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Abstract

Network drivers, as many other drivers, are the link between hardware and software. Drivers
are operating system specific software and function as an interface in between a physical device
and software that use the device. Unfortunately any actual knowledge about them is rare, even
amongst programmers that use them daily in production environments. As an understanding
of the full network stack is important for optimizations, performance, debugging, etc. , it is
essential that information about drivers is readily accessible in order to foster networking as a
science, a profession and a hobby.

Network Interface Controller (NIC) drivers used to be pieces of software that was locked away
deep within the kernel and was rarely touched, but even with the rise of user space drivers such
as DPDK or Snabb, it is still mostly treated as a black box that increases speed. Knowledge
cannot be forced onto people, but access and presentation can be improved in order to lower
the entry barrier. ixy, a simple user space driver for ixgbe devices, was created as an easy to
understand example that presents the basic functionality of such drivers in a clearly laid out
manner.

C was chosen as the lowest common denominator, a language that every programmer should
have at least come into contact with on a basic level. While C has many properties that make
it a language well suited for drivers, some of its flaws lie in the dangers of programming errors
and prevention measures can complicate the code in a way that it is not easily understandable
for programmers not used to it. In order to increase the variety in languages and compare their
e�ciency, we present a Go implementation of the ixy network driver.

This Go implementation, called ixy.go, ties to reimplement the original driver as closely as
possible in idiomatic Go and does so within ¥1000 lines of code. Compared to C, Go o�ers
improved security and easier to read code as well as multiple other features that make the
e�ort of the implementation worthwile. With 24.9803 million packets per second it is ¥10%
slower then the C implementation while o�ering various advantages in other areas as a high-
level language. The advantages and disadvantages of Go as a network driver language will be
discussed and evaluated whether it is a viable consideration.
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Chapter 1

Introduction

1.1 Kernel modules vs User space drivers

Generally, a driver can be written in one of two ways: as a kernel module or as a user
space driver. Both have distinct advantages and disadvantages though ultimately user
space drivers are faster, which is the most important requirement in modern use cases.

A kernel module runs in the kernel space. This entrusts it with certain privileges,
most notably hardware interrupts and protection from user influences. Running in the
kernel space does however come with some serious downsides. Kernel calls require a
computational overhead due to context switches, therefore slowing down the software
considerably, and has generally proven to be simply too slow for specialized applica-
tions. Additionally kernel development is a lot more complex and labour intensive as
many of the tools used for debugging such as gdb and Valgrind are not available and
it generally being more cumbersome. Also when writing kernel modules, the choice of
programming language is restricted to a subset of C. C programs tend have security
issues that arise from poorly written and tested code. With the absence of many de-
bugging tools one has to be extremely careful, as errors in the kernel space can have
much more severe consequences then errors in the user space. Where a user space driver
would produce a segmentation fault, a kernel module could overwrite arbitrary memory
locations, potentially corrupting other data, including the kernel itself.

User space drivers on the other hand mitigate or straight up do not have these kind
of problems and solutions tend to be simpler and carry less risks due to having less
privileges. User space drivers can be written in any language of choice as long as a
compiler exists and programmers can make full use of all tools created for the language
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which helps with debugging and other tasks such as performance evaluation. Coupled
with inherent safety measures of the chosen language, this results in generally safer
software. Additionally this approach grants the application full control over the driver
which can lead to a more optimized integration of an application into the driver and
hardware.

Still, these are not the main selling point of user space drivers. While certainly helpful,
speed is the ultimate argument for choosing a user space driver over a kernel module.
Kernel code constantly has to switch between user and kernel mode, which poses a
significant computational overhead, especially in the case of network drivers due to
the frequent copying of data. A user space driver runs entirely in the user space and
therefore does not need any context switches or copying which significantly reduces
overhead and therefore leaves more time for actual packet handling. The Data Plane
Development Kit (DPDK) is a user space driver originally implemented by Intel and
later handed over to the Linux foundation. In their packet forwarding performance
evaluation Intel claims that on ixgbe NICs, it can operate close to or even at line rate,
depending on the packet size [24].

This gain in speed, as demonstrated by user space drivers such as DPDK, is the reason
why many packet processing frameworks that used to be kernel-based moved to the user
space [8].

1.2 ixy.go

ixy is the name of the original C driver, derived from the term ixgbe. As we implement
a Go translation of this driver, we call it ixy.go. The speed of user space drivers is an
important part in many modern networking applications and therefore are often added
to existing projects in order to increase speed. Still most programmers treat it like
a black box that somehow increases speed and therefore do not understand the inner
workings of such a driver and why they are faster then kernel based drivers.

Since a clear understanding of the full network stack is important when working on
networking applications for multiple reasons such as optimization and debugging, ixy has
been developed as an educational piece of software that allows interested programmers
to understand the basic user space network driver functionality in an uncomplicated
manner [8]. Its goal is to make knowledge about such drivers accessible to everyone
and therefore was written with a focus on simplicity. ixy shows that it is possible to
implement a basic user space network driver in just below 1000 lines of code. While
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1.2 ixy.go

architecturally based on DPDK and Snabb, it is stripped down to the bare minimum
but still optimized on speed where the price of complexity is low.

The C programming language has been chosen as the language for the original driver
since it is the language that most programmers have learned at least on a basic level.
C is also rather powerful as a language for low level operations though it has proven to
be rather di�cult to write correctly given the easiness at which a plethora of common
programming errors occur, mostly due do obliviousness or forgetfulness. Tools and
techniques to combat these errors do exists but usually also make the code seem more
complex than it actually is. Therefore it might prove di�cult to read and understand
for programmers that are neither advanced in C programming nor involved in driver
development, making ixy harder to understand then necessary and thus raising the entry
barrier.

In order to lower the barrier and make ixy more available to programmers it has and
will be rewritten in multiple languages. For this thesis the language of choice was Go.
While originally intended to be a networking language for the higher levels of networking
with native library support for a wide array of needs, driver level programming has
to make due mostly with more basic tools making the implementation an interesting
challenge. Go does however o�er some notable advantages compared to C. While its
syntax is designed very similar to C on purpose, some fundamental concepts were revised
specifically for the purpose of readability. It is strongly typed and has a built-in runtime
included in the compiled binaries. This runtime adds features such as garbage collection
as well as type and memory safety. Despite being oriented towards higher levels, Go
does o�er the use of lower level constructs like pointers, though no pointer arithmetic,
and through the use of syscalls memory management. These properties make for an
interesting choice of language for an educational network driver with distinct advantages
and disadvantages compared to C.

In the following thesis we analyse the viability of Go as a systems programming, and
more specifically driver programming, language and evaluate it and its distinct advan-
tages, challenges and drawbacks compared to other user space drivers and specifically
the original C version.
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Chapter 2

Why Go?

Go, also called Golang, is a statically typed, compiled and imperative programming
language developed by Google. It has intentionally been developed to have a syntax
similar to the C programming language with input and ideas from other languages [18].
Go compiles to statically linked binaries with very fast compile times, making it in-
dependent of libraries after compilation. Compilers for Windows, macOS and Linux
distributions exist. As for the Go implementation of ixy we tested as far back as version
1.10.2 and due to the backwards compatibility promise [17] our driver will most likely
be compatible with all versions of Go 1 thereafter.

The Go binaries always include the Go runtime. It implements "garbage collection,
concurrency, stack management, and other critical features of the Go language" [18]
and therefore provides central functionality to the programs, though it is not to be con-
fused with the virtual machine approach of the Java runtime. This runtime adds safety
features as an improvement to combat many of the common programming errors such
as memory safety for index bounds and pointers. Go o�ers an extensive native library
which provides a multitude of features ranging from so called slices and interfaces to
algorithms and other helpers. Though Go is not an object oriented programming lan-
guage, it does o�er the ability to define methods on types, including struct types. Go
also o�ers an interesting approach to concurrency through the use of goroutines, which
are based on Communicating Sequential Processes (CSP) ideas, in order to simplify
the complexity of other concurrency models. Additionally the main way of exchanging
information are channels instead of sharing memory in order to further simplify con-
currency. This approach is embodied in the slogan "Do not communicate by sharing
memory; instead, share memory by communicating." [16] It is noteworthy that many of
the security features the runtime enforces can be bypassed, mainly through the use of
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the unsafe package. This package implements arbitrary pointers that allows program-
mers to defeat the type system and read from and write to arbitrary memory. Since
the runtime is a central element of Go and it is ixys’ goal to be an idiomatic program,
we try to minimize the use of this package as much as possible unless the idiomatic
solution to a problem makes use of it. And example for that would be determining the
endianess of a machine.

As already mentioned, the syntax of Go is intentionally similar to C. However some
notable changes have been made in order to improve readability. Two changes become
apparent immediately upon first seeing a Go program:

1. Go does not have semicolons at the end of a line. Since trailing semicolons don’t
serve any real purpose except denominating the end of a line, removing is from
the language was a central syntax design goal in order to prevent unnecessary
mistakes in that regard. More specifically semicolons are still used as terminators
in other places such as separating arguments of a for loop. Technically they are
also still needed at the end of lines but may be, and virtually always will be,
omitted and will then be inserted automatically during compilation [22].

2. Variable names before type. The approach of the C programming language was
unusual at the time and had one distinct advantage: a declaration is an expression
and one can state the type of the expression. The downside however becomes
apparent when a statement becomes more complex, as it can become hard to read,
in fact C expressions are read in a spiral. Go reverses this order therefore making
a simple declaration readable from left to right. This extends to statements of
any length and complexity, one can read them from left to right without needing
to stop thus avoiding the C gibberish issue altogether.

Other minor di�erences such as type inference exist as well but the general syntax and
structure is very similar compared to C code, Go just tends to be easier to read. Addi-
tionally many potentially confusing C constructs can be replaced by easier to understand
Go features.

Most languages don’t have a fixed style but instead multiple third party style guides
such as the Linux kernel coding style [23]. Combined with the unique preferences of
each programmer this results in a plethora of di�erent styles. Due to the aforemen-
tioned automatic insertion of semicolons, a minimal amount of fixed formatting in Go
is unavoidable. But even beyond that, Go strives towards a unified formatting style
as this is one of the “most [contended] but least consequential [issues]” [16]. In order
to reach the goal of a unified coding style without sparking debates, the approach is
in the form of a tool that takes care of formatting instead of a “long prescriptive style
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guide” [16]. The “gofmt” program takes files and packages and ensures that the output
conforms to the Go coding style.

“gofmt” is just one of multiple tools that come with the Go programming language.
The standard Go installation includes a variety of other tools, ranging from profiling
to disassemblies of executables to automatic documentation to the support of C code
within Go packages and vice versa. This array of supportive tools aid in many aspects
of programming, making the development process easier, faster and safer.

Go is not without flaws though and they have to be accepted when using it as the lan-
guage of choice. The main point concerning ixy is that the garbage collection overhead
can severely limit the viability in systems programming and since there is no manual
allocation and freeing of memory it is not optional. While this area has been the target
of many improvements over the last years, it still does not satisfy hard real time require-
ments [10]. Go also does not have the keyword volatile or, at least to our knowledge, an
equivalent that prevents optimization concerning a variable or special memory. There
are other disadvantages, such as the lack of generics, though most of them are hardly
relevant to ixy.
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Chapter 3

Related Work

In the previous Chapter we discussed what factors can be detrimental to Go being a
suitable languages for network drivers as well as the advantages it o�ers as a high-level
language. While Go is used for a great number of networking operations, we failed to
find any example of it being used for user space driver programming.

Not even Googles new operating system Fuchsia makes use of Go for their drivers. It
does however use Netstack [12], a userland network stack written in Go as part of its
garnet layer [14]. The Garnet layer is on top of Zircon [15], a microkernel and the
foundation upon which Fuchsia is build [2]. Zircon includes all the ethernet drivers
which are exclusively implemented in C and C++1. ixy.go is therefore the first network
driver written in Go.

Biscuit [3] is an operating system kernel written in Go in order to evaluate the impact
that writing a POSIX kernel in a high-level language has compared to C. The premise
of this paper is similar to our thesis but has a di�erent subject. A monolithic kernel also
needs network drivers and driver support is implemented for Intel PCI-Express Ethernet
NICs, which are the same NICs we support: ixgbe. The main di�erence is that Biscuit
as an operating system implements a kernel level driver while we implement a user
space driver. Unfortunately the paper simply mentions the networking components
implemented with no further analysis as its focus is on the scope of the full kernel.
Conclusions for Biscuit are that a Go kernel is ¥15% slower but is at many points
easier to implement and has increased security as type- and memory safety prevent

1 https://fuchsia.googlesource.com/zircon/+/master/system/dev/ethernet/

https://fuchsia.googlesource.com/zircon/+/master/system/dev/ethernet/
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real-world bugs. These features make Go a viable consideration when speed is not the
top priority.

10



Chapter 4

Driver Architecture

Since ixy.go is a port of the original ixy driver it tries to stick with its architecture
rather closely. We will often refer to the original driver [5] and the corresponding pa-
per [8] when discussing architecture and implementation in the following. All necessary
information will be covered briefly but we focus on the ixy.go specific implementation.
We therefore recommend the ixy paper in case more extensive information is desired
and will refer to it in the following sections. Our ixy.go implementation is available un-
der the following GitHub page: https://github.com/ixy-languages/ixy.go. Unless
specified otherwise, any code that is mentioned refers to commit 4145aa8 in the master
branch of this repository. Instructions for installation and usage can be found in the
README.md file.

The Go port of the ixy driver is in most parts architecturally identical to the original
driver which in turn is based on the o�cial Intel ixgbe driver and based on ideas from
both DPDK [13] and Snabb [1]. Snabb inspired the initialization as well as the operation
without loading a driver and the Application Programming Interface (API) based on
explicit memory management, batching and abstraction was modeled after DPDK.

The Intel 82599 datasheet [11] explains the process for initialization of the driver, how
the receive and transmit queues are set up and operated and thus was essential in
development. All page and section numbers refer to revision 3.3 (March 2016) of the
82500ES datasheet. The extensiveness of the datasheet was one of the main reasons
ixgbe was chosen. We will refer to the datasheet when discussing the implementation.
The primary design goal was simplicity as ixy is supposed to be an educational piece of
software. This means that compared to other userspace drivers it was trimmed down to
the bare essentials and therefore missing features such as various means of o�oading,

https://github.com/ixy-languages/ixy.go
https://downloadcenter.intel.com/download/14687/Intel-Network-Adapter-Driver-for-PCIe-Intel-10-Gigabit-Ethernet-Network-Connections-Under-Linux
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making it at least one order of magnitude simpler. The driver was then optimized for
speed, as long as the cost in complexity was not too high, meaning that the driver is not
as highly optimized as other user space drivers. The driver is not meant for production
use whatsoever, it is meant for education only. The API was also not designed in the
name of user friendliness but rather aims to make the inner workings of the driver
clear to application programmers. A higher level of abstraction could be built onto the
current API and functionally could also be added but would go against the principle of
education and simplicity and thus was cut from the ixy drivers.

As mentioned before, we will focus on the di�erences between the original driver written
in C and our rewrite in Go. As additional ports in di�erent languages have already
been done and more are in the works, these thesis will provide a comparable baseline
of the performance of various languages in the area of systems programming and more
specifically network driver programming.

4.1 Overview

From an outside perspective the driver works as follows: An application first needs
to initialize a number of devices to operate on which it can then use for sending and
receiving packets. All packet manipulation has to be done by the application though
the received or self-initialized packet bu�ers.

4.2 Driver Abstraction

All versions of ixy feature only one layer of abstraction: Decoupling of the driver and
the user application. Applications call into ixy for initialization and ixy chooses the
appropriate driver automatically and returns it. The original C implementation has an
ixy_device struct (in device.h) for this purpose that includes information common
amongst all driver implementations as well as function pointers to functions the API
then has to provide. The returned struct will then be of the type of the driver for the
NIC, an ixgbe_device (in ixgbe.h) for ixgbe and a virtio_device (in virtio.h)
for the VirtIO, the two currently implemented drivers in the C version. These structs
include the ixy_device alongside the driver specific information and functions.

This setup certainly works but can be done more elegantly and readable in Go. While
this would be a prime case of inheritance in object oriented languages, Go is not an
object oriented language. It does however o�er receiver functions and interfaces which
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can be used in order to achieve a solution similar to such languages. Receiver functions
are functions defined on a type or pointer type while an interface specifies a number
of method signatures and is simultaneously a type itself. Every type that satisfies all
of the method signatures of an interface implements this and possibly other interfaces
and thus can be used whenever the implemented interface type is required. This is also
what the infamous and often misunderstood empty interface provides: since every type
implements at least zero methods, every type implemets an empty interface.

In our case though this concept provides us with a convenient way of modelling di�erent
drivers: as in C we use an IxyDevice struct (in device.go) that will be part of the
driver specific structs but instead of function pointers we define an IxyInterface in
device.go with method signatures that all drivers must implement.

1 type IxyInterface interface {
2 RxBatch(uint16, []*PktBuf) uint32
3 TxBatch(uint16, []*PktBuf) uint32
4 ReadStats(*DeviceStats)
5 setPromisc(bool)
6 getLinkSpeed() uint32
7 getIxyDev() IxyDevice
8 }

Functions and variables starting with a capital letter are exported in Go which we make
use of to further control our API and only export necessary functions of the interface.
Depending on the device at the given Peripheral Component Interconnect (PCI) address,
the corresponding driver initialization is then invoked which, as in the C driver, will
return the driver struct which is then handed back as an IxyInterface. This results in
much more readable code and better extensibility as new drivers can be added simply by
inserting the file into the Go package and adding a condition to the IxyInit() function
in device.go under which the new driver should be invoked, no further changes needed.

4.3 Initialization Process

Next we will take a look at the initialization process. Since this works mostly similar
to the C implementation, we will give a short rundown of the process and only get into
greater detail when we need a di�erent approach in Go. The initialization process starts
with a call of IxyInit() which then in turn calls the initialization function of the driver
that corresponds to the PCI device at the address that has been handed over. In the case
of this thesis we only support ixgbe devices and no VirtIO. ixgbeInit() in ixgbe.go
then starts by initializing all fields of the struct and then calls resetAndInit() in
ixgbe.go. This part of the NIC initialization is described in Sections 4.6.3 and following
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https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/82599-10-gbe-controller-datasheet.pdf#4.6.3
https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/82599-10-gbe-controller-datasheet.pdf#4.6.3
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of the datasheet. After setting the correct values for the registers, which are explained in
Section 8.2 in the datasheet and are defined as constants and functions in type.go, we
initialize the link, the status and the receive and transmit queues and enable promiscous
mode in order to receive multicasts as well, though we keep interrupts disabled since we
rely on polling. Then we wait until the link is online.

1 func (dev *ixgbeDevice) resetAndInit() {
2 setCReg32(dev.addr, IXGBE_EIMC, 0x7FFFFFFF)
3 setCReg32(dev.addr, IXGBE_CTRL, IXGBE_CTRL_RST_MASK)
4 waitClearCReg32(dev.addr, IXGBE_CTRL, IXGBE_CTRL_RST_MASK)
5 time.Sleep(time.Millisecond)
6 setCReg32(dev.addr, IXGBE_EIMC, 0x7FFFFFFF)
7 waitSetCReg32(dev.addr, IXGBE_EEC, IXGBE_EEC_ARD)
8 waitSetCReg32(dev.addr, IXGBE_RDRXCTL, IXGBE_RDRXCTL_DMAIDONE)
9 dev.initLink()

10 dev.ReadStats(nil)
11 dev.initRx()
12 dev.initTx()
13 for i := uint16(0); i < dev.ixy.NumRxQueues; i++ {
14 dev.startRxQueue(int(i))
15 }
16 for i := uint16(0); i < dev.ixy.NumTxQueues; i++ {
17 dev.startTxQueue(int(i))
18 }
19 dev.setPromisc(true)
20 dev.waitForLink()
21 }

The initialization is described in Section 4.6.4 of the datasheet, we set the bits in the
AUTOC register and then restart the link. The status is initialized by reading from the
NIC and discarding the result to clear the fields. Initializing the receive (Section 4.6.7
of the datasheet) and transmit (Section 4.6.8) requires a bit more work:

initRx() in ixgbe.go operates according to the datasheet but we need additional
information for the driver in order to manage the receive queues that hold the packets.
For that purpose we allocate DMA memory, which will be explained in the next section,
and start to initialize the queue struct. C o�ers unions that can be used to represent
the queue descriptors but since Go forgos unions we have to resort to the use of raw
byte slices that we subdivide the dma memory into.

initTx() in ixgbe.go works similarly. We follow the instructions of the datasheet and
get the data for our driver, which hardly di�ers from the receive initialization.

After initialization, the queues have to be started. Refer to startRxQueue() in ixgbe.go
for this process. For the receive queue this is done by allocating a mempool that can
hold the desired amount of packets and allocate packets within this pool for each queue.
For each allocated packet we hand its physical address over to the NIC by using the
packet descriptors. Once all the queues are allocated we enable the corresponding queue
and tell the NIC that we are done. Starting the transmit queues is easier since they start
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out empty, thus the only thing we have to do is to enable them. The implementation is
in startTxQueue() in ixgbe.go.

For the last step we enable promiscous mode which is simply inverting the corresponding
flag. We then wait until the link comes back up at which point the driver is good to go.

Communication with the NIC requires reading and setting registers. Ixgbe NICs expose
their configuration, statistics and debugging registers via the BAR0 address space. All
Base Address Register (BAR) are exposed via the sysfs pseudo file system and can simply
be mmap’ed into a privileged processes address space. The register o�sets are listed in
the datasheet [11], the mapping can be found in pciMapResource() in pci.go and the
getter and setter methods in regs.go. Additionally we prepared read/writeIoXC()
functions in regs.go mainly for a ViotIO implementation, the reasoning can be found
in the original ixy paper [8], but also find use during initialization.

We originally implemented these functions in pure Go and tried to force reads and writes
through empty C calls as Go does not have the volatile key word or an equivalent for
our needs as far as we know. This resulted in strange behaviour: while initialization
seemed to work, including the corresponding register getters and setters, the program
failed later when the NIC never set flags that were necessary to continue. We invested
a lot of time in this specific problem but could not find a reason for this behaviour.
With the help of cgo, which enables the use of C code in Go programs, we imported
the corresponding functions in device.h alongside log.h of the original C driver and
replaced our go functions. This fixed the aforementioned problem though we never were
able to provide an exact explanation due to limited time constraints.

1 // #include <device.h>
2 import "C"
3 import (
4 "os"
5 "unsafe"
6 )
7 func setCReg32(addr []byte, reg int, value uint32) {
8 C.set_reg32((*C.uint8_t)(unsafe.Pointer(&addr[0])), C.int(reg), C.uint32_t(value))
9 }

10 func readIo32C(fd *os.File, offset uint) uint32 {
11 return uint32(C.read_io32(C.int(int(fd.Fd())), C.size_t(offset)))
12 }
13 func writeIo32C(fd *os.File, value uint32, offset uint) {
14 C.write_io32(C.int(int(fd.Fd())), C.uint32_t(value), C.size_t(offset))
15 }
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4.4 DMA Memory Allocation

We have seen the general process of the initialization, including the receive and transmit
queues. This operation requires the allocation of DMA memory: reads and writes within
this memory area become reads and writes to the NIC through the use of the mmap
function on the desired memory area. In order to use DMA we need to explicitely enable
it as it is done in enableDma() in pci.go.

First of all each queue needs descriptors, in our case we use the advanced receive (data
sheet Section 7.1.6) / transmit (Section 7.2.3) descriptors. These descriptors serve
as the communication interface between the NIC and the driver, providing informa-
tion and taking commands concerning packet bu�ers. Additionally we also need DMA
memory for the packet bu�ers themselves. The MemoryAllocateMempool() function in
memory.go builds upon allocated dma memory and manages this memory as a memory
pool that consists of packet bu�ers.

Now for the actual memory allocation, refer to memoryAllocateDma() in memory.go for
the implementation. As in C, memory mapping a file in Go can be done with one single
Mmap() method that the syscall package provides [21]. Contrary to C the return value
of this function is not a pointer to the start of a memory area but instead a byte slice
that contains the memory area.

1 err = fd.Truncate(int64(size))
2 //error handling
3 var mmap []byte
4 mmap, err = syscall.Mmap(int(fd.Fd()), 0, int(size), syscall.PROT_READ|syscall.PROT_WRITE,

Òæ syscall.MAP_SHARED|syscall.MAP_HUGETLB)
5 //error handling

Though we could certainly handle this problem similar to the fashion of the C implemen-
tation by the extensive use of pointers, this would require the use of unsafe operation
in order to circumvent the type system and the runtime. However we do not expect
a significant increase in speed through this approach and it would not conform to the
goal of writing idiomatic Go. Thus we used the provided byte slices which results in
di�erent handling of DMA memory compared to C, hardly more di�cult to understand
but with di�erent approaches.

In addition to mmapping we also have to take into account that our driver operates
on virtual addresses while the NIC needs physical addresses for its operations. We
therefore have to not only be able to calculate the mapping between physical and virtual
addresses but also have to make sure that this mapping stays consistent thus resident
in pyhsical memory. We can use Mlock() from the syscall package [21] to disable
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swapping and guarantee that the page stays in memory. It does not however guarantee
that the physical address stays the same as the page migration mechanism can change
the physical address of a memory backed page allocated from the user space at any given
time [4]. Fortunately Linux does not implement page migration for explicitly allocated
hugepages which we can thus use in order to create a stable mapping. Hugepages are
enabled by executing setup-hugetlbfs.sh before starting the driver. This is standard
procedure in all user space drivers [8].

Lastly we need to translate virtual into physical addresses. All the necessary informa-
tion is contained in the procfs file /proc/self/pagemap, the implementation of this
translation is implemented in virtToPhys() in memory.c. The translated addresses are
stored in the queue and can be communicated to the NIC through the usual registers.

4.5 Mempools and Packet Buffers

As we have seen in the previous section, a queue has a memory pool in addition to its
descriptors. The memory pool is responsible for managing the allocated DMA memory
which is divided into fixed size bu�ers. In the C version a mempool is e�ectively a
stack of packet bu�ers which are data structures stored in DMA memory that contain a
header and the packet itself. The mempool data structure of out Go implementation is
of similar fashion and contains metadata for the mempool such as size and the number
of entries as well as the slice that points to the DMA memory that is used for packet
bu�ers.

The header of a packet bu�er is 64 bytes and contains metadata such as the physical
address, the ID of the corresponding mempool and its size. The remainder of the
memory area is reserved for the packet data. In Go there is no such a struct for
multiple reasons. First of all this approach works in C as, because of its weaker type
system, one can simply cast a pointer to DMA memory into a pointer to a packet
bu�er and thus interpret the underlying bytes accordingly. In Go this would require
the usage of unsafe pointers from the unsafe package which we try to avoid wherever
we reasonably can. Additionally it would prove di�cult to construct a Go struct that
accurately represents the desired memory layout as Go does not allow the declaration of
an array of unspecified length for the packet data. Slices are also not adequate as a slice
is more akin to a pointer to an array with additional information about boundaries and
thus cannot be used where the actual data needs to be. We could have devised packet
bu�ers that are allocated outside the DMA memory and contain the metadata as well
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as a pointer to the packet data in DMA memory but we decided against decoupling
these two parts and spreading them over the memory.

We instead used another approach that manipulates the DMA memory into the same
shape as the C implementation does, namely metadata and packet data in DMA mem-
ory. We simply address the byte slices at the correct o�sets. So instead of pointer
casting and addressing the memory as a struct, we set the bytes manually with the help
of the binary package [19]. It has to be noted that we do need to know the endianess of
the machine for this to work. In this case the idiomatic approach makes use of unsafe
pointers, see lines 34-38 in device.go. Unfortunately this approach does not work
in Go without an additional data structure as we have to bundle the subslice that rep-
resents our packet bu�er and a pointer to the mempool together. Simply storing the
address of the mempool in the metadata header as bytes, like the C implementation
does, causes the garbage collector to target the mempool as a re-translation does not
satisfy the criteria to keep the target.

1 //C implementation: pointer casting
2 for (uint32_t i = 0; i < num_entries; i++) {
3 mempool->free_stack[i] = i;
4 struct pkt_buf* buf = (struct pkt_buf*) (((uint8_t*) mempool->base_addr) + i * entry_size)

Òæ ;
5 buf->buf_addr_phy = virt_to_phys(buf);
6 buf->mempool_idx = i;
7 buf->mempool = mempool;
8 buf->size = 0;
9 }

1 //Go implementation: byte slice
2 for i := uint32(0); i < numEntries; i++ {
3 mempool.freeStack[i] = i
4 pBufStart := i * entrySize
5 if isBig {
6 binary.BigEndian.PutUint64(mempool.buf[pBufStart:pBufStart+8], uint64(virtToPhys(

Òæ uintptr(unsafe.Pointer(&mempool.buf[i*entrySize])))))
7 binary.BigEndian.PutUint64(mempool.buf[pBufStart+8:pBufStart+16], uint64(uintptr(

Òæ unsafe.Pointer(mempool))))
8 binary.BigEndian.PutUint32(mempool.buf[pBufStart+16:pBufStart+20], i)
9 binary.BigEndian.PutUint32(mempool.buf[pBufStart+20:pBufStart+24], 0)

10 } else {
11 //same operations with binary.LittleEndian
12 }
13 }

During the initialization exactly one mempool is allocated per queue and pre-filled with
empty packets for performance reasons. We then link packet bu�ers and descriptors
by writing the packets’ physical address into the descriptors. After enabling the queue
through the registers the initialization is complete.
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4.6 Receiving and Transmitting Packets

Now that we covered the setup of the ixy.go driver, we will take a look at the workload
it has to deal with which can be boiled down to two tasks, namely receiving and trans-
mitting packets. For purpose of packet transfer, NICs expose circular bu�ers called
queues or rings. As in the example applications, the simplest setup uses one receive
and one transmit queue but multiple queues are also possible. These ring bu�ers are
the DMA descriptors we explained in Section 4.4. Once a ring is initialized, sending
and receiving is done by passing ownership of the descriptors between the driver and
the hardware. For that purpose the hardware controls a head pointer and the driver a
tail pointer which are accessible through device registers. Consult the second passage
of Section 4.1.1 of the original ixy paper [8] for further details.

Receiving is implemented in RxBatch() in ixgbe.go as described in sections 1.8.2 and
7.1 of the datasheet. Our implementation is mostly similar to the original ixy, safe
for adjustments to fit the data structures we chose for the Go implementation. After
startup the ring bu�er is filled with physical pointers to packet bu�ers as described in
the previous section. Whenever a packet is received, the NIC will set the “descriptor
done” flag, signalling that it can now be handled by the driver. The driver then reads the
whole descriptor, returns the received packet to the application, allocates a new packet
from the mempool and resets the descriptor by writing the packets physical address
to the descriptor. Once receiving is done, we notify the hardware by moving our tail
pointer. Since the NIC works with physical addresses and the driver with virtual ones,
we also need a way to translate them. Instead of consulting the pagemap once again,
we keep a copy of the ring that is populated with the virtual addresses and use this as
our lookup table.
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1 //RxBatch(); shortened for the sake of briefness, refer to source code for detailed explanation
2 for ; bufIndex < numBufs; bufIndex++ {
3 descPtr := queue.descriptors[rxIndex].raw
4 //status := bits 64 - 95 of the advanced rx recieve descriptor
5 if status&IXGBE_RXDADV_STAT_DD != 0 {
6 //status IXGBE_RXDADV_STAT_EOP not supported
7 desc := make([]byte, len(descPtr))
8 copy(desc, descPtr)
9 buf := queue.virtualAddresses[rxIndex]

10 //copy length from descriptor to packet with encoding/binary
11 newBuf := PktBufAlloc(queue.mempool)
12 //reset descriptor by writing the physical address of the buffer into the first 64

Òæ bit and set the rest to 0, again with encoding/binary
13 queue.virtualAddresses[rxIndex] = newBuf
14 bufs[bufIndex] = buf
15 lastRxIndex = rxIndex
16 rxIndex = wrapRing(rxIndex, queue.numEntries)
17 } else {
18 break
19 }
20 }
21 if rxIndex != lastRxIndex {
22 setCReg32(dev.addr, IXGBE_RDT(int(queueID)), uint32(lastRxIndex))
23 queue.rxIndex = rxIndex
24 }
25 return bufIndex

Receiving as well as transmitting is done in batches, hence the function names. This
results in a significant performance increase as otherwise the device register that controls
the tail would have to be updated after every packet. Since a write to a register is a
comparatively expensive operation, reducing it to once per batch cuts a significant
portion of this overhead and thus severely increases throughput. A receive batch always
includes as many packets as it has access to while the transmit function operates on a
fixed batch size.

The transmit functionality is implemented in TxBatch() in ixgbe.go as described in
Sections 1.8.1 and 7.2 of the datasheet. While packet transmission does follow the
same concept and API as packet reception, it is somewhat more complicated due to
the asynchronous nature of the NICs’ interface, as a packet placed into the ring is not
immediately transferred. As blocking would be detrimental to the performance, the
receive function is instead divided into two steps.

In the first step we clean up the descriptors that were sent out by freeing the corre-
sponding packets and in the second step the packets are placed into the ring. As with
the receive function, this is equally similar to the original C implementation, again safe
for adjustments that result from di�erent data structures. The cleaning process starts
with calculating the amount of descriptors that can be cleaned, which is based on batch
size, and freeing them based on the “descriptor done” flag of the status. The virtual
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addresses are once again obtained through a copy. Freeing packets is implemented in
PktBufFree() in memory.go.

In the second step the driver sends out as many of our packets as possible which is
conceptually similar to receiving: save the virtual address for the cleaning process, get
the descriptor and mark it for sending by writing the physical address of the packet,
flags and size to it. Afterwards we pass control of the packet bu�ers to the NIC by
advancing the tail register, again only once per batch to increase performance.

1 //second half of TxBatch(); shortened for the sake of briefness, refer to source code for
Òæ detailed explanation

2 var sent uint32
3 for sent = 0; sent < numBufs; sent++ {
4 nextIndex := wrapRing(curIndex, queue.numEntries)
5 if cleanIndex == nextIndex {
6 break
7 }
8 buf := bufs[sent]
9 queue.virtualAddresses[curIndex] = buf

10 queue.txIndex = wrapRing(queue.txIndex, queue.numEntries)
11 txd := queue.descriptors[curIndex]
12 if isBig {
13 size := binary.BigEndian.Uint32(buf.Pkt[20:24])
14 binary.BigEndian.PutUint64(txd.raw[:8], binary.BigEndian.Uint64(buf.Pkt[:8])+64)
15 binary.BigEndian.PutUint32(txd.raw[8:12], IXGBE_ADVTXD_DCMD_EOP|

Òæ IXGBE_ADVTXD_DCMD_RS|IXGBE_ADVTXD_DCMD_IFCS|IXGBE_ADVTXD_DCMD_DEXT|
Òæ IXGBE_ADVTXD_DTYP_DATA|size)

16 binary.BigEndian.PutUint32(txd.raw[12:16], size<<IXGBE_ADVTXD_PAYLEN_SHIFT)
17 } else {
18 //same operations with binary.LittleEndian
19 }
20 curIndex = nextIndex
21 }
22 setCReg32(dev.addr, IXGBE_TDT(int(queueID)), uint32(queue.txIndex))
23 return sent

4.7 Driver API

Ixy is designed to be simple and educative and as such we also favour a simple over
an extensive API. It is designed similar to DPDKs API that builds on explicit memory
allocation and is the same when it comes to sending and receiving packets and allocating
memory. Our API ist also not hard to use. For demonstration purposes we included
a simple forwarding application is included in the GitHub repository (see ixy-fwd.go)
which has less then 80 lines and even less lines of actual Go code.

Initialization is done with a single invocation of the IxyInit() function thus minimizing
any opportunity for errors from the side of the user. The receive process can also be
done with a single function call of [IxgbeDevice].RxBatch() which takes a queue index
and a slice of pointers to packet bu�ers which it then fills. Note that the length of the
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slice is simultaneously the desired batch size. RxBatch() returns the number of packets
received which can be dropped but in applications such as forwarding is usually relevant
for the following steps. It should also be kept in mind that the application is responsible
for polling with RxBatch() at the desired frequency.

Sending packets can also be done in a single function call of [IxgbeDevice].TxBatch()
with the queue index and a slice of valid allocated packet bu�ers. This would be
the case when forwarding packets as one would simply use the packets received from
the RxBatch() but could also be manually allocated in other scenarios. TxBatch()
returns the number of sent packets. One should carefully consider how to proceed with
unsent packets; they can be resubmitted or dropped by freeing them but have to be
returned to the mempool in one way or another. An application that wants to send
its own packets instead of reusing received ones, such as a packet generator, will need
to generate its own packets. A common approach is to first fill a mempool completely
with a packet template and then free them all. This way each newly allocated packet
will have this template which can then be altered according to ones needs such as
updating sequence numbers and adding the calculated checksum. We implemented a
packet generator (ixy-pktgen.go) which unfortunately does not work at the time of
this thesis as calling IxyInit() currently seems to overwrites the mempool IDs in the
packets that are previously allocated in initMempool() for no apparent reason.

An application might want to provide stats about the NIC. The stats.go file provides
basic functionality for calculating stats for RX and TX queues. Stats are polled from
the NIC through the use of ReadStats() in ixgbe.go and can then displayed using
either [DeviceStats].PrintStats() or [DeviceStats].PrintStatsDiff().
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Performance Analysis

Ixy was created as an educational driver and thus had simplicity as its highest priority.
Nevertheless we tried to make the driver as fast as possible wherever we could and
the cost in complexity was not too high. As the ixy reimplementations are rewrites of
the original driver, this also allows us to evaluate the viability of di�erent languages
in the aspect of network driver programming. In this thesis we will compare our Go
implementation with the original C driver. Since their features and architectures are
mostly equal, this will provide a comparable performance evaluation between Go and
C and the impact the choice of language has on the driver.

For this we compare the forwarding applications of both implementations. All mea-
surements are made with Go version 1.11.1. A forwarder receives packets on up to
two devices and changes a single byte in order to simulate a more realistic workload as
this ensures that the packet data is fetched into the L1 cache. While one could use a
dual port NIC as well, all our measurements are taken using two separate NICs as this
eliminates possible hardware limits as described in the original paper [8]. A received
packet on either device is then forwarded on the other. Neither the C nor the Go driver
implement multi-threading. For our measurement we send packets with MoonGen [6]
from one machine on both NICs for bidirectional forwarding and run the forwarding
application on another machine which receives packets on two NICs. The packets have
a payload of 60 bytes. The forwarding application receives the packets as described in
section 4.6 with the RxBatch() function and sends them back out via use of TxBatch(),
which also cleans the packet bu�ers in batches.
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Figure 5.1: Single-core forwarding performance with varying CPU speed. Go batch size 256. C

measurements taken from the original driver, CPU frequency measured with 2 separate NICs [7]

5.1 Benchmarks

We benchmarked the driver with the afore mentioned setup.

5.1.1 Throughput

In order to quantify baseline performance and identify bottlenecks, we run the forward-
ing example as explained above while increasing CPU frequency and compare them to
the results of the C driver. The default CPU frequency at 100% is 3.3GHz, we start
at 49% speed, 1.6GHz, and increase to the maximum frequency within the supported
steps. The measurements were performed with a constant batch size of 256, where
ixy.go is the fastest, and are presented in Figure 5.1. Note that we always calculate the
average using the sum of both forwarding streams. Go ixy is significantly slower then C
ixy at lower CPU frequencies but scales better so that both end up very close together
with ixy.go being approximately 10% slower then the C implementation under optimal
circumstances. Note that the slight CPU abnormality of the C implementation, where
it is actually slightly faster at slighly below 100% speed, does not happen with Go which
runs the fastest at full CPU frequency. As ixy.go ends up very close to the performance
of the original ixy, this refutes many of the potential detriments concerning Go as a
language for driver programming.

We touch the packets by changing one byte in order to simulate a more realistic work-
load. Nevertheless it is important to know how much it actually impacts performance.
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Figure 5.2: Single-core forwarding performance with varying batch size and 3.3GHz CPU frequency

for all measurements. C measurements are the o�cial performance measurements [7]

When measured at a batch size of 256 and at 3.3GHz and not touching the packets,
ixy.go has an average throughput of 27.44 million packets per second which translates
to almost a 10% increase in speed, bringing it up to the level of ixy.c. Meanwhile dis-
abling packet touching in the C implementation actually has a negative e�ect on the
throughput, dropping the average to 20.18 million packets per second though this is not
further elaborated in the corresponding paper [8].

5.1.2 Batching

As explained in section 4.6, batching is essential for performance as updating the driver
after operations requires access to the queue index register, a rather costly operation.
Batching reduces the need for this register access to once per batch thus significantly
reducing overhead. Figure 5.2 shows how the performance increases with higher batch
sizes. While performance increases starkly within low batch sizes, it does so with di-
minishing return and even starts to drop of after a certain threshold. Ixys default batch
size has been chosen as 32 as a result, the Go implementation starts out slower at lower
batch sizes but catches up later until it peaks at a batch size of 256. The explanation
for the diminishing returns is the same as it is for ixy: a higher batch size thrashes the
cache and thus results in an increased number of cache misses [8] though in the case of
ixy.go higher batch sizes still outweigh the penalties.
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Function flat flat% cum cum%
ixy.go/driver.(*ixgbeDevice).RxBatch 8.86s 28.97% 12.18s 39.83%
main.forward 6.48s 21.19% 30.45s 99.57%
ixy.go/driver.(*ixgbeDevice).TxBatch 6.11s 19.98% 11.79s 38.55%
encoding/binary.littleEndian.PutUint32 (inline) 0.58s 1.90% 93.17% 0.58s
1.90%
encoding/binary.littleEndian.PutUint64 (inline) 0.56s 1.83% 95.00% 0.56s
1.83%
encoding/binary.littleEndian.Uint64 (inline) 0.26s 0.85% 96.83% 0.26s
0.85%
encoding/binary.littleEndian.Uint32 (inline) 0.23s 0.75% 98.40% 0.23s
0.75%

Table 5.1: CPU pprof shortened results

5.2 Profiling

Go o�ers powerful means of profiling with the pprof tool and package. In order to
use this profiling on a standalone program, we have to add a minor amount of code to
start and stop CPU profiling and write the profiles to files. Refer to the instructions
in the pprof package [20] on how to enable profiling in standalone programs. pprof is a
sampling profiler, meaning it halts execution a default of 100 times per second to record
a sample of program counters and the current goroutine on the stack. We performed
CPU and memory profiling on a forwarding program that ran for approximately 30
seconds after startup and took a look at the invocation graphs.

All following profiling is done with a batch size of 256. Table 5.1 shows where CPU time
is spent on average, refer to the appendix for the full list. flat refers to the amount of
time the method was actually running while cum records when the method was found
on the stack while sampling. More interesting though is the invocation graph that pprof
can provide. Time is split rather evenly between RxBatch and TxBatch, striking the
balance needed for controlled forwarding. As one of the main concerns regarding Go
was the potential detriment of the garbage collection on the speed, it is pleasant that it
has next to no impact on the driver. The pprof tool does not list the garbage collection
or any other elements of the runtime, except for the utility needed for cgo and thus
is explicitly called, as they are dropped due to insignificance (total of <=0.15s for 64
nodes in 30.58s total measurement time). Thus we can conclude that the Go runtime
is optimized to a degree where it is e�ectively a non factor. Lastly the put and get
function from the binary package [19] consume 5.01% of the total time. While one
could try to use unsafe operations to potentially speed up the driver by a few more
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packets per second, we expect potential gains to be rather small and thus stick with the
safe and idiomatic aproach. This consideration is detailed below in Section 5.3.

Go also o�ers memory profiling and we found that the results are very close to expecta-
tions. Memory is allocated during initialization and nowhere else except for profiling and
a package from the standart library, meaning that there are no unecessary allocations,
memory leaks and the like. The memory allocation graph is presented in figure 5.4.

5.3 Go Specific Performance Considerations

We have now seen that ixy.go, while slightly behind in terms of packet processing ability,
can definitely compete with ixy.c. While there is always room for improvement, one has
to be aware of its costs which often come in the form of complexity.

5.3.1 Unsafe Pointer Operations

We originally considered to try and use unsafe pointers instead of the provided byte slices
for the DMA memory. Our current approach accesses these as is through the use of the
encoding/binary package. The pprof tool shows that encoding/binary.LittleEndian.*
functions are automatically inlined with a total of 5.01% of the applications run time.
We use these functions as we need a way to address the byte slice that we get as a
result from the mmap() syscall. Another option to this would be a C-like approach by
casting the slice to unsafe pointers to the same memory area and access it directly as
pointers instead of invoking the functions from the binary package. However in light
of the frequency the fuction is used, we doubt that this approach would significantly
increase speed. Additionally, as mentioned before, we try to keep the use of unsafe
operations to a minimum wherever possible as it defeats the type system and bypasses
some of Go’s core features which arises the question wh one should even use Go then.
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Figure 5.3: CPU profiling graph
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Figure 5.4: Memory profiling graph
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Evaluation

We have presented an architectural overview of ixy.go and measured performance. Now
we will try to answer the question of whether Go is a suitable programming language
for (network) driver development and evaluate its advantages and disadvantages in this
area with regards to the characteristics listed in section 2. The main points of discussion
for this topic will be performance, development and suitability for educational purposes.
While these are all important aspects in the context of education, a real world production
grade network driver’s only relevant category is speed, as long as there are no security
issues. We will then draw the final conclusions concerning Go as a language for network
drivers based on our findings.

6.1 Performance

Performance is the most central point of consideration when choosing a language for a
network driver and thus only languages that can produce code that performs at least
as good as C code can be considered alternatives. Should a language provide ample
other benefits, one can potentially accept a slight loss of performance. Languages that
cannot provide code with similar speed are not suited for production grade drivers and
are unusable in high performance environments.

In our performance analysis we evaluated our driver in regards of CPU frequency and
batch size. While C performed better under unfavourable conditions, Go is only ¥10%
slower when both applications are being run under optimal conditions. While this might
not be a huge gap, speed is usually the single most important aspect of network drivers
and as such slower drivers rarely find use. Nevertheless this makes Go still a candidate
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when choosing the language to write a network driver with. Most drivers for Linux
to this date are written in C without even considering other languages and while C is
mandatory for kernel programming, this fact does not change in the realm of user space
drivers. We evaluated the advantages and disadvantages of Go at length in Chapter 2.
Should one plan to implement a new network driver which does not have speed as its
uncontested top priority, Go is a reasonable choice as it o�ers a wide array of additional
features ranging from security aspects to an extensive tool chain while still running at
a reasonable speed.

6.2 Development

Motivation for the development of this port was that on the one hand it furthers acces-
sibility and thus can teach a broader audience, and on the other hand to explore the
possibilities of modern programming languages for driver development. In this section
we will focus on the latter. Compared to C, Go o�ers many security features, a vast
standard library, more modern syntax, a vast array of tools and many other things
which make for a strong case. We will now discuss their influence on the development
process compared to what it would have been in C as well as how it di�ers from typical
Go programs.

Starting at the outermost scope of inspection, we see that the codebase of the drivers is
roughly equal, with Go being a little larger. While the C implementation has slightly
less then 1000 lines, the Go implementation comprises ¥1000 lines of code for the driver
and another ¥70 lines of code for the forwarding application, excluding the machine
readable versions of the datasheet. This di�erence largely stems from the di�erences
in our way of addressing DMA memory, the calls to C and the fact that the linter,
the formatting tool that enforces the Go coding style, tends to spread some statements
that could be expressed in a single line over multiple lines instead. While this helps
readability it also somewhat inflates the line number. Subtracting these inflations would
bring us almost exactly to C level.

As discussed in section 2, Go orients itself style wise at the C programming language
but tries to modernise many approaches that were deemed outdated. This, combined
with syntactic sugar and a type inference system, makes for an easier, safer and more
intuitive development and often helps readability as well. We present two code examples
comparing the same function snippets from ixy and ixy.go.
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ixy_tx_batch_busy_wait from device.h
1 static void ixy_tx_batch_busy_wait(struct ixy_device* dev, uint16_t queue_id, struct pkt_buf*

Òæ bufs[], uint32_t num_bufs) {
2 uint32_t num_sent = 0;
3 while ((num_sent += ixy_tx_batch(dev, 0, bufs + num_sent, num_bufs - num_sent)) !=

Òæ num_bufs) {
4 }
5 }

IxyTxBatchBusyWait from device.go
1 func IxyTxBatchBusyWait(dev IxyInterface, queueID uint16, bufs []*PktBuf) {
2 numBufs := uint32(len(bufs))
3 for numSent := uint32(0); numSent != numBufs; numSent += dev.TxBatch(queueID, bufs[numSent

Òæ :]) {
4 }
5 }

start_rx_queue from ixgbe.c
1 static void start_rx_queue(struct ixgbe_device* dev, int queue_id) {
2 struct ixgbe_rx_queue* queue = ((struct ixgbe_rx_queue*)(dev->rx_queues)) + queue_id;
3 uint32_t mempool_size = NUM_RX_QUEUE_ENTRIES + NUM_TX_QUEUE_ENTRIES;
4 queue->mempool = memory_allocate_mempool(mempool_size < 4096 ? 4096 : mempool_size, 2048);
5 if (queue->num_entries & (queue->num_entries - 1)) {
6 error("number�of�queue�entries�must�be�a�power�of�2");
7 }
8 for (int i = 0; i < queue->num_entries; i++) {
9 volatile union ixgbe_adv_rx_desc* rxd = queue->descriptors + i;

10 struct pkt_buf* buf = pkt_buf_alloc(queue->mempool);
11 if (!buf) {
12 error("failed�to�allocate�rx�descriptor");
13 }
14 rxd->read.pkt_addr = buf->buf_addr_phy + offsetof(struct pkt_buf, data);
15 rxd->read.hdr_addr = 0;
16 queue->virtual_addresses[i] = buf;
17 }
18 //set registers
19 }

startRxQueue from ixgbe.go
1 func (dev *ixgbeDevice) startRxQueue(queueID int) {
2 queue := &dev.rxQueues[queueID]
3 mempoolEntries := uint32(numRxQueueEntries + numTxQueueEntries)
4 if mempoolEntries < 4096 {
5 mempoolEntries = 4096
6 }
7 queue.mempool = MemoryAllocateMempool(mempoolEntries, 2048)
8 if queue.numEntries&(queue.numEntries-1) != 0 {
9 log.Fatal("number�of�queue�entries�must�be�a�power�of�2")

10 }
11 for i := uint16(0); i < queue.numEntries; i++ {
12 rxd := queue.descriptors[i]
13 buf := PktBufAlloc(queue.mempool)
14 if buf == nil {
15 log.Fatal("failed�to�allocate�rx�descriptor")
16 }
17 if isBig {
18 binary.BigEndian.PutUint64(rxd.raw[:8], binary.BigEndian.Uint64(buf.Pkt[:8])

Òæ +64)
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19 binary.BigEndian.PutUint64(rxd.raw[8:], uint64(0))
20 } else {
21 binary.LittleEndian.PutUint64(rxd.raw[:8], binary.LittleEndian.Uint64(buf.

Òæ Pkt[:8])+64)
22 binary.LittleEndian.PutUint64(rxd.raw[8:], uint64(0))
23 }
24 queue.virtualAddresses[i] = buf
25 }
26 //set registers
27 }

(These examples are edited for the sake of brevity and formatting. Refer to the respec-
tive source code for more details.)

The first example of the busy waiting shows quite a few di�erences in terms of syntax.
Go functions are declared with the func keyword and as per convention are written in
camel case. Similar to the afore mentioned “name before type”, functions are declared
in the order of [function name]([arguments]) [return vales] {[function body]}. Compared
to the spiral ordering of C, this makes functions easy to read from left to right without
interrupts. Furthermore we can see that a length as parameter is not necessary as bound
checking is an integral part of Go and can be easily accessed. Variable declaration can
be done via type inference using the “:=” operator and notably Go does not have a
while statement as for can be used fully equally to it. Also, contrary to C, it is not
possible to mix assignments into conditional statements.

In the second example we can observe a few more peculiarities of the Go programming
language. We can define receiver functions by defining a type the method has to be
invoked on. Next it has to be noted that Go does not support the convenient, but tech-
nically unnecessary “x?y:z” operator. Lastly in order to access fields of a struct pointer
no “->” is needed, dotted notation works in Go for direct as well as pointer access. Most
other constructs are the result of di�erent data structures which mostly makes things
more readable but requires longer statements when accessing DMA memory as we have
to translate to and from byte slices.

The increased clarity as well as the more expressive and easier to read syntax may not
directly reduce bugs, errors and the like but does have notable positive e�ects. Simpler
syntax makes it easier to detect errors and has and even larger impact on projects many
people work on, especially those of a larger scale, as it can avoid misunderstandings,
reduces the time needed to understand code written by others and makes in generally
more maintainable.

Additionally Go o�ers features C does not that can enhance the quality of the project in
many ways such as expressiveness, safety and expandability. A notable example is the
interface we used for the drivers and while we only support ixgbe currently, additional
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support for VirtIO and the like requires nothing more then implementing the interface
methods and adding it as part of the driver package. This approach is much cleaner and
expandable then the function pointers of the C driver. But Go has much more to o�er
then what was used for the driver. Go o�ers native support for concurrency in the form
of goroutines which are designed to be clean and easy to handle while simultaneously
e�cient in terms of thread usage as well as concurrency.

We showed the results obtained via the pprof tool in section 5.2 which aided a lot with
optimization. As an example an earlier version ran at approximately 8 million packets
per second, a third of our current speed. The reason for this was that we didn’t reuse
packet bu�ers and instead always allocated a new one which, albeit little more then a
struct of essentially two pointers, adds up tremendously. The graph produced by the
pprof tool (see Appendix A.1) very clearly showed that we used most of the time during
packet allocation and upon further inspection one can identify runtime.newobject as the
main culprit. From there on it is simple to search the code for object allocations.

6.3 Suitability for Low-Level Tasks

One of the biggest problem during development was low-level memory management.
Specifically register access has proven itself to be di�cult in Go. To recapitulate: register
access happens though the use of the BAR0 address and the correct o�sets. Whether
read or write, we need a compiler barrier. In C this can be solved with a so called
memory barrier, essential to this is the keyword volatile which marks the bit of code
to not be optimized by the compiler. Go does not support volatile though it o�ers
atomic reads and writes through the atomic package. For this to work, we would have
to make use of the unsafe package to essentially convert the subslice into a pointer. As
we wanted to keep unsafe code to a minimum, we instead chose to employ the C code
from the original driver as an opportunity to present cgo.

On the other hand we were surprised about the garbage collection. Originally named
as the reason why Go is nor suited for systems programming, our analysis has proven
otherwise. As all our memory allocation is done in bulk during the initialization process
and not allocations during the forwarding process, the garbage collector has nothing to
clean and little reason to run often which results in it not even being listed in the pprof
report due to insignificance. We can therefore conclude that Go is indeed suited for
low-level tasks, provided that memory is handled reasonably.
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6.4 Educational Purposes

Go is an interesting choice of language for educational purposes. It tends to be easier
to read and does not require much understanding of the language itself in order to
understand the code, especially compared to some C constructs like function pointer,
pointer casting and other more intricate operations. It thus aids the purpose of being
an educational driver as it lowers entry barriers and demands less attention to the code
instead of the actual workings of a network driver.

6.5 Conclusion

Now that we have evaluated the Go implementation of the ixy driver from multiple
perspectives, it is time to come to a conclusion:
Should you use Go as a language for driver programming? The answer depends on the
requirements.

Go was primarily designed for networking and server programming, as these are the core
business areas of Google. As seen in Chapter 3, even the network drivers for the zircon
microkernel, developed by Google, do not use Go for this purpose but instead stick to C
and C++. Biscuit has proven, that one can indeed use Go as a systems programming
language, albeit at the cost of performance. While the performance penalty was only
calculated for the kernel as a whole, the numbers roughly match our findings concerning
a network driver written in Go.

Go is indeed somewhat slower then C for the purpose of network drivers, but when
speed is not the highest priority it does become a solid option due to improved safety,
increased readability, a runtime that provides an array of critical features, tools that
aid in development and a vast standard library as well as many other libraries [9].

6.6 Outlook

In this thesis we implemented and evaluated a simple network driver in the Go pro-
gramming language. Nevertheless there is still much room for potential future work.
First of all the IxyInterface o�ers an easy way for the support of additional drivers such
as the VirtIO driver that is also implemented in the original work. Second we evaluated
the driver on a rather basic level, mainly looking at throughput in order to analyse
performance, though it is not the only factor for determining what makes a driver good
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as other properties such as latency are also important factors. This is especially inter-
esting in the face of the next point: writing higher level applications on top of ixy.go
and evaluating the impact of di�erent packet sizes and packet processing. And as a last
point it would be interesting to implement a highly optimized version of the driver for
maximised speed akin to DPDK [13] in Go.
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Appendix

CPU profiling of all nodes that were not dropped:
1 (pprof) top18
2 Showing nodes accounting for 30.34s, 99.22% of 30.58s total
3 Dropped 65 nodes (cum <= 0.15s)
4 flat flat% sum% cum cum%
5 8.86s 28.97% 28.97% 12.18s 39.83% ixy.go/driver.(*ixgbeDevice).RxBatch
6 6.48s 21.19% 50.16% 30.45s 99.57% main.forward
7 6.11s 19.98% 70.14% 11.79s 38.55% ixy.go/driver.(*ixgbeDevice).TxBatch
8 4.01s 13.11% 83.26% 4.22s 13.80% ixy.go/driver.PktBufFree
9 1.61s 5.26% 88.52% 1.61s 5.26% ixy.go/driver.PktBufAlloc

10 0.84s 2.75% 91.27% 0.84s 2.75% ixy.go/driver.wrapRing (inline)
11 0.58s 1.90% 93.17% 0.58s 1.90% encoding/binary.littleEndian.PutUint32 (inline)
12 0.56s 1.83% 95.00% 0.56s 1.83% encoding/binary.littleEndian.PutUint64 (inline)
13 0.30s 0.98% 95.98% 0.67s 2.19% runtime.cgocall
14 0.26s 0.85% 96.83% 0.26s 0.85% encoding/binary.littleEndian.Uint64 (inline)
15 0.25s 0.82% 97.65% 0.27s 0.88% runtime.exitsyscallfast
16 0.23s 0.75% 98.40% 0.23s 0.75% encoding/binary.littleEndian.Uint32 (inline)
17 0.20s 0.65% 99.05% 0.20s 0.65% ixy.go/driver.IXGBE_RDT (inline)
18 0.03s 0.098% 99.15% 0.36s 1.18% runtime.exitsyscall
19 0.01s 0.033% 99.18% 0.68s 2.22% ixy.go/driver._Cfunc_set_reg32
20 0.01s 0.033% 99.22% 0.69s 2.26% ixy.go/driver.setCReg32
21 0 0% 99.22% 30.52s 99.80% main.main
22 0 0% 99.22% 30.52s 99.80% runtime.main

Memory profiling of all nodes that were not dropped:
1 (pprof) top13
2 Showing nodes accounting for 8438.21kB, 100% of 8438.21kB total
3 flat flat% sum% cum cum%
4 6159.27kB 72.99% 72.99% 6159.27kB 72.99% ixy.go/driver.(*ixgbeDevice).initTx
5 1184.27kB 14.03% 87.03% 1184.27kB 14.03% runtime/pprof.StartCPUProfile
6 578.66kB 6.86% 93.88% 578.66kB 6.86% ixy.go/driver.MemoryAllocateMempool
7 516.01kB 6.12% 100% 516.01kB 6.12% unicode.init
8 0 0% 100% 516.01kB 6.12% fmt.init
9 0 0% 100% 6737.93kB 79.85% ixy.go/driver.(*ixgbeDevice).resetAndInit

10 0 0% 100% 578.66kB 6.86% ixy.go/driver.(*ixgbeDevice).startRxQueue
11 0 0% 100% 6737.93kB 79.85% ixy.go/driver.IxyInit
12 0 0% 100% 6737.93kB 79.85% ixy.go/driver.ixgbeInit
13 0 0% 100% 516.01kB 6.12% main.init
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14 0 0% 100% 7922.20kB 93.88% main.main
15 0 0% 100% 516.01kB 6.12% reflect.init
16 0 0% 100% 8438.21kB 100% runtime.main
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File: fwd
Build ID: 85f0a543f55f105b5daa07d18255686d1ad0d95e
Type: cpu
Time: Oct 10, 2018 at 7:29pm (CEST)
Duration: 31.34s, Total samples = 35.95s (114.71%)
Showing nodes accounting for 33.06s, 91.96% of 35.95s total
Dropped 145 nodes (cum <= 0.18s)
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runtime
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0.54s (1.50%)

of 15.25s (42.42%)

 15.25s
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of 5.04s (14.02%)

 5.04s

runtime
makeslice

0.02s (0.056%)
of 0.85s (2.36%)

 0.85s

runtime
mallocgc

3.89s (10.82%)
of 10.90s (30.32%)

runtime
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1.95s (5.42%)
of 2.71s (7.54%)
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runtime
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 (inline)

runtime
releasem
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 0.50s
 (inline)

runtime
gcmarknewobject

0.18s (0.5%)
of 0.34s (0.95%)

 0.34s

runtime
(*mcache)
nextFree

0.03s (0.083%)
of 1.41s (3.92%)

 1.41s

runtime
gcAssistAlloc

0.01s (0.028%)
of 0.20s (0.56%)

 0.20s

runtime
main

0 of 31.88s (88.68%)

main
main

0.04s (0.11%)
of 31.88s (88.68%)

 31.88s

runtime
systemstack

0.02s (0.056%)
of 6.77s (18.83%)

runtime
wbBufFlush

func1
0.03s (0.083%)

of 1.49s (4.14%)

 1.49s

runtime
(*mcache)
nextFree

func1
0 of 1.28s (3.56%)

 1.28s

runtime
gcAssistAlloc

func1
0 of 0.19s (0.53%)

 0.19s

runtime
gcBgMarkWorker

func2
0 of 3.35s (9.32%)

 3.35s

runtime
gosweepone

func1
0 of 0.32s (0.89%)

 0.32s

ixy
go/driver

PktBufAllocBatch
3.18s (8.85%)

of 14.71s (40.92%)

 1.05s

runtime
newobject

0.41s (1.14%)
of 10.48s (29.15%)

 10.48s

 0.31s

ixy
go/driver

PktBufFree
1.58s (4.39%)

of 1.61s (4.48%)

 1.61s 0.97s 0.25s
 (inline)

runtime
scanobject

2.02s (5.62%)
of 3.42s (9.51%)

runtime
findObject

1.27s (3.53%)
of 1.82s (5.06%)

 0.97s

runtime
heapBits

bits
0.28s (0.78%)

 0.28s
 (inline)

runtime
spanOf

0.40s (1.11%)
of 0.56s (1.56%)

 0.52s
 (inline)

runtime
wbBufFlush

0 of 1.49s (4.14%)

 1.49s

runtime
arenaIndex

0.50s (1.39%)

 0.09s
 (inline)

runtime
heapBitsForAddr

0.40s (1.11%)
of 0.65s (1.81%)

 0.63s
 (inline)

 14.71s

runtime
gcBgMarkWorker
0 of 3.44s (9.57%)

 3.42s

 10.07s

ixy
go/driver

_Cfunc_set_reg32
0.01s (0.028%)

of 1.72s (4.78%)

 1.72s

runtime
cgocall

0.52s (1.45%)
of 1.71s (4.76%)

runtime
exitsyscall

0.07s (0.19%)
of 1.09s (3.03%)

 1.09s

runtime
exitsyscallfast
0.86s (2.39%)

of 0.94s (2.61%)

runtime
memclrNoHeapPointers

0.77s (2.14%)

runtime
wbBufFlush1
0.34s (0.95%)

of 1.47s (4.09%)

 0.82s 0.25s
 (inline)

 0.16s
 (inline)

runtime
(*mheap)

alloc
0.01s (0.028%)

of 1.01s (2.81%)

 0.74s

runtime
(*mheap)

alloc
func1

0.01s (0.028%)
of 0.26s (0.72%)

 0.26s

runtime
gcDrain

0.04s (0.11%)
of 3.37s (9.37%)

 3.31s

 31.77s

 0.94s

 0.04s
 (inline)

runtime
mcall

0.01s (0.028%)
of 0.20s (0.56%)

runtime
(*mheap)

allocSpanLocked
0.13s (0.36%)

of 0.19s (0.53%)

runtime
bgsweep

0 of 0.32s (0.89%)

runtime
gosweepone

0 of 0.32s (0.89%)

 0.32s

 1.28s

runtime
(*mcentral)

freeSpan
0.04s (0.11%)

of 0.21s (0.58%)

runtime
(*mcentral)
cacheSpan

0.03s (0.083%)
of 1.28s (3.56%)

runtime
(*mcentral)

grow
0 of 1.15s (3.20%)

 1.15s

 1.01s

 1.46s

runtime
(*mspan)

sweep
0.03s (0.083%)
of 0.29s (0.81%)

 0.21s

runtime
sweepone

0.03s (0.083%)
of 0.32s (0.89%)

 0.29s

 0.83s

runtime
gcDrainN

0 of 0.19s (0.53%)

 0.11s

 1.71s

runtime
(*mheap)
alloc_m

0.01s (0.028%)
of 0.25s (0.7%)

 0.19s

 0.25s

 0.19s

runtime
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refill
0 of 1.28s (3.56%)

 1.28s
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runtime
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0 of 0.19s (0.53%)

 0.19s

 0.19s
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 0.32s

 0.32s
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Figure A.1: CPU profiling graph
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Chapter B

List of acronyms

API Application Programming Interface. A set of tools for buildung software.

BAR Base Address Register.

CSP Communicating Sequential Processes Formal language for describing patterns
of interaction in concurrent systems.

DPDK Data Plane Development Kit. User space network driver originally developed
by Intel and handed over to the Linux Foundation.

NIC Network Interface Controller.
PCI Application Programming Interface. Local bus for attaching hardware to a

computer.
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