at the Infopoint in the case of a
study program that is part of the department of Informatics.

2. Manage thesis
The main task is to work on the thesis and submit the final result before the
deadline. There are several formalities that need to be observed when handing in
a thesis. These are either formalities postulated by the Technical University of
Munich itself, or by the chair. An example is the minimum length of a thesis or
the way the title page needs to be formatted. For that reason, Latex templates
should be used that fulfill the formal requirements.

3. Stay in contact with the advisors
It is required to have meetings with the advisors of the thesis on a regularly basis,
e.g. once per week. In these meetings the student needs to show the progress that
has been achieved since the last meeting. In return, advisors give feedback and
help on finishing the thesis successfully.

4. Give talks and publish talk slides
This task differs from chair to chair. At least at the chair of Network Architectures
and Services, it is required to give one talk in the midst of the thesis and one after
the final submission. Apart from the professor, some students and members of
the chair might be present at these talks. Furthermore, an introduction talk
with the professor and the advisors must be held. For all of these talks, it is
required to make an appointment first. Apart from that, students need to prepare
presentation slides - using a mandatory template - and publish them afterwards.

According to the four tasks mentioned above, we can derive four functional requirements
for Chairman:

• FR 1: Provide downloads
Chairman must enable a student to download several documents, like How-To’s,
Guidelines and Latex templates for talks and the final thesis. This way, it can
be guaranteed that formal requirements are fulfilled and the student gets familiar
with the additional formalities that need to be observed. Furthermore, it should
be possible to download pre-filled contracts and registration documents, so that
these documents do not have to filled out by hand.

• FR 2: Inspect progress, next steps and receive reminder mails
Chairman must offer the possibility to inspect the current progress, the next steps
and upcoming events, like talk dates. This ensures that there are no forgotten

14

3.1 Functional Requirements

tasks and a student is able to finish the thesis successfully. At minimum, this must
be text-based, but a visual illustration should be preferred. Moreover, Chairman
should send automatically generated emails reminding of deadlines and talk dates.

• FR 3: Manage exchange between advisors and student
It must be possible to capture decisions, like appointments which have been made
between stakeholders, in order to avoid misunderstandings at a later time. Apart
from that, advisors should be able to select theses that might be interesting for
specific students and share the respective results with those students. Optionally,
Chairman could further provide some kind of chat functionality that can be used
for exchanging feedback and comments between students and advisors.

• FR 4: Upload results
Chairman must enable a student to upload and access his written results which
are talk slides and the final result. As there might be additional research results
that should be published as well, it should be further possible to upload a zip
folder with arbitrary content.

3.1.1.2 Staff Members

The second stakeholders of Chairman are staff members. The tasks that need to be
done depend on whether a staff member is an advisor of a thesis or not. Task 1 and 2 in
the following need to be done by all staff members, whereas tasks 3-5 are only relevant
for theses advisors.

1. Issue student theses
Usually, a student thesis starts with a staff member issuing a new thesis descrip-
tion. The topic of the thesis has to be consulted with the professor of the chair.
The description is then posted at the chair’s blackboard and the website. After-
wards, students can apply for the thesis and get in contact with the respective
staff member.

2. Supply documents for students
As already known, students need to observe several formalities. These formalities
are partially described in documents like How-To’s and Guidelines. Apart from
that, there are Latex templates for talk slides and the thesis itself that fulfill the
formal requirements. Therefore, staff members or maybe specially commissioned
persons need to supply these documents and templates for the students.

15

Chapter 3: Requirements Engineering

3. Make and observe appointments
A task specifically relevant for advisors is to be the link between students and
the professor. For instance, it is required to get in contact with the professor
and make appointments, like talk dates. These dates must then be discussed and
communicated with the student and observed.

4. Stay in contact with the student
This task is the counterpart to a task already mentioned in Section 3.1.1.1. Advi-
sors have to meet with the student on a regular basis, give feedback on the current
results and help on finishing the thesis successfully.

5. Grade the student’s results
The final grade of a thesis is made by the professor. However, advisors are usually
more involved into a thesis than the professor since they have regular meetings
with the student and are informed about the progress of the thesis. Furthermore,
they can tell how well the student has worked on the thesis, for example whether
he has always been prepared in the meetings or whether he has been motivated at
all. Hence, the last task of advisors is to write a grading proposal that is handed
over to the professor.

According to the five tasks mentioned above, we can derive three further functional
requirements that are not already part of the requirements mentioned in Section 3.1.1.1.

• FR 5: Create/delete and update theses
Chairman must offer a possibility to create, update and delete student theses.
Formal thesis information that needs to be filled in is the title of the thesis, the
type and the advisors. After a thesis is assigned to a student, the name of the
student has to be captured as well. Apart from that, it must be possible to update
the thesis information with talk, registration and submission dates. Automatically
generating pdf postings for the blackboard/website is not required, but at least it
should be possible to upload existing postings.

• FR 6: Upload documents relevant for students
This functional requirement is the counterpart to FR 2. Since documents like How-
To’s, Guidelines and Latex templates can vary over time, it is not reasonable to
treat these documents as static files in Chairman, but instead offer a possibility
to upload new versions and exchange the existing ones.

• FR 7: Write/inspect grading proposal
Chairman must enable advisors to generate, inspect and update grading proposals
by filling out several forms in the application interface.

16

3.1 Functional Requirements

FR 2, FR 3 and FR 4 must also be fulfilled in Chairman from the perspective of staff
members. In particular, advisors need to be able to upload results, as well. This is
relevant when, for instance, student results are already available, but the student has
left the university before finishing the thesis. Apart from that, advisors must have access
to the uploaded results of students.

3.1.1.3 Professor & Secretary

The third stakeholders of Chairman are the professor and the secretary. Even though
they have to deal with different business in general, these two stakeholders can be seen
as one. That is because the secretary is the professor’s assistant and should therefore
have the same possibilities in order to take over some work. The tasks can be described
as follows:

1. Manage formalities like contracts and registration documents
This task is mainly performed by the secretary. Contracts with students need to
be prepared for being signed by the professor and registration documents must be
handed in at the Infopoint. Furthermore, signed documents are usually scanned
by the secretary for the reason of having a digital reference.

2. Make and observe appointments
This is the counterpart to a task already mentioned in Section 3.1.1.2. The pro-
fessor needs to make appointments, like talk dates with the advisors. In these
talks he needs to be present, give feedback and make improvement proposals for
the thesis.

3. Grade the student’s results
The final grade of a thesis is made by the professor. However, advisors are required
to hand in a grading proposal that the professor can use as the foundation for
submitting the final statement.

From the three tasks we can derive only one more functional requirement for Chairman
that has not been pointed out before yet. However, we can also infer one additional
requirement.

• FR 8: Upload scanned documents
Exclusively for the secretary Chairman must offer a possibility to upload scanned
documents. These documents can for instance be signed contracts or grading
statements which should be managed by Chairman.

17

Chapter 3: Requirements Engineering

• FR 9: Finish thesis
Chairman must offer a possibility to mark a thesis as finished. From that moment
on, it must not be feasible to upload results or change thesis information anymore.
This functional requirement cannot directly be derived from the tasks of the pro-
fessor and the secretary. However, we think it is best mentioned in this context
because a student thesis usually ends with the grading, which is the professor’s
task.

FR 2, FR 4, FR 5 and FR 7 must also be fulfilled from the perspective of professor and
secretary. However, FR 4 and FR 5 are only partially required. This means that there
is no need to upload any student results, but instead access the uploaded documents
and it is only required to update talk dates, but nothing else.

3.1.1.4 Systems of the Chair

Systems or tools of the chair, like the website or the Talk-Recording tool can be seen as
the last stakeholder of Chairman for the moment. Perhaps in the future, new stakehold-
ers or at least new systems might be coming. The task of these systems can currently
be combined:

Access or publish student results
After finishing a student thesis, the results are published at the chair’s website.
At the moment, this is exclusively the case for the final thesis. However, in some
situations it could make sense to publish talk slides, as well. The Talk-Recording
tool on the other hand does not publish any results, but instead accesses them
and makes them available at the presentation laptop. Furthermore, we can think
of some terminal program in the future that enables the user to inspect the results
directly from the command line.

From this task we can derive the last functional requirement of Chairman:

• FR 10: Make student results available
Chairman must provide a technical interface that gives other systems easy access
to student results, as well as parts of the formal theses information. This applies
to the name of the student, the name of the advisors and talk dates. All other
information, especially critical data must not be leaked to other systems under all
circumstances. The mechanism can either be push or pull.

As described in FR 10, systems need to have access to parts of the formal theses infor-
mation. Therefore, FR 5 is partially relevant from this perspective, as well.

18

3.1 Functional Requirements

The entire functional requirements consisting of ten individual statements are summed
up and listed in a more readable tabular form at the end of the following section.

3.1.2 Lifecycle of a Thesis

In the last section we have analysed the different stakeholders of Chairman and have
come up with ten individual functional requirements. One of the major goals of Chair-
man at all is to cover the entire lifecycle of a thesis. For that reason, we explicitly
model the lifecycle in this section. With the model we can also prove whether the list
of functional requirements is complete or not.

An illustration of the lifecycle is shown in Figure 3.1. As one can see, a thesis consists
of eleven phases that are passed through one after another. In each of the phases there
are several tasks that need to be carried out by the previously introduced stakeholders.
These tasks are presented as ovals around the respective phases.

Each task that is not connected with a dashed line in the figure can directly be assigned
to one of the ten functional requirements. Scheduling talk dates and creating an LDAP
account are drawn with a dashed line. That is because those tasks are not part of
any of the functional requirements yet. Fortunately, there is no need to cover these
tasks in Chairman directly: Scheduling talk dates requires a communication between
the professor, the advisors and the student which should be done verbally without
the usage of Chairman. The only task of Chairman in this context is to capture the
appointments. On the other hand, creating an LDAP account is a prerequisite of using
Chairman at all because users are defined there. This needs to be done manually by
the chair’s system administrator.

As another abstraction we can summarize the eleven phases even further and end up
with only three phases which is helpful in order to group and structure the tasks of
Chairman. The phases are Organisation & Registration, Working Time & Talks
and Submission & Grading.

One should not forget that the lifecycle, as presented here, follows the way theses are
handled at the chair of Network Architectures and Services. For other chairs this might
be similar, but not exactly the same.

19

Chapter 3: Requirements Engineering

Figure 3.1: Lifecycle of a Student Thesis

20

3.1 Functional Requirements

Summary: We have now analysed the functional requirements from two different per-
spectives: Firstly, from the perspective of the individual stakeholders. Secondly, from
a temporal view. Since the same requirements can be derived from both perspectives,
we can say that the list of functional requirements is complete.

In the following, two tables are provided that sum up the functional requirements of
Chairman. For convenience, Table 3.1 lists the names again. The exact meaning of each
requirement is explained in Section 3.1.1.

Table 3.2 assigns the requirements to the three phases and shows for which stakeholders
the respective requirement is relevant.

FR 1: Provide downloads
FR 2: Inspect progress, next steps and receive reminder mails
FR 3: Manage exchange between advisors and student
FR 4: Upload results
FR 5: Create/delete and update theses
FR 6: Upload documents relevant for students
FR 7: Write/inspect grading proposal
FR 8: Upload scanned documents
FR 9: Finish thesis
FR 10: Make student results available

Table 3.1: Functional Requirements of Chairman

Stakeholders
Phase FR Students Staff Prof/Sec Systems

Organisation & Registration

FR 5 7 3 3 3

FR 6 7 3 7 7

FR 8 7 7 3 7

FR 10 7 7 7 3

Working Time & Talks
FR 1 3 7 7 7

FR 2 3 3 3 7

FR 3 3 3 7 7

Submission & Grading
FR 4 3 3 3 7

FR 7 7 3 3 7

FR 9 7 7 3 7

Table 3.2: Relevance of the Functional Requirements

21

Chapter 3: Requirements Engineering

3.2 Non-Functional Requirements

The second aspect of the Requirements Specification are non-functional require-
ments (NFR) which are analysed in this section. The functional requirements have
already been explained in Section 3.1. Basically, the non-functional requirements are
part of the research questions of this Master’s Thesis and hence already mentioned in
Section 1.3. However, we go into more detail now and make more concrete statements.

First of all, it must be clarified once more that Chairman needs to deal with critical
data. Examples of such data are final grades and personal information about students,
like matriculation numbers, addresses and telephone numbers. Since contracts and
registration documents have to be processed, this kind of data cannot be prevented
from being collected. With this knowledge, we can formulate the first non-functional
requirement as follows:

• NFR 1: Privacy preservation
Chairman must implement mechanisms that ensure the observance of the Privacy
Protection Goals unlinkability, transparency and intervenability. How these
goals can be achieved in general has already been described in Section 2.1. The
main focus in this context should be put on a clear separation between critical and
non-critical data. Apart from that, users should be informed when personal data
is processed and should be able to react to or completely stop that processing.

As explained in Section 2.1, security is related with privacy, but is in general concerned
about defending attacks. In this context, it makes sense to distinguish only between
two types of attacks: Firstly, all kind of attacks that aim for stealing critical data or
changing it in an unauthorized way. Secondly, all kind of attacks that aim for shutting
down the system. The second type is, however, not really about application security,
but instead requires mechanisms to be applied to the application server in production.
This is not in our responsibility which is why we mainly concentrate on the first type
and formulate the second requirement as follows:

• NFR 2: Application security
Chairman must implement mechanisms that prevent attackers from stealing pri-
vate data or changing it in an unauthorized way. This should be achieved by
implementing the security patterns, as defined in Table 2.1 in Section 2.1.

22

3.2 Non-Functional Requirements

A subsequent step of making a system transparent (see NFR 1), is to make user actions
accountable. This means that all important actions can be assigned to a concrete user
and if possible, to a concrete thesis. This is required to show who is responsible for
several actions, to reveal discrepancies and to prevent data misuse.

• NFR 3: Accountability
Chairman must implement a mechanism that assigns the main actions and the
ones that deal with critical data to concrete users and theses. The assignment
must not be disputable.

The fourth requirement is about flexibility, extensibility and maintainability of the sys-
tem. Easy maintainability requires developers to understand what is happening in the
code. We have already seen that understandability leads to transparency which in turn
is required for accountability. Hence, we can demand easy maintainability in order to
achieve other non-functional requirements. Currently, Chairman is tailored only to the
use cases of the chair of Network Architectures and Services. Maybe in the future other
chairs want to use Chairman, as well. Hence, it should be possible to extend Chairman
with new functionalities without changing much of the existing code.

• NFR 4: Flexibility, extensibility and maintainability
Chairman must be implemented in a way that allows easy extensibility and main-
tainability. Especially for fellow students, it must be possible to do maintenance
work or extend Chairman with new features without knowing all of the internals.
Flexibility should be addressed by implementing Chairman in a way that allows
to dynamically react to different load rise the system might experience.

Easy usability is a requirement that is implicitly demanded in any application, hence
as well in Chairman. At minimum, easy means that all functionalities provided by
Chairman have to be executable in a way that does not require any learning before.
Apart from that, all user actions must do what one would instinctively expect. This
refers for instance to mouse clicks: a left click results in selecting something, whereas a
right click opens a context menu.

• NFR 5: Easy usability
Chairman must be usable in a way that does not require any learning before and
user actions must behave as one would instinctively expect.

23

Chapter 3: Requirements Engineering

The last non-functional requirement of Chairman is about performance and availabil-
ity, even though availability is actually part of the Security Protection Goals, as
explained in Section 2.1. Performance aspects taken into account in this context are
firstly, how long it takes to perform an average function of Chairman and secondly, which
system requirements the machine needs to have on which Chairman is deployed. For
availability, it makes sense to distinguish between primary functionalities and secondary
functionalities which can still be carried out without Chairman, if necessary.

• NFR 6: Good performance and high availability
Performing a function in Chairman must not take longer than a few seconds
and the overall user experience should be as fluid as possible. Apart from that,
Chairman should be runnable on an average machine with a modern processor
and around 8 GB of RAM. Primary functionalities should be available for the
entire time when Chairman is running, whereas secondary functionalities might
be unavailable sometimes.

Summary: We have now analysed the non-functional requirements of Chairman. To-
gether with the functional requirements, the Requirements Specification is now com-
plete and the first phase of the Software Lifecycle Model is finished.

To conclude this section, we provide Table 3.3 which sums up the non-functional re-
quirements for later reference.

NFR 1: Privacy preservation
NFR 2: Application security
NFR 3: Accountability
NFR 4: Flexibility, extensibility and maintainability
NFR 5: Easy usability
NFR 6: Good performance and high availability

Table 3.3: Non-Functional Requirements of Chairman

24

Chapter 4

Analysis

The second phase of the Software Lifecycle Model is called Analysis. While the re-
quirements have been specified in Chapter 3, we provide a possible solution for a system
that fulfills the requirements in this chapter. However, we mainly concentrate on the
non-functional requirements first as they are more interesting from an academic point
of view and have an even bigger influence on how the solution will look like. We take
care of the functional details in the second part of this chapter and in Chapter 5.

4.1 Analysis of the Software Architecture

The only initial constraint for Chairman has been to implement it as a web application
since this is one of the easiest ways to allow many people using a software product.
Apart from that, there are no technical instructions what Chairman should look like.
Therefore, the next step is to define a software architecture which is suitable for the web
and allows to fulfill the requirements. Beforehand, a few terms need to be introduced.

4.1.1 Terminology

Software Architecture
Many different definitions for software architecture can be found in the literature. In
1994 a discussion group defined the software architecture as "the structure of the com-
ponents of a program/system, their interrelationships, and principles and guidelines
governing their design and evolution over time" [20]. According to this definition, the
architecture clarifies which parts or components shape a system and how the individual

Chapter 4: Analysis

components are related to each other. The said guidelines are often driven by the non-
functional requirements which have a big influence on the entire structure of the system.
An important aspect to remember is that the term software architecture denotes the
architecture of a concrete system. Sometimes a much clearer picture is given by the
term architectural instance [20].

Architectural Style & Architectural Pattern
Most of the time, these two terms are used synonymously in the literature which is also
the case for this Master’s Thesis. In contrast to an architectural instance, both terms
describe a general solution that is not fine-tuned for a concrete system. Examples of
such patterns are the client-server, the publish-subscribe or the blackboard pattern [11].

According to [11], patterns and styles are actually not the same since patterns are con-
sidered to be problem-solution pairs, whereas styles do not focus on a specific problem.
To stay precise, the answer to why a specific problem can be solved with an architecture
is hence only given in patterns, not in styles [11].

Architectural Family/View/Category
A group of architectural styles that share a common concept form a family. Examples
of such concepts are database-centered, layered or component-based. The assignment
of styles to a family is not always clear and most of the time, there is more than one
possibility. In this Master’s Thesis we use the term architectural family. Synonyms that
can be found in the literature are for instance architectural view [11] or category [21].

4.1.2 First Approach (Monolithic)

Since Chairman should be implemented as a web application, one might intuitively think
about dividing the system into two components: Frontend and Backend. The frontend
is thereby the part of the system that the user sees and that interacts with him. On
the other hand, the backend is where the business logic is implemented.

Dividing a web application into frontend and backend is in general a valid possi-
bility. The architectural style that this devision follows is typically referred to as
Client-Server [11] in the literature, in which the frontend is part of the client and
the backend is part of the server. The client-server pattern is characterized by an asym-
metric communication between the two components [11]. This means that the client
starts the communication by asking for a service that is provided by the server [11]. An
illustration of this pattern can be found in Figure 4.1a.

26

4.1 Analysis of the Software Architecture

However, treating the backend server as one logical block is in general too narrow-minded
because technical aspects of the backend are not considered at all. At minimum, it is
required to split the server into the three layers Presentation, Business and Data.
The presentation layer is responsible for creating the UI components that are fetched
and displayed by the client. This layer is often described simply as UI in the literature
[43]. The business layer is responsible for performing the business logic which includes
at least the functional requirements of the system [43]. Sadly, this layer is often called
again Backend which makes a distinction with the classical client-server pattern more
difficult. Lastly, the data layer is responsible for creating structures for the storage and
persisting the data [43]. Fortunately, this layer is often simply called Database.

The resulting style can be described as Layered Client-Server [11] and is illustrated
in Figure 4.1b. It can be assigned to the family of database-centric architectures. In
contrast to the classical client-server style, the functional responsibilities of the server
are now regulated more clearly.

Backend

Frontend

Client

Web Server

(a) Client-Server Architecture

Frontend

Client

Web Server

UI (Presentation Layer)

Backend (Business Layer)

Database (Data Layer)

(b) Three-Layered Client-Server Architecture

Figure 4.1: Monolithic Architecture

Even though we have not taken into account any of the functional requirements yet, we
can recognize the following pros and cons when utilizing the layered client-server style
for Chairman:

Pros:

• Application security (NFR 2):
A monolithic web server is a good starting point for enabling application secu-

27

Chapter 4: Analysis

rity. The main reason is that the complete server logic is physically at the same
location and not distributed over a network. This makes it easy to implement
security patterns [44] like Single Access Point and Check Point, as defined in
Section 2.1. Roles with different authorizations can be realized and a classical
authentication mechanism can be applied. This means that a user authenticates
himself at the check point which in turn creates a Session object where the user
information is stored and returns a cookie with the corresponding session Id.

• Good performance (NFR 6):
The performance of a system mainly depends on its concrete implementation.
However, a monolithic server is again a good starting point because all of the
communication between different parts can happen in place without a high latency.
Having only one server may also result in less memory consumption than spanning
up multiple server units.

Cons:

• Privacy preservation (NFR 1):
In a monolithic system it is not possible to implement all privacy protection goals
in a meaningful way. The main problem is that unlinkability cannot be fulfilled as
it is mostly achieved by data avoidance or separation. Since sensitive data like final
grades should be managed by Chairman, we cannot prevent this kind of data from
being collected. Rather should a separation mechanism be applied to Chairman.
However, the three-layered approach does only provide one database in which all
kind of data is stored, independently of the criticality. This means that final grades
are stored in the same database as talk dates or templates. Separating critical
data from the rest by using different tables is not enough. Instead, we should
introduce a physical separation and apply extra security measures to the critical
parts. This way, an attacker is not able to see all data if he manages to get access
to the database. Apart from that, the physical separation is benefitious since
non-critical parts of the application can then even be administered by students.

• Flexibility, extensibility, maintainability (NFR 4):
Extensibility and maintainability again depend a lot on the concrete implementa-
tion, but there is in general a relation recognizable between these two attributes
and the size of the codebase. A smaller codebase allows to understand a system
much faster and makes it therefore much easier to extend or maintain existing
parts of it. However, a monolithic system will probably result in a big codebase
which means that extensibility and maintainability are rather bad.

28

4.1 Analysis of the Software Architecture

Flexibility has been defined in this context as a property that allows to dynamically
react to different load rise that the system might experience. However, the only
possibility to handle a high load rise is basically to deploy the entire system to a
more powerful machine which will be a waste of resources most of the time.

Accountability (NFR 3) and usability (NFR 5) are neither listed in pros, nor in cons.
Accountability requires to capture actions and usability mainly depends on the im-
plementation of the frontend. Hence, we cannot make general statements without a
concrete solution.

To conclude this section, we have to say that the layered client-server architecture is not
suited for Chairman since the non-functional requirements, especially NFR 1 cannot be
fulfilled.

4.1.3 Refinement (Microservices)

Since the last section has shown that the three-layered client-server style is not suitable
for Chairman, we make a refinement analysis for the software architecture. The ultimate
goal is to get rid of the cons mentioned in Section 4.1.2 while preserving the pros of the
first approach. However, we have to find a compromise solution.

In order to improve extensibility and maintainability, we should split the monolithic
codebase into smaller pieces where the individual pieces have a high cohesion. This
way, we can focus on specific parts of the application when implementing new features
or doing maintainance work which is much easier. A database-centric architecture does,
however, not offer many possibilities for dividing the business logic into pieces. Better
suited might be an architectural style that belongs to the family of component-based
architectures. In these styles the application is split into parts where each part fulfills a
distinct purpose. Popular examples utilizing such style are the Automotive Open System
Architecture [10] and the Android Operating System [3].

To achieve privacy - especially unlinkability - we have concluded that a separation
mechanism must be applied. Hence, splitting the system into components seems to
be a good approach from that perspective as well since sensitive data could then be
separated from the rest. However, for a complete physical separation between sensitive
components and normal ones, we need to make sure that these components can even
be deployed independently. This aspect is apparently not a goal of component-based
architectures since no literature could be found where this is mentioned. Instead, this
is one of the main goals of service-oriented architectures [29].

29

Chapter 4: Analysis

A relatively new representive of service-oriented architectures is the concept of micro-
services which are basically driven by the three-layered client server style [43]. The
three layers are often considered to be the result of Conway’s Law which has been
formulated by Melvin Edward Conway [43]. This law states that a system designed
by an organization will always have a structure that is a copy of the organization’s
communication structure [43]. Due to that mentioned communication structure, we can
conclude that there are usually three teams where each team is responsible for one of
the three layers.

However, the problem is that the implementation of a new feature usually requires
changes in all three layers and is therefore quite hard to achieve since all three teams
have to be coordinated accordingly. It would make more sense to not decompose the
system only based on these technical aspects, but rather on functional aspects and utilize
the three layers in each part. This is the basic idea of microservices [43]. An illustration
can be found in Figure 4.2a. As one can see, there is no longer one monolithic server, but
instead n different services which in turn are structured by the three layers. The services
are the result of dividing the system by functional aspects. Hence, the services have a
clear boundary which makes it possible to deploy them independently from each other.
In addition to that, we explicitly use microservices to isolate critical from non-critical
data which means that we do not divide the system by functional aspects only, but
also by non-functional aspects like privacy. For this reason, microservices seem to fit
perfectly for Chairman.

Flexibility is improved by microservices, as well because in the case of a high load rise,
it is only required to start multiple instances of one service and utilize a load balancer.

However, in contrast to the first approach, microservices are worse for security since they
provide a bigger attack surface. That is due to the distribution over the network. There
is no longer a single access and check point. Furthermore, the classical authentication
mechanism does not work anymore. The reason for this is that the microservices are
explicitly meant for having a clear boundary and not holding a shared state in the form of
a session object. Indeed, the individual services could manage a session, but that would
require a user to authenticate himself at every microservice which would be a really
bad user experience. Performance may also get worse because communication over the
network results in a higher latency and memory consumption gets higher because of
multiple server units. Lastly, there are technical issues distributing the UI layer and
achieving a consistent look and feel is nearly impossible.

Therefore, we should make another refinement to the microservices approach by imple-
menting the so-called API-Gateway pattern [29]. The crucial point of this pattern is the

30

4.1 Analysis of the Software Architecture

interposed gateway between the client and the microservices. The client does no longer
talk to the microservices directly, but instead communicates only with the gateway.
The gateway in turn acts as a proxy and routes the requests to the respective services.
This way, it is even possible to configure the microservices to be only accessible via the
gateway and hence, the gateway becomes the new single access point. This is a big
improvement for security. As another simplification, we implement the individual mi-
croservices completely stateless and let them communicate with the gateway and with
each other only via REST. Because of that, there is no need to manage a session in the
microservices. Lastly, we get rid of the UI layers in the individual microservices and
instead develop a monolithic UI that is served directly by the gateway. This enables
again a consistent look and feel. An illustration of the planned architecture is finally
shown in Figure 4.2b.

Client

Service 1

UI

Backend

Database

Service 2

UI

Backend

Database

Service n

UI

Backend

Database

(a) Classical Microservices

Client

Gateway

Service 1

Backend

Database

Service 2

Backend

Database

Service n

Backend

Database

UI

(b) API-Gateway Pattern

Figure 4.2: Microservices Architecture

Summary: We have now analysed different architectural styles that could be suitable
for Chairman. We have seen that a monolithic approach (layered client-server architec-
ture) is good for security and performance, but bad for privacy, flexibility, extensibility
and maintainability. On the other hand, for a pure microservices architecture essentially
the opposite is true. The compromise solution that fits best for Chairman is a slightly
amended microservices approach that introduces a gateway between the client and the
services and implements a monolithic UI layer.

31

Chapter 4: Analysis

4.2 Authorization with OAuth 2.0

One aspect that is still open from the last section is the authorization mechanism.
We have seen that a classical approach based on session and cookies does not work in
Chairman. That is due to the distributed software architecture where the microservices
are stateless and do not share a session object in which the user information could be
stored. Therefore, we should focus on a token-based mechanism that works stateless.

A popular token-based authorization framework is called OAuth 2.0 [32]. Required
background information has already been given in Section 2.2.1. OAuth is mainly
known for providing third-party applications access to restricted resources. However,
this is not the only use case of OAuth. With appropriate measures we can also use it
for Single Sign On in a distributed application. Single Sign On means that a user is
requested only once to authenticate himself against multiple services. In our case, these
services are exactly the microservices of Chairman.

In order to integrate OAuth 2.0 into Chairman, we should start by defining a new
microservice that is responsible for authentication and authorization. This microservice
is the Check Point according to the security patterns, as defined in Section 2.1. The
modified architecture and the assignment of OAuth roles to components of Chairman are
shown in Figure 4.3. All of the already introduced microservices are Resource Servers
whereas the new microservice is the Authorization Server. The human user is called
Resource Owner and the OAuth Client is the already known client of Chairman.

The goal is now to let the client retrieve the authorization of the end-user to access the
resources hosted at the resource servers. In this case, the resources are REST endpoints.
As explained in Section 2.2.1, OAuth specifies four different authorization grant types.
In this scenario, it would actually be fine to utilize the Resource Owner Password
Credentials type since the client is no third-party client, but belongs directly to the
application. Hence, there is no security problem when the resource owner’s credentials
are directly given to the client. Nevertheless, the specification prescribes to use this grant
type only if there are no other options available [23]. For that reason, we implement
the Authorization Code type. The protocol (taken from [23]) is described in Table 4.1
and is also illustrated in Figure 4.31.

1The protocol steps 3 and 4 are actually proxied through the gateway which is not drawn in Figure 4.3
for simplicity

32

4.2 Authorization with OAuth 2.0

Client

Gateway

Service 1

Resource
Server

Auth Service

Authorization
Server

Service 2

Resource
Server

Service n

Resource
Server

Resource
Owner

LDAP

(1)
(5)(4)

(2)

(3)

(5)

Figure 4.3: OAuth 2.0 in Chairman

(1) The client directs the resource owner to the authorization server via the user
agent.

(2) The resource owner authenticates himself with his LDAP account. We assume
that an LDAP account exists for every user of Chairman.

(3) If the authentication in step 2 has been successful, the authorization server
redirects the resource owner to the client with an attached authorization code.

(4) The client authenticates itself at the authorization server and exchanges the
authorization code for an access token. The authentication requires a client
to be equipped with a client id and a secret which are pre-configured in the
application.

(5) The client sends the access token to the resource servers in a header field
in every request. The resource servers in turn check whether the token has
not expired yet and whether that token authorizes the client to perform that
specific request. If yes, the request is handled.

Table 4.1: Authorization Code Grant Type Protocol

After logout, access should be denied by all resource servers. This is simply achieved
by deleting the access token at the authorization server as all resource servers check
the validity there. Since all access tokens have an expiry date, the tokens are deleted
anyway after the expiration.

33

Chapter 4: Analysis

In 2014 a security vulnerability called Covert Redirect was found in the OAuth pro-
tocol by Wang Jing [33]. Even though, the vulnerability was very popular in the news,
it was actually not a new finding since the method had already been described before
as a threat called Open Redirector in an RFC about OAuth Security [26]. The problem
is that after authentication, the resource owner gets redirected from the authorization
server to a URL specified by the client. If an attacker manages to replace the redirect
parameter with a malicious URL, they may get access to the authorization code and
retrieve a valid access token in a subsequent step. In general, this vulnerability is a
problem since the only way to prevent this attack is to register full redirect URLs for
all clients [26]. This basically means that OAuth providers need to manage a whitelist
of valid redirect URLs. This is really hard to achieve for big providers like Facebook or
Google. However, in our case there is a straight forward countermeasure: Since there
is only one client that uses the same redirect URL all the time, this URL can simply
be pre-configured in the authorization server as the only valid URL. This means that
Covert Redirect is not an issue in Chairman.

4.3 Accountability Analysis

Accountability has been demanded both, as a research question (RQ2) and as a non-
functional requirement (NFR3). Accountability relies on transparency which in turn
is achieved by logging and reporting, among others [17]. In order to make a system
accountable, it is required to record important actions and assign them to concrete
users. The assignment must not be disputable. The existing accountability mechanism,
based on subversion, does no longer work in the new version of Chairman as we do not
use subversion anymore.

4.3.1 Definition of Chairman Events

The first step is to recognize important actions. Actions are derived from the function-
ality offered by Chairman which means that we can derive them from the functional
requirements, as listed in Table 3.1. Not all possible actions a user can perform are
worth capturing. Some actions are simply too trivial, for example viewing the list of
upcoming events, or they do not result in requesting or changing any critical data. An
example is downloading template files.

34

4.3 Accountability Analysis

Table 4.2 lists all actions that should be made accountable in our opinion because they
are either part of the main functionality of Chairman or they deal with critical data.
The last column of the table shows from which functional requirement the action is
derived.

Action Derived
A1 Thesis has been/is no longer shared with another student FR3
A2 Result has been uploaded FR4
A3 Thesis has been created/deleted FR5
A4 A student has been added/removed to/from the thesis FR5
A5 A talk date has been added/removed FR5
A6 A talk date has been confirmed/unconfirmed FR5
A7 A static document has been uploaded FR6
A8 Grading proposal has been uploaded/deleted FR7
A9 A document has been uploaded FR8
A10 Thesis has been finished/reopened FR9

Table 4.2: Actions in Chairman

The next step is to combine each action with additional attributes that clearly describe
the assignment to a concrete user and possibly to a concrete thesis. Therefore, we
introduce the term Chairman Event, or simply Event.

As one can see in Figure 4.4, a Chairman
event consists of the action and six addi-
tional attributes. The user name is required
for assigning the action to the user, whereas
the thesis Id is used to assign the action to
a thesis. Only action A7 cannot be assigned
to one single thesis. In this case, the field
should be left empty. Time stamp, IP ad-
dress and the user agent can be used for
plausibility checks later on. For the actions
A2, A7, A8 and A9 it is required to guar-
antee which file exactly has been uploaded.
Hence, we calculate and store a hash value
(e.g. SHA-3) of the file. For all other ac-
tions this field should again be left empty.

Action

Time Stamp

User Name
Thesis Id

IP Address
User Agent

Hash Value

Figure 4.4: Chairman Event

35

Chapter 4: Analysis

4.3.2 Processing of Chairman Events

In the last section we have shown what a Chairman event should look like. In this
section we analyze how the actions listed in Table 4.2 can be reliably detected, bundled
in an event and evaluated in order to prevent data misuse.

A valid question is how collecting and storing such critical information like IP addresses
together with user names is in harmony with preserving the privacy of the users. From
the GDPR (Art. 5, Par. 1 (b)) we know that collecting personal data is allowed if there
are legitimate purposes [22]. This is, however, a matter of interpretation. If we did
not store the collected information, we would not be able to guarantee accountability
at all. As explained later in this section, the IP addresses can be used for making
plausibility checks that help preventing data misuse. Hence, we argue that there are
in fact legitimate purposes. However, we need to make sure that the stored data is
sufficiently protected against unauthorized parties (see Par. 1 (f)).

We should start by defining a new microservice that is responsible for storing and eval-
uating Chairman events. This way, we can separate the accountability aspect from the
actual functionality of Chairman. The new microservice is called Monitoring Service
and has a special position which is illustrated in Figure 4.5. Interestingly, we can still
view the other microservices as black boxes. How the storage technology has to look
like is currently open. Possible solutions are a simple database or a blockchain-based
backend.

Service 1

Resource
Server

Service 2

Resource
Server

Service n

Resource
Server

Monitoring
Service

Storage

Figure 4.5: Monitoring Service in Chairman

36

4.3 Accountability Analysis

Actions must be detected in the individual microservices that implement the respective
functionality. Since we have decided to communicate exclusively via REST, it is rather
easy to detect actions because this only requires to observe the REST endpoints which
are triggered when a user performs an action.

Most of the attributes of a Chairman event can directly be taken from the HTTP request
entering the REST endpoint. This applies to the IP address, the user agent and the
user name which is taken from the OAuth token. The thesis Id is usually sent either as
a path variable or as a request parameter. The time stamp should always be set to the
current time and if a file has been sent, it is further required to calculate a SHA-3 hash
of that file. The resulting event must then be transferred to the Monitoring Service,
again via a REST call.

Storing Chairman events is required for making actions accountable. However, it is
even more useful when these events are also evaluated. Since we have collected user
agents and IP addresses, we are able to perform plausibility checks. For example, we
can recognize if one user suddenly performs actions from a location completely different
than usual and with a different device. This may be an indication for an unauthorized
person who has got access to the user credentials. In order to prevent data misuse, we
could then prohibit access to Chairman for that individual user and inform that user
via email. Another meaningful feature would be to simply show the history of actions
taken in the web interface.

4.3.3 Database Solution

After the Monitoring Service has received the Chairman events, it needs to store them,
so that it is not possible to deny any actions.

The first idea that comes to mind is to utilize a database like MongoDB for the storage.
MongoDB is a well-known storage technology and is easy to implement in practice.
However, an implicit requirement is that it must neither be possible to delete a database
entry, nor change one. It is only allowed to insert new entries. In practice, we can
implement that by reacting only to POST, but not to PUT or DELETE requests.
However, this approach introduces two problems: firstly, if an attacker manages to get
access to the database, we can no longer guarantee accountability since the attacker
could tamper with the stored data. Secondly, append-only is a quite uncommon use
case for a database and does basically result in a chain of data blocks. Therefore, we
should analyze whether it makes sense to use a blockchain for that job.

37

Chapter 4: Analysis

4.3.4 Blockchain-Based Solution

As we have seen in the last section, a simple database is easy to implement in practice,
but can not fully guarantee accountability.

Instead, a blockchain would be advantageous since it ensures with cryptographic means
that valid blocks, which in turn contain Chairman events, can never be manipulated
[12]. This is positive for the required accountability aspect. However, every blockchain
has one property in common: it is a distributed and decentralized data storage man-
aged by multiple nodes. This is something which is not directly given in Chairman
because we have basically only one system that produces transaction data. Therefore,
we should think a bit further: if not only the chair of Network Architectures and Services
uses Chairman, but also other chairs of the university, the individual chairs could act
as nodes for a blockchain. The required infrastructure is illustrated in Figure 4.6 where
four different chairs are shown exemplarily. Already at this point we see the complexity
of a blockchain due to that infrastructure.

Service 1

Resource
Server

Service 2

Resource
Server

Service n

Resource
Server

Monitoring
Service

Chairman Chair A

Monitoring
Service

Service 1

Resource
Server

Service 2

Resource
Server

Service n

Resource
Server

Chairman Chair B

Service 1

Resource
Server

Service 2

Resource
Server

Service n

Resource
Server

Monitoring
Service

Chairman Chair C

Monitoring
Service

Service 1

Resource
Server

Service 2

Resource
Server

Service n

Resource
Server

Chairman Chair D

Blockchain

Blockchain Copy Blockchain Copy

Blockchain Copy Blockchain Copy

Figure 4.6: Blockchain Infrastructure

38

4.3 Accountability Analysis

Nearly all famous public blockchains, as for example known from Bitcoin or Ethereum,
use the so-called proof-of-work algorithm in order to gain consensus about the order
of blocks [12]. The creation of a new valid block requires solving a cryptographic puzzle.
This is associated with a high energy consumption which in turn is rewarded with a
certain amount of the crypto currency [12]. However, this is not an option in Chairman.

Instead, it would be possible to use the Hyperledger Fabric framework because it uses
a simple consensus algorithm that does not require any high computational effort. The
fact that Hyperledger Fabric can only operate permissioned blockchains can even be
viewed as positive. That is because not everybody should be able to participate in
the blockchain that assures accountability in Chairman. Instead, only selected entities
should be part of the network.

Necessary background information about Hyperledger Fabric has already been given in
Section 2.2.2. In the terminology of Fabric, the clients are the respective Monitoring
Services. Additionally, we need to introduce peers which process requests from the
clients and manage a copy of the blockchain. Each chair should at least operate one
peer. Lastly, we need an orderer node that is responsible for bringing blocks and
transactions into a generally accepted order.

In addition to the complexity, a blockchain introduces another problem: we have already
argued that there are legitimate purposes for collecting and storing critical data, like
IP addresses together with user names. However, it is not appropriate to share this
information with unauthorized parties which actually happens when using a distributed
blockchain. As a consequence of that, we need to encrypt the data before processing it,
but we also need to make sure that the endorsing peers are still able to make validation
checks. These checks should guarantee that each chair can only create transactions in
the blockchain which are related to a thesis of that specific chair. Hence, we need to
define an appropriate crypto schema first in which some non-critical meta information
are left unencrypted to allow these checks, and the actual transaction data is encrypted
for privacy reasons.

As the effort for developing Chairman is already quite high, we leave this aspect open
for future work and instead implement a simple database. Especially due to the Mon-
itoring Service, we have, however, already created an accurate interface which enables
a connection to a blockchain-based backend at a later time.

39

Chapter 5

Design

The third phase of the Software Lifecycle Model is called Design. In the last chapter we
have analyzed what a solution should look like to fulfill the requirements, as defined in
Chapter 3. We have considered multiple approaches and have tried to stay as abstract as
possible. In this chapter we continue the discussion about Chairman in a more concrete
way and make tangible decisions.

5.1 Chairman Design

In the last chapter the individual microservices have been viewed completely as black
boxes. In the first part of this section we change that and analyze which concrete
microservices are needed. The second part explains which technologies are used for
implementing Chairman.

5.1.1 Microservices

A few microservices, relevant for technical reasons, are already known from the analysis
phase. Firstly, the Auth Service which is the OAuth authorization server and therefore
manages OAuth tokens. Secondly, the Monitoring Service which has been introduced
to separate the accountability aspect from the actual functionality of Chairman. Lastly,
the gateway which acts as a router and which serves the UI part of Chairman. We aptly
call this service UI-Gateway Service.

A fourth service can also be derived from the current knowledge point: the service
discovery. This is a special service that simplifies the communication between microser-

Chapter 5: Design

vices and the frontend. For this purpose, all microservices register themselves at the
service discovery with a unique name, their URL and a port number. Afterwards, it is
only necessary to know the names of the microservices in order to communicate with
each other. The correct addresses are resolved automatically by the service discovery.
As we will see in the next section, we reuse the service discovery provided by Netflix.
Hence, the fourth service is called Eureka Service.

All other microservices which implement the actual functionality of Chairman are cur-
rently unknown. Therefore, we go through the entire list of functional requirements
(see Table 3.1) and analyze which additional microservices are needed. Defining one
microservice per functional requirement is not useful and can be considered as a typ-
ical antipattern, called nanoservices [34]. Instead, we should follow software design
principles and best practices for decomposing a system into components in general, or
particularly into microservices.

One major goal is to achieve loose coupling and high cohesion between the microser-
vices [43]. This means that everything which belongs together should be placed into the
same microservice and there should be as less dependencies on other services as possible
[43]. This leads to more reliable and more maintainable products [24]. Changes in one
service do not require other services to be changed accordingly if there are no dependen-
cies. Other well-known principles related to loose coupling and high cohesion are the
Single Responsibility Principle [35] and Separation of Concerns [18]. These principles
are quite similar and short, they mean that each service should fulfill a distinct purpose.

To become more concrete, we focus on the following properties when defining the mi-
croservices:

• Context:
The first indication for placing functionalities into separate microservices is that
they do not share the same context.

• Critical Data:
As already known from Chapter 4, we have to place functional features that deal
with critical data into isolated microservices for privacy reasons.

• External Dependencies:
Functionalities with external dependencies should also be placed into distinct mi-
croservices because of easier maintenance.

42

5.1 Chairman Design

By analyzing the list of functional requirements, one can actually recognize only three
different contexts. Nearly all requirements deal with the context Thesis, whereas par-
ticularly FR1 introduces two more contexts: Students and Registration. That is
because it should be possible to download pre-filled contracts and registration docu-
ments. For this purpose, we need to collect and manage personal information about
students first and create these documents afterwards. Personal information has to be
treated as critical data. Hence, we should place that feature into the fifth microservice,
called Meta-Data Service and the functional details for creating these documents into
the sixth microservice, called Registration Service.

Apart from personal information, the final grade has to be considered as critical data.
This is covered by FR7. Even though the final grade belongs to the context Thesis, we
should separate that aspect from the rest. This leads us to the seventh microservice,
called Grading Service.

FR2 includes sending of emails which has an external dependency on an SMTP server.
For that reason, we define one microservice that is responsible for messaging (FR3) and
emails (FR2). The eighth microservice is hence called Message Service.

FR8 is covered by the Meta-Data Service and the Grading Service. All other functional
requirements not named yet, do neither introduce any new external dependencies, nor
deal with critical data. Furthermore, they all have the same context. For that reason
we place them all into the last microservice which is called Thesis Service. At the
end of this section, all defined microservices are again listed in a tabular format.

A well-known best practice in software engineering is called Don’t Repeat Yourself
(DRY) which means that there should be as few redundant code as possible. This
is for example useful for bug fixes since a bug fix does not have to be performed multi-
ple times then. However, in a microservices architecture it is often a good idea to violate
this principle, at least across the service borders [43]. The reason is that microservices
can stay independent from each other and can therefore even be deployed individually
[43]. This has been one of the main reasons why we have looked into microservices at
all. On the other hand, one should certainly try to adhere to the DRY principle in a
microservice itself.

As explained, we should aim at low coupling when defining the microservices and all
microservices should have a clear boundary. For this reason, we create a Dependency
Structure Matrix (DSM) for the five newly introduced microservices in order to find
out whether we have met the requirements. The DSM is illustrated in Table 5.1. An

43

Chapter 5: Design

entry in the matrix means that the item in the column has a dependency on the item
in the row. The ultimate goal is to have as little dependencies as possible.

Grading S. Message S. Meta-Data S. Reg. S. Thesis S.
Grading S. -
Message S. X - X
Meta-Data S. - X
Reg. S. -
Thesis S. X X -

Table 5.1: Dependency Structure Matrix of the Microservices

First of all, we can recognize some positive aspects in the DSM: most of the matrix
entries are empty which means that there are not many dependencies at all. Secondly,
we do not have mutual dependencies which might become a problem in practice. Lastly,
there is no service from which all others are dependent.

The Grading Service and the Thesis Service both depend on the Message Service. This
is because there are functionalities implemented in these two services that trigger the
sending of an email. However, we think it is better to have this dependency instead of
implementing the email functionality twice, especially because the Message Service has
an external dependency on an SMTP server.

The Grading Service also depends on the Thesis Service. This is because of a check
whether a user is authorized to update or write a grading proposal which applies to
theses advisors and the professor. The dependency is however necessary and cannot be
avoided since grading-related data has been viewed as critical data and should there-
fore be separated from the general thesis-related data. Hence, we cannot combine the
Grading Service and the Thesis Service.

The Registration Service depends on the Meta-Data Service and the Thesis Service.
This is because registration documents require both, information about the students as
well as information about the thesis. Separating student-related data, which can again
be considered as critical data, from thesis-related data is useful. However, we could
argue that there is no need for the Registration Service. The functionality could also be
implemented directly inside the Meta-Data Service because there are no other depen-
dencies that would cause a conflict. However, since the functionality of the Meta-Data
Service and the Registration Service are completely different, we keep them separated
and instead accept the dependency.

44

5.1 Chairman Design

Summary: To conclude this section, we provide Table 5.2 which lists all required mi-
croservices in alphabetic order in a tabular format for later reference. The last column
indicates which functional requirements are covered by the respective microservice.

Service Task Covers
Auth Service Handles OAuth token management -
Eureka Service Service discovery -
Grading Service Handles grading proposals FR7, FR8
Message Service Handles messages and emails FR2, FR3
Meta-Data Service Handles storing and querying of student in-

formation
FR1, FR8

Monitoring Service Stores and evaluates Chairman events -
Registration Service Handles creation of registration documents

and contracts
FR1

Thesis Service Handles everything directly related to a stu-
dent thesis

FR1-FR6,
FR9, FR10

UI-Gateway Service Gateway and Angular SPA -

Table 5.2: All Microservices of Chairman

5.1.2 Technologies

For the implementation of Chairman we make use of quite many different technologies.
For the individual microservices we use Spring Boot [39] because it simplifies web devel-
opment in many situations and is perfectly suited for microservices. That is for instance
because it creates executable jar files instead of war files. Hence, there is no need to
deploy many different files to an application server like Tomcat [9], but instead only
start multiple Java executables that can even run on different machines.

Netflix is famous for using microservices and fortunately, they have made many com-
ponents open source1. From their stack, we reuse Eureka for the service discovery, Zuul
as the gateway and Feign as a REST client.

The UI part of Chairman is implemented as a Single Page Application (SPA) because
this enables a fluid user experience. Hence, we use Angular [5] for the frontend.

Lastly, for all of the databases we use MongoDB [28]. In fact, it does not make much dif-
ference whether we use a document-based or a relational database in this case. However,
we have decided to only use one type of database for the entire application.

1 see Github repository: https://github.com/netflix

45

https://github.com/netflix

Chapter 5: Design

5.2 Graphical Design

A non-functional requirement of Chairman is easy usability (NFR5). Usability directly
depends on the graphical design of an application since this is what the user sees and how
the user interacts with a system. To meet the requirement, we should not implement
any spectacular design features, but instead develop a standard, solid web frontend for
Chairman.

As already known from Section 3.1.1, there are different types of users with different
authorizations. The frontend must reflect that and provide only views to functions that
the currently logged in user is allowed to execute. This is the implementation of the
Limited View pattern, as introduced in Section 2.1.

We have agreed on a consistent design that has a navigation bar at the top of the page
and the content directly below it. The bar itself should contain different tabs and a
logout button always on the right side. Since Chairman is modelled around a student
thesis, all important functionalities related directly to the thesis, should be accessible
under the first tab. Secondary features, like e.g. downloading/uploading templates
should be outsourced to other tabs.

For the three stakeholders students, staff and professor, we have created several mockups
which illustrate how the final frontend should look like. These mockups are printed in
the appendix of this Master’s Thesis (Chapter B).

46

Chapter 6

Implementation

The fourth phase of the Software Lifecycle Model is called Implementation. In the
previous chapters we have analyzed and designed Chairman in theory. What follows is
the practical part which is described in this chapter.

6.1 Overview

In this section we give a general introduction to the practical part without going into
specific details of individual components.

Each of the nine microservices, as listed in Table 5.2, is developed as a distinct Spring
Boot application. In addition to that, we implement the frontend as a Single Page
Application in Angular. The git repository of the project reflects that since each Spring
Boot application and the frontend, respectively have received their own directories. The
rest of this section only explains general information about the Spring Boot applications.
The Angular part is exclusively described in Section 6.2.2.

In order to build and run the Spring Boot applications, one needs to have a working
Java JDK installed on the development machine with a minimum Java version of 8.
Apart from that, a MongoDB server is required.

The directories of the individual microservices follow the standard structure of Maven.
Source code is always in src/main/java/[PACKAGE_NAME], whereas unit tests can
be found in src/test/java/[PACKAGE_NAME]. Spring Boot applications can be con-
figured by either using .properties or .yml files. We have decided to exclusively use

Chapter 6: Implementation

YAML because it is more readable in our opinion. The configuration file is always
called application.yml and is placed in src/main/resources.

We use Gradle as the build system. The Gradle dependencies are always placed in
the top level build.gradle file and one should use the Gradle Wrapper for downloading
dependencies and building the application. The final .jar file can be found in build/libs
and started from the command line by typing java -jar [FILENAME].jar.

The source code directories are structured similarly most of the time, but can differ
slightly in some cases. Each Spring Boot application has an Application.java file at the
top which contains the main method that starts the application. Security configurations
are always placed in /config. REST controllers are either in /controllers or /web/con-
trollers. The same applies to services which are either in /services or in /web/services.
Repositories can be found in repositories and usually there are additional folders, like
/utils, /tools or /models.

The next section explains details of the individual Spring Boot applications and each
part is structured equally. First, a short Overview is given which summaries the tasks
of that specific application. What follows is a description of the Characteristics and
Configuration details which describe how the respective application is currently con-
figured. When running in production, some attributes might have to be adjusted. At
the end of each part we provide a table that describes the Interface, hence the REST
endpoints with the specific security constraints. For convenience, we also provide Ta-
ble 6.1 as a lookup table in alphabetic order. The table gives information about where
to find which microservice and lists a few specific characteristics. As already mentioned,
the Angular part is described in Section 6.2.2.

Service Name Section Characteristics
Auth Service Sec. 6.2.1.1 OAuth Auth., Eureka C., LDAP, MongoDB
Eureka Service Sec. 6.2.1.2 Eureka Server
Grading Service Sec. 6.2.1.3 OAuth Res., Eureka C., Feign, MongoDB, PdfBox
Message Service Sec. 6.2.1.4 OAuth Res., Eureka C., Mail, Feign
Meta-Data Service Sec. 6.2.1.5 OAuth Res., Eureka C., MongoDB
Monitoring Service Sec. 6.2.1.6 OAuth Res., Eureka C., MongoDB
Registration Service Sec. 6.2.1.7 OAuth Res., Eureka C., Feign, PdfBox
Thesis Service Sec. 6.2.1.8 OAuth Res., Eureka C., MongoDB, Feign
UI-Gateway Service Sec. 6.2.1.9 Zuul Proxy, OAuth Single Sign On, Eureka

Table 6.1: Spring Boot Applications Lookup Table

48

6.2 Implementation Details

6.2 Implementation Details

In this section we finally describe implementation details. The first part is about the
individual Spring Boot applications, whereas the second part is about the Angular Single
Page Application.

6.2.1 Microservices

6.2.1.1 Auth Service

Overview
The Auth Service is the OAuth authorization server which authenticates the users and
creates access tokens. When running in production, the accounts should be taken from
the chair’s local LDAP server.

Characteristics
The Auth Service is configured as an Eureka client and as an OAuth authorization
server. Furthermore, it is also configured as an OAuth resource server since it provides
REST endpoints that should be secured. Currently, we have introduced a client with
the name acme and the password secret. When running in production, these values
should be changed to something that is not easily guessable. The created tokens are
stored directly in memory.

The spring-boot-starter-data-ldap dependency is already added to the build.gradle file.
However, the connection to the LDAP server is not implemented yet. Currently, we use
a local MongoDB database in which several dummy accounts with different roles are
stored.

In order to let external resource servers - which are nearly all microservices - retrieve
information about the logged in user, we provide a special /user REST endpoint. This
approach is virtually standard and is for example also used by Facebook.

Configuration

spring.application.name: auth-service
server.port: 8092
server.contextPath: /auth
eureka.client.serviceUrl.defaultZone: http://localhost:8081/eureka

The contextPath is required in this case in order to avoid cookie collisions when the
UI-Gateway Service is also running on localhost.

49

Chapter 6: Implementation

Interface
note: all endpoints need to be prefixed with the contextPath

Method Endpoint Description Roles
GET /user Returns information about the logged in user all
GET /details Returns basic information about specific users all
POST /authLogout Destroys the token all

6.2.1.2 Eureka Service

Overview
The Eureka Service is a special microservice that acts as the service discovery for all
other microservices. This simplifies the communication between the microservices and
the Angular application since only the name needs to be known in order to communicate
with microservices. To use the service discovery, all microservices need to be configured
with a name and a port number. Furthermore, the defaultZone of the Eureka server has
to be specified and the main class has to be annotated with @EnableEurekaClient.

Characteristics
The Eureka Service only consists of one Java file which is annotated with@EnableEureka-
Server. The service requires the spring-cloud-starter-eureka-server dependency to be
added to the build.gradle file. Anything else is automatically managed by Spring Boot.

Configuration

spring.application.name: eureka-service
server.port: 8081
eureka.client.serviceUrl.defaultZone: http://localhost:8081/eureka

The defaultZone is the URL which must be configured in all Eureka clients. If the
clients are running on a different machine than the Eureka server, then the hostname
has to be adjusted.

Interface
no REST endpoints

50

6.2 Implementation Details

6.2.1.3 Grading Service

Overview
The Grading Service manages grading proposals in Chairman. Since final grades are
considered to be critical data, we can not include this feature in the Thesis Service. In
addition to that, the Grading Service should actually be deployed on a distinct machine.

Characteristics
The Grading Service is configured as an Eureka client and as an OAuth resource server.
Hence, all REST endpoints are secured by default and only accessible with a valid token.
The individual endpoints are further configured to be only accessible by the roles staff
and professor. We have defined a Grading class which has all necessary attributes, like
motivation, statement, grade and more. The objects of that class are persisted in a
MongoDB database.

With the help of the PDFBox library - provided by Apache [8] - we can automatically
create pdf documents for specific grading proposals. However, we have only implemented
the basics for creating pdf files so far and leave improvements open for future work.

Adding or updating grading proposals requires that action to be made accountable.
Therefore, we have implemented a Feign client that is able to interact with the Mon-
itoring Service. The queries are created directly in the respective controller methods.
All necessary Java files for the accountability feature can be found in the monitoring
folder.

Configuration

spring.application.name: grading-service
server.port: 8094
spring.data.mongodb.uri: mongodb://localhost:27017/gradings
eureka.client.serviceUrl.defaultZone: http://localhost:8081/eureka
security.oauth2.resource.user-info-uri: http://localhost:8092/auth/user

51

Chapter 6: Implementation

Interface
note: all endpoints need to be prefixed with /api/grading

Method Endpoint Description Roles
GET /{id} Gets a single grading from the database staff1, professor
GET /file/{id} Downloads the grading in pdf format staff1, professor
POST / Creates a new grading in the database staff, professor
PUT /{id} Updates a grading in the database staff1, professor
DELETE /{id} Deletes a grading in the database staff1, professor

6.2.1.4 Message Service

Overview
The Message Service provides methods for sending automatically generated notification
or reminder emails to students.

Characteristics
The Message Service is configured as an Eureka client and as an OAuth resource server.
Hence, all REST endpoints are secured by default and only accessible with a valid
token. As one can see below, the Message Service has actually only one REST endpoint
which is further configured to be only accessible by the role staff. For sending emails it
is required to add the spring-boot-starter-mail dependency to the build.gradle file and
configure the SMTP server.

When a staff member adds a student to a thesis, the REST endpoint is automatically
triggered which results in a notification mail for the respective student. In addition to
that, the Message Server has a scheduled method which is called every day at 7.0 a.m.
The method uses a Feign client to check for upcoming talk dates and submission dates
in one week at the Thesis Service. If there are any, a reminder mail is sent.

1only possible if staff member is an advisor of that thesis

52

6.2 Implementation Details

Configuration

spring.application.name: message-service
server.port: 8095
spring.mail.host: smtp.net.in.tum.de
spring.mail.port: 10025
eureka.client.serviceUrl.defaultZone: http://localhost:8081/eureka
security.oauth2.resource.user-info-uri: http://localhost:8092/auth/user

Interface

Method Endpoint Description Roles
POST /api/mail Sends a notification mail to the student staff

6.2.1.5 Meta-Data Service

Overview
The Meta-Data Service manages personal information about students which are mainly
required for filling out several documents, like contracts or registration documents. Since
personal information is considered to be critical data, this microservice should actually
be deployed on a distinct machine.

Characteristics
The Meta-Data Service is configured as an Eureka client and as an OAuth resource
server. Hence, all REST endpoints are secured by default and only accessible with a
valid token. Most of the endpoints are further configured to be only accessible with the
role student. We have defined a class called Student which has all attributes that are
required for registration documents and contracts, like first name, last name, address,
etc. As always, we use MongoDB for the database. The Meta-Data Service is further
able to output all valid courses of study for which registration documents can be created.

Configuration

spring.application.name: meta-data-service
server.port: 8091
spring.data.mongodb.uri: mongodb://localhost:27017/metadata
eureka.client.serviceUrl.defaultZone: http://localhost:8081/eureka
security.oauth2.resource.user-info-uri: http://localhost:8092/auth/user

53

Chapter 6: Implementation

Interface

Method Endpoint Description Roles
GET /api/students/{id} Gets a single student from the database students2

GET /courses Gets a map of all courses all
POST /api/students Adds a new student to the database students
PUT /api/students/{id} Updates a student in the database students2

DELETE /api/students/{id} Deletes a student in the database students2

6.2.1.6 Monitoring Service

Overview
The Monitoring Service implements the demanded accountability feature of Chairman.
Chairman events are actually created in other microservices, but the Monitoring Service
is responsible for receiving and persisting these events.

Characteristics
The Monitoring Service is configured as an Eureka client and as an OAuth resource
server. Hence, all REST endpoints are secured by default and only accessible with a
valid token. MongoDB is again used for the database. We have defined a LogEntry class
which has all the attributes, as defined in Figure 4.4. Each entry is further assigned
a unique id that is created automatically. In order to guarantee that incoming POST
requests do never overwrite existing entries, we let Spring Boot generate a new id each
time. This way, one can only append entries to the database instead of updating existing
ones.

Configuration

spring.application.name: monitoring-service
server.port: 8096
spring.data.mongodb.uri: mongodb://localhost:27017/logs
eureka.client.serviceUrl.defaultZone: http://localhost:8081/eureka
security.oauth2.resource.user-info-uri: http://localhost:8092/auth/user

2only possible for own entry

54

6.2 Implementation Details

Interface

Method Endpoint Description Roles
GET /api/logs Gets all entries in the database all
GET /api/logs/{thesisId} Gets all entries related to the specified thesis all
POST /api/logs Appends a new entry to the database all

6.2.1.7 Registration Service

Overview
The Registration Service automatically fills out the official registration documents of
the Technical University of Munich and the forms of the chair of Network Architectures
and Services. In order to use that service, one first needs to provide information about
the thesis (see Thesis Service), as well as personal information about the student (see
Meta-Data Service). This information is then automatically fetched from the respective
microservices. The filled out documents can be downloaded in pdf format.

Characteristics
The Registration Service is configured as an Eureka client and as an OAuth resource
server. Hence, all REST endpoints are secured by default and only accessible with a
valid token. The individual endpoints are further configured to be only accessible with
the role student since student information is required for creating valid documents. We
use a Feign client in order to fetch the information from other microservices. If no
argument is specified at the REST endpoint, the service will process the registration
document for the given course of study. For all other documents it is required to provide
an argument as a path variable.

The document templates are placed in the src/main/resources folder and are filled out
with the help of the PDFBox library provided by Apache [8]. We have introduced an
abstract class (AbstractForm.java) that implements all fundamental functionalities. In
order to process specific documents, one should inherit from that class. This design
decision makes it easy to extend the Registration Service in the future with further
documents. Currently, the following documents can be created:

55

Chapter 6: Implementation

Bachelor
Informatics
Games Engineering

Master

Informatics
Economic Computer Science
Applied Computer Science
Biomedical Computing
Games Engineering
Automotive Software Engineering

Forms
Reception Form
Contract

Configuration

spring.application.name: registration-service
server.port: 8090
eureka.client.serviceUrl.defaultZone: http://localhost:8081/eureka
security.oauth2.resource.user-info-uri: http://localhost:8092/auth/user

Interface

Method Endpoint Description Roles
GET /forms Creates the registration document students
GET /forms/{document} Creates the specified document students

6.2.1.8 Thesis Service

Overview
The Thesis Service is the main service of Chairman which implements most of the
functional requirements. Hence, it is also the most extensive microservice in terms of
code size and complexity. All non-critical thesis-related information are managed here.
Furthermore, the service administers file uploads and provides static files, like Latex
templates or the guidelines document.

Characteristics
The Thesis Service is configured as an Eureka client and as an OAuth resource server.
Hence, all REST endpoints are secured by default and only accessible with a valid
token. Many of the individual endpoints are further configured to be only accessible
with a certain role which is shown in the interface description below. As always, we use
MongoDB for persisting thesis-related information and use Feign as a REST client in
order to communicate with other microservices. The code is structured in a way that

56

6.2 Implementation Details

follows the Model-View-Controller pattern as best as possible. This makes it easier to
extend or maintain the code since different aspects are clearly separated.

The database persists objects of the Thesis class which has all necessary attributes like
title, type, advisors, student, talk dates, registration dates, submission dates and more.
Each thesis is further assigned a unique id that is formed by the title, the name of the
advisor and the year. The id does not contain the student name since a student is added
after the entry in the database has been created.

Uploaded files are stored as flat files on the file system in a directory which is named
as the respective thesis id. Additionally, the files are referenced and extended with
meta information in the database in order to enable efficient queries. All uploaded
files are thoroughly checked before they are accepted. The checks include whether the
mime types and the file extensions are correct, whether the file sizes are less than the
maximum allowed and whether the files do not pose any security risk. Static files are
also stored on the file system in plain format, but are not referenced any further.

Many of the REST endpoints require the action to be made accountable. Therefore,
we have implemented a Feign client that is able to interact with the Monitoring Ser-
vice. Most of the queries are created directly in the respective controller methods. All
necessary Java files for the accountability feature can be found in the monitoring folder.

Configuration

spring.application.name: thesis-service
server.port: 8093
spring.data.mongodb.uri: mongodb://localhost:27017/theses
eureka.client.serviceUrl.defaultZone: http://localhost:8081/eureka
security.oauth2.resource.user-info-uri: http://localhost:8092/auth/user
http.multipart.max-file-size: 5MB

The max-file-size specifies the maximum file size for uploaded files.

57

Chapter 6: Implementation

Interface

Theses
note: all endpoints need to be prefixed with /api/theses

Method Endpoint Description Roles
GET / Gets all theses from the database all
GET /{id} Gets a single thesis all
GET /search/{advisorName} Gets all theses of the specified advisor all
GET /search/status/{status} Gets all theses with the specified status all
GET /search/student/{name} Gets all theses of a specific student all
GET /search/shared/{name} Gets all shared theses of a student all
GET /search/date Gets all upcoming talk dates all
POST / Creates a new thesis in the database staff
PUT /{id} Updates a thesis in the database staff,

professor
PUT /finish/{id} Sets a thesis to read-only professor
PUT /unfinish/{id} Makes a theses writable again professor
DELETE /{id} Deletes a thesis in the database staff

Files

Method Endpoint Description Roles
GET api/file/{id} Downloads the specified file all
POST api/file/{id} Uploads the specified file students, staff
DELETE api/file/{id} Deletes the specified file students, staff

Static files
note: all endpoints need to be prefixed with /api/static

Method Endpoint Description Roles
GET /guidelines Downloads the guidelines file all
POST /guidelines Updates the guidelines file staff
GET /howto Downloads the how-to file all
POST /howto Updates the how-to file staff
GET /slides Downloads the slides template (Powerpoint) all
POST /slides Updates the slides template (Powerpoint) staff
GET /beamer Downloads the slides template (Latex) all
POST /beamer Updates the slides template (Latex) staff
GET /thesis Downloads the thesis template (Latex) all
POST /thesis Updates the thesis template (Latex) staff

58

6.2 Implementation Details

6.2.1.9 UI-Gateway Service

Overview
The UI-Gateway Service is a special service which uses Zuul in order to act as the
gateway between the Angular SPA and the other microservices. All requests from the
SPA are filtered and proxied to the respective microservices. The exact addresses are
resolved by the service discovery (see Eureka Service).

Characteristics
The UI-Gateway Service is not configured as an Eureka client. However, it still needs
the spring-cloud-starter-eureka-server dependency to be added to the build.gradle file
in order to resolve the addresses of the microservices for which it proxies incoming
requests. The proxy functionality itself does not require any coding since we reuse Zuul
for that job. The only task that needs to be done is to annotate the main class with
@EnableZuulProxy and configure the Zuul routes. The routes are simply a mapping
from the service name to a path value that is always named the same as the respective
microservice.

The Angular SPA is served by the UI-Gateway Service, as well. To achieve that, we
need to place the generated Angular files inside the src/main/resources/static folder.

The UI-Gateway Service also plays a special role for OAuth because it enables Sin-
gle Sign On in Chairman. This requires the main class to be annotated with @En-
ableOAuth2Sso and the client credentials to be configured in the application.yml file.
When a user now logs in to the Angular application, he first gets redirected to the Auth
Service according to the OAuth protocol. After the protocol is finished, it is however
not the Angular application that retrieves the token, but instead the UI-Gateway Ser-
vice itself. In addition to that, the UI-Gateway Service generates a session for the user
and returns a cookie that contains the session id. Since cookies are automatically sent
by browsers, all incoming requests will contain that cookie. Zuul then only needs to
filter the requests by exchanging the cookie with the correct token before forwarding
the requests to the microservices. In order to log out from Chairman, it is now however
not enough to destroy the token at the Auth Service. The session at the UI-Gateway
Service has to be destroyed, as well.

59

Chapter 6: Implementation

Configuration

spring.application.name: ui-gateway-service
server.port: 8080
eureka.client.serviceUrl.defaultZone: http://localhost:8081/eureka
security.oauth2.client.accessTokenUri: http://localhost:8092/auth/oauth/token
security.oauth2.client.userAuthorizationUri: http://localhost:8092/auth/oauth/authorize
security.oauth2.client.clientId: acme
security.oauth2.client.clientSecret: secret
security.oauth2.resource.user-info-uri: http://localhost:8092/auth/user

The clientId and clientSecret must match the specified values of the Auth Service. The
specific Zuul routes are emitted here because the path is always named exactly as the
service name.

Interface
no REST endpoints

6.2.2 Angular SPA

The frontend files can be found in the chairman-frontend directory. In order to work
with the Angular application, one needs to have nodejs, npm and Angular CLI installed
on the development machine. An embedded testing server can be started by typing
ng serve in the command line, whereas ng build builds the application. To use the
UI-Gateway Service instead of the testing server, one needs to copy the generated files
to the static folder of the UI-Gateway Service. Further information about how to use
the Angular CLI can be found in the included README file.

The frontend directory has the standard structure of an Angular project and has been
generated by the Angular CLI. Source code is placed in /src/app. For each of the
roles students, staff and professor, we have introduced a distinct Angular module. As
modules are only loaded when needed, this design decision reduces the initial loading
time drastically. Everything that is required in all three modules is placed in a separated
shared module which is always loaded. The folders of the modules consist again of several
subfolders for Angular components, services, pipes and more.

The overall goal when developing the frontend is to reconstruct the mockups, as printed
in the appendix (Chapter B). We have introduced a separated Angular component for
each visible tab. A component itself consists of three parts: an HTML part for defining
the structure of the visible content, a CSS part for styling and a Typescript part for

60

6.3 Deployment

asynchronously exchanging data with the microservices. For the CSS styling we make
use of a styling framework, called Semantic UI [38].

As already implied in Section 6.2.1.9, a special part of the Angular application which
requires an explanation is the login mechanism. Even before the user interface is loaded,
the application tries to fetch the user information from the OAuth user endpoint1. This
request however fails when the user is not logged in yet. In this case the user gets
redirected to the Auth Service according to the OAuth protocol. After the protocol
is finished, the user returns to the Angular application and the user endpoint is again
called. This time, the request contains a cookie which is replaced with a valid token by
the UI-Gateway Service. This means that the Auth Service now answers successfully
with the current user information. With that knowledge the application can load the
correct Angular module.

6.3 Deployment

In order to deploy Chairman, one needs to check out the git repository first and build
all parts. The build process requires two steps: firstly, all microservices need to be built
with the Gradle Wrapper. Secondly, the Angular app needs to be built with the Angular
CLI and the generated files need to be copied to the static folder of the UI-Gateway
Service. We have provided a bash script2 which automates the necessary steps.

The individual microservices can either run all on the same machine or on multiple
machines. The only requirements are a working Java Runtime Environment (JRE)
with a minimum Java version of 8 and one or more MongoDB servers. The MongoDB
servers do not necessarily have to run on the same machine than the microservices.
For the start process, we have also provided a bash script3 which automates the job of
starting all Java executables. However, the script starts all microservices on the same
machine which might be inappropriate in production.

All Java executables have already an embedded configuration file, but the configuration
can easily be overwritten by putting an application.yml file in the same directory as the
respective .jar files.

1proxied through the UI-Gateway Service
2build-all.sh
3 run-all.sh

61

Chapter 7

Evaluation

In this chapter we close the circle of Chairman and analyze whether we have reached
the functional and non-functional requirements, as defined in Chapter 3.

7.1 Implementation of the Functional Requirements

The large part of the functional requirements (see Table 3.1) is implemented in Chairman
and is in a working state. This applies to FR1, FR2, FR4, FR5, FR6, FR7 and FR9.

FR3 is only partially implemented. Advisors are able to share certain theses with other
students, but the comment function is currently missing. Since this feature is rather
inessential, it is left open for future work. For the moment, advisors and students have
to communicate with each other by using external technologies, like for example email
or Slack.

FR8 is currently not implemented because it is unclear whether this functional require-
ment is actually necessary in practice. It does not seem so at the moment which is why
it is left open for future work, too. However, this feature can easily be implemented
at any time since it is basically the same as FR4 and FR6, only with a different storage
location.

We are currently not able to implement FR10 because there is no appropriate infrastruc-
ture or connection to other systems available. From a technical point of view, it should
be rather easy to implement this functional requirement. A cronjob that runs on a daily
basis and uses rsync for synchronizing the storage directory of the Thesis Service with

Chapter 7: Evaluation

a predefined directory should be sufficient. The storage directory of the Thesis Service
is where all the uploaded results can be found.

As already explained in Section 6.2.1.1, the connection to the LDAP server is not
implemented yet. Even though this is not directly listed as a functional requirement, it
is still required when running in production. The MongoDB server instead should be
emitted.

7.2 Observance of the Non-Functional Requirements

7.2.1 Privacy, Security & Accountability

To achieve privacy we have demanded to implement unlinkability, transparency and
intervenability in a meaningful way (see NFR1).

Unlinkability is mainly achieved by the software architecture of Chairman. Critical
data is outsourced to own microservices with distinct databases. This refers to the
Meta-Data Service and the Grading Service. If a non-authorized person manages to
get access to Chairman, he is still not able to collect all data due to that separation
which is a big advantage for privacy. Chairman collects only personal information that
is really necessary for filling out the registration documents and contracts which means
that GDPR Art. 5, Par. 1 (c) [22] is implemented correctly. Unfortunately, registration
documents require quite a lot of data. This is however not up to our discretion, but
instead predetermined by the Technical University of Munich. After a thesis is finished,
we should actually delete all personal information in order to fulfill GDPR Art. 5, Par.
1 (e) [22], which is currently not the case.

Transparency is implicitly given by this Master’s Thesis which acts as the documentation
of Chairman. Even though the source code is currently not publicly available, every
user of Chairman can at least request read access to the source code. To improve
transparency we should add more notifications to the frontend which enlighten the
users about when and why critical data is processed. Additionally, we need to make
sure to add an imprint and a data protection statement before running in production.
This is required due to the Telemediengesetz [41] in Germany.

Intervenability is partly achieved. Every student can change or completely delete per-
sonal information about themselves. However, this is associated with a loss of function-
ality since a student then has to fill out registration documents and contracts manually.
On the other hand, a student currently cannot prevent processing of the final grade.

64

7.2 Observance of the Non-Functional Requirements

To achieve security we have demanded to implement the security patterns, as defined
in Table 2.1 (see NFR2).

The Single Access Point to the application is the UI-Gateway Service which routes all
incoming requests to the respective microservices. In order to fully have a single point,
it is required to configure all other microservices to be only accessible via the gateway.
However, this can only be done when running in production.

The Check Point is the Auth Service that authenticates users, checks their authorizations
and creates OAuth tokens, depending on the user’s role. Currently, there are three
different roles implemented: students, staff and professor.

The Session pattern is not implemented since the microservices are completely stateless
and do not create or share a session. However, because Chairman uses a token-based
approach for authentication, a session is in fact not necessary at all.

The Limited View Pattern is completely implemented in Chairman. There are three
different frontends, one for students, one for staff members and one for the professor.
Which frontend is loaded depends on the role of the currently logged in user.

Unfortunately, the Secure Access Layer Pattern is currently not implemented, but defi-
nitely required in production. In order to communicate via a TLS-secured connection, all
microservices need to be equipped with a certificate. This is in fact one of the downsides
of a distributed architecture like microservices because multiple certificates are required.

The accountability feature of Chairman ensures that important actions can be assigned
to concrete users and theses. By collecting information like IP addresses and user agents,
it is further possible to perform plausibility checks. Chairman events are stored in a
MongoDB database which only allows to add new entries, but not modify or delete
existing entries. However, this is only guaranteed because there is no functionality
implemented that would modify or delete entries. If an attacker manages to get access
to the database, he could tamper with the stored data. A blockchain would certainly
be better in this case since it uses cryptographic means to ensure that entries in the
blockchain can not be altered. Unfortunately, a blockchain is associated with a very
high organizational and technical effort, which is why we have decided to use MongoDB
in practice.

65

Chapter 7: Evaluation

7.2.2 Flexibility, Extensibility & Maintainability

By using microservices we achieve a high flexibility, especially because we are reusing
parts of the Netflix stack. Since we use Eureka for the service discovery, every mi-
croservice is configured as a Eureka client. As a consequence of that, Spring Boot
automatically adds Ribbon - which is the load balancer of Netflix - to the classpath.
This means that we only need to start multiple instances of one microservice in or-
der to make use of the load balancer and handle big amounts of incoming requests.
Whether this feature is actually required depends on the amount of incoming requests
in production and cannot be answered during development.

Chairman is definitely implemented in a way that simplifies extending and maintaining
the source code. The only microservice that is a bit more extensive is the Thesis
Service. All others have a very small code base which makes it easy for developers to
understand how the services are working. The only disadvantage of Chairman is that
it makes use of quite many different tools and technologies a developer should know
before doing maintenance work. The non-exhaustive list includes Spring (Boot), JPA,
Jackson, Eureka, Feign, Zuul, Ribbon, MongoDB, OAuth, Angular and many more.

7.2.3 Usability

Just as it has been difficult to define good usability, it is difficult to evaluate it. In
general, we think that Chairman is easy to use since the web interface has a clear
structure due to the navigation bar consisting of several tabs. There are no hidden
menus, all main functions are directly visible under the first tab and secondary features
are outsourced to the following tabs. In addition to that, each user can only see what
he is allowed to do according to his role.

However, Chairman has also potential for improvement since some error messages of
the microservices are not sent to the SPA at the moment. This can lead to silent
failures. If for instance a file upload fails due to the wrong file extension or because
the thesis is already marked as finished, there is currently no way for a user to notice
that. Another example is the creation of registration documents: if the user has not
filled out personal information yet, the creation of the document fails silently. Hence,
appropriate notifications would improve the usability of Chairman.

66

7.2 Observance of the Non-Functional Requirements

7.2.4 Performance & Availability

In order to evaluate performance and availability, we have built the Angular SPA with
production mode enabled and started all microservices on a Dell XPS 13 with an Intel
Core i5 processor and 8 GBs of RAM. Beside of the usual background tasks of a
computer, a MongoDB server and an instance of Firefox were running. The entire RAM
usage was 6.6 GBs directly after the start and 7.2 GBs during operation. Presumable,
we could waste less memory by deploying multiple microservices to the same Tomcat
server, instead of directly using the embedded Tomcat servers of the Java executables.
However, this would also mean that we lose some of the flexibility because it would no
longer be possible to simply start a Java file on an arbitrary machine.

The start of the nine microservices took 2.30 minutes and we had to wait around one
minute before all microservices have resolved the names of all others from the service
discovery. Hence, the initial waiting time is a bit high. However, as this process is
usually required only once, it does not really worsen the entire performance.

Due to the SPA, all user actions happen nearly instantly without any latency since
only a few kilobytes have to be exchanged with the microservices. As the SPA has
been built with production mode enabled, even the start of the application is really fast.
Since these processes are required a lot, we can conclude that the overall performance
of Chairman is pretty good.

One observable problem are forwarding errors which happen sometimes when a user ac-
tion is triggered for the first time. Unfortunately, we do not know when and why exactly
this happens. This problem should be fixed before Chairman is used in production to
guarantee best user experience.

67

Chapter 8

Related Work

In this chapter we analyze and compare existing software systems with Chairman that
are similar, either from an architectural perspective or from a functional point of view.

8.1 Architectural Relation: Netflix

In this thesis we have shown that a software architecture based on microservices fits well
to the use case Chairman. Therefore, we take a deeper look at Netflix in this section
because Netflix is famous for using microservices in production.

Netflix is a video on demand service that lets users stream movies and series to multiple
devices, like smart TVs, game consoles, smartphones, tablets and more. The business
model of Netflix consists of three different subscription models where a user needs to
pay on a monthly basis. The most expensive model offers the best picture quality and
allows to simultaneously stream to multiple devices. The first month is free in all three
models. [30]

We see that Netflix is completely different from Chairman from a functional perspective.
However, the software architecture is quite similar. Netflix has successfully moved
from a traditional monolithic application to a microservices architecture, where the
individual microservices are deployed to Amazon Web Services [15]. Typically, there
are tens of thousands instances of microservices and thousands of Cassandra database
nodes running simultaneously in the cloud [14]. A very positive aspect of Netflix is its
favour to open source. Hence, a lot of their code and documentation can be found on

Chapter 8: Related Work

Github1. Apart from that, they run a blog on the internet2 and publish many of their
presentation slides3. For that reason, we are able to reuse multiple parts of the Netflix
stack in Chairman. This applies to Zuul, Eureka and Feign.

The objectives for the architecture of Netflix have been scalability, availability, agility
and effiency. On the other hand, the principles include sharing and separation of con-
cerns [14]. Hence, the requirements are comparable to Chairman. The resulting archi-
tecture consists of several Edge Services (UI-Gateway Service in our case) that are the
entry point to the individual microservices in the cloud [16]. The Edge Services, which
obviously use Zuul, are used to filter incoming requests, perform authentication, make
security checks and more [16]. This way, the microservices can completely implement
functional details without any high overhead of technical aspects. This has also been a
goal when designing the microservices in Chairman and is again comparable.

In 2016 Netflix has made up 35.2% of the entire downstream traffic in North America
which shows that microservices can successfully be run in production [31]. Hence, we
can draw the conclusion that Chairman is able to run successfully, too - even though,
it is completely different from Netflix from a functional point of view.

8.2 Functional Relation

In this section we take a look at two software systems that are similar to Chairman
from a functional perspective.

8.2.1 Alfresco

Alfresco is a web-based document management system written in Java. Its business
model consists of three modules which are the Alfresco Content Services, the Alfresco
Process Services and the Alfresco Governance Services [1]. The modules can either be
purchased separately or as a complete solution. A user can buy one out of three editions:
the Starter, the Business or the Enterprise edition which differ in functionality, support
and price. Apart from that, there is the free Community Edition with only slimmed
functionality and no support. [1]

1 https://github.com/netflix

2 https://medium.com/netflix-techblog

3 https://www.slideshare.net/

70

https://github.com/netflix
https://medium.com/netflix-techblog
https://www.slideshare.net/

8.2 Functional Relation

The Alfresco Content Services module is the main module which offers the actual func-
tionality that is required for a document management system. Users can for example
share documents, work together on documents and access the documents from every-
where with a multitude of supported end devices. Alfresco does not only store the
actual documents, but also uses a database for storing meta information. This way, it is
possible to efficiently search for documents or query information about them. Restoring
older versions of stored documents is possible, too. [1]

The Alfresco Process Services module extends the functionality with business processing
capabilities. Business processes can be defined in the BPMN language and run by the
open source workflow engine Activiti. The third module adds the functionality for
records management. [1]

From a functional point of view, the Alfresco Content Services module is in fact compa-
rable to Chairman because Chairman also manages documents. This applies for example
to uploaded results, templates and registration documents. Like in Alfresco, we do not
only store the actual documents, but also utilize a database for meta information, like
file types or upload times. Sharing documents with others is possible, too. However,
Chairman does not offer the possibility to work on shared documents together, but in-
stead only grants read access. A functionality completely missing in Chairman is the
restoration of older versions. This is in fact a useful feature that could be implemented
in the future. Apart from functional details, Alfresco is also similar to Chairman because
it uses the same tools and technologies, like Java, Spring and Angular [1].

By looking at the documentation of the Alfresco Content Services module, we can see
that it has a component-based software architecture which is different in Chairman.
The main components are the UI component, the Index component and the Database
component. Apart from that, there are optional components which are added depending
on the purchased edition. [2]

Since we have seen that Alfresco is comparable to Chairman from a functional perspec-
tive, we should analyze why we can not simply use Alfresco, but instead develop our
own system. In fact, there are multiple reasons: Firstly, because Alfresco is either really
expensive, or free but limited in functionality and support. Secondly, because Alfresco is
not tailored to our use case. One should not forget that Chairman is modelled around a
student thesis which includes managing documents, but is not limited to. On the other
hand, Alfresco offers functionalities that are definitely not required in our use case and
hence, unnecessarily inflate the software.

71

Chapter 8: Related Work

8.2.2 Campus Online

Campus Online - often written as CAMPUSonline - is a web-based management system
which covers nearly all business processes of a university. It has been developed by
the TU Graz in 1998 and is currently used by 36 different universities, including the
Technical University of Munich. [13]

Campus Online provides a web interface and a database in which all kind of data is stored
that is required for the business processes. Some example processes are application
processes, examination management, rooms administration and many more. [13]

Campus Online is comparable to Chairman since it is also concerned with business
processes of a university: in fact, theses management can be seen as only one process.
Apart from that, it manages similar roles (students, employee, alumni) and is compara-
ble from a technical point of view: it provides Single Sign On for multiple services and
is completely web-based. [13]

Since it is comparable, we should analyze whether we cannot use Campus Online instead
of Chairman. The main reason is that it is not tailered to our use case. A service that
fits our use case could be integrated into Campus Online with high probabiliy, but
nevertheless, Campus Online offers many features which are definitely not required.
Another problem is that it provides only one database for all processes. This is not
enough for our privacy requirement since we have shown that we need a physically
separated database in order to guarantee privacy even in cases when an attacker has
access to the database.

Summary: To conclude this chapter, we can say that it is useful to analyze comparable
existing systems and get ideas from them. However, most of the time these existing
systems are not perfectly tailored to the required use case. Therefore, it often cannot
be avoided to develop and implement a system by oneself.

72

Chapter 9

Conclusion

In this Master’s Thesis we have dealt with a management system for student research
projects. We have seen that the processes which are required for finishing a thesis
successfully have become quite extensive and complex. Hence, we can no longer imagine
doing a thesis completely without any supporting tool like Chairman.

Even though the first version of Chairman was a good idea, the implementation has
been problematic in many ways. Therefore, we have decided to start from scratch and
focus on scientifically sound methodologies for the second version of Chairman.

We have started with a requirements analysis during which the processes and the stake-
holders have become visible. A special focus has been laid on privacy and security since
Chairman has to deal with critical data like final grades and personal information. After
the system had been analysed and designed in theory, we have implemented Chairman
as a web based application, evaluated it and compared it with similar systems.

The crucial point which helps to fulfill most of the non-functional requirements like
privacy and security is a wisely chosen software architecture based on microservices.
The microservices approach gives us a perfect possibility to separate critical from non-
critical data and even deploy the critical parts on isolated machines. This way, it is
possible to apply extra security measures to the critical microservices and guarantee
that even an attacker who has got access to the database is not able to see all data, but
only parts of it. Furthermore, microservices help to structure the entire application in
a meaningful way which is positive for maintainability, extensibility and flexibility.

We have demonstrated that accountability is required to show who is responsible for
several actions and to prevent data misuse. Our implemented accountability mechanism
is able to record important actions and assign them to concrete persons and theses. For
persisting these information, we use a MongoDB database which is easy to implement in
practice. However, it is actually required that all actions are not disputable. Currently,
we cannot guarantee that property if an attacker manages to get access to the database
as he could tamper with the stored data in that case. Instead, a blockchain has the
demanded property. We have shown how to connect a blockchain-based backend with
Chairman. The essential point is that we have created an accurate interface by defin-
ing the Monitoring Service which separates the accountability feature from the actual
functionality and makes it hence easy to improve that aspect in the future.

The Chairman implementation delivered in this thesis is in a working state at the
moment and most of the planned functionalities are already implemented. However,
before Chairman can be run in production, several additional steps are required. Most
important is to equip all microservices with a TLS certificate in order to establish
encrypted connections between the microservices. It is actually rather useless to secure
all REST endpoints with a token if the tokens are sent in plain format. To use the
already existing accounts of the chair, it is further necessary to connect the LDAP
server with Chairman. Rather secondary, Chairman can be improved in many places to
fulfill the functional and non-functional requirements even better.

In addition to that, the accountability mechanism should be improved in the future by
connecting a blockchain-based backend with Chairman. To do this, one should start by
defining a suitable crypto schema in which the actual data is encrypted, but it is still
possible to perform validation checks on non-critical meta information. Probably, there
are also better alternatives than public-key cryptography where the keys are hardcoded
in the respective Monitoring Services. This has to be investigated in the future.

74

Chapter A

Abbreviations

BPMN: Business Process Model and Notation
CLI: Command Line Interface
CSS: Cascading Style Sheets
DRY: Don’t Repeat Yourself
DSM: Dependency Structure Matrix
FR: Functional Requirement
GDPR: General Data Protection Regulation
HTML: Hypertext Markup Language
JSON: JavaScript Object Notation
LDAP: Lightweight Directory Access Protocol
NFR: Non-Functional Requirement
PDF: Portable Document Format
REST: Representational State Transfer
RQ: Research Question
SHA-3: Secure Hash Algorithm 3
SMTP: Simple Mail Transfer Protocol
SPA: Single Page Application
TLS: Transport Layer Security
UI: User Interface
URL: Uniform Resource Locator
XML: Extensible Markup Language

Chapter B

Graphical Mockups

B.1 Student Mockups

Figure B.1: Students - Home

Chapter B: Graphical Mockups

Figure B.2: Students - Meta Data

Figure B.3: Students - Downloads

78

B.1 Student Mockups

Figure B.4: Students - Shared Theses

Figure B.5: Students - Shared Thesis Details

79

Chapter B: Graphical Mockups

B.2 Staff Member Mockups

Figure B.6: Staff Members - Home

Figure B.7: Staff Members - Create new Thesis

80

B.2 Staff Member Mockups

Figure B.8: Staff Members - Edit Thesis

Figure B.9: Staff Members - Show Thesis Details

81

Chapter B: Graphical Mockups

Figure B.10: Staff Members - Grading

Figure B.11: Staff Members - Uploads

82

B.3 Professor & Secretary Mockups

B.3 Professor & Secretary Mockups

Figure B.12: Professor & Secretary - Home

Figure B.13: Professor & Secretary - Appointments

83

Chapter B: Graphical Mockups

Figure B.14: Professor & Secretary - Edit Thesis

Figure B.15: Professor & Secretary - Show Thesis Details

84

B.3 Professor & Secretary Mockups

Figure B.16: Professor & Secretary - Grading

85

BIBLIOGRAPHY

Bibliography

[1] Alfresco. Website. https://www.alfresco.com/de/, Accessed: 2018-06-12.
[2] Alfresco Content Services 5.2 On Premises - Reference Architecture. Technical

White Paper. https://www.alfresco.com/sites/www.alfresco.com/files/
/alfresco_content_services_5.2_reference_architecture.pdf, Accessed:
2018-06-12.

[3] Android. Website. https://www.android.com/, Accessed: 2018-06-12.
[4] Elli Androulaki et al. “Hyperledger Fabric: A Distributed Operating System for

Permissioned Blockchains”. In: ArXiv e-prints. Jan. 2018.
[5] Angular. Website. https://angular.io, Accessed: 2018-06-12.
[6] Angular CLI. Website. https://cli.angular.io, Accessed: 2018-06-12.
[7] AngularJS. Website. https://angularjs.org, Accessed: 2018-06-12.
[8] Apache PDFBox - A Java PDF Library. Website. https://pdfbox.apache.org/,

Accessed: 2018-06-12.
[9] Apache Tomcat. Website. https://tomcat.apache.org/, Accessed: 2018-06-12.

[10] AUTOSAR - The standardized software framework for intelligent mobility. Web-
site. https://www.autosar.org/, Accessed: 2018-06-12.

[11] Paris Avgeriou and Uwe Zdun. “Architectural Patterns Revisited - A Pattern
Language”. In: Proc. 10th European Conference on Pattern Languages of Programs
(EuroPLoP 2005). UVK Konstanz, 2005.

[12] Aleksander Berentsen and Fabian Schär. Bitcoin, Blockchain und Kryptoassets.
1st ed. BoD - Books on Demand, Norderstedt, Jan. 2017.

[13] Campus Online. Website. https://campusonline.tugraz.at/, Accessed: 2018-
06-12.

[14] Adrian Cockcroft. Patterns for Continuous Delivery, High Availability, DevOps &
Cloud. Presentation Slides. https://www.slideshare.net/adrianco, Accessed:
2018-06-12.

[15] Adrian Cockcroft. The Global Netflix Platform. Presentation Slides. https://www.
slideshare.net/adrianco/global-netflix-platform, Accessed: 2018-06-12.

BIBLIOGRAPHY

https://www.alfresco.com/de/
https://www.alfresco.com/sites/www.alfresco.com/files//alfresco_content_services_5.2_reference_architecture.pdf
https://www.alfresco.com/sites/www.alfresco.com/files//alfresco_content_services_5.2_reference_architecture.pdf
https://www.android.com/
https://angular.io
https://cli.angular.io
https://angularjs.org
https://pdfbox.apache.org/
https://tomcat.apache.org/
https://www.autosar.org/
https://campusonline.tugraz.at/
https://www.slideshare.net/adrianco
https://www.slideshare.net/adrianco/global-netflix-platform
https://www.slideshare.net/adrianco/global-netflix-platform

BIBLIOGRAPHYChapter B: Graphical Mockups

[16] Mikey Cohen. Netflix’s Global Cloud Edge Architecture. Presentation Slides. https:
//www.slideshare.net/MikeyCohen1/edge-architecture-ieee-international-
conference-on-cloud-engineering-32240146, Accessed: 2018-06-12.

[17] George Danezis et al. “Privacy and Data Protection by Design - from policy to
engineering”. In: Technical Report (ENISA). 2015.

[18] Erik Ernst. “Separation of Concerns”. In: Proceedings of the AOSD 2003 Work-
shop on Software-Engineering Properties of Languages for Aspect Technologies
(SPLAT). Boston, MA, Mar. 2003.

[19] EU Charter of Fundamental Rights. Website. https://ec.europa.eu/info/
aid-development-cooperation-fundamental-rights/your-rights-eu/eu-
charter - fundamental - rights _ en, Accessed: 2018-06-12, PDF accessible at
http://eur- lex.europa.eu/legal- content/EN/TXT/PDF/?uri=CELEX:
12012P/TXT&from=EN.

[20] David Garlan and Dewayne Perry. “Introduction to the Special Issue on Software
Architecture”. In: IEEE Transactions on Software Engineering. Apr. 1995.

[21] David Garlan and Mary Shaw. “An Introduction to Software Architecture”. In: V.
Ambriola and G. Tortora (eds), Advances in Software Engineering and Knowledge
Engineering, vol. 2. World Scientific Publishing Company, 1993.

[22] General Data Protection Regulation. Website. https://gdpr- info.eu/, Ac-
cessed: 2018-06-12.

[23] D. Hardt. The OAuth 2.0 Authorization Framework. RFC 6749 (Proposed Stan-
dard). Internet Engineering Task Force, Oct. 2012. url: http://www.ietf.org/
rfc/rfc6749.txt.

[24] Martin Hitz and Behzad Montazeri. “Measuring Coupling and Cohesion in Object-
Oriented Systems”. In: Proc. Int’l Symp. Applied Corporate Computing. Monter-
rey, Mexico, Oct. 1995.

[25] Craig Larman and Victor R. Basili. “Iterative and Incremental Development: A
Brief History”. In: IEEE Computer. June 2003.

[26] T. Lodderstedt, M. McGloin, and P. Hunt. OAuth 2.0 Threat Model and Security
Considerations. RFC 6819 (Informational). Internet Engineering Task Force, Jan.
2013. url: http://www.ietf.org/rfc/rfc6819.txt.

[27] Michael S Mikowski and Josh C Powell. “Single page web applications”. In: B and
W (2013).

[28] MongoDB. Website. https://www.mongodb.com/, Accessed: 2018-06-12.
[29] Fabrizio Montesi and Janine Weber. “Circuit Breakers, Discovery, and API Gate-

ways in Microservices”. In: arXiv preprint arXiv:1609.05830. 2016.
[30] Netflix FAQs. Website. https://help.netflix.com/de/node/412, Accessed:

2018-06-12.

BIBLIOGRAPHY88

https://www.slideshare.net/MikeyCohen1/edge-architecture-ieee-international-conference-on-cloud-engineering-32240146
https://www.slideshare.net/MikeyCohen1/edge-architecture-ieee-international-conference-on-cloud-engineering-32240146
https://www.slideshare.net/MikeyCohen1/edge-architecture-ieee-international-conference-on-cloud-engineering-32240146
https://ec.europa.eu/info/aid-development-cooperation-fundamental-rights/your-rights-eu/eu-charter-fundamental-rights_en
https://ec.europa.eu/info/aid-development-cooperation-fundamental-rights/your-rights-eu/eu-charter-fundamental-rights_en
https://ec.europa.eu/info/aid-development-cooperation-fundamental-rights/your-rights-eu/eu-charter-fundamental-rights_en
http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:12012P/TXT&from=EN
http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:12012P/TXT&from=EN
https://gdpr-info.eu/
http://www.ietf.org/rfc/rfc6749.txt
http://www.ietf.org/rfc/rfc6749.txt
http://www.ietf.org/rfc/rfc6819.txt
https://www.mongodb.com/
https://help.netflix.com/de/node/412

BIBLIOGRAPHY B.3 Professor & Secretary Mockups

[31] Netflix online traffic volume in North America. Website. https://www.statista.
com/statistics/245986/netflixs- share- of- peak- period- downstream-
traffic/, Accessed: 2018-06-12.

[32] OAuth 2.0. Website. https://oauth.net/2/, Accessed: 2018-06-12.
[33] OAuth Security Advisory: 2014.1 "Covert Redirect". Website. https://oauth.

net/advisories/2014-1-covert-redirect/, Accessed: 2018-06-12.
[34] Ali Ouni et al. “Web Service Antipatterns Detection Using Genetic Program-

ming”. In: Proceedings of the 2015 on Genetic and Evolutionary Computation
Conference, ser. GECCO’15. 2015.

[35] Martin C. Robert and Martin Micah. Agile Principles, Patterns, and Practice in
C#. 1st ed. Prentice Hall, July 2006.

[36] Martin Rost and Andreas Pfitzmann. “Datenschutz-Schutzziele - revisited”. In:
Datenschutz und Datensicherheit (DuD). 2009.

[37] W.W. Royce. “Managing the Development of Large Software Systems: Concepts
and Techniques”. In: Proc. WESCON. Aug. 1970.

[38] Semantic UI. Website. https://semantic-ui.com/, Accessed: 2018-06-12.
[39] Spring Boot Reference Guide. Website. https : / / docs . spring . io / spring -

boot/docs/2.0.2.RELEASE/reference/htmlsingle/, Accessed: 2018-06-12.
[40] Spring: the source for modern java. Website. https://spring.io/, Accessed:

2018-06-12.
[41] Telemediengesetz. Website. https : / / www . gesetze - im - internet . de / tmg/,

Accessed: 2018-06-12.
[42] What is Subversion? Website. http://svnbook.red-bean.com/en/1.7/svn.

intro.whatis.html, Accessed: 2018-06-12.
[43] Eberhard Wolff. Microservices: Flexible Software Architecture. 1st ed. Addison-

Wesley Professional, Oct. 2016.
[44] Joseph Yoder and Jeffrey Barcalow. “Architectural Patterns for Enabling Applica-

tion Security”. In: Proc. 4th Conference on Pattern Languages of Programs (PLoP
1997). Monticello, IL, USA, 1997.

BIBLIOGRAPHY 89

https://www.statista.com/statistics/245986/netflixs-share-of-peak-period-downstream-traffic/
https://www.statista.com/statistics/245986/netflixs-share-of-peak-period-downstream-traffic/
https://www.statista.com/statistics/245986/netflixs-share-of-peak-period-downstream-traffic/
https://oauth.net/2/
https://oauth.net/advisories/2014-1-covert-redirect/
https://oauth.net/advisories/2014-1-covert-redirect/
https://semantic-ui.com/
https://docs.spring.io/spring-boot/docs/2.0.2.RELEASE/reference/htmlsingle/
https://docs.spring.io/spring-boot/docs/2.0.2.RELEASE/reference/htmlsingle/
https://spring.io/
https://www.gesetze-im-internet.de/tmg/
http://svnbook.red-bean.com/en/1.7/svn.intro.whatis.html
http://svnbook.red-bean.com/en/1.7/svn.intro.whatis.html

	Introduction
	Motivation
	Approach & State of the Art
	Goals & Research Questions
	Methodology & Structure

	Background
	Privacy & Security
	Technologies
	OAuth 2.0
	Hyperledger Fabric

	Frameworks
	Spring Boot
	Angular

	Requirements Engineering
	Functional Requirements
	Stakeholders in Chairman
	Lifecycle of a Thesis

	Non-Functional Requirements

	Analysis
	Analysis of the Software Architecture
	Terminology
	First Approach (Monolithic)
	Refinement (Microservices)

	Authorization with OAuth 2.0
	Accountability Analysis
	Definition of Chairman Events
	Processing of Chairman Events
	Database Solution
	Blockchain-Based Solution

	Design
	Chairman Design
	Microservices
	Technologies

	Graphical Design

	Implementation
	Overview
	Implementation Details
	Microservices
	Angular SPA

	Deployment

	Evaluation
	Implementation of the Functional Requirements
	Observance of the Non-Functional Requirements
	Privacy, Security & Accountability
	Flexibility, Extensibility & Maintainability
	Usability
	Performance & Availability

	Related Work
	Architectural Relation: Netflix
	Functional Relation
	Alfresco
	Campus Online

	Conclusion
	Abbreviations
	Graphical Mockups
	Student Mockups
	Staff Member Mockups
	Professor & Secretary Mockups

	Bibliography

