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Abstract

Today, many security relevant systems depend on protocols that authenticate entities
(users, services, etc.) using asymmetric cryptography. One central question in this
context is how the identity of an authenticating entity can be attached to the presented
public key. Currently, this is often done by public key infrastructures (PKI) that manage
X.509 certi�cates. However, examples show that the certi�cation process can be attacked,
or that certi�cate authorities can act maliciously or even carelessly. These problems
can result in malicious (i.e. illegitimate) certi�cates being issued, allowing an attacker
to pose as a third party in front of other entities.

To mitigate this situation, we present a system that enforces a secure certi�cate issuance
process, heavily inspired by the DFN-AAI’s (Deutsches Forschungsnetz Authenti�kations-
und Autorisierungs-Infrastruktur) certi�cation process. With this thesis we are making
two main contributions: Firstly, we conduct a multi-party authorization (MPA) process
for certi�cate signing requests (CSR). Secondly, we provide accounting information that
makes this process transparent and trustworthy.

Our solution is based on distributed ledger technology, more speci�cally, Hyperledger
Fabric (HLF). HLF is a framework that o�ers a Byzantine fault tolerant execution environ-
ment that we use to conduct the MPA of CSRs and tamper-resistant, blockchain-based
storage we use to account this MPA process.

Our evaluation shows that our system prevents that a single malicious or careless person
involved in the certi�cate issuance process is able to issue a valid certi�cate. Further-
more, the system itself is resistant to attacks. Our system is not able to defend against
attackers able to, for instance, compromise a CA’s signing key and issue malicious cer-
ti�cates. However, the attacker will not be able to fake accounting information which
is created during a legitimate certi�cate issuance process. Hence, our system provides
valuable information to detect illegitimately issued certi�cates.





Zusammenfassung

Viele heutige sicherheitsrelevante Systeme hängen von Protokollen ab, die Entitäten
(z.B. Benutzer, Services, etc.) mittels asymmetrischer Verschlüsselung authentisieren.
In diesem Kontext ist eine zentrale Frage, wie ein ö�entlicher Schlüssel einer sich
authentisierenden Entität zugeordnet werden kann. Das ist heute vorherrschend durch
Public Key Infrastrukturen (PKI), die X.509 Zerti�kate verwenden, umgesetzt. Allerdings
hat die Vergangenheit gezeigt, dass der Zerti�katsausstellungsprozess angreifbar ist,
und dass Certi�cate Authorities (CA) fahrlässig oder sogar bösartig handeln können.
Diese Probleme können zur Ausstellung von bösartigen (i.e. illegitimen) Zerti�katen
führen, die es einem Angreifer erlauben, sich vor dritten als jemand anderes auszugeben.

Um dieser Situation zu begegnen, präsentiert diese Arbeit ein System, das einen siche-
ren Zerti�katsausstellungsprozess umsetzt. Dieser Prozess orientiert sich stark an dem
von der DFN-AAI (Deutsches Forschungsnetz Authenti�kations- und Autorisierungs-
Infrastruktur) genutzten Zerti�katsaustellungsprozess. Hauptsächlich leistet diese Ar-
beit zwei Beiträge: Erstens, wird für Certi�cate Signing Requests (CSR) Multi-Party
Autorisierung (MPA) durchgeführt. Zweitens, bietet das System Prozessdaten, die den
Prozess transparent und vertrauenswürdig machen.

Die in dieser Arbeit vorgestellte Lösung basiert auf Distributed Ledger Technologie,
genauer auf Hyperledger Fabric (HLF). HLF ist ein Framework, dass verteilte Program-
mausführung mit byzantinischer Fehlertoleranz bietet, die im Rahmen dieser Arbeit
genutzt wird, um MPA von CSRs durchzuführen. Außerdem verfügt HLF über manipu-
lationsresistenten Blockchain-basierten Speicher, der genutzt wird um den Zerti�kats-
austellungsprozess nachvollziehbar zu machen.

Die �nale Evaluation zeigt, dass das System verhindert, dass ein einziger bösartiger oder
fahrlässiger Teilnehmer am Zerti�katsausstellungsprozess valide Zerti�kate ausstellen
kann. Des Weiteren ist das System selbst resistent gegen Angri�e. Das System ist jedoch
nicht in der Lage, gegen einen Angreifer zu schützen, der zum Beispiel den privaten
Schlüssel einer CA übernommen hat und damit direkt bösartige Zerti�kate ausstellt.
Allerdings kann der Angreifer die Prozessdaten, die während des legitim durchgeführten
Zerti�katsausstellungsprozesses erzeugt werden, nicht fälschen. Daher bietet das System
wertvolle Informationen, um illegitim ausgestellte Zerti�kate zu erkennen.
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Chapter 1

Introduction

Identity management is an essential part of many infrastructures. Examples range from
all kinds of access control systems to government administration applications. Especially
with the Internet being more important than ever, secure identity management is vital.

Todays identity management heavily relies on X.509 certi�cates to authenticate entities
like users, servers, devices, etc. The big problem with X.509 is that, despite the certi�cate
authorities being aware of the importance of being thorough in order to be sustainable
commercially, malicious (i.e. illegitimate) certi�cates are discovered periodically. This
leaves one to wonder about the undiscovered amount of malicious certi�cates still in
circulation. One instance of this occurred in 2011, when the dutch certi�cate authority
DigiNotar was forced to declare bankruptcy following a successful hack [1]. The hacker
gained access to their systems and was able to generate false certi�cates for several well
known sites (e.g. google.com) without anyone immediately noticing. And up to this day,
the hacker could not be identi�ed without doubt. This incident has damaged the trust
in DigiNotar permanently and also has shown how easily the integrity of a certi�cate
authority can be compromised without anyone noticing. Preventing the recurrence of
catastrophic failures like this is a huge challenge our interconnected society has to face.

Two major attack vectors include:

• The certi�cate authority’s system is compromised or their private key is.

• A representative (e.g. employee) of the certi�cate authority is careless, intention-
ally malicious, or their account has been compromised.

With this bachelor thesis aims to improve certi�cate issuance by creating a secure cer-
ti�cate issuance process based on distributed ledger technology. This new certi�cate
issuance process is intended to enforce multi-party authorization and provide trans-
parency. These properties lower the chance of a certi�cate authority representative
being able to issue malicious certi�cates, either by mistake or intent, and make it possible
to fully trace an attack on the system.
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As mentioned earlier, the certi�cate issuance system shall be based on distributed ledger
technology. A distributed ledger provides a means to keep records while maintaining
high standards in non-mutability, accountability and reliability. All of these properties
are highly desirable. While distributed ledgers are mostly still used for crypto-currencies,
other areas of application, such as permissioned ledgers for business, are being explored.
The distributed ledger implementation used in this thesis is a permissioned blockchain.

The inspiration for a secure certi�cate issuance process came from the DFN (Deutsches
Forschungsnetz). The DFN already successfully uses one for their public key infrastruc-
ture. That process is mostly analog and provides a promising foundation for a software
implementation.

The ultimate goal of this thesis is to provide valuable work towards a truly distributed
certi�cate issuance system that automatically enforces and supports the process. The
following two research questions are at the core of that:

• What advantages does a distributed ledger based certi�cate issuance system pro-
vide?

• What are the limits of what a system like this can accomplish?

The thesis is organized as follows: Chapter 2 provides some essential background
knowledge on public key infrastructure and blockchain. Chapter 3 analyzes the current
problems in public key infrastructure, discusses requirements for a suitable solution, and
proposes a solution based on distributed ledger technology. In chapter 4 a certi�cate
issuance system is designed based on the �ndings in the prior chapter. Chapter 5
presents selected aspects of the proof-of-concept implementation for the previously
designed system. The system is evaluated in chapter 6. Chapter 7 presents related work,
and �nally, chapter 8 concludes the thesis.
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Chapter 2

Background

Before diving deeper into the problem, we have to establish some background knowledge.
This chapter introduces essential topics for this thesis, namely Public Key Infrastructure
and Blockchain.

2.1 Public Key Infrastructure

2.1.1 Overview

Public key cryptography is the basis for every identity management system. Every party
owns at least one key pair, composed of a public and a private key. By proving ownership
of a private key, a party can prove their identity. This is possible by challenging the
party with a piece of data (usually a nonce), that they have to sign. Signing means
decrypting the data with a private key. The challenging party can verify the identity of
the challenged one by using the challenged public key to decrypt the received signature.
If this decryption yields the original piece of data, the challenge was successful. This is
useful in all kinds of situations, such as verifying a requested website is coming from
an authentic server.

However, this still leaves a few essential questions unanswered:

• How is it possible to get someone’s public key?

• How is it possible to know who a public key belongs to?

• How is it possible to know if a private key is still safe?

Public Key Infrastructures (PKI) try to answer these questions. They provide a dis-
tributed, publicly accessible infrastructure, mapping a public key to some identi�er (e.g.
a name or a domain).
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Table 2.1: Distinguished Name Attributes
Name Attribute ID Description
Country C The country of origin.
State ST The state of origin
Locality L Usually the city of origin.
Organization O The name of the organiza-

tion (e.g. company name).
Organizational Unit OU The name of the unit

within the organization
(e.g. company depart-
ment).

Common Name CN The name of the subject
(e.g. John Doe).

Email Address EMAIL The email address of the
subject.

2.1.2 X.509

The Internet PKI is based on X.509 certi�cation [2]. This is a hierarchical, tree-like
structured approach, comparable to the directory service LDAP. Each "node" of the tree
is one certi�cate authority (CA). A CA is a commercial party, that signs public keys of
subscribers. In doing so, the CA assures a user, that a speci�c public key belongs to a
speci�c subscriber, assuming the user trusts the CA. Because a CA can also sign other
CAs, establishing a tree-like structure, a user only has to trust the root CA of a PKI, in
order to be sure that all subscriber certi�cates in the PKI are correct.

A X.509 certi�cate consists of three main components: a TBS certificate, an algorithm

identifier and a signature value. The TBS certi�cate mostly holds information
about the subject, like the subjects distinguished name and public key. A distinguished
name consists of attributes [3], similar to the directories in LDAP. Table 2.1 shows an
overview over some of the most important distinguished name attributes. Another
important value found in the TBS certi�cate is the validity time, de�ned by a starting
epoch notBefore and an ending epoch notAfter. Certi�cates are not inde�nitely valid
because with time, the risk of a key having been compromised rises. Back to the re-
maining two components, the algorithm identi�er speci�es which algorithm was used
to sign the certi�cate by the CA and signature value contains the actual signature.

X.509 did not have certi�cate revocation from the start. However, in order to guarantee
the integrity of a PKI, the need to invalidate an issued certi�cates eventually arises. Rea-
sons can range from a certi�cate holder’s key being compromised before the certi�cate
expiration date to the certi�cate having been issued by a malicious party that temporar-
ily gained control over the CA. Certi�cate revocation was later on implemented through
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the addition of certi�cate revocation lists (CRL). These lists are usually maintained by
each CA for the certi�cates they issued and allow users to check if a certi�cate they
have been presented with was revoked.

2.1.3 DFN-AAI

Since October of 2007, the DFN (Deutsches Forschunksnetz) operates a PKI for sci-
enti�c institutions [4]. This PKI is called the DFN-AAI (DFN Authenti�kations- und
Autorisierungs-Infrastruktur) and consists of a number of German scienti�c institutions.
Applications using the DFN-AAI range from administration systems to e-learning plat-
forms. The DFN CA is signed by the German Telekom, assuring that all certi�cates
issued by the DFN CA itself, or one of its child CAs, are accepted in browsers and
operating systems.

In order to actively participate in the DFN-AAI, an institution can apply to become a
DFN IdP (Identity Provider). A DFN IdP is in charge of a CA that is operated by the DFN
and can be used in order to certify associated web servers, as well as email addresses for
its members (e.g. university for students and sta�). This federated approach is cheaper
in terms of hardware, software and sta�, than each institution operating their own CA.
The certi�cates issued conform to the X.509 standard. This is a rough outline of the
application process required in order to become a DFN IdP:

1. Signing of a contract between the DFN and the institution.

2. Participation of the institution in the DFN-AAI-Test, a test environment used to
familiarize new members with the infrastructure.

3. Finalization of all con�gurations and transition to the production environment.

DFN IdPs can match several di�erent security classi�cations (lowest to highest):

1. DFN-AAI Test This class only exists for testing purposes.

2. DFN-AAI Basic This is the lower security class.

3. DFN-AAI Advanced The highest security class.

These classi�cations dictate the standards an institution has to uphold regarding identi-
�cation, authentication and data storage. A service provider can specify the minimum
security classi�cation required in order to access their service in accordance to the
sensitivity of their service.

A user, a�liated with an institution that is a DFN IdP, can apply for a certi�cate con-
�rming his identity. According to DFN-AAI Advanced, he has to personally identify
himself in front of a trusted party (e.g. the DFN representative at the user’s institution)
using an o�cial document (e.g. passport).
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Figure 2.1: Simpli�ed Blockchain Structure
Every arrow symbolizes a connection through a hashing operation. The arrow points

from the place the hash is stored to the origin of the hash.

2.2 Blockchain

2.2.1 Overview

A blockchain is an implementation of a distributed ledger that has rapidly gained pop-
ularity with the rise of Bitcoin starting in 2008 [5]. It can be seen as a distributed
database requiring nodes to reach quorum for any modi�cation and featuring high
redundancy. The blockchain is replicated using a peer-2-peer system and every partici-
pating node keeps a full copy. The major bene�t of a blockchain is that it provides high
trustworthiness without relying on a trusted third party.

In contrast to a traditional database, a blockchain does not store tables, but transactions.
Generally, a transaction performs some change to the state of the ledger (e.g. transfer
an asset). Transactions are grouped up into Blocks. These blocks consist of a header
for meta data and a list of transactions. Every block is connected to its predecessor by
containing the hash of the predecessors header in its own header. The header hash is
used to uniquely identify a block. By constructing a merkle tree over all transactions of a
block and storing the root in the header of said block, it is ensured that the transactions
also in�uence the block header hash. This secures the transactions, because it allows
for easy detection of manipulation.

The essence of this structure is visualized in Figure 2.1. The schematic shows part of a
blockchain with emphasis on the chain of hashes. Every arrow symbolizes a hashing
operation. It can be seen, that the header of block n contains the hash of the header of
block n-1. These are the horizontal arrows. The vertical ones show the transactions of
a block being hashed into its header.

Only the very �rst block of a blockchain has to deviate from the described structure as
it has no predecessor. This block is a kind of dummy block. It is called the genesis block
and contains placeholder or initial values. This block usually is hardcoded in every
client for a blockchain.

A consensus mechanism is used to decide on each new block in order to ensure a
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consistent state of the ledger across the network. There are roughly two groups of
consensus mechanisms in use: leader election (e.g. Bitcoin mining), also known as
"Nakamoto consensus" named after the Bitcoin creator [6], and traditional byzantine
fault tolerant algorithms like Practical Byzantine Fault Tolerance (PBFT) [7]. The choice
of consensus mechanism de�nes most of the qualities of a blockchain, like transaction
throughput and scalability.

With a de�nite chain of blocks, the state of the ledger can be computed from the blocks.
This is possible by simply applying all transactions to the initial state in order from
oldest to newest.

2.2.2 Permissioned and Private Blockchains

With the success of public blockchain applications like Bitcoin, the interest in apply-
ing blockchain technology to corporate scenarios has grown. These new blockchain
solutions often are permissioned and some additionally are private [8]. A permissioned
blockchain is a blockchain that restricts participation in the consensus mechanism using
additional security systems. A private blockchain is a blockchain that restricts read
and write access. This restriction can be achieved by an access restricted blockchain
deployed on a public network, as well as a standard blockchain deployed on a private
network. Both of these restrictions usually result in a lot fewer nodes being part of the
network and typically all of these nodes can be authenticated.

2.2.3 Hyperledger Fabric

Hyperledger [9] is a project aimed towards the development of permissioned and private
blockchains for business use. This initiative was brought to life by the Linux Foundation
in 2015 and is intended to form a community developing permissioned blockchains
together. It is a global collaboriation with prestigious members like IBM, Intel, SAP and
many more. There are several di�erent projects being developed, and all of them are
open source.

One of these projects is Hyperledger Fabric [10]. It was originally proposed by Digital
Asset and IBM in 2016 as the result of a hackathon [11]. In the meantime, it has become
one of the more advanced Hyperledger projects and hit version Alpha 1.0 in July of
2017 [12].

Fabric is not only a distributed ledger, but also a smart contract engine. This means
that Fabric does not just function as distributed data storage, but also as distributed
execution environment. Thanks to this, Fabric is able to securely and automatically
enforce arbitrary business logic called chaincode.
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2.2.4 Architectural Overview

This section is based on the Fabric documentation [8] for version 1.1. As fabric is still
in active development, future versions may di�er, even though the basic architecture
should be untouched.

Fabric features two types of transactions:

• Deploy Transaction These transactions are used to deploy (i.e. install) chain-
code on the blockchain.

• Invoke Transaction These transactions are used to invoke (i.e. execute) chain-
code functions on the blockchain. When successful, these may change the state
of the ledger.

The state, in�uenced by the invoke transactions, is a key-value store. It maps a key to a
tuple containing a value and a version. This version is increased every time the key is
written to.

A Fabric network consists of three di�erent types of nodes:

• Client A client submits chaincode invokation transactions to the network.

• Peer These nodes maintain the state of the ledger and commit new transactions.
Additionally, a peer node can also have the role of an endorser. This endorser role
is speci�c to one particular chaincode and entails that the node can endorse a
transaction before it is committed.

• Orderer Together, these nodes form the ordering service. The ordering service is
Fabrics consensus mechanism. It is responsible for ordering all transactions and
broadcasting them to all peers in the network. The exact implementation of this
service is free to choose for the individual setup.

Being a permissioned blockchain, Fabric is access restricted. To enforce this, the system
needs to be able to authenticate users and nodes. Being designed to be run by multiple
organizations, that do not necessarily have to trust each other, Fabric implements this
using membership service providers (MSP), whose exact implementation is free to choose
(e.g. standard x.509 certi�cate authority). These MSPs are a�liated with one of the
participating organizations (every organization needs to have at least one) and identify
their members.

For further privacy, a Fabric network is split up into channels. These allow for con�-
dential transactions to be conducted without the rest of the network being able to read
them. A channel is de�ned by its members, the member’s anchor peers (i.e. peers listed
in the con�guration, that allow further peer discovery), the shared ledger, installed
chaincode and the ordering service nodes.
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Figure 2.2: Hyperledger Fabric Transaction Flow
This illustration has been taken from the Fabric architecture documentation [13]. It

displays the common-case path a transaction takes.

2.2.5 Transaction Flow

In order to show how the previously described components of Hyperledger Fabric work
together, we will now consider the common-case path of a transaction as pictured in
Figure 2.2.

1. The client creates a transaction proposal and sends it to a set of endorsing peers.
This set is determined by the endorsement policy associated with the invoked
chaincode. If for instance, the policy only requires an endorsement of at least
one peer from one speci�c organization, the client only sends the transaction
proposal to peers of that very organization.

2. Each endorsing peer simulates the transaction after con�rming that it is valid
regarding form and issuer and has not been submitted yet. If the simulation is
successful, the peer returns a signed proposal response that contains a read-write
set (i.e. set of all ledger keys being read from or written to).

3. After having received enough proposal responses to satisfy the endorsement
policy, the client assembles them into a transaction. This transaction is sent to
the ordering service.

4. The ordering service groups the transactions into blocks and sends them to all
peers. Each peer veri�es the transactions of the block (i.e. veri�es that the
endorsement policy has been met) and commits them to their copy of the ledger.
Additionally the client is noti�ed of the successful commit of his transaction via
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an event.

2.3 Scenario

The inspiration for the scenario considered in this thesis is the DFN issuing certi�cates
to users a�liated with an institution being a DFN IdP. However, there are some notable
di�erences.

This thesis is focused on the scenario of only one certi�cate authority issuing certi�cates
to a select group of users. This CA is directly operated by a federation, in contrast to the
DFN CA creating CAs for every federation member. Users a�liated with a federation
member can obtain certi�cates con�rming their identity through a certi�cate issuance
system.

The entire (successful) process is as follows:

1. The user creates a certi�cate signing request and deposits it in the system.

2. The user physically appears in front of a representative of the CA and identi�es
himself with an o�cial document (e.g. passport).

3. The representative checks the certi�cate signing request and sends his approval
to the system.

4. The CA ful�lls the approved certi�cate signing request by issuing a corresponding
certi�cate through the system.
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Chapter 3

Analysis

3.1 Risks and Challenges of Public Key Infrastructures

Identity management is an essential part of many infrastructures and failure in identity
management often puts the underlying system(s) at risk. For instance, a private data
server is no longer private if the access control mechanism relies on manipulated identity
data.

This thesis is focused on identity management through a public key infrastructure
adhering to the x.509 certi�cation standard. The main goal of an attack on a system
like this is nearly never compromising the PKI itself. It rather is to obtain malicious
certi�cates that allow the attacker to pose as some third party and thus can be further
used to high e�ect in subsequent attacks. The exact consequences of such an attack
highly depend on the attack’s target and could be anywhere in the range from an
attacker being able to access classi�ed data on secure servers supporting client certi�cate
authentication to providing an attack with the possibility to harvest user passwords
from every Internet platform on a massive scale.

There are generally two basic options an attacker has when wanting to impersonate
someone: He can either try to directly obtain a malicious certi�cate or he can try
to obtain an inconspicuous certi�cate with certi�cate signing privilege. While the
impact of the �rst option is not to be neglected, the second one is catastrophic, because
it e�ectively turns the attacker into a trusted certi�cate authority allowing him to
impersonate anyone at will. Both of these options are reachable following very similar
attack vectors and will just be viewed as one under the name of malicious certi�cate
from here on.

For security analysis, this thesis considers a single attacker who has exactly one of the
following roles:

• User The attacker can be a normal user within the public key infrastructure
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Figure 3.1: Attack tree for a certi�cate authority.

without any special privileges.

• CA Representative A CA representative is anyone with the authority to au-
thorize certi�cate signing requests and thus to issue certi�cates on behalf of the
CA.

• CA Administrator An administrator of the CA system has full access to the
software and possibly to the hardware as well.

In order to impersonate someone in a traditional public key infrastructure, an attacker
has several attack vectors to choose from. These are depicted in the attack tree in Figure
3.1. The attack vectors can be grouped how they attack the system:

• CA Representative The CA representative could be deceived through social
engineering, forced to authorize a malicious certi�cate signing request, be evil, or
have their identity stolen. This attack is possible for any of the previously listed
attackers, but especially easy if the attacker is a CA representative himself.

• CA system The CA system itself can be compromised allowing direct issuance of
malicious certi�cate. This is possible and has happened in the past (e.g. DigiNotar
[1]). An attack like this is executable for a standard user (and thus also for a CA
representative) and easy for a CA administrator.

• CAPrivateKey The CA private key could be stolen enabling an attacker to create
malicious certi�cates. This attack could technically be executed by any of the
previously listed attacker roles, but would be a lot easier for a CA administrator.

Ultimately, all of the possible attack vectors, except for stealing the CAs private key,
rely on somehow exploiting the certi�cate issuance process. This strengthens the belief
that a well designed certi�cate issuance process can signi�cantly reduce a public key
infrastructure’s risk of corruption.
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3.2 Requirements

The DFN certi�cate issuance process, being proven in a real-world environment, has
been chosen as the model for a software enforced certi�cate issuance system. This
section is dedicated to de�ning requirements for this new system with regards to the
risks identi�ed previously.

3.2.1 Functional Requirements

The set of functionality de�ned here is a minimal set necessary in order to build a proof
of concept system. The chosen focus of the system is email certi�cation:

• The system must enforce a certi�cate issuance process similar to the one of the
DFN.

• The system must allow a user to obtain a certi�cate for their email address(es).

• The system must support look-up operations for certi�cates by name.

3.2.2 Non-Functional Requirements

This section is de�ning quality goals for the system. The following requirements are
not security-critical:

• The name strings have to be unique.

• The system has to expect users to possibly have a very slow interaction/reaction
time. It might take a user a full 24 hours or more to react. This entails that it
cannot require (near) instant user interaction.

• Look-up operations should be executed in no worse than linear time and never
take longer than one second. It is important that the system is conveniently
usable.

3.2.3 Security Requirements

These non-functional requirements are de�ning security-related quality goals for the
system. The previously discussed risks and challenges in public key infrastructure lead
to some general mitigation strategies:

• authentication The system has to be aware of the identity of a user that is
accessing it.
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• face-to-face authentication Every user has to be authenticated in person at
least once. This increases the di�culty of deceiving a CA representative.

• authorization Only a restricted group of users is able to authorize certi�cate
signing requests.

• multi-party authorization Some processes in the system are so critical that they
need to be overseen by multiple people. One example of this is the authorization
of a new CA representative. This limits the damage one single representative can
in�ict on the system.

• tamper-resistance The system needs to be resistant against attacks from within
and outside. All data has to be secure and immutable.

• accountability and traceability Every action on the system must be traceable
in order to be able to hold the actor accountable. This helps identifying attacks
on the system as well as errors.

• integrity All data needs to undergo some sanity- and plausibility-checks. This
decreases the risk of a CA representative endangering the system by accident or
intent.

• availability In order to guarantee the correct functionality of all dependent
systems, the system must be available at all times.

3.3 Possible Solutions

One option for implementing this new certi�cate issuance system is employing a secure,
central server. This server holds the access control system as well as all data. One bene�t
of this solution is that it allows an easy setup process, because only one server has to
be con�gured. This server could enforce authentication, authorization and multi-party
authorization. But that is where one central server is reaching its limits. Availability is
going to su�er as it is only one server and every server will at least need to shut down
for system maintenance once in a while. The big problem in this solution is that the
central server is a single point of failure of the system. This endangers the requirements
of tamper-resistance, integrity, availability and accountability and traceability.

The next logical conclusion is to employ a cluster of servers. All of them hold a copy
of the data and also serve as access points to the system. This still provides authenti-
cation, authorization and multi-party authorization, but also improves availability and
integrity through redundancy. While harder to guarantee, tamper-resistance as well as
accountability and traceability are also achievable through a well planned, traditional
system. This is due to these security requirements heavily depending on the way the
cluster servers interact with each other. For instance, just replicating the new entries on
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one server onto all other servers of the cluster would also lead to replicating malicious
data in the case of a security breach and thus would improve integrity and availability,
but only slightly improve tamper-resistance and accountability and traceability.

However, this thesis shall explore a completely new approach to designing a certi�cate
issuance system, hoping that it will be an improvement over traditional solutions. Using
a blockchain as data storage and distributed execution environment for the adminis-
tration logic ful�lls the security requirements of tamper-resistance, accountability and
traceability and availability as a blockchain does so by design. The remaining security
requirements, namely being authentication, authorization, multi-party authorization
and integrity, can be enforced in the distributed execution environment provided by
the blockchain.

In addition to being suitable for ful�lling the security requirements, a system like this
also possesses several other bene�cial properties:

• independence of secure hardware

• business processes are enforced in the fundamental logic of the system

• operation by multiple stakeholders with limited trust is possible

This raises hopes that a new certi�cate issuance system harnessing the capabilities of
blockchain technology can be implemented successfully.
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Chapter 4

Design

4.1 System Overview

The proposed system is designed in order to enforce the DFN certi�cate issuance process,
while also minimizing the potential for human error. A general overview of the system
can be seen in Figure 4.1. With the actors applicant, registration authority (RA), as well
as certi�cate authority (CA), the system maps the basic three parties involved in the
DFN certi�cate issuance process.

The system itself mainly consists of two parts: an application environment and a dis-
tributed ledger. This application environment acts as an interface to the distributed
ledger for users and possibly also registration authorities. It facilitates access to the
ledger, because it frees users from the need to own a node of the ledgers peer-to-peer
network or be a registered entity on the ledger level. Especially this last point would
pose another certi�cation problem. The distributed ledger is the core of the system. It
acts as distributed data storage, as well as distributed computation environment.

The data storage encompasses all data required for the certi�cate issuance process:

• CSR The certi�cate signing request contains all data required for the certi�cate
issuance.

• Registration Authorization The registration authorization is an endorsement
referring to a certi�cate signing request issued by a registration authority.

• Certi�cate The issued certi�cates have to be stored with a reference to the cer-
ti�cate signing request they ful�ll. This ensures that the origin of each certi�cate
is traceable.
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Figure 4.1: Overview of the system.

4.2 Distributed Ledger supported Certi�cate Issuance Process

A typical certi�cate issuance process using this system might look like this:

1. The Applicant creates a certi�cate signing request (CSR) and sends it to the
application.

2. The application commits the CSR to the ledger.

3. The ledger runs some sanity checks and saves the CSR.

4. The applicant physically appears before a registration authority and identi�es
oneself with their passport (or comparable document).

5. After verifying the CSR, the registration authority creates a signed registration
authorization and sends it to the ledger.

6. The ledger runs some sanity checks and saves the registration authorization. In
this process it also �ags the corresponding CSR valid. If the user is an RA himself,
the CSR is only �agged valid after getting two registration authorizations from
two di�erent RAs.

7. The ledger noti�es the certi�cate authority that there is a certi�cate to be issued.

8. The certi�cate authority creates the certi�cate and commits it to the ledger.

9. The ledger runs some sanity checks and writes the certi�cate.

10. The ledger noti�es the application about the newly issued certi�cate.
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Table 4.1: UserRecord
Name Data Type Description
name string Full, human-readable

name of the user.
is_ra boolean A �ag indicating, whether

this user is a registra-
tion authority (true) or not
(false).

csr_list CSRRecord array A list of all certi�cate
signing requests associ-
ated with this user.

ra_list RARecord array A list of all registration
authorizations associated
with this user.

cert_list CertRecord array A list of all certi�cates as-
sociated with this user.

11. The user receives his certi�cate.

4.3 Chaincode Functionality

As can be seen from the previous description of the process, the ledger is required
to handle some of the logic. This is done using chaincode, Fabric’s powerful smart
contracts (refer to section 2.2.3). The following python-like pseudo code demonstrates
all required chaincode functions.

The �rst required function is the one that creates a new user record on the system. This
UserRecord contains all data on a user and is further detailed in Figure 4.1. To begin
with, the record is initialized with a name and a boolean indicating, whether this user is
a registration authority. All other �elds are empty lists that are used by other functions.
This is the pseudo-code for this function:

1 f u n c t i o n c r e a t e _ u s e r ( name , i s _ r a ) :
2 i f l e d g e r . has_UserRecord ( name ) :
3 r e t u r n e r r o r
4

5 u s e r _ r e c o r d = new UserRecord ( name , i s _ r a , [ ] , [ ] , [ ] )
6

7 l e d g e r . w r i t e ( name , u s e r _ r e c o r d )

The next function required in the certi�cate issuance process is one allowing the user
to submit a certi�cate signing request to the system. The certi�cate signing request is
assembled into a CSRRecord that is then saved into the corresponding users UserRecord.
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Table 4.2: CSRRecord
Name Data Type Description
hash string This hash is used to

uniquely identify the cer-
ti�cate signing request.

date date A time stamp for the cre-
ation of the certi�cate
signing request.

csr_blob PEM The x.509 certi�cate sign-
ing request itself.

valid boolean An internal �ag used to
indicate if the certi�cate
signing request has been
approved.

Details on the CSRRecord can be taken from Figure 4.2. This is what the function looks
like in pseudo-code:

1 f u n c t i o n c r e a t e _ c s r ( c s r _ b l o b ) :
2 # has t o p a r s e c s r _ b l o b somehow
3 i f ! l e d g e r . has_UserRecord ( ge t_name_csr ( c s r _ b l o b ) ) :
4 r e t u r n e r r o r
5

6 u s e r _ r e c o r d = l e d g e r . r e a d _ U s e r R e c o r d ( ge t_name_csr ( c s r _ b l o b ) )
7

8 d a t e = c u r r e n t _ d a t e ( )
9 c s r _ r e c o r d = new CSRRecord ( hash ( d a t e + c s r _ b l o b ) , da te , c s r _ b l o b ,

f a l s e )
10 a d d _ c s r _ t o _ U s e r R e c o r d ( u s e r _ r e c o r d , c s r _ r e c o r d )
11

12 l e d g e r . w r i t e ( u s e r _ r e c o r d . name , u s e r _ r e c o r d )

The written certi�cate signing request has to be read by a registration authority in order
to be approved. This is implemented through the following function:

1 f u n c t i o n q u e r y _ c s r ( name , c s r _ h a s h ) :
2 # checks i f the r e f e r e n c e d c s r e x i s t s
3 i f not has_CSRRecord ( name , c s r _ h a s h ) :
4 r e t u r n e r r o r
5

6 u s e r _ r e c o r d = l e d g e r . r e a d _ U s e r R e c o r d ( name )
7 c s r _ r e c o r d = get_CSRRecord ( u s e r _ r e c o r d , c s r _ h a s h )
8

9 r e t u r n c s r _ r e c o r d

The next function is used by a registration authority to approve a certi�cate signing
request by issuing a registration authorization. The used data record is described in
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Table 4.3: RARecord
Name Data Type Description
hash string This hash is used to

uniquely identify the
registration authorization.

csr_hash string The hash of the certi�cate
signing request that is au-
thorized.

last_passport_digits string The last digits of the pass-
port number of the regis-
trar.

ra_name string The human-readable
name of the registration
authority.

ra_signature string The signature by the regis-
tration authority con�rm-
ing the authenticity of the
registration authorization.

Figure 4.3. The authorization is validated and then written to the user record corre-
sponding to the certi�cate signing request it refers to. In the end, it is checked whether
the certi�cate signing request has enough registration authorizations to be �agged valid.
This is the function in pseudo-code:

1 f u n c t i o n c r e a t e _ r a ( name , c s r_hash , l a s t _ p a s s p o r t _ d i g i t s , ra_name ,
r a _ s i g n a t u r e ) :

2 # checks i f the RA e x i s t s
3 i f ! l e d g e r . has_UserRecord ( ra_name ) :
4 r e t u r n e r r o r
5

6 # checks the s i g n a t u r e
7 i f not i s _ r a _ s i g n a t u r e _ v a l i d ( c s r_hash , l a s t _ p a s s p o r t _ d i g i t s , ra_name ,

r a _ s i g n a t u r e ) :
8 r e t u r n e r r o r
9

10 # checks i f the r e f e r e n c e d c s r e x i s t s
11 i f not has_CSRRecord ( name , c s r _ h a s h ) :
12 r e t u r n e r r o r
13

14 u s e r _ r e c o r d = l e d g e r . r e a d _ U s e r R e c o r d ( name )
15 c s r _ r e c o r d = get_CSRRecord ( u s e r _ r e c o r d , c s r _ h a s h )
16

17 r a _ r e c o r d = new RARecord ( hash ( c s r _ h a s h + l a s t _ p a s s p o r t _ d i g i t s +
ra_name ) , cs_hash , l a s t _ p a s s p o r t _ d i g i t s , ra_name , r a _ s i g n a t u r e )

18

19 u s e r _ r e c o r d = a d d _ r a _ t o _ U s e r R e c o r d ( u s e r _ r e c o r d , r a _ r e c o r d )
20
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Table 4.4: CertRecord
Name Data Type Description
csr_hash string The hash of the certi�cate

signing request that this
certi�cate is issued for.

cert_blob PEM The certi�cate itself.

21 # i f the u s e r i s an ra , two a p p r o v a l s a r e needed i n s t e a d o f the u s u a l
one

22 # a l s o does some s a n i t y checks , l i k e comparing the
l a s t _ p a s s p o r t _ d i g i t s f i e l d o f a l l RARecords

23 i f c s r _ h a s _ s u f f i c i e n t _ r a s ( c s r_hash , u s e r _ r e c o r d )
24 u s e r _ r e c o r d . v a l i d = t r u e
25

26 l e d g e r . w r i t e ( u s e r _ r e c o r d . name , u s e r _ r e c o r d )

This next function is used by the certi�cate authority in order to ful�ll a valid certi�-
cate signing request by issuing a matching certi�cate. The record the system uses for
certi�cate is de�ned in Figure 4.4. The function parses the certi�cate and validates it,
before appending it to the user record. In pseudo-code this looks like this:

1 f u n c t i o n c r e a t e _ c e r t ( c s r_hash , c e r t _ b l o b ) :
2 # needs t o p a r s e the c e r t i f i c a t e b l o b
3 # checks i f the CSR e x i s t s
4 i f ! l e d g e r . has_CSRRecord ( g e t _ n a m e _ c e r t ( c e r t _ b l o b ) ) :
5 r e t u r n e r r o r
6

7 u s e r _ r e c o r d = l e d g e r . r e a d _ U s e r R e c o r d ( g e t _ n a m e _ c e r t ( c e r t _ b l o b ) )
8 c s r _ r e c o r d = get_CSRRecord ( u s e r _ r e c o r d , c s r _ h a s h )
9

10 # checks i f the r e f e r e n c e d c s r i s f l a g g e d v a l i d
11 i f not c s r _ r e c o r d . v a l i d :
12 r e t u r n e r r o r
13

14 # does s a n i t y checks , l i k e c h e c k i n g the c e r t i f i c a t e e x t e n s i o n s and
i s s u e r

15 i f not c h e c k _ c e r t ( c e r t _ b l o b ) :
16 r e t u r n e r r o r
17

18 c e r t _ r e c o r d = new Cer tRecord ( c s r_hash , c e r t _ b l o b )
19

20 u s e r _ r e c o r d = a d d _ c e r t _ t o _ U s e r R e c o r d ( u s e r _ r e c o r d , c e r t _ r e c o r d )
21 l e d g e r . w r i t e ( u s e r _ r e c o r d . name , u s e r _ r e c o r d )

The last function left to be discussed is one allowing for the querying of issued certi�-
cates. This query can be executed by anyone and returns all certi�cates for a given user.
It is implemented as following:



4.3. Chaincode Functionality 23

1 f u n c t i o n q u e r y _ c e r t ( name ) :
2 i f ! l e d g e r . has_UserRecord ( name ) :
3 r e t u r n e r r o r
4

5 u s e r _ r e c o r d = l e d g e r . r e a d _ U s e r R e c o r d ( name )
6

7 r e t u r n u s e r _ r e c o r d . c e r t _ l i s t

With this, the complete set of functionality is de�ned.
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Chapter 5

Implementation

5.1 Technology Choices

The very �rst decision was to select an operating system to develop and test on. The host
system chosen was Ubuntu 16.04 LTS, because it is a widespread Linux distribution
everyone has access to.

The most important choice for the certi�cate issuance system is the choice of distributed
ledger to base the system on. For this we have chosen Hyperledger Fabric, because it
implements a distributed ledger as well as smart contracts, and thus o�ers everything
needed for this system.

For Hyperledger Fabric, at the time of writing, there are two software development kits:
one for Javascript and one for Golang. We went with the latter one, because Golang
is known for its good readability. The used sdk version was v1.0.0-alpha3 together
with Golang 1.8.6.

The implementation also needs to create certi�cate signing requests and certi�cates.
They are created using OpenSSL 1.0.2g on command line, because this is a reliable and
easy way.

The setup uses two approaches to virtualization. One of them is employing Vagrant

2.0.2 in conjunction with VirtualBox 5.2.6 r120293. This is used to containerize
the host system of the implementation. The other virtualization solution is Docker

17.05.0-ce and is used to run peers for the Hyperledger Fabric network.

5.2 Overview

An overview of the actual system implementation can be seen in Figure 5.1. The imple-
mentation relies heavily on containerization in order to make testing and development
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Figure 5.1: Simpli�ed overview of the system implementation.

easier. This begins with the whole system being containerized using Vagrant in order
to be independent from the physical host and its main operating system.

The main part of the system, being the distributed ledger, has been realized with Hyper-
ledger Fabric as designed. The individual nodes making up the network are containers.

All other components of the system are split into two container groups: interactive and
automated. The former one is automatically started together with the Fabric network
and consists of a system admin and the certi�cate authority. The system admins role is
to automatically sets the network up for operation. This includes creating a channel
and installing the chaincode. The certi�cate authority connects to the network and
continues by listening for an event indicating that a certi�cate should be issued. It then
proceeds to issue it and waits for the next event.

The other group of containers, the interactive ones, can be created at will in order to
execute individual steps of the certi�cate issuance process (e.g. creating a certi�cate
signing request). These containers are taking the roles of a user and a registration
authority.

The deviations from the original design are due to the simply not yet existing application
environment, intended to be used by normal users, and the system being intended to
be a proof of concept. However, the most important part of the implementation, the
chaincode, is independent of the overarching network and application architecture. This
makes the chaincode usable in future versions of the system.
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5.3 Hyperledger Fabric Chaincode

The most important piece of this implementation is the chaincode. In this section
we are going to familiarize ourselves with the actual implementation by exemplary
examination of one chaincode function. The function in question is the one responsible
for issuing a registration authorization. Due to the length of the code, it is presented in
snippets.

Before actually looking at the function he �rst snippet naturally is the de�nition of the
Function:

1 func ( t ∗ IdManagementChaincode ) IssueRA ( s t u b shim .
C h a i n c o d e S t u b I n t e r f a c e , a r g s [ ] s t r i n g ) pb . Response {

2 . . .
3 }

The function returns a peer response. This response can be a success message of type
[]byte or an error message of type string. The two arguments are the interface of
the ledger and an array of all chaincode invocation arguments. The interface is needed
to read from and write to the ledger. The array of arguments starts with the name of
the particular invoked function of the chaincode and continues on with the respective
arguments. These are parsed in the beginning of the function:

1 var name s t r i n g
2 var c s r I d s t r i n g
3 var l a s t P a s s p o r t D i g i t s s t r i n g
4 var raName s t r i n g
5 var r a S i g n a t u r e [ ] b y t e
6

7 var e r r e r r o r
8

9 i f l e n ( a r g s ) != 6 {
10 r e t u r n shim . E r r o r ( " I n c o r r e c t number o f arguments . E x p e c t i n g 6 ,

f u n c t i o n f o l l o w e d by a name , c s r I d , l a s t P a s s p o r t D i g i t s , raName and
r a S i g n a t u r e " )

11 }
12

13 name = a r g s [ 1 ]
14 c s r I d = a r g s [ 2 ]
15 l a s t P a s s p o r t D i g i t s = a r g s [ 3 ]
16 raName = a r g s [ 4 ]
17 r a S i g n a t u r e , e r r = hex . D e c o d e S t r i n g ( a r g s [ 5 ] )
18 i f e r r != n i l {
19 r e t u r n shim . E r r o r ( " F a i l e d t o decode hex " )
20 }

Before going any further, the functions ensures that this is not a registration authority
trying to authorize their own certi�cate signing request. It is also ensured that the last
passport digits are given:
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1 / / check t h a t the u s e r and RA a r e d i f f e r e n t
2 i f name == raName {
3 r e t u r n shim . E r r o r ( " Cannot a u t h o r i z e own CSR " )
4 }
5

6 / / check t h a t l a s t P a s s p o r t D i g i t s i s not empty
7 i f l a s t P a s s p o r t D i g i t s == " " {
8 r e t u r n shim . E r r o r ( " L a s t p a s s p o r t d i g i t s have t o be g iven " )
9 }

Next, the signature of the registration authorization has to be veri�ed. This is done by
fetching all certi�cates known for the registration authorization and testing all currently
valid ones until one matches the signature:

1 / / v e r i f y s i g n a t u r e
2 / / t e s t a l l c u r r e n t l y v a l i d c e r t keys u n t i l one f i t s
3 v e r i f i e d S i g : = f a l s e
4 raUser , e r r : = t . GetUserRecord ( s tub , raName )
5 i f e r r != n i l {
6 r e t u r n shim . E r r o r ( e r r . E r r o r ( ) )
7 }
8 / / check t h a t the u s e r i s a c t u a l l y an RA
9 i f ! r a U s e r . IsRA {

10 r e t u r n shim . E r r o r ( " S i g n e r i s not an RA" )
11 }
12 / / t e s t a l l known c e r t i f i c a t e s
13 f o r i : = 0 ; i < l e n ( r a U s e r . C e r t L i s t ) ; i ++ {
14 b lock , _ : = pem . Decode ( [ ] b y t e ( r a U s e r . C e r t L i s t [ i ] . C e r t B l o b ) )
15 i f b l o c k == n i l {
16 r e t u r n shim . E r r o r ( " F a i l e d t o decode PEM" )
17 }
18 c e r t i f i c a t e , e r r : = x509 . P a r s e C e r t i f i c a t e ( b l o c k . By te s )
19 i f e r r != n i l {
20 r e t u r n shim . E r r o r ( " F a i l e d t o p a r s e c e r t i f i c a t e " )
21 }
22

23 / / check t h a t c e r t i f i c a t e i s c u r r e n t l y v a l i d
24 cur ren tT ime : = t ime . Now ( )
25 i f cu r ren tT ime . B e f o r e ( c e r t i f i c a t e . NotBe fore ) | | cu r ren tT ime . A f t e r (

c e r t i f i c a t e . N o t A f t e r ) {
26 break
27 }
28

29 pubkey : = c e r t i f i c a t e . P u b l i c K e y . ( ∗ r s a . P u b l i c K e y )
30 hashed : = sha256 . Sum256 ( [ ] by t e ( name + c s r I d + l a s t P a s s p o r t D i g i t s +

raName ) )
31 e r r = r s a . Ver i fyPKCS1v15 ( pubkey , c r y p t o . SHA256 , hashed [ : ] ,

r a S i g n a t u r e )
32 i f e r r == n i l {
33 v e r i f i e d S i g = t r u e
34 break
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35 }
36 }
37 i f ! v e r i f i e d S i g {
38 r e t u r n shim . E r r o r ( " R e g i s t r a t i o n a u t h o r i t y s i g n a t u r e i s i n c o r r e c t " )
39 }

After verifying the signature, the function proceeds to do some sanity checks, such as
checking wether the referenced certi�cate signing request actually exists:

1 / / g e t u s e r r e c o r d
2 userRecord , e r r : = t . GetUserRecord ( s tub , name )
3 i f e r r != n i l {
4 r e t u r n shim . E r r o r ( e r r . E r r o r ( ) )
5 }
6

7 / / check i f the r e f e r e n c e d CSR e x i s t s
8 c s r I d x : = −1
9 f o r i : = 0 ; i < l e n ( u s e r R e c o r d . C s r L i s t ) ; i ++ {

10 i f u s e r R e c o r d . C s r L i s t [ i ] . I d == c s r I d {
11 c s r I d x = i
12 break
13 }
14 }
15 i f c s r I d x == −1 {
16 r e t u r n shim . E r r o r ( " F a i l e d t o f i n d the r e f e r e n c e d c s r " )
17 }
18

19 / / s t o p i f the CSR i s a l r e a d y v a l i d
20 i f u s e r R e c o r d . C s r L i s t [ c s r I d x ] . V a l i d {
21 r e t u r n shim . E r r o r ( " CSR i s a l r e a d y v a l i d " )
22 }
23

24 / / check i f the RA has been a l r e a d y s u b m i t t e d
25 f o r i : = 0 ; i < l e n ( u s e r R e c o r d . R a L i s t ) ; i ++ {
26 i f u s e r R e c o r d . R a L i s t [ i ] . C s r I d == c s r I d && u s e r R e c o r d . R a L i s t [ i ] . RaName

== raName {
27 r e t u r n shim . E r r o r ( " CSR has a l r e a d y been s u b m i t t e d " )
28 }
29 }

If no discrepancy is found, the registration authorization record is created and added to
the users user record. After that the code checks if the certi�cate signing request has
gotten enough endorsements to be �agged as valid and �ags it if it has:

1 / / c r e a t e ra and add i t t o the u s e r r e c o r d
2 r a O b j e c t : = RaRecord { c s r I d , l a s t P a s s p o r t D i g i t s , raName , s t r i n g (

r a S i g n a t u r e ) }
3 u s e r R e c o r d . R a L i s t = append ( u s e r R e c o r d . R a L i s t , r a O b j e c t )
4

5 / / f l a g the CSR v a l i d i f c o n d i t i o n s a r e met
6 i f ! u s e r R e c o r d . IsRA {
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7 u s e r R e c o r d . C s r L i s t [ c s r I d x ] . V a l i d = t r u e
8 } e l s e {
9 endorsements : = 0

10 var l p d s t r i n g
11 f o r i : = 0 ; i < l e n ( u s e r R e c o r d . R a L i s t ) ; i ++ {
12 i f u s e r R e c o r d . R a L i s t [ i ] . C s r I d == c s r I d {
13 endorsements += 1
14 i f l p d == " " {
15 l p d = u s e r R e c o r d . R a L i s t [ i ] . L a s t P a s s p o r t D i g i t s
16 } e l s e i f l p d != u s e r R e c o r d . R a L i s t [ i ] . L a s t P a s s p o r t D i g i t s {
17 r e t u r n shim . E r r o r ( " L a s t p a s s p o r t d i g i t s do not match " )
18 }
19 }
20 }
21 i f endorsements >= 2 {
22 u s e r R e c o r d . C s r L i s t [ c s r I d x ] . V a l i d = t r u e
23 }
24 }

If the certi�cate signing request has become valid, the certi�cate authority is noti�ed.
Finally, the user record is written to the ledger and the function returns an empty success
message, because there is no need for any return data:

1 / / n o t i f y CA
2 i f u s e r R e c o r d . C s r L i s t [ c s r I d x ] . V a l i d {
3 i f e r r : = s t u b . S e t E v e n t ( " ca " , [ ] by t e ( c s r I d ) ) ; e r r != n i l {
4 r e t u r n shim . E r r o r ( " Unable t o s e t CC even t : caEvent . Abor t ing

t r a n s a c t i o n . . . " )
5 }
6 }
7

8 / / w r i t e u s e r r e c o r d t o the l e d g e r
9 e r r = t . S e t U s e r R e c o r d ( s tub , u s e r R e c o r d )

10 i f e r r != n i l {
11 r e t u r n shim . E r r o r ( e r r . E r r o r ( ) )
12 }
13

14 r e t u r n shim . S u c c e s s ( n i l )

5.4 Implementation Challenges

During implementation, some challenges were encountered. The biggest one of them
was caused by Hyperledger Fabric still being so early in development. This entailed
frequent SDK changes that required most of of the implementation to be updated every
time.

Another time sink was the discovery, that the Golang certi�cate package seemingly
failed randomly to parse certi�cates created with OpenSSL. After some more investi-
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gation the parsing turned out to always work when the certi�cate did not have any
extensions. However, according to the documentation [14] parsing of extensions is
possible. There was no time to conduct further tests, so the problem was circumvented
by not using any extensions for the demo implementation.

5.5 Using the Implementation

This section is intended to deliver a compact guide to running the demo implementation.
For exact versions of used software, please refer to section 5.1.

5.5.1 Initial Setup

Before beginning, the host system needs to have Git, Vagrant and VirtualBox installed.
The setup begins with downloading Fabric and navigating to the directory containing
all important �les for the virtual development machine:

$ git clone h�ps://github.com/hyperledger/fabric.git
$ cd fabric/devenv

At this point it is recommended to set the directory that Vagrant links to the virtual
machine as local development directory. This directory contains the Fabric application.
The following example assumes that the code is in a directory called dev in the users
Documents directory:

$ export LOCALDEVDIR="/home/USER/Documents/dev"

This step might not be necessary anymore in the future. At the time of writing, the
fabric environment is con�gured to install a version of Golang that is too old to run
fabric SDK. The �x is to change the version installed with the setup.sh script to 1.8.6.

Next, the virtual machine has to be started using the Vagrantfile that came with the
git repository.

$ vagrant up

Once the virtual machine is up, it can be connected to:

$ vagrant ssh

First step on the virtual machine is to get the Fabric Golang SDK and make sure all
dependencies are available.
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$ sudo −E env "PATH=$PATH" go get −u github.com/hyperledger/fabric−sdk−go
$ cd $GOPATH/src/github.com/hyperledger/fabric−sdk−go
$ sudo −E env "PATH=$PATH" make depend−install
$ sudo −E env "PATH=$PATH" dep ensure −update

Now, Fabric can be built:

$ cd $GOPATH/src/github.com/hyperledger/fabric
$ export DEBIAN_FRONTEND="noninteractive"
$ sudo −E env "PATH=$PATH" make dist−clean all

At this point everything should be set to run the implementation.

5.5.2 Running the Implementation

It is assumed that the virtual machine is running and connected to. All scripts that can
be used to run the implementation as a whole or in part can be found here:

$ cd $GOPATH/src/gitlab.lrz.de/tumi8/idmanagement/implementation/datatier

These scripts namely are:

• up.sh Starts the Hyperledger Fabric network.

• userrecord.sh Creates a user record for Alice.

• csr.sh Creates a certi�cate signing request for Alice.

• ra.sh Creates a registration authorization for the previously created certi�cate
signing request.

• query.sh Queries the ledger for certi�cates associated with Alice.

• down.sh Shuts the Hyperledger Fabric network down.

• runall.sh Performs all of the steps above in sequence.

5.5.3 Terminating the Virtual Machine

The machine can be disconnected from and stopped with the following:

$ exit
$ vagrant halt
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Chapter 6

Evaluation

The certi�cate issuance system has been implemented to enforce the DFN certi�cate
issuance process leveraging distributed ledger technology. Naturally, the �rst step in
evaluating this system would be to evaluate the distributed ledger it is built upon (i.e.
Hyperledger Fabric) before continuing with the system itself. However this is far beyond
possible given the time and resources for this thesis. Instead we are directly skipping to
the evaluation of the system itself, assuming that the ledger is behaving according to
speci�cation and not considering any possible security �aws.

6.1 Security Evaluation

Figure 6.1 shows an attack tree for the system. It is laid out the same way the attack tree
shown in Figure 3.1. The ultimate goal, to issue a malicious certi�cate, is the trees root
and each path from a leaf to the root is one way to achieve that goal. In the following,
we will discuss these paths from left to right in detail for the single attacker introduced
in chapter 3. The corresponding attacker roles for the new system are:

• User A normal user accessing the system via the application environment.

• Registration Authority This is corresponding to a CA representative.

• CAAdministrator An administrator of the CA system has full access to the data
(e.g. private key), software and possibly also hardware.

First option to attack the system is being an evil registration authority, meaning the
attacker needs to be an RA. This should be unlikely, because the employees appointed
as registration authority are expected to be chosen carefully. Also, the fact that the
system easily allows to hold the participants accountable for their actions entails that
one transgression certainly means losing their job and facing criminal prosecution.
This is a lot of deterrence. However, this still might not be su�cient, as a registration
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Figure 6.1: Attack tree for the certi�cate issuance system.

authority might try to disguise their criminal actions as a mistake. So in comparison to
the original attack tree, this is no change and the attack is still possible.

The second path attacks by identity theft. Stealing a registration authority’s private
key enables an attacker to impersonate them and authorize malicious certi�cate signing
requests. This attack could be performed by an attacker of any role, but assuming that
every registration authority keeps their keys safe, is unlikely to succeed. Again, this is
no change to the original attack tree.

The third path involves deceiving a registration authority in order to get an autho-
rization for a malicious certi�cate signing request. This attacks chance of success does
not depend on the role the attacker has. This requires the attacker to either forge or
steal the passport of the person they are trying to impersonate, because the registration
authority needs to see it. That, already posing a signi�cant di�culty, is only half the
attack. The attacker would also need to deceive the registration authority in person,
meaning for instance that he would need to look like the image on the passport. While
this is certainly not impossible, it is so challenging, that it can be considered unlikely.
In contrast to the original attack tree, this has gotten harder. Deceiving a registration
authority now requires a passport and a lot of face-to-face social engineering.

The fourth attack circumvents the challenges of the previous two by simply threatening
the registration authority (e.g. with a weapon). This attack again is independent of
the attackers role. While not particularly inventive, this approach will most likely be
successful for an attacker that does not shy away from violence. Hence this is a possible
attack, just as it was in the original attack tree.

The �fth attack vector is focused on breaking the distributed ledger (i.e. Hyperledger
Fabric) itself. While it was said at the beginning of this section that Hyperledger Fabric
is assumed to be �awless, this still leaves open attacks that are possible by design. With
enough nodes under their control, an attacker would be able to conduct transactions at
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will. The attack is still considered unlikely, because this is exactly the type of attack a
(permissioned) blockchain is designed to be resistant against. Also the attacker would
need access to the potentially closed network the ledger is running in. That is why this
probably is the most unrealistic attack vector. This is a huge improvement over the
original attack tree.

The sixth and last attack vector is circumventing the system by gaining access to the
system of the certi�cate authority or stealing their private key. While this is theoretically
possible for all attacker roles and very possible for a CA administrator, this only allows
the attacker to issue certi�cates outside the system. The validity of a certi�cate can still
be easily determined by querying the blockchain. Only valid certi�cates are written
to the ledger together with all associated accounting information created during the
issuance process.

Thanks to the distributed ledger, the system is tamper-resistant, provides accountability
and traceability and enforces multi-party authorization. These properties lower the
chance of a single registration authority in�icting damage on the system, while also
ensuring traceability of attacks through complete and immutable accounting data on
the ledger.

Summing up, the new certi�cate issuance system prevents a single attacker in the role
of user or registration authority from issuing malicious certi�cates. Additionally, the
system is highly resistant to attacks thanks to the distributed ledger. Finally, while
not being able to hinder a compromised certi�cate authority from issuing malicious
certi�cates, the system can assist in identifying these certi�cates based on the accounting
data which is produced when issuing a legitimate certi�cate.

6.2 Additional Considerations

An important consideration for real-world deployment of the system is the trade-o�
between security and e�ort concerning multi-party authorization. All previously dis-
cussed attack paths involving a registration authority become highly unlikely with a
rising number of registration authorities required for a certi�cate. The implementation
created in this thesis only requires one registration authority for a normal certi�cate
and two for a certi�cate for a registration authority. In a production use case these
numbers could be increased to even further reduce attack surface.

Another consideration to be made is about the network size. A small network might
not provide non-eraseability due to the small amount of existing data copies.

The network size, together with the number of di�erent organizations operating the
network and the complexity of the ledger’s endorsement policy, is also important for
the tamper resistance of the ledger. All of these factors determine the di�culty for
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an attacker to control enough nodes to single-handedly ful�ll the endorsement policy,
allowing them to create any transaction they wants to. That is due to the attacker
requiring full control of all those organizations membership service providers in order
to create new peers for every organization that is necessary to satisfy the endorsement
policy of the ledger.
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Chapter 7

Related Work

7.1 PGP

Pretty Good Privacy (PGP) [15] is the other big certi�cation (and encryption) standard
besides X.509. In contrast to X.509, PGP does (normally) not form a hierarchical structure
of trust, but a web of trust. Users can accumulate trust over time by being referred by
other users that know them. This referral consists of signing a users key, expressing
trust in the identity of a user. If one (or better, multiple) chain of trust exists from one
user to another, the former can trust the latter one. PGPs main �eld of application is in
email.

7.2 Lightweight Directory Access Protocol

The Lightweight Directory Access Protocol (LDAP) [16] is an asynchronous protocol
specifying how a client interacts with directories on a server following the X.500 stan-
dard. The directories hold other directories as well as directory entries. A directory
entry is the most basic type of information held by the system. Each entry consists
of a set of key-value-pairs, enabling it to store arbitrary data, and is identi�ed by a
relative distinguished name. This relative distinguished name itself is a set of key-value-
pairs. The concatenation of an entry’s relative distinguished name and its parent’s
distinguished name is the entry’s distinguished name and identi�es the entry globally.
Possible interactions with the directories include searching, adding and deleting.

LDAP is not limited to one directory server, but can instead work with a set of multiple
directory servers. For instance, if the queried directory server cannot ful�ll a request, it
may refer to another directory server.



38 Chapter 7. Related Work

7.3 Certi�cate Transparency

Certi�cate Transparency [17] is an e�ort by Google to combat malicious certi�cates.
For this purpose, three new components are introduced to a public key infrastructure:

• Certi�cate Log Certi�cate logs are publicly accessible network services storing
certi�cates. The certi�cates are typically submitted by the issuing certi�cate
authority and appended to the log. Not data is ever deleted. Anyone can query
this log to �nd out whether the log is working correctly (via cryptographic proof)
or whether a speci�c certi�cate has been logged.

• Monitor A Monitor is a server monitoring Certi�cate Logs, looking for suspi-
cious certi�cates. A certi�cate could stand out for instance by having unusual
extensions (e.g. certi�cate signing privilege). Upon �nding something, the Moni-
tor proceeds to notify the corresponding entity. These Monitors could be run by
stakeholders, as commercial services or just privately by one person.

• Auditor An Auditor is a piece of software. It could for instance be a standalone
service or part of a browser. It can check that a Certi�cate Log is working correctly
and that a speci�c certi�cate is logged in a Certi�cate Log. The latter check is
important, because every certi�cate has to be logged. A certi�cate not being
logged indicates the certi�cate being malicious.

This system is intended to make it impossible for a new certi�cate to be issued without
the corresponding domain owner being noti�ed about it. It also allows anyone interested
to determine whether a certi�cate was issued illegitimately, be it by intent or mistake. In
summary it is designed to protect the public key infrastructure from being compromised
and by doing so protects users from malicious certi�cates. In contrast to the system
developed in this thesis, Certi�cate Transparency only starts after the certi�cate has
been issued.

7.4 Blockchain-Based Identity Management Solutions

All of the following projects leverage blockchain technology to manage certi�cates or
other identity data.

7.4.1 A Blockchain-Based PKI Management Framework

The paper "A Blockchain-Based PKI Management Framework" [18] presents an open-
source blockchain system supporting certi�cate issuance, validation and revocation.
This system currently runs on the Ethereum blockchain. The certi�cate authorities
are mapped as smart contracts on the chain, keeping all relevant data to allow anyone



7.4. Blockchain-Based Identity Management Solutions 39

to validate the complete chain of trust. The system uses X.509 certi�cates that are
extended by PKI environment information in the extension �elds, such as the smart
contract address of the issuing certi�cate authority. This infrastructure is accessible for
certi�cate authorities and users via a Restful service.

7.4.2 The Internet Blockchain

Another e�ort towards blockchain-based identity/asset management worth mentioning
is the ”The Internet Blockchain“ [19]. In the paper it is proposed to create a blockchain
for Internet resource transactions. These resources for instance include IP address
assignments and domain names. Administering these resources with a blockchain,
instead of the currently used autonomous organizations, would eliminate traditional
PKI dependency as well as roots of trust, and with that the single point of failure for all
of the Internet. The biggest issue holding this concept back is scalability.

7.4.3 Blockstack

Blockstack [6] is an alternative Internet built with Blockchain. While Blockstack still
uses the lower layers of the traditional Internet, it reinvents the application layer. This
includes creating a new DNS and its own public key infrastructure.

Blockstack’s DNS is the Blockchain Name System (BNS). This blockchain-based naming
system allows for human-readable and unique names while being fully decentralized
(Zooko’s Triangle). The BNS also eliminates a need for a traditional PKI in the Blockstack
ecosystem, because the BNS already associates public keys with domain names.

A core feature of Blockstack is that it is built to run on any underlying Blockchain and
even supports changing the underlying Blockchain. Blockstack uses a Virtualchain.
This Virtualchain is an arbitrary state machine running on top of a real Blockhain (e.g.
Bitcoin). This abstraction provides independence from the Blockchain and allows future
implementation changes and additions.

7.4.4 Hyperledger Indy

Hyperledger Indy [20] is an identity management system based on distributed ledger
technology with a big focus on privacy. It is being developed by the Hyperledger
community since May 2017 and is still very early in development. Indy focuses on a
self-governed identity. Private data is never written to the ledger and only directly shared
with peers upon the users consent. All identi�ers used in relations (e.g. for a purchase
with a shop) are pairwise-pseudonymous identi�ers. This prevents tracking and also
lessens the consequences of an identi�er being compromised. The ledger only functions
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as an anchor for data. This means that even though the ledger is public, the user is in
full control of who can read what part of their data. Also Indy supports zero-knowledge
proofs in order to minimize data disclosure.

7.4.5 Sovrin

The Sovrin Network [21] was launched in July of 2017 and is designed to be a blockchain-
based, self-sovereign identity provider. Every identity is tied to a distributed identi�er
(DID) and stored in a global blockchain created for this (and only this) purpose. The
blockchain framework chosen for Sovrin is Hyperledger Indy 7.4.4 which is targeted at
identity management and already supports much of the needed functionality. But Sovrin
does not stop there. Whenever a veri�able claim (i.e. con�rmation of an identity feature,
for instance age) is presented to a veri�er, this has value to the owner of the claim and
to the veri�er. One example of this is a car rental agency (i.e. veri�er) verifying that
the customer (i.e. owner) has a drivers license. Sovrin introduces a token that can be
exchanged for the veri�cation of a claim and aims to build an ethical digital market
place for identity.
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Chapter 8

Conclusion

The problem addressed in this thesis is public key infrastructures being compromised,
leading to malicious certi�cates being issued. This is a single point of failure for all
systems relying on these certi�cates (e.g. the entire Internet). It was suggested that a
strict certi�cate issuance process could limit the risk of corruption a compromised CA
or CA representative poses for the public key infrastructure, while also making attacks
on the system fully traceable.

The thesis successfully shows that it is possible to adapt the certi�cate issuance process
used by the DFN as a tamper-resistant certi�cate issuance process based on distributed
ledger technology. We began by de�ning requirements for this system and proceeded
to show how a system like this could be designed. Finally a prototype application was
developed in order to prove the system’s feasibility.

The �nal evaluation suggests that the designed system is resistant against a single
attacker, as long as that attacker does not compromise the certi�cate authority. The
system can not protect against a compromised certi�cate authority’s system or private
key, as this allows an attacker to issue (malicious) certi�cates at will. However, it has
been shown that the system can expose a compromised CA issuing certi�cates without
adhering to the issuance process, due to the ledger information documenting the process
that would be missing in this case.

While this thesis provides a solid foundation, there are still several aspects open for
exploration in future work, such as the problem of certi�cate revocation. Other possible
topics for future work include improving and augmenting the sanity checks automat-
ically executed by the distributed ledger’s chaincode and developing the application
environment (e.g. web service) that is intended to provide access to the distributed
ledger system for normal users. Yet another topic would be to modify the system in
order to support multiple hierarchical certi�cate authorities comparable to a typical
public key infrastructure. This could distribute the e�ort required to run the system
better between multiple participating organizations.
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