
Technische Universität München
Department of Informatics

Bachelor’s Thesis in Informatics

Identi�cation of IPv6-IPv4 Sibling Pairs
from Passive Observations

Alexander Schulz

Technische Universität München
Department of Informatics

Bachelor’s Thesis in Informatics

Identi�cation of IPv6-IPv4 Sibling Pairs from Passive
Observations

Identi�kation von IPv6-IPv4 Sibling Paaren anhand passiver
Beobachtungen

Author Alexander Schulz
Supervisor Prof. Dr.-Ing. Georg Carle
Advisors Dipl.-Ing. Univ. Quirin Scheitle

M.Sc. Oliver Gasser
M.Sc. Minoo Rouhi

Date July 15, 2017

Informatik VIII
Chair for Network Architectures and Services

I con�rm that this thesis is my own work and I have documented all sources and material
used.

Garching b. München, July 15, 2017

Signature

Abstract

The IPv6 network protocol was established as a solution to the exhaustion of the 32
bit IPv4 address space. Since its introduction in 1998 though, the adoption has been
rather slow and is still in its full progress. Nevertheless, for those endpoints that already
utilize IPv6, it is interesting to �nd the di�erent IP addresses that belong to a certain
host. Speci�cally, in this thesis we want to uncover pairs of one IPv6 and one IPv4 that
are mapped to the same physical machine.
Such a relationship, which we further call IP siblings, has multiple possible �elds of
appliance, e.g. in geolocation, security or infrastructural studies and network measure-
ments.
Throughout our work, we create a tool capable of retrieving sibling pairs from passive
tra�c observations. Therefor we de�ne multiple scenarios of network communication
where siblings can be extracted in the �rst place. We extend related work by covering
a much broader �eld of devices, especially individual clients and non-public servers.
In our tailored evaluation tests, our implementation recognizes at least 97.7% of the
occurring IP siblings and for the metric of Matthews Correlation Coe�cients achieves
values in the range of 0.9535 to 0.9867.

Zusammenfassung

Das IPv6 Netzwerk Protokoll wurde mit dem Gedanken eingeführt, der Erschöpfung
des 32 bit IPv4 Adressraums entgegenzuwirken. Seit der Vorstellung in 1998 ist seine
Verbreitung jedoch eher langsam vorangeschritten. Trotzdem ist es für solche Teilneh-
mer, die IPv6 bereits nutzen, interessant herauszu�nden, welche IP Adressen demselben
Host zugeordnet sind. In dieser Arbeit werden wir speziell die Eigenschaft untersuchen,
ob solche Paare, bestehend aus jeweils einer IPv6 und einer IPv4 Adresse, auch auf der
selben physikalischen Maschine genutzt werden.
Eine solche Beziehung, die wir fortan als IP Siblings bezeichnen, hat diverse Anwen-
dungsfelder, wie z.B. in der Lokalisierung, in der Sicherheit oder aber in Infrastruktur
bezogenen Studien und Netzwerk Messungen.
In dieser Arbeit erstellen wir ein Programm, das anhand von passiven Beobachtungen
des Netzverkehrs IP Siblings identi�zieren kann. Zu diesem Zweck erstellen wir ver-
schiedene Szenarien, die Situationen im alltäglichen Netzverkehr beschreiben, welche
es erlauben, Sibling Paare zu extrahieren. Dabei erweitern wir den Umfang bisheri-
ger Arbeiten auf diesem Gebiet, indem wir ein weiteres Feld an Geräten abdecken,
insbesondere Clients und nicht-ö�entliche Server. In unserer anschliessenden, auf die
verschiedenen Szenarien zugeschnittenen Evaluation erkennt unsere Implementierung
mindestens 97,7% der auftretenden IP Siblings, und erzielt für die verwendete Metrik
"Matthews Correlation Coe�cient" Werte von 0,9535 bis 0,9867.

I

Contents

1 Introduction 1
1.1 Goals of the thesis . 2
1.2 Outline . 2

2 Background 3
2.1 TCP Flags . 3
2.2 TCP Timestamp Option . 4
2.3 IP Siblings . 4
2.4 NLNOG Network . 5
2.5 RIPE Atlas . 5
2.6 Ground Truth . 5

3 Related Work 7
3.1 Sibling identi�cation for DNS resolvers 7
3.2 Classi�cation via remote clock skew estimation 8
3.3 Summary . 9

4 Problem Analysis 11
4.1 Scenarios . 12

4.1.1 Happy Eyeballs . 12
4.1.2 Tra�c from one machine to multiple others 13
4.1.3 Failed connection attempt . 15

4.2 Summary . 17

5 Ground Truth Data Set 19
5.1 Happy Eyeballs . 20
5.2 Tra�c from one machine to multiple others 21

5.2.1 Domain with External Resource 22
5.2.2 1 Client↔ n Server and n Clients↔ 1 Server 23

6 Implementation 27
6.1 Structure . 27
6.2 Packet Source . 28

II Contents

6.3 Main Packet Handler . 28
6.4 Candidate Identi�cation . 30
6.5 Candidate Decision . 31
6.6 Results . 34

7 Evaluation 35
7.1 Preparations . 35
7.2 Metric . 36
7.3 Results . 36

7.3.1 Happy Eyeballs . 36
7.3.2 Tracking Pixel . 37
7.3.3 1 Client↔ n Server and n Clients↔ 1 Server 38
7.3.4 Interpretation and Summary . 39

8 Conclusion and Future Work 41

A Detailed Statistics for the Happy Eyeballs Captures 43

B Command Line Usage 47

C Abbreviations 49

Bibliography 51

III

List of Figures

4.1 Model of the Happy Eyeballs Algorithm [1] 12
4.2 Client viewing a website with an external resource. 13
4.3 Failing IPv6 connection for Happy Eyeballs [1] 15
4.4 Package loss for initial IPv6 connection [1] 16
4.5 ICMP Error for initial IPv6 connection 16
4.6 Connection reset for initial IPv6 connection 17

5.1 Javascript plugin to download the Tracking Pixel. 22
5.2 Overview of how a session represents two scenarios at once. 24

6.1 Model of the sibling identi�cation tool. 27
6.2 Model of the global Ring Bu�er. 30
6.3 Basic functionality of the Candidate Identi�cation. 31
6.4 Decision method based on an estimate of the timestamps in the later

connection. 33

V

List of Tables

5.1 Di�erent timer values for Happy Eyeballs ground truth data. 20
5.2 Summary of tra�c captures for the Happy Eyeballs scenario. 21
5.3 Summary of the statistics for the captures from the Tracking Pixel. . . 23
5.4 Summary of tra�c captures for the scenarios "1 Client↔ n Server" and

"n Clients↔ 1 Server". 25

7.1 Summary for the evaluation of the Happy Eyeballs scenario. 37
7.2 Evaluation results for the scenarios "1 Client↔ n Server" and "n Clients

↔ 1 Server". 38

A.1 Detailed statistics for the Happy Eyeballs captures against our server. . 43
A.2 Detailed statistics for the Happy Eyeballs captures against the ground

truth. 44
A.3 Detailed evaluation results for the Happy Eyeballs captures against our

server. 45
A.4 Detailed evaluation results for the Happy Eyeballs captures against the

ground truth. 46

1

Chapter 1

Introduction

Especially due to the current evolution of the Internet of Things, the demand for dedi-
cated IP addresses is increasingly growing. At the same time, the IPv4 address space
has already reached its capacity limits. With a size of 32 bit, the maximum amount of
unique addresses it can yield is a good 4.29 billion, which is less than one device per
human.
Back in 2011, the last public IPv4 address blocks administered by the Internet Assigned
Numbers Authority were assigned to the 5 Regional Internet Registries [2]. These are
organizations that in turn distribute IP address spaces to e.g. Internet Service Providers
or public institutions like universities. Nevertheless, with technologies like Network
Address Translation, which provides internet access to a whole network over only one
shared public IP address, people managed to �nd work arounds in order to compensate
for the large amount of connected devices.
The response to the IPv4 exhaustion is the much more capable IPv6 address space. Al-
though the idea of IPv6 was already introduced in 1998 [3], the rate of adoption has yet
grown rather slowly. According to statistics collected by Google, Belgium is leading the
list with an adoption of 48.58% [4].
Considering the current situation of two IP protocols existing concurrently, one inter-
esting aspect about this is to analyze and compare the manner of how IPv6 is deployed
by each individual. For existing internet services this could either be building a separate
infrastructure or creating a dual-stacked environment, meaning both IPv6 and IPv4 are
located on the same machine. Knowledge about such infrastructural facts can then be
used e.g. to make predictions on the impact of a potential attack [5].
To gain the necessary information, we can analyze the tra�c and behavior of two IP
addresses assigned to a speci�c service and decide whether it suggests that they are
hosted by the same physical machine. When this is the case for a given pair of one IPv6
and one IPv4 address, we call them siblings, as it has been done in prior work [5–7].
Apart from security aspects, de�ning such IP address relationships can support in the
�eld of geolocation, by being able to leverage information of both IP protocols [5]. Also,

2 Chapter 1. Introduction

sibling pairs can be of interest for researchers and scientists, since they might a�ect
measurements accordingly to the respective target setup.

1.1 Goals of the thesis

Existing work in the �eld of sibling identi�cation has for the most part focused on DNS
resolvers [6] and servers in general [5,7]. With this thesis, we want to complement these
approaches by the ability to identify sibling pairs for all devices involved in the common
network tra�c, including clients and non-public servers. These hosts could not be
covered yet due to the fact that the previous work on servers used active measurements
to reach their goal. That is, they had to a priori provide a set of hosts they would target.
In comparison, we instrument passive observations to build a tool that extracts involved
sibling pairs of all kinds. Our implementation can be bound to a networking interface
to receive live tra�c and return occurring IP siblings on the run.
We test our implementation against a range of evaluation datasets and, with the Matthews
Correlation Coe�cient as our evaluation metric, achieve results ranging from 0.9535 to
0.9867.

1.2 Outline

The thesis starts with the presentation of the necessary background knowledge, in-
cluding terminologies and techniques we use throughout our work. In Chapter 3, we
continue with an introduction to the related work in the �eld of IP siblings. After-
wards we lay down our theoretical thoughts on how to approach our task in Chapter 4.
These are the foundation of our practical parts. Following is Chapter 5, which gives an
overview of the ground truth data we collected for testing purposes. The structure and
functionality of the tool we implement is then expounded in Chapter 6. Right after that,
we evaluate our implementation and give a detailed overview of the results. Finally, we
draw a conclusion of the thesis in Chapter 8 and propose ideas for future work.

3

Chapter 2

Background

The implementation we develop throughout our work analyzes TCP tra�c, which is
why in this chapter we �rst want to provide basic knowledge about the �ags and options
we will see there. Also, we introduce the measurement testbeds involved in capturing
our ground truth data, and de�ne the central term IP siblings.

2.1 TCP Flags

In this thesis we analyze tra�c captures from dedicated connections which follow the
Transmission Control Protocol. This includes mechanisms to manage the course of the
communication, e.g. to initiate or abort it. In order to indicate such operations, the
header of every TCP packet contains a set of �ags with distinct meanings.
We focus on the following 4 types [8], which will be used for the classi�cation of packets
in our implementation.

SYN The SYN �ag is set to request the initiation of a new communication from the
destination. If the ladder accepts, it should answer with a SYN ACK response.

ACK The purpose of the ACK �ag is not only to respond to SYN requests, but rather
to generally signal that certain data was successfully received. Such packets also
contain a key number corresponding to the packet they should acknowledge.

FIN As the name suggests, the FIN �ag is utilized to signalize the wish for closing a
connection, which again must be acknowledged by a FIN ACK response.

RST The RST �ag aborts the communication without any further acknowledgements.

From here on, we will implicate the presence of a �ag by prepending its name, e.g. a
packet where the SYN �ag is set will be referred to as a SYN packet.

4 Chapter 2. Background

2.2 TCP Timestamp Option

The TCP header provides space to append a set of options carrying additional infor-
mation about the packet. Among others, these can contain the very common TCP
timestamp option. It has a total size of 10 bytes, including two 32 bit unsigned integers.
One of them holds the current value of the local timestamp counter (TSval), while the
other one is the Timestamp Echo Reply (TSecr), which acknowledges the last TSval
value sent by the opposite host.
The timestamp counter itself is a register located within the CPU, being incremented for
every clock cycle. In order to access the counter’s value, the RDTSC assembly instruction
can be called.
The TCP timestamp option originally had two purposes [9].
Firstly, it simpli�es the measurement of the Round Trip Time, since this can now be
done frequently for every segment. The more accurate the results are here, the better
the two parties can regulate their connection and adapt to network conditions.
Secondly, the timestamp option o�ers Protection Against Wrapped Sequences (PAWS).
This mechanism sorts out duplicated packets that would corrupt the current connection,
and this way e.g. can prevent data loss. The assumption here is that the timestamp
value of the opposite host never decreases over time. Therefore, PAWS can discard
those packets that contain a lower TSval than the recently caught packets from the
same source.
For every packet we receive, we thus have on the one side the timestamp of the remote
host – the remote timestamp – and on the other side the timestamp value of our own
machine at the point we captured the data – the local timestamp. These two integers
will have an essential part in our decision making for siblings.

2.3 IP Siblings

The central topic this thesis deals with is all about �nding IP siblings. Like in prior
work [5–7], we de�ne this term as a pair of one IPv6 and one IPv4 address that are
located on the same physical machine. Therefor the respective host has to run as a
dual-stacked setup. In contrast, lots of internet services and domains are reachable with
both IP protocols, but have them deployed on di�erent servers. Such cases are not of
particular interest for our purposes.
Since the packets for sibling addresses are sent from the same hardware and software
setup, they share characteristics like the same underlying clock for the value of the TCP
timestamp option, or the structure of the TCP options in general. We leverage these to
make a reliable decision on whether two IP addresses can be considered a sibling pair.

2.4. NLNOG Network 5

2.4 NLNOG Network

The NLNOG project consists of a closed group of servers, intended for debugging and
network measurement purposes [10]. It was founded by Job Snijders in 2010 and has
456 di�erent nodes from 381 organizations participating by now. Providing a dedicated
machine to the network is the requirement to be granted access to it. Participants can
then utilize every other node and run custom scripts on them. While the servers all have
to install a given image for the operating system and thus do not o�er much software
diversity, their hardware components do vary. Also, the positioning in 54 di�erent
countries brings a wide range of locations with di�erent network infrastructures.
The nodes participating in the NLNOG network are part of our ground truth hosts,
which we use both as a connection source and target in the creation of our evaluation
data.

2.5 RIPE Atlas

RIPE Atlas is another testbed, consisting of 9843 participating probes and 265 anchors
[11]. By hosting such a machine, one can earn credits that allow for running custom
measurements. The di�erence however is that the network provides a set of actions
it can perform, which restricts from many things that can be done with the NLNOG
project. RIPE Atlas itself regularly conducts a variety of measurements against the
participants and makes their data publicly available.
We integrate a subset of the anchors as targets for our ground truth data set, but because
of the restrictions we do not actively start connections from those against our server.

2.6 Ground Truth

To test our tool on the rate of correct decisions, we need some tra�c captures for which
we already know the occurring sibling pairs at the outset of the measurement process –
our ground truth. To acquire that data, we adapt a list of hosts with a corresponding
sibling pair for each of them from the active sibling classi�cation [7]. Those contain
privately known servers, the nodes of the NLNOG network as well as RIPE Atlas anchors.
That is, once the sibling decision has printed its result, we can check it against that list
for discrepancies.
For the actual recording of the data, we instrument tcpdump [12]. This is a command-
line packet sni�er, allowing us to inspect and save data from an arbitrary networking
interface. It is available for most Unix based systems, whereas Windows users are
o�ered a port of the program, called WinDump.

7

Chapter 3

Related Work

In this chapter, we want to give a background on important work that has been done
in the �eld of sibling identi�cation, and also explain the methodologies used for that
purpose.

3.1 Sibling identi�cation for DNS resolvers

Arthur Berger et al. [6] developed two techniques to identify belonging IPv6 and IPv4
addresses for DNS resolvers. The �rst one of those bases on passive measurements, but
only being able to identify siblings of resolvers, it covers just a very small part of the
global network structure.
Their method needs access to two authoritative nameservers. Whenever a resolver
requests the resolution of some domain from the �rst-level nameserver, it replies with
the A and AAAA records for the second-level nameserver. The AAAA record not only
contains the IPv6 address of the new destination, but also the IPv4 address of the re-
solver encoded in the lower bytes, known from the previous connection. The address
is still functional though, because the second-level nameserver accepts queries from a
whole pre�x. If the client uses that AAAA record to connect via IPv6 to the second-level
nameserver, both the connecting IPv6- and the encoded IPv4 address are now known.

The other methodology they have developed mostly served as a way to check the
data retrieved from the passive technique, this time relying on active measurements. A
prober will start the connection to an open resolver with a DNS query for a domain’s
TXT resource record, which in general contains an arbitrary text. The resolver will
then start with the name resolution and contact a nameserver that is also under the
prober’s control. The reply does not contain the requested resource, but a canonical
name alias, which maps the previously addressed destination name to a new one. This
alias is only reachable with the respectively other IP protocol that was not used in the

8 Chapter 3. Related Work

previous request. Thus, the resolver is forced to connect with IPv6 as well as IPv4. This
procedure will be repeated several times to get all the di�erent IP addresses from the
resolver until �nally the TXT record is returned, containing the results.

3.2 Classi�cation via remote clock skew estimation

Whilst exploiting di�erent characteristics of TCP tra�c, it is possible to develop method-
ologies that are able to be applied to a far wider range of machines. The here presented
methodologies both implement decision algorithms based on the remote clock skew,
which is the remotely calculated deviation of a host’s clock from the real time. These
di�erences can either remain constant or show some variation over time, referred to as
constant and variable clock skew respectively.

Important work has been done by Robert Beverly and Arthur Berger in [5], where
they start active measurements to make sibling decisions based on the estimated remote
clock skew. For a given IPv6-IPv4 candidate pair, they �rst compare the TCP options,
since these must not di�er if the tra�c origins at the same host. Then they classify
the raw timestamp values, and e.g. in cases like one of them being either missing, non
monotonic or random, make a non-sibling decision. The �nal judgement will then be
made upon the angle of the clock skew calculated for each IP address. Since Beverly
and Berger just focused on constant skews, their algorithm is not very precise when it
comes to hosts with variable clock skew.

This is where the work of Quirin Scheitle et al. applies [7], which also utilizes ac-
tive measurements and several di�erent features to make a very precise sibling decision.
They have a much more diverse ground truth than Berger et al. to test their algorithm
against, with a large percentage of hosts with variable clock skew. For each candidate
pair of IP addresses, they �rst use various characteristics like di�erences in the TCP
options or in the calculated remote clock frequency to sort out pairs where the addresses
obviously do not match with each other. Afterwards, they graph the o�sets of each
packet with Robust Linear Regression, providing an outlier resistant regression. The
resulting slope as well as the coe�cient of correlation, which estimates the quality of
the regression, are then part of a more detailed decision algorithm. For variable clock
skews, additional calculations are performed by �tting a polynomial spline to the array
of o�sets.
The resulting implementation exceeds a 99% precision in the evaluation with their
ground truth data captures, which is derived from the relation between true positives
and total positives. We adopt their list of target hosts to create custom measurements
from and against these.

3.3. Summary 9

3.3 Summary

Although the knowledge about IP sibling pairs can be valuable for a range of di�erent
�elds, there has not been a large coverage of the topic yet. Of course one has to take into
account, that the transition of IPv4 to IPv6 has only happened partly and very slowly
ever since, and so the importance of this �eld of research might gain more popularity
in the future. Taking the work of Scheitle et al. as an example, we test some of their
selected features to be applicable in our approach, so this thesis can be �gured as the
passive counterpart of sibling identi�cation.

11

Chapter 4

Problem Analysis

As we only focus on passive tra�c measurements in this thesis, there are plenty of
restrictions that come along with this. One is certainly the fact that we do not exactly
know what kinds of packets we will see and in what context they were sent. The tra�c
of an active measurement in comparison should be much more predictable, because the
connections are started by the prober themselves and should lead to the respectively
standardized behavior on the destination side. We on the other hand have to take dif-
ferent possible contexts into account in which the packets we observe could be sent for
collecting our ground truth data. In each situation, there will be di�erences in the type
of packets that are part of the connection as well as in the temporal relations between
them.
To represent such contexts, we de�ne a set of scenarios each of which consists of a
speci�c situation where we are able to identify IP siblings from. We will take these
as a main guideline for the tra�c captures we create for the evaluation. This ground
truth should therefore be diverse and cover many scenarios of how the client-server
communication could be happening, in order to give us a realistic impression of what
we can expect from the real world.
Furthermore, we will build our capturing methods in a way that our sample data will
provide a solid basis to �nd possible features that can be applied in our sibling identi�-
cation.
Since the scenarios we de�ne serve the identi�cation of IP sibling pairs, the tra�c
in each of them must of course contain both IP protocols being used for parts of the
communication.

12 Chapter 4. Problem Analysis

4.1 Scenarios

In this chapter, we describe such scenarios of client-server communications that can be
utilized to retrieve IP sibling pairs. Moreover, we depict how the tra�c in the di�erent
situations is structured respectively.

4.1.1 Happy Eyeballs

Client Ser ver
TCP SYN , I P v6

1.
TCP SYN , I P v4

2.
TCP SYN + ACK, I P v6

3.
TCP SYN + ACK, I P v4

4.
TCP ACK, I P v6

5.
TCP ACK, I P v4

6.
TCP RST , I P v4

7.

Figure 4.1: Model of the Happy Eyeballs Algorithm [1]

The �rst scenario is the connection of a client to some server following the Happy
Eyeballs (HE) convention. The purpose of this algorithm is to support and spread the
usage of IPv6. From the view of a dual-stacked client having both IP protocols deployed,
it makes the most sense to pick the one that provides the better experience, meaning
a faster and more stable connection. In the past, this lead to an overall preference for
IPv4. Although nowadays on average there are just very small di�erences left in terms
of stability and speed between IPv6 and IPv4 [13] in many areas including Europe, also
when connecting to some host with bad local infrastructure, the opposite can still be
the case.
In order to make the best choice and give both IP protocols the same chance for each in-
dividual communication path, the HE algorithm initializes a connection to a destination
host simultaneously via IPv6 and IPv4. As depicted in Figure 4.1, whichever protocol
gets to be answered �rst will be chosen for the communication and the respectively
other IP protocol will be abandoned. Hence, the client can be con�gured to prefer IPv6,
not taking the risk of a big delay if the connection times out.

For this scenario, we have to consider some variances in the di�erent implementations.
As suggested in the original paper [1], in most cases there will be a timer started o� with
the �rst IPv6 connection to give it a temporal advantage over IPv4. If it does not succeed
within the given timespan, the latter will also try to initialize a connection. The browser
with the highest market share, which according to a statistic from May 2017 is Google

4.1. Scenarios 13

Chrome [14], applies a timer value of 300 ms [15]. After one connection is established
here, the slower one will be abandoned. Mozilla Firefox and Opera on the other hand,
which have very similar behaviors, by default start o� both communication paths in
parallel and also will keep them alive to have a backup later on. By changing the value
of the network.http.fast-fallback-to-IPv4 parameter however, Firefox also establishes
a timer with a value of 250 ms. The implementations of Safari in iOS and OS X are
somewhat di�erent [16]. If the �rst DNS record they receive is of type AAAA, they
will start the IPv6 connection, otherwise a queue of addresses is created and will be
processed in the according order with variable timer values. This results in 99% of the
decisions choosing IPv6 as tested in 2015.
Accordingly, in general what we will observe when we look at the TCP dump from
a server are two connection attempts within a very small time frame, containing IP
addresses that could be matched to a sibling pair for respectively both, server and client.

4.1.2 Tra�c from one machine to multiple others

Much like the Happy Eyeballs scenario, the situations listed in this section are dealing
with common tra�c from day to day usage. They contain connections, where one
machine, be it client or server, is communicating with multiple others. While our
analysis method in our sibling decision tool might be very alike for all of them, we yet
di�erentiate between the three following situations.

4.1.2.1 Domain with External Resource

This scenario consists of a request for a document that includes external resources, as
shown in Figure 4.2. These can be located on any other server in the global network,
and e.g. be referenced for an image or other content. Thus, it is possible that an external
resource is only reachable via one of the IP protocols, which can happen to be the one
that respectively was not used for the initial request. As an example, one could simply
request an HTML document to view a website, where the initial connection is built with
IPv6. This document now can of course hold contents from third parties, like images
located on foreign servers. If one of these only has IPv4 capabilities, then the client, if
dual-stacked, is forced to use both IP protocols to view that website with all its contents
correctly.
Tra�c occurring in this situation would begin with an HTML request, followed by
our anticipated resource request after the time it took to obtain its location from the
original document. From this, we are only able to retrieve candidates for siblings on the
client side, since there is respectively only one protocol in use for the di�erent servers
involved.

14 Chapter 4. Problem Analysis

1. request
website

2. receive
data

Server

Client

3. request
image

third
party

4. receive
image

IPv6
IPv4

Figure 4.2: Client viewing a website with an external resource.

4.1.2.2 1 Client↔ n Server

Here, we take a closer look at a more general situation. An ordinary user of course not
only talks to one, but to many di�erent servers in everyday internet tra�c, which can
happen in parallel, sequentially or both. The chances are high to �nd both IP protocols
being instrumented for di�erent connections. Hence, we will observe the IPv6-, as well
as the IPv4 address of the client, making up another potential sibling pair.
The connections to the various servers can either happen within the same or di�erent
sessions, that is they can have huge variations in the temporal relations between them.

4.1.2.3 n Clients↔ 1 Server

Similar to the scenario above, this one also draws a very general �gure. This time
though, we are only able to identify siblings for the one destination server, because now
multiple clients are participating, which can all be distinct from each other. Depending
on where we capture the tra�c for the identi�cation, we expect this scenario to be
less likely to occur than the previous ones, since di�erent users in the same network
would have to connect to the same server during the time of our observation. That
could certainly happen for DNS resolvers and domains like google or other commonly
requested services, but not for the rather unpopular ones. Additionally, the server has
to be dual-stacked, i.e. provide the IPv6 and IPv4 connectivity of that service on the
same machine.
In contrast, in the scenario with connections from a client to multiple servers it did not
matter which kind of domains or services the client connected to.

4.1. Scenarios 15

4.1.3 Failed connection attempt

Although IPv6 and IPv4 do not di�er much in terms of speed and stability, IPv6 is still
in disadvantage when it comes to the rate of successfully established connections [13].
While IPv4 only fails in 0.2% of attempts on average, the rate for IPv6 was still eight
times higher in summer of 2016. Nevertheless, such failures also can come in handy for
IP sibling detection.
The scenarios in this section all start with a failed connection initialization from the
client side to some server, followed by a second try with the respectively other protocol.
The reason for the reconnect and the speci�c behavior of the client di�er though, as
we further describe in the following scenarios. Since the �rst attempt always fails in
these situations and therefore does not get answered by the server, we can only retrieve
client siblings here.

4.1.3.1 Failed Happy Eyeballs

Client Ser ver
TCP SYN , I P v6

1. ×
TCP SYN , I P v4

2.
TCP SYN + ACK, I P v4

3.
TCP ACK, I P v4

4.
TCP SYN , I P v6

5. ×

Figure 4.3: Failing IPv6 connection for Happy Eyeballs [1]

The �rst scenario here is a failed connection attempt during the Happy Eyeballs algo-
rithm, as presented in Figure 4.3. In case of a broken IPv6 path, we will �rst observe a
IPv6 SYN packet of the client, followed by the IPv4 handshake after the implementation
speci�c timer �res o�. Also, there might follow some other connection attempts via
IPv6.

4.1.3.2 Packets dropped

A di�erent behavior shows up for clients that are not using Happy Eyeballs when the
SYN packets of the �rst attempt are silently dropped, i.e. without an error message ever
reaching the sender. Hence, it will start several attempts before switching to the other
protocol as depicted in Figure 4.4. This results in an eventually large time gap, which
was measured as 1.3 - 4.6 seconds on Windows 7 in 2012, depending on the browser [17].

16 Chapter 4. Problem Analysis

Client Ser ver
TCP SYN , I P v6

1. ×
TCP SYN , I P v6

2. ×
TCP SYN , I P v6

3. ×

TCP SYN , I P v4
4.

TCP SYN + ACK, I P v4
5.

TCP ACK, I P v4
6.

Figure 4.4: Package loss for initial IPv6 connection [1]

Client Ser ver
TCP SYN , I P v6

1. ×
ICMP Error

2.
TCP SYN , I P v6

3. ×
ICMP Error

4.
TCP SYN , I P v6

5. ×
ICMP Error

6.

TCP SYN , I P v4
7.

TCP SYN + ACK, I P v4
8.

TCP ACK, I P v4
9.

Figure 4.5: ICMP Error for initial IPv6 connection

4.1.3.3 ICMP Error

When the internet path is broken or the sent packets themselves contain invalid content,
one might receive an ICMP error reply. These are usually sent by routers or other
devices that the tra�c comes along which discovered the failure. The initialization of
a connection in this situation is presented in Figure 4.5. When receiving such error
messages, the client will, depending on the platform, start several retries before falling
back to the other IP protocol. There is a variety of reasons and accordingly di�erent
ICMP error types to be speci�ed in the header of the message, e.g. when the destination
is unreachable or the request timed out [18].

4.1.3.4 Connection Reset

The last situation, shown in Figure 4.6, speci�es a connection fail that is signalized by a
reset from the server, which can be provoked when the client e.g. tries to connect to a
closed port or the TCP segment of a packet is invalid [19]. In most cases, the fallback

4.2. Summary 17

Client Ser ver
TCP SYN , I P v6

1.
TCP RST , I P v6

2.

TCP SYN , I P v4
3.

TCP SYN + ACK, I P v4
4.

TCP ACK, I P v4
5.

Figure 4.6: Connection reset for initial IPv6 connection

will then happen within a view milliseconds afterwards [20].
Although in this situation we receive answers with both IP protocols from the server,
RST packets can not be used for our sibling detection as they generally do not carry the
TCP timestamp option.

4.2 Summary

There are a variety of situations that could occur in which the IPv6 and the IPv4 of the
very same machine are involved. The di�erentiation we made is rather at a high level
of detail, which will not be necessary for the conception of our decision tool. Some
scenarios have the same general idea behind them, so that we can summarize them in
the way we did it in this chapter, leading to the three main sections we showed here.
Nevertheless, thinking about every possible scenario that could be bene�cial for our
purpose is important to know what one can expect from tra�c observations in the
future and to decide which scenarios to focus on for our implementation in the �rst
place.

19

Chapter 5

Ground Truth Data Set

In this thesis, we develop a tool to identify IP sibling candidates from passive tra�c
observations. To appropriately test our work and gain insights about the rate of correct
decisions, it is necessary to have a set of data where we already know the belonging IP
pairs beforehand – our ground truth data. For the most realistic testing results, it needs
to be as representative of the real network tra�c as possible.
On the one hand, we achieve this by providing diversity on the client and the server
side. We utilize the NLNOG Ring network to both connect to our server and serve as
a target for outgoing connections from it. The NLNOG nodes di�er in their hardware
architectures, whereas the software is mostly the same, as each node has to run with
a provided image. In terms of server diversity, we do also have several other ground
truth servers to connect to, which we adopted from the active sibling detection [7].
Those include anchors of the RIPE Atlas network and servers from personally known
operators. Also, we record client connections to https://www.net.in.tum.de/, the
website of the Chair of Network Architectures and Services. These of course o�er
hardware and software diversity, covering a range of operating systems and browsers.
On the other hand, we build our ground truth data to share common characteristics as
how we might observe them in the large scale application. That is, the packets in our
captures have the expected temporal correlations and the according protocol and type
for the situation they should represent.
We decided to focus on the �rst two scenario groups, being a connection with Happy
Eyeballs and the communication between one machine and multiple others, since the
situation of a failed connection is rather rare, considering the low failure rates of 0.2%
for IPv4 and 1.6% for IPv6 [13]. Therefore, we gathered ground truth data for the two
mentioned categories only.
In this chapter, we will give insights on our measurement methodologies and the ground
truth data sets.

https://www.net.in.tum.de/

20 Chapter 5. Ground Truth Data Set

Timer value Purpose

0 ms parallel connections, used in Firefox and Opera
25 ms default by tool
150 ms recommended value by HE concept [1]
300 ms used in Chrome

Table 5.1: Di�erent timer values for Happy Eyeballs ground truth data.

5.1 Happy Eyeballs

For our �rst scenario, we made use of an already existing probing tool for the Happy
Eyeballs protocol, developed by Vaibhav Bajpai and Jürgen Schönwälder at the Jacobs
University Bremen [21]. By default, it starts the IPv6 connection 25 ms ahead of IPv4.
Since the various implementations of Happy Eyeballs show huge variances in the details,
as depicted in Section 4.1.1, we leverage four di�erent timer values for our captures by
specifying the -d option of the tool. As shown in Table 5.1, the values we have chosen
are 0, 25, 150 and 300 ms, to cover the implementations that are most popular. The
whole call of the tool looks as follows:

./happy -as -q 1 -d ${delay[$i]} -p $port $ipv6 $ipv4

This command will be executed four times within a loop to make use of each value
stored in the delay array. Apart from the timer value, we also set the -q parameter to
cut down the number of opened connections to one per protocol, since by default the
tool would start on three di�erent ports for each IP address. Also worth mentioning
is the fact, that we could only register tra�c with tcpdump, when either the option -s
(to sort the results based on the time it took to build a certain connection) or -b (to run
additional HTTP measurements after the establishment) were enabled. Without them,
there were no TCP packets at all. Although this obviously should not be the case, we
went with option -s to circumvent this bug, which did not a�ect the resulting packets.
To achieve the necessary client diversity, we utilize NLNOG Ring nodes to run the HE
tool against one of our servers. Therefore, we �rst copied the binary into our home
directory on each node. We compiled it statically to avoid failures caused by di�erent
versions of some libraries. To run the tool, we used the ring-all command that is
preinstalled on all NLNOG hosts. It essentially gives the ability to run an arbitrary com-
mand on 50 random nodes, providing statistics about connection times and timeouts
afterwards. Since we want to run the tool on all hosts, we changed the script [10] and
hardcoded the names of all the hosts we wanted to run the tool on.
The results contain the common three-way-handshake for each host, as well as trailing
FIN ACK and ACK packets to close the connection. As depicted in Table 5.2, we �nd
that out of 430 NLNOG nodes, only one did not append timestamps, and for an average

5.2. Tra�c from one machine to multiple others 21

Date Hosts Timeout No Timestamps Avg. Timestamps per
IPv6 Addr. IPv4 Addr. Host

against our server
2017/05/15 430 137 1 3.98 4.00 3.99
2017/05/16 430 138 1 3.99 3.97 3.98
2017/05/17 430 136 1 3.99 4.00 3.99
2017/05/18 430 136 1 3.98 4.00 3.99
against ground truth
2017/05/04 680 145 14 2.09 2.07 2.08
2017/05/05 680 144 13 2.10 2.08 2.08
2017/05/07 680 144 12 2.09 2.08 2.09
2017/05/08 680 145 13 2.11 2.08 2.10

Table 5.2: Summary of tra�c captures for the Happy Eyeballs scenario.

of 136 hosts either the IPv6 or the IPv4 or both timed out. The minimal number of
packets without a timestamp is due to the fact, that all NLNOG servers run the same
software con�guration.
In terms of server diversity, we started the tool from one of our servers and ran it against
all ground truth hosts. Therefor we used the same command as shown above in a loop,
and inserted the according port, IPv6 and IPv4 addresses for the current node in each
iteration. We retrieved this information for the targets from the ground truth list we
adopted from the active sibling decision approach [7]. While the tra�c looks quite
alike to that against our server, the di�erence of course is that now our server is on
the destination side of the communication. Here we did not receive timestamps from
around 13 hosts, and about 145 did not reply at all for at least one IP protocol.
For both measurements, we repeated the whole procedure on four di�erent days to
avoid connection problems restricted to a certain date. Also, for each date listed in Table
5.2, we collected 4 measurements because of the individual timer values we de�ned.
Thus, the stats presented are the averages for each day. The di�erences between the
single captures at a certain date vary by a maximum amount of 4 for the timeouts and 1
for the timestamps. A reason for the large numbers of timeouts could be that the hosts’
data from our ground truth list is outdated, and therefore some servers were taken apart
or were assigned new IP addresses.
A more detailed statistic for the individual captures of this scenario is added in Appendix
A.

5.2 Tra�c from one machine to multiple others

Regarding the section of tra�c from one machine to multiple others, we took two dif-
ferent kinds of captures to represent the three scenarios it is composed of.

22 Chapter 5. Ground Truth Data Set

1 function httpGetAsync(t) {

2 var e = new XMLHttpRequest;

3 e.open("GET", t, !0), e.send(null)

4 }

5 var e = Math.pow(2, 32),

6 x = Math.floor(Math.random() * e + 1),

7 y = ("00000000" + x.toString(16)).substr(-8),

8 url4 = "https://www.ip4.net.in.tum.de/pub/gino/

da39a3ee5e6b4b0d3255bfef95601890afd80709.png?" + y,

9 url6 = "https://www.ip6.net.in.tum.de/pub/gino/

da39a3ee5e6b4b0d3255bfef95601890afd80709.png?" + y;

10 httpGetAsync(url4), httpGetAsync(url6);

Figure 5.1: Javascript plugin to download the Tracking Pixel.

5.2.1 Domain with External Resource

Firstly, we utilize the clients connecting to our website https://www.net.in.tum.de/.
More speci�cally, we inserted a Javascript plugin that lets the client download an addi-
tional png �le with both IP protocols. The according code is printed in Figure 5.1.
The technique we used here is generally known as a Tracking Pixel [22], which serves
to acquire information for statistics or marketing purposes. Thereby, a graphic with
the size of 1 × 1 pixel is placed on a website or inside an e-mail. It is important that
its presence does not a�ect the client’s view of the content. When a machine follows
the external link to obtain that resource, various information can be registered by the
according server. Notice that the URLs in lines 8 and 9 each get expanded by a parameter
y, representing a random number. This is required for us to be able to extract the IP
addresses belonging to that speci�c client and save them as a ground truth address pair.
Accordingly, both URLs created for a certain host must carry the same parameter. As
the path names may indicate, url4 is only reachable via a IPv4 and url6 only via a IPv6
connection. Thus, there will be tra�c with both IP protocols for every dual stacked
client who’s browser executes this script on their visit.

We capture the emerging tra�c by running tcpdump on our server, which is holding
the targeted �les. The thus created measurements cover a period of about one month.
Since in this case we have private addresses that are part of the communication, those
need some kind of anonymization. Therefore, we assign a random substitute to each
IP address participating in the resulting ground truth data, which we use throughout
all pcap �les of this scenario to replace it. The substitute is made up by incrementing
an existing IP address, starting with 1.1.1.1 and 2001::1 from the respectively rightmost
byte. This ensures that there are no collisions for di�erent address pairs.

https://www.net.in.tum.de/

5.2. Tra�c from one machine to multiple others 23

Sibling Occurrences Hosts w/o Timestamps Unique Identi�able Hosts Avg. Timestamps per
IPv6 Addr. IPv4 Addr. Host

370 52 133 918 98 508

Table 5.3: Summary of the statistics for the captures from the Tracking Pixel.

This customization turns the checksum of most of the packets invalid, but this part of
information does not take in�uence on the results of our later tests with the data.

The basic stats for our captures from the Tracking Pixel are summarized in Table 5.3. The
according log �le for requests of the pixel reveals a total of 370 occurrences of sibling
pairs, containing multiple connections of the very same address pair as well as those
who did not attach at least two timestamps per IP protocol. After �ltering these out, we
result in 133 distinct hosts. Since we are seeing real client-server communications here,
the average amount of timestamp containing packets we have per IP address is 508, and
thus much higher than for the other data sets. This divides to 918 for IPv6 and 98 for
IPv4 connections, which suggests a preference for the former protocol to perform the
main connection to our server.

5.2.2 1 Client↔ n Server and n Clients↔ 1 Server

The second kind of captures we made represent the scenarios of one client connecting
to multiple servers, and also multiple clients connecting to one server.
For this purpose, we instrument the wget program. This is a command-line tool that
lets one download arbitrary �les via HTTP, HTTPS or FTP. It was developed as part of
the GNU project.
In order to create suitable tra�c for those scenarios, we ran HTTP requests using the
wget command against our destinations to create a minimalistic communication. Since
most of the servers in our list do not o�er appropriate content, in most cases the answer
holds the HTTP status code 302 to indicate exactly that.
Since again our requirement for the two scenarios is to provide client and server di-
versity, we get four areas the ground truth data needs to cover. We achieve that by
conducting two di�erent kinds of measurements, one with wget connections against
the ground truth and one against our server.

At this point, we want to explain how we built the communication data and why
this is a good representation of the situations we want to test the tool for.
The scenarios suggest that this tra�c should contain sessions where multiple clients
connect to a server and those where one client connects to multiple servers. We imitate
such a session by letting a source perform one connection for each IP protocol with
a certain time gap between them, targeting the same destination machine. Thus, our

24 Chapter 5. Ground Truth Data Set

IPv6 src IPv6 dest

IPv4 src IPv4 dest

one servermultiple clients

IPv6 src IPv6 dest

IPv4 src IPv4 dest

one client multiple servers
also for same IP addresses

Figure 5.2: Overview of how a session represents two scenarios at once.

data basically contains one session per ground truth host. The time gap between the
connections was added to make up for e.g. an ordinary user browsing on di�erent
websites with a temporal o�set. Now there are two ways of interpreting such a session
as shown in Figure 5.2.
Firstly, when we picture the IPv6 and IPv4 source address as belonging to one client, we
see two outgoing connections with distinct IP protocols to multiple servers. The fact
that in our case the two targeted addresses lead to the same machine does not make a
di�erence here, since we are only focusing on client siblings in this scenario anyway.
Secondly, when we on the other hand equivalently take the two destination IP addresses
as one server, we can observe requests of two clients to it as it is the case for the scenario
of multiple clients connecting to one server.
This way, one such session represents two scenarios at once. It follows that our tool
has to identify both the client and the server side.
For the captures from our server against the ground truth, we thus have covered the
server diversity for both scenarios. The tra�c from the ground truth hosts against our
server on the other side provides the necessary client diversity.

As Table 5.4 suggests, the resulting pcap �les show similar characteristics as those
from the Happy Eyeballs captures. We �nd that for the connections from NLNOG
nodes to our server, again only one node sent packets where either the IPv6 or the IPv4
connection did not contain the timestamp option. Also, on average 127 hosts did not
reply at all for at least one of the protocols. For the direction from our server against all
ground truth hosts, 11 out of 680 hosts did not append the timestamp option and about
141 did not answer.

5.2. Tra�c from one machine to multiple others 25

Date Hosts Timeouts No Timestamps Avg. Timestamps per
IPv6 Addr. IPv4 Addr. Host

against our server
2017/06/17 430 123 1 6.01 6.00 6.00
2017/06/18 430 122 1 5.98 5.98 5.98
2017/06/20 430 133 1 5.99 6.00 5.99
2017/06/22 430 129 1 5.99 5.98 5.99

against ground truth
2017/06/03 680 141 11 4.38 4.36 4.37
2017/06/06 680 143 10 4.39 4.37 4.38
2017/06/16 680 138 11 4.36 4.36 4.36
2017/06/17 680 140 10 4.38 4.36 4.37

Table 5.4: Summary of tra�c captures for the scenarios "1 Client↔ n Server" and "n Clients↔ 1 Server".

27

Chapter 6

Implementation

In this chapter we present our tool for automated sibling pair identi�cation. It is able to
either work with an existing pcap �le or take live tra�c from a provided interface.
Existing work with passive measurements could only bring forth IP pairs for DNS re-
solvers [6], and approaches with active data focused on servers [5, 7]. With our tool,
we take the sibling identi�cation one step further and cover every machine involved
in the tra�c we see. This includes e.g. clients and non public servers, which an active
technique can not cover because the IP addresses of these are unknown and therefore
can not be targeted by active measurements.

6.1 Structure

new packet
Inter f ace/PCAP Main Packet Handler

Candidate Identi f ication

Candidate Decision
f iltered siblinд pairs

Result

extract important data

candidate siblinд pairs

Figure 6.1: Model of the sibling identi�cation tool.

For a start, we want to give a brief overview of the basic components involved in the tool.
Figure 6.1 shows that on �rst place is the source, which provides us with new packets.
Following is the main packet handler. Its purpose is to extract only the necessary data
out of the packets, in our case mainly the IP and TCP header. After saving the data
to a global bu�er, a reference is passed to the point of candidate identi�cation. This
one basically remembers all the IP addresses that started a connection within a certain

28 Chapter 6. Implementation

threshold. For each new packet, it will make a candidate pair with every address of
the respectively other protocol that also occurred within that timespan. Finally, the
candidate decision instance will make a judgement over the candidates based on TCP
options and timestamps.

6.2 Packet Source

The source is provided by the prober as a command line option. On the one side, this
can be an ordinary PCAP �le holding the recordings of a past measurement. Choosing
this kind of source will lead the tool to open the �le in an o�ine mode. On the other
side, one can decide to use an interface that the tool attaches to. In both cases, a pcap_t
structure is �lled with the necessary metadata of the source. This will be passed as a
parameter to instantiate a loop function provided by the libpcap library [12]:

int pcap_loop(pcap_t *p, int cnt, pcap_handler callback, u_char *user);

Also, we have to pass a reference to our packet handler, which will be called for each
arriving packet.

6.3 Main Packet Handler

This compartment reduces the information of each packet to only keep the parts we
later need for the decision making. That is, we basically take out the IP and TCP header
and cut o� the payload. Since the latter often makes a large percentage of the total
package size, this is essential for us to be able to keep as many packets in our bu�er as
possible. That way, we save lots of storage and processing time that would be necessary
to copy the data.
The packet handler will consecutively be called with a reference to the current packet
as a parameter. An abstraction of the checks and processing that will be done here is
depicted in Algorithm 1. For each new packet, we make the decision whether to keep
it or not. This depends on multiple characteristics. We �lter out packets that neither
declare IPv6 nor IPv4 in the EtherType �eld of the ethernet header, which generally
indicates the protocol used for the data following the frame. Also, the protocol de�ned
in the IP header has to be TCP, since a big part of our sibling decision is based on
timestamps, and these are not part of UDP packets. The last check concerns the TCP
option size, which has to be a valid number, i.e. a maximum of 40 bytes.
Once a packet is approved, we copy the IP header, the TCP header and its options into a
certain structure. We de�ned this to be a lightweight substitute for packets. In order to
obtain the exact position of those components within the packet, we have to calculate

6.3. Main Packet Handler 29

Algorithm 1 Filtering and packet processing in the Main Handler.
if EtherType , IP v6 and Ethertype , IP v4 then

return
end if
if CommunicationProtocol , TCP then

return
end if
if sizeo f (TCP options) > 40 then

return
end if
GlobalBu f f er .add (packet data)
CandidateIdenti f ication.process (packet data)

the individual pointers. This is necessary because the handler only gets a reference to
the start of the packet. While the length of the ethernet header is the same for all types,
we have to distinguish between IPv6 and IPv4 headers to lastly get the position of the
TCP header and its options.
We already parse the TCP options here to separately store the timestamp value and
create a comparable string representation of the present options and their order. The
ladder will be part of the decision. If a packet does not contain timestamps, we stop
processing it. Otherwise, we save the created data structure to a global archive and send
a reference to notify the candidate identi�cation component.

The global archive is a custom class, designed to hold a list of all processed packets for
each IP address we have seen so far. One requirement for it was to share characteristics
of a ring bu�er, thus deleting old data when it has reached its capacity. Also, we want
to access the packets with the respective IP address as a key.
The �nal implementation holds one queue for each IP protocol, as suggested in Figure
6.2. These contain arrays, each of which stores the packets for one speci�c IP address.
Since arrays do not hold any place to specify who the content belongs to, we add two
maps to the class. Again, one is assigned to IPv6 and one to IPv4. These take an IP
address as the key and map it to an iterator pointing to the respective array of packets.
Adding a packet to the bu�er will accordingly lead to look up the iterator in the re-
quired map and add the packet to the referenced array. When one of the packet holding
queues reaches its maximum capacity, it will remove the �rst entry in the map and the
according packets.
The separation of IPv6 and IPv4 in the bu�er may seem laborious, but is required be-
cause IPv6 and IPv4 addresses are stored in di�erent structures, in_addr and in6_addr,
de�ned in the netinet/in.h library [23]. Combining them to a uniform type would be a
waste of storage, since IPv6 addresses with a size of 16 byte are much larger than IPv4
with 4 byte.
To avoid unnecessary segmentation fault errors caused when multiple threads try to

30 Chapter 6. Implementation

IPv6

Maps
ip1 ip2 ...

∗ ∗ ...

IPv4

ip3 ip4 ...

∗ ∗ ...

[packets] [packets] ...Queues [packets] [packets] ...

Figure 6.2: Model of the global Ring Bu�er.

access the bu�er simultaneously, we provide a mutex to the class. In the respective
member functions to add or access data for a certain host, we therefore insert checks
that initially lock and afterwards unlock the mutex on each operation.

6.4 Candidate Identi�cation

The main purpose of the candidate identi�cation is to give the decision instance sug-
gestions about which IP address pair could eventually be a sibling. It is running as a
detached thread and is completely independent of the timing of other components. To
achieve this, the identi�cation instance contains a queue that works as a bu�er for new
incoming data. Since both the main packet handler and the candidate identi�cation
thread access this structure, those operations are managed and regulated with a mutex.
We do only process SYN and SYN ACK packets in this part of the tool, since they are
the �rst thing we observe for the source and the destination respectively. Therefore
they indicate the start of a new communication for the contained IP address. That way,
we only have one packet per host in our bu�er and avoid dealing with the same source
multiple times in a row, which would be a waste of computation.
From here on, we have to distinguish between the two di�erent sides of the commu-
nication. As we have seen from the scenarios we presented, it is reasonable to except
that when e.g. the IPv6 part of a sibling pair is the source address of the tra�c, also the
IPv4 address of that machine will be on the same side of the connection. That being
said, we do only make sibling pairs between IP addresses that are on the same side of
the communication.
The candidate identi�cation is working within a loop that pops one packet out of the
bu�er at each iteration. The �ow of such a packet is shown in Figure 6.3. The compo-
nent then continues to produce possible sibling candidates. For this purpose, it holds
an internal list of all IP addresses that occurred within a certain timespan, which we

6.5. Candidate Decision 31

new IPv6
packet ?

SYN

SYN
ACK

SYN list

...

IPv4
IPv6
IPv4
IPv6

SYN ACK list

...

IPv6
IPv6
IPv4
IPv6

siblinд

siblinд

append

siblinд

append

last 30 seconds

last 30 seconds

Figure 6.3: Basic functionality of the Candidate Identi�cation.

de�ne to be 30 seconds. The internal list exists for both sides, source and destination,
and the tool will pick the right one for the current packet by checking its TCP �ags to
hold either SYN or SYN ACK. That is, an incoming IPv6 SYN packet will only be paired
with other IPv4 SYN packets. Before the candidate identi�cation, the list is updated
and all packets that exceed the threshold are removed. Afterwards, the tool will iterate
through the respective list and make a candidate sibling pair with every IP address of
the contrary IP protocol. These are then provided to the candidate decision instance.
Lastly, the new packet is appended to the internal list to be a potential sibling partner
for future IP addresses.

6.5 Candidate Decision

This component builds the core of our tool, because it is responsible to determine which
pairs of IP addresses really are siblings and which are not. The basic design resembles
the candidate identi�cation instance. It holds a queue were the candidate pairs are
put into. The candidate decision also runs as a separate thread. In an in�nite loop, it
pops one candidate pair per iteration from its bu�er and starts processing it, which
is the reason we also have to add a mutex here to synchronize the accesses from the
identi�cation instance. The procedure of decision making is depicted in Algorithm 2.
Firstly, we check whether the candidate pair meets certain criteria to approve that we
are able to make an authentic decision in the �rst place. When that exact candidate
pair already was decided to be a sibling pair, we discard it. That is, we do not revoke
a positive decision we have already made when new data for those hosts arrives. On

32 Chapter 6. Implementation

Algorithm 2 Decision Process for one Candidate Pair.
if siblinдs .contain(candidate pair) = true then

discard (candidate pair)
end if
if packetcount (IP v6 host) < 2 and packetcount (IP v4 host) < 2 then

discard (candidate pair)
end if
if IP v6connectionFinished = f alse or IP v4connectionFinished = f alse then

if timedi f f (last IP v6 data, current time) > 5 seconds or
timedi f f (last IP v4 data, current time) > 5 seconds then

setConnectionsFinished ()
end if
bu f f er .putBack (candidate pair)

end if

if timedi f f (f irst IP v6 data, f irst IP v4 data) < 450ms then
compareRawTimestamps (candidate pair)
compareClockFrequencies (candidate pair)

else
timestampEstimation(candidate pair)
adoptedAlдorithmForViewDatapoints (candidate pair)

end if
checkTCPOptions (candidate pair)

if checksFailed > 0 then
discard (candidate pair)

else
siblinдs .save (candidate pair)

end if

the other side, if two addresses’ result was negative before, we will take another glance
and re-evaluate it. Afterwards, we count the number of packets with timestamps we
have for the hosts, which must at least be two.
Also, when one of the IP addresses has not �nished its communication, the pair is again
appended to the end of the candidate bu�er. Whether a connection is closed is deter-
mined by the global archive, which also contains a map that links a boolean to each
host address, indicating the status of the connection. When the main packet handler
sees a SYN or SYN ACK packet, it will create an entry for the source host and set it to
false. The respective packet to close the connection will then lead to setting the value
to true, telling the decision point that we have received all packets for that address.
In cases where a connection is not terminated correctly, either by a FIN or RST packet,
the sibling candidate pairs for that speci�c host would be stuck inside the loop. There-
fore, we added a global variable that holds the capturing time of the packet most recently

6.5. Candidate Decision 33

time in s

IPv6 connection IPv4 connection

t imestamp dif f erence
captur inдt ime dif f erence Hz × timespan = estimation

real timestamp
same ?

Figure 6.4: Decision method based on an estimate of the timestamps in the later connection.

processed by the main packet handler. We then for each unterminated sibling host check
whether the last recorded data for it is older than 5 seconds compared to that global
value. If it is, we assume that there was an issue with the connection and manually set
it to �nished. Also, when the packet delivering loop has �nished, e.g. because the end
of the speci�ed pcap �le has been reached, we �nish up all connections, since there is
no data left to be delivered.
Once a packet has passed all these checks, the actual decision process begins. We per-
form three di�erent tests on the candidate pair. If one or more of these outputs has a
negative result for the subject, it will be discarded.

The �rst method we apply is targeting the TCP timestamps. We distinguish two di�erent
cases here, determined by the di�erence of the capturing time between the respectively
�rst packet for each host.
In case of it being bigger than 450 milliseconds, we perform a timestamp estimation as
shown in Figure 6.4. The concept works as follows. We take the host who’s connection
started earlier in time and calculate the remote clock frequency for the timestamp values
from the TCP options. We obtain this value by dividing the raw timestamp di�erence by
the timespan between receiving the �rst and last packet of that host. With the calculated
rate, we can now estimate were we would expect the value of the second connection to
be by multiplying the rate with the time di�erence between the start of each connection.
We �nd that a suitable threshold for the deviation we allow is:

(time di f f between connections) × 0.13 × (TS f requency f or f irst connection)

This allows the permissible deviation to grow proportional to the time di�erence.
In cases where the two connections are less than 450 milliseconds apart, which they are
e.g. in our Happy Eyeballs scenario, we check the di�erence of the absolute timestamp
values for the �rst packets. A threshold of 400 showed suitable results for us. We also
compare the clock frequency we get for each IP address’s packets, but only in cases
where they cover a timespan of more than 250 milliseconds in order to provide a reliable
value. For packets that are too close, the deviation of the capturing time due to latency
would be too big compared to the marginal change of the remote timestamp.

34 Chapter 6. Implementation

The second technique we implement is a dedicated algorithm we adapted from El
Deib et al. [24], designed to make the best possible sibling decision when only very
view packets are available. It exhibited an accuracy of 97.8 to 99.3% for a range of 1
to 5 datapoints per host in their evaluations. The algorithm combines several smaller
checks, also primarily based on timestamps. When less than 4 data points are avail-
able, the decision is simply based on whether the remote clock frequency is valid,
i.e. between 10 and 1000 Hz. This parameter is calculated by dividing the di�erence
of remote timestamps by the di�erence of the local timestamps between the start of
the two connections. For more available packets, they take into account the result-
ing slopes from a linear regression performed on each host’s timestamps, as well as
the coe�cients of determination, and check these values to be within certain thresholds.

Lastly, we consider the characteristic that for tra�c emerging from the same machine
the TCP options have to be somewhat similar. To be more exact, the order and presence
of the di�erent option types has to be the same. Also, Scheitle et. al [7] stated that the
exact value of the Window Scale �eld should be considered a criterium too. Therefore,
the only place where we allow deviation is the Maximum Segment Size, which is used
to adjust the maximum packet size and with it the transmission rate of a connection. To
make an easy comparison of the hosts’ options possible, we adapt a function from the
active sibling decision [7]. It parses the TCP options of a packet into a string, containing
the occurring options and their values in order. We already execute this method in the
main packet handler and save the result in the structure holding the packet information.
Packets that pass all these tests and reach the end of the decision loop are classi�ed as
siblings. We further extract the IP addresses in their human readable string representa-
tion to print and save them.

6.6 Results

The sibling pairs that were recognized by our tool will be appended to an output �le in
csv format provided by the prober. This will happen each time a candidate decision is
done, so that in case of the tool being attached to an interface and analyzing live tra�c
it can be shutdown at any time without a loss of data. The approved IP siblings will
also be written to an internal list of the decision instance, so that for future candidate
pairs we can tell if they were already made a decision upon.

35

Chapter 7

Evaluation

Our goal when designing and implementing the sibling decision tool of course is to
achieve high accuracy in the results. The most important requirement we made was
to create only very few to none false negatives, i.e. sibling pairs that the tool did not
recognize as such. The other side is to not produce a large number of false positives,
which are pairs of IP addresses that were classi�ed to be siblings, but in reality are not.
To check on how well our tool performs in either category, we collected ground truth
data as disclosed in Chapter 5 to evaluate the results.
This part of the thesis describes how we prepared the data and what steps were necessary
to obtain meaningful outcomes from our testing, and what these look like in numbers.

7.1 Preparations

The �rst step that needs to be done is to obtain a copy of the result that we expect
the tool to come up with after analyzing the ground truth captures. However, simply
checking it against our list of ground truth hosts would not make a lot of sense here.
As the presentation of our ground truth data already revealed, we have signi�cant
numbers of connections that either timed out or did not reply with the TCP timestamp
option for at least one IP protocol. In both cases, our implementation can not possibly
make a valid sibling decision for the respective host, and thus we need to sort them out
of the list we check the result against.
Apart from that, a very important detail we have to take into account is the threshold of
30 seconds that the tool uses as the maximum possible timespan between two sibling IP
addresses’ connections. Especially for the tra�c in our captures representing commu-
nication sessions, see Chapter 5.2.2, it could be the case that when a host answers with
a signi�cant delay, they fall out of our range. Such servers also will not be detected due
to the speci�c value we chose for the threshold. Thus, when increasing or decreasing
that value, also the according solution pattern might change.

36 Chapter 7. Evaluation

To get such a set of possible siblings for each pcap �le, we create a small program
that loops through the ground truth captures and creates a list with the IP addresses of
hosts that follow the speci�ed requirements. In our evaluation, we can then compare it
with the output result from the identi�cation tool.

7.2 Metric

To create a comparable value for each result of our evaluation, we choose the Matthews
Correlation Coe�cient (MCC) [25], also utilized in the active sibling identi�cation [7].
The MCC serves the assessment of a binary classi�cation, in our case siblings and
non-siblings. It delivers a �oating point number between -1 and 1, where

-1 describes the worst possible prediction

0 is the level of a completely random prediciton

1 is the best possible prediction

That is, we aim for a MCC close or equal to 1. The exact value is calculated as shown in
Equation 7.1, taking into account true-positives (tp) and -negatives (tn) as well as false-
positives (fp) and -negatives (fn). This methodology allows for a robust and comparable
result.

MCC =
tp × tn + f p × f n√

(tp + f p) (tp + f n) (tn + f p) (tn + f n)
(7.1)

7.3 Results

The here shown results demonstrate the performance of our implementation when we
apply it to our ground truth captures. For each of them we investigated the number of
false positives as well as the number of false negatives.

7.3.1 Happy Eyeballs

For the captures representing tra�c for the Happy Eyeballs scenario, we ordered the
results according to the di�erent timer values we used that give IPv6 a slight temporal
advance. The statistics for each of these values depicted in Table 7.1 are the average for
the 4 repetitions we did for each measurement, which we presented in Section 5.1.
When we average the results for each tra�c direction, for the captures we initiated from
the NLNOG network against our server we get on average 17 false positives, which

7.3. Results 37

Timer Value in ms Occurring Siblings False Positives False Negatives MCC

against our server
0 293 16 0 0.9733
25 293 17 0 0.9729
150 293 17 0 0.9725
300 294 17 0 0.9725

against ground truth
0 523 23 2 0.9769
25 522 22 2 0.9783
150 523 15 2 0.9847
300 522 22 3 0.9780

Table 7.1: Summary for the evaluation of the Happy Eyeballs scenario.

accounts to a rate of 5.8% compared to the number of occurring siblings. Also, we
achieve to recognize every single host that appears in our captures.
The evaluation data from our server against the ground truth on the other side shows
slightly higher numbers, since also the number of possible siblings to recognize has
nearly doubled. Out of 523, we end up with 21 (4%) of false positives. Also, the tool did
not recognize a total of 2 (0.4%) of the occurring sibling pairs on average.
For each record we also calculate the MCC. In this process, the value of true-negatives
is retrieved by pairing each IPv6 with each foreign IPv4 address, i.e. building every
possible non-sibling pair, and afterwards subtracting the number of incorrect negative
decisions, the false-positives. Values like true- and false-positives as well as the false-
negatives can easily be retrieved from comparing the output of the tool to the list of
occurring sibling hosts. The results we get from this are in the range of 0.9718 to 0.9867.
A more detailed statistic with the results for each individual capture can be found in
Appendix A.

7.3.2 Tracking Pixel

Here we check the performance of our tool with real passive data taken from the tra�c
delivered by our Javascript plugin on https://www.net.in.tum.de/. The process of
evaluation for this scenario is distinct from the other ground truth data, since now we
do not have a list of sibling hosts in the �rst place. We create this by parsing the log
�le for the pcap captures, which lists all IP addresses that accessed the tracking pixel
together with the URL that was used to do so. Since the plugin on our website appended
a key number at the end of each request, we can run through the log �le and group
matching IP siblings from this information. We collect a total of 370 occurrences of
sibling pairs here. After deleting duplicates, i.e. IP address pairs that appear at multiple
points in time, and �ltering out those where either for the IPv6 or the IPv4 there are

https://www.net.in.tum.de/

38 Chapter 7. Evaluation

Date Occurring Siblings False Positives False Negatives MCC

against our server
2017/06/17 283 19 1 0.9661
2017/06/18 278 21 0 0.9641
2017/06/20 278 22 2 0.9588
2017/06/22 289 19 2 0.9650

against ground truth
2017/06/03 528 33 16 0.9544
2017/06/06 523 38 12 0.9535
2017/06/16 530 28 11 0.9638
2017/06/17 528 29 10 0.9638

Table 7.2: Evaluation results for the scenarios "1 Client↔ n Server" and "n Clients↔ 1 Server".

less than two packets with timestamps attached, we are left with 133 distinct hosts that
appear somewhere in our dataset.
The tool is repeatedly started for each pcap and appends its results to a central list, that
can afterwards be compared to match the 133 hosts we have found in our preparations.
The number of false positives we obtain is just 1 here, whereas our evaluation script
shows us 21 pairs that supposedly were not found. Taking a closer look at the latter
reveals that 17 of these have used completely di�erent timestamp values for the two
IP protocols. Since these values are our main criteria for the sibling decision, it was
correct to discard these pairs. Accordingly, we end up with an e�ective number of 4
false-negatives.
For this scenario, we build true-negatives by building non-siblings from the amount
of 133 distinct hosts and subtracting the number of found sibling pairs that we do not
recognize from the log �le. The result is a MCC of 0.9779.

7.3.3 1 Client↔ n Server and n Clients↔ 1 Server

We test our tool against the captures for the more general scenarios "1 Client ↔ n
Server" and "n Clients↔ 1 Server".
The results for the tra�c started from the NLNOG nodes against our server, depicted in
Table 7.2, are a little behind the Happy Eyeballs evaluation. On average, from a total
of 282 possible siblings, our implementation returns 20 (7.1%) sibling pairs that are not
found in our ground truth and it did not identify 1 (0.4%).
On the other side, evaluating the captures against the ground truth results in 32 (6.1%)
false positives and 12 (2.3%) false negatives.
This translates to MCCs between 0.9535 and 0.9661, which we calculate the same way
we did for the Happy Eyeballs evaluation.

7.3. Results 39

7.3.4 Interpretation and Summary

As we recap the MCC results for the di�erent captures, we �nd that the Happy Eyeballs
scenario performed the best with a maximum value of 0.9867. While the tool used the
speci�c decision classi�cation for very close connections here as described in Section
6.5, in the other captures it applied the more advanced methodologies like the timestamp
estimation, since the occurring connections of the sibling candidates are farer apart.
The data for connections from one machine to multiple others shows noticeably worse
results compared to the Tracking Pixel though.
Speci�cally, the amount of false negatives for the captures from our server against the
ground truth are much higher than usual. Therefore, we recapitulate the decision process
and �nd that a good half of these is located within the same domain and therefore the
same building as our measurement server. The tra�c for those exact machines reveals
that since they are located so close to the source, the individual connections only last
for a few milliseconds. Thus, the timestamp values of the respective �rst and last packet
show only a marginal di�erence, which does not provide the precision for an accurate
timestamp estimation.
Another possible reason for the lower MCCs is the higher diversity in the Tracking Pixel
data, both software- and hardware-wise, which helps us to distinguish the single hosts.
For our ground truth on the other side, lots of servers have similar setups and therefore
are likely to e.g. add the same TCP options. Also, we often observed timestamp values
that are nearly identical for these hosts, promoting the generation of false positives.
Theoretically, the appliance of the tool in real life should in general show equal or even
better performance because the di�erent connections are generally not as comprised as
in our self-generated testing data. Therefore, our implementation also would have to
process less candidate possibilities.

41

Chapter 8

Conclusion and Future Work

In this thesis we developed a tool capable of identifying IP sibling pairs from passive
tra�c observations. As a foundation, we created various scenarios that represent situ-
ations in common network tra�c where such a decision is possible in the �rst place.
Taking these as a theoretical frame for the scope of our work, we captured a diverse
ground truth data set in order to evaluate the implementation. Our testing revealed
Matthews Correlation Coe�cients in the range from 0.9535 to 0.9867.
With this approach, we aim to expand the scope of previous work in the �eld of sibling
identi�cation and cover a broader range of devices.
Since our work is based on passive tra�c observations, it does not introduce overhead
in terms of additional tra�c which would be necessary for active measurements. There-
fore, it is predestined to be run as a background process on a node within some network,
and to continuously deliver occurring IP sibling pairs. As some possible further ad-
vancements, the tool could be provided a graphical user interface in order to enhance
the usability or be integrated in a bigger passive network analysis component.
Also, investigating the sibling tool’s behavior and resource consumption for an extraordi-
nary high rate of new incoming packets would be interesting for further improvements.
Apparently, we could not approach these tasks due to the time limitation for this bache-
lor’s thesis.

With the continuing adaption of IPv6 around the globe, the �eld of sibling identi�-
cation can approach more and more machines and provide interesting information
about the evolving network structure.
Future work could combine the advances of both, active and passive measurements,
in order to provide a very precise sibling identi�cation that can run as a background
process with only very view overhead. This could be achieved by adding an additional
decision layer to our passive tool for cases that were very close to the respective thresh-
olds. For these cases, we could perform some active connections con�rming or refuting
our results. Thus, overhead tra�c would only rarely be generated.

43

Appendix A

Detailed Statistics for the Happy Eyeballs
Captures

from NLNOG against our server: 430 Hosts

Date Timer Value in ms Timeouts No Timestamps Avg. timestamps per
IPv6 Addr. IPv4 Addr. Host

2017/05/15 0 137 1 3.98 4.00 3.99
2017/05/16 0 138 1 3.99 3.96 3.97
2017/05/17 0 137 1 3.98 4.00 3.99
2017/05/18 0 135 1 3.98 4.00 3.99

2017/05/15 25 137 1 3.98 4.00 3.99
2017/05/16 25 138 1 3.99 3.96 3.97
2017/05/17 25 137 1 3.99 4.00 3.99
2017/05/18 25 136 1 3.98 4.00 3.99

2017/05/15 150 137 1 3.98 4.00 3.99
2017/05/16 150 138 1 3.98 3.99 3.98
2017/05/17 150 136 1 3.98 4.00 3.99
2017/05/18 150 136 1 3.98 4.00 3.99

2017/05/15 300 138 1 3.99 3.99 3.99
2017/05/16 300 138 1 3.98 3.98 3.98
2017/05/17 300 134 1 3.99 4.00 3.99
2017/05/18 300 137 1 3.99 4.00 3.99

Table A.1: Detailed statistics for the Happy Eyeballs captures against our server.

44 Appendix A. Detailed Statistics for the Happy Eyeballs Captures

from our server against ground truth: 680 Hosts

Date Timer Value in ms Timeouts No Timestamps Avg. timestamps per
IPv6 Addr. IPv4 Addr. Host

2017/05/04 0 145 14 2.08 2.10 2.09
2017/05/05 0 146 13 2.12 2.13 2.12
2017/05/07 0 144 12 2.10 2.09 2.10
2017/05/08 0 146 13 2.12 2.09 2.11

2017/05/04 25 146 14 2.08 2.06 2.07
2017/05/05 25 145 13 2.08 2.05 2.07
2017/05/07 25 143 12 2.06 2.07 2.07
2017/05/08 25 143 13 2.13 2.05 2.09

2017/05/04 150 144 14 2.10 2.05 2.08
2017/05/05 150 142 13 2.09 2.06 2.06
2017/05/07 150 144 12 2.07 2.07 2.07
2017/05/08 150 146 13 2.10 2.09 2.10

2017/05/04 300 146 13 2.08 2.05 2.06
2017/05/05 300 143 13 2.10 2.07 2.08
2017/05/07 300 144 12 2.12 2.07 2.10
2017/05/08 300 144 13 2.10 2.07 2.08

Table A.2: Detailed statistics for the Happy Eyeballs captures against the ground truth.

45

from NLNOG against our server

Date Timer Value in ms Occurring Siblings False Positives False Negatives MCC

2017/05/15 0 293 16 0 0.9737
2017/05/16 0 291 16 0 0.9735
2017/05/17 0 293 16 0 0.9737
2017/05/18 0 293 17 0 0.9721

2017/05/15 25 293 16 0 0.9737
2017/05/16 25 292 17 0 0.9720
2017/05/17 25 293 16 0 0.9737
2017/05/18 25 294 17 0 0.9722

2017/05/15 150 293 16 0 0.9737
2017/05/16 150 292 17 0 0.9720
2017/05/17 150 294 17 0 0.9722
2017/05/18 150 293 17 0 0.9721

2017/05/15 300 292 16 1 0.9718
2017/05/16 300 292 16 0 0.9736
2017/05/17 300 296 17 0 0.9724
2017/05/18 300 295 17 0 0.9723

Table A.3: Detailed evaluation results for the Happy Eyeballs captures against our server.

46 Appendix A. Detailed Statistics for the Happy Eyeballs Captures

from our server against ground truth

Date Timer Value in ms Occurring Siblings False Positives False Negatives MCC

2017/05/04 0 521 23 2 0.9766
2017/05/05 0 524 21 2 0.9786
2017/05/07 0 524 25 3 0.9740
2017/05/08 0 523 21 2 0.9785

2017/05/04 25 520 18 2 0.9811
2017/05/05 25 524 22 1 0.9786
2017/05/07 25 523 21 2 0.9785
2017/05/08 25 521 25 2 0.9748

2017/05/04 150 522 16 2 0.9830
2017/05/05 150 522 12 2 0.9867
2017/05/07 150 523 14 2 0.9849
2017/05/08 150 523 16 1 0.9840

2017/05/04 300 521 25 2 0.9748
2017/05/05 300 521 19 2 0.9803
2017/05/07 300 523 20 5 0.9765
2017/05/08 300 521 19 2 0.9803

Table A.4: Detailed evaluation results for the Happy Eyeballs captures against the ground truth.

47

Appendix B

Command Line Usage

This Appendix should give a quick overview of how to instrument our implementation
from the command line.

Standard usage:

./sibling_tool -i/-f interface/file.pcap [-r result.csv] [-n non_siblings.csv]

Option Purpose

-i de�nes the interface to bind to
-f de�nes a pcap �le as the source

Either -i or -f must be de�ned in order to initiate the tool

-r [Optional] output �le for positive sibling decisions
-n [Optional] output �le for negative sibling decisions

Output:

By default, our implementation prints every sibling pair it �nds to the standard output
at the moment it is found.
Additionally, the -r option can be de�ned in order to append the sibling pairs to a user
provided �le. The output will also contain the time and date of the �rst ocurrance of
each IP address.
The -n option in comparison induces the sibling tool to write out each negative sibling
decision to a �le, together with a short description of the decision’s cause.

49

Appendix C

Abbreviations

DNS Domain Name System

FTP File Transfer Protocol

HE Happy Eyeballs

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

ICMP Internet Control Message Protocol

IP Internet Protocol

MCC Matthews Correlation Coe�cient

TCP Transmission Control Protocol

UDP User Datagram Protocol

URL Uniform Resource Locator

51

Bibliography

[1] D. Wing and A. Yourtchenko, “Happy Eyeballs: Success with Dual-Stack Hosts,”
RFC 6555 (Proposed Standard), RFC Editor, Fremont, CA, USA, pp. 1–15, Apr. 2012.
[Online]. Available: https://www.rfc-editor.org/rfc/rfc6555.txt

[2] ICANN, “Available Pool of Unallocated IPv4 Internet Addresses Now Com-
pletely Emptied,” https://www.icann.org/en/system/�les/press-materials/
release-03feb11-en.pdf, Accessed: 01 July 2017.

[3] S. Deering and R. Hinden, “Internet Protocol, Version 6 (IPv6) Speci�cation,”
RFC 2460 (Draft Standard), RFC Editor, Fremont, CA, USA, pp. 1–39, Dec. 1998,
updated by RFCs 5095, 5722, 5871, 6437, 6564, 6935, 6946, 7045, 7112. [Online].
Available: https://www.rfc-editor.org/rfc/rfc2460.txt

[4] Google, “Per-Country IPv6 adoption,” https://www.google.com/intl/en/ipv6/
statistics.html#tab=per-country-ipv6-adoption&tab=per-country-ipv6-adoption,
Accessed: 25 June 2017.

[5] R. Beverly and A. Berger, “Server Siblings: Identifying Shared IPv4/IPv6 Infras-
tructure via Active Fingerprinting,” in Proceedings of the 16th Conference on Passive
and Active Network Measurement, Mar. 2015.

[6] A. Berger, N. Weaver, R. Beverly, and L. Campbell, “Internet Nameserver IPv4
and IPv6 Address Relationships,” in Proceedings of the 2013 Conference on Internet
Measurement Conference, ser. IMC ’13. New York, NY, USA: ACM, 2013, pp.
91–104.

[7] Q. Scheitle, O. Gasser, M. Rouhi, and G. Carle, “Large-Scale Classi�cation of IPv6-
IPv4 Siblings with Variable Clock Skew,” in Network Tra�c Measurement and
Analysis Conference (TMA), Jun. 2017.

[8] J. Postel, “Transmission Control Protocol,” RFC 793 (Internet Standard), RFC
Editor, Fremont, CA, USA, pp. 1–91, Sep. 1981, updated by RFCs 1122, 3168, 6093,
6528. [Online]. Available: https://www.rfc-editor.org/rfc/rfc793.txt

https://www.rfc-editor.org/rfc/rfc6555.txt
https://www.icann.org/en/system/files/press-materials/release-03feb11-en.pdf
https://www.icann.org/en/system/files/press-materials/release-03feb11-en.pdf
https://www.rfc-editor.org/rfc/rfc2460.txt
https://www.google.com/intl/en/ipv6/statistics.html#tab=per-country-ipv6-adoption&tab=per-country-ipv6-adoption
https://www.google.com/intl/en/ipv6/statistics.html#tab=per-country-ipv6-adoption&tab=per-country-ipv6-adoption
https://www.rfc-editor.org/rfc/rfc793.txt

52 Bibliography

[9] D. Borman, B. Braden, V. Jacobson, and R. Sche�enegger, “TCP Extensions for
High Performance,” RFC 7323 (Proposed Standard), RFC Editor, Fremont, CA, USA,
pp. 1–49, Sep. 2014. [Online]. Available: https://www.rfc-editor.org/rfc/rfc7323.txt

[10] “NLNOG Ring,” https://ring.nlnog.net/, Accessed: 22 June 2017.

[11] “RIPE Atlas,” https://atlas.ripe.net, Accessed: 22 June 2017.

[12] “TCPDUMP & LIBPCAP,” http://www.tcpdump.org, Accessed: 12 July 2017.

[13] H. Geo�, “IPv6 Performance – Revisited,” https://blog.apnic.net/2016/08/22/
ipv6-performance-revisited/, Accessed: 30 April 2017.

[14] StatCounter, “Browser Market Share Worldwide - May 2016 to May 2017,” http:
//gs.statcounter.com, Accessed: 29 June 2017.

[15] V. Bajpai and J. Schönwälder, “Measuring the E�ects of Happy Eyeballs,” in Pro-
ceedings of the 2016 Applied Networking Research Workshop, ANRW 2016, Berlin,
Germany, July 16, 2016, 2016, pp. 38–44.

[16] “Apple and IPv6 - Happy Eyeballs,” https://www.ietf.org/mail-archive/web/v6ops/
current/msg22455.html, Accessed: 04 July 2017.

[17] “WIDE Technical-Report in 2013: IPv6 deployment activities in WIDE Project,” http:
//sh.wide.ad.jp/tr/wide-tr-live-with-ipv6-wg-ipv6-depolyment-in-japan-00.pdf,
Accessed: 30 April 2017.

[18] H. Osterloh, “Network Layer/Internet Protocols - ICMP Message Types,” http:
//www.informit.com/articles/article.aspx?p=26557, Accessed: 04 July 2017.

[19] “IBM Support: Reasons for TCPIP Resets,” http://www-01.ibm.com/support/
docview.wss?uid=swg21305235, Accessed: 30 April 2017.

[20] T. Katsuyasu, F. Tomohiro, M. Arifumi, and N. Shiro, “Clear and Present Danger
of IPv6 episode 2: IPv6/IPv4 fallback,” https://www.nanog.org/meetings/nanog39/
presentations/ipv6_katsuyasu.pdf, Accessed: 30 April 2017.

[21] B. Vaibhav and S. Jürgen, “Happy Eyeballs probing tool,” https://happy.
vaibhavbajpai.com, Accessed: 23 April 2017.

[22] OnPageWiki, “Tracking Pixel,” https://en.onpage.org/wiki/Tracking_Pixel, Ac-
cessed: 29 June 2017.

[23] “netinet/in.h - Internet address family - Library,” http://pubs.opengroup.org/
onlinepubs/000095399/basedefs/netinet/in.h.html, Accessed: 28 June 2017.

[24] S. E. Deib, Q. Scheitle, O. Gasser, M. Rouhi, and G. Carle, “Detecting IPv6-IPv4
Sibling Pairs Based on Few Data Points,” Bachelor’s Thesis, 2017.

https://www.rfc-editor.org/rfc/rfc7323.txt
https://ring.nlnog.net/
https://atlas.ripe.net
http://www.tcpdump.org
https://blog.apnic.net/2016/08/22/ipv6-performance-revisited/
https://blog.apnic.net/2016/08/22/ipv6-performance-revisited/
http://gs.statcounter.com
http://gs.statcounter.com
https://www.ietf.org/mail-archive/web/v6ops/current/msg22455.html
https://www.ietf.org/mail-archive/web/v6ops/current/msg22455.html
http://sh.wide.ad.jp/tr/wide-tr-live-with-ipv6-wg-ipv6-depolyment-in-japan-00.pdf
http://sh.wide.ad.jp/tr/wide-tr-live-with-ipv6-wg-ipv6-depolyment-in-japan-00.pdf
http://www.informit.com/articles/article.aspx?p=26557
http://www.informit.com/articles/article.aspx?p=26557
http://www-01.ibm.com/support/docview.wss?uid=swg21305235
http://www-01.ibm.com/support/docview.wss?uid=swg21305235
https://www.nanog.org/meetings/nanog39/presentations/ipv6_katsuyasu.pdf
https://www.nanog.org/meetings/nanog39/presentations/ipv6_katsuyasu.pdf
https://happy.vaibhavbajpai.com
https://happy.vaibhavbajpai.com
https://en.onpage.org/wiki/Tracking_Pixel
http://pubs.opengroup.org/onlinepubs/000095399/basedefs/netinet/in.h.html
http://pubs.opengroup.org/onlinepubs/000095399/basedefs/netinet/in.h.html

Bibliography 53

[25] “Model evaluation: quantifying the quality of prediction - Matthews Correla-
tion Coe�cient,” http://scikit-learn.org/stable/modules/model_evaluation.html#
matthews-corrcoef, Accessed: 30 June 2017.

http://scikit-learn.org/stable/modules/model_evaluation.html#matthews-corrcoef
http://scikit-learn.org/stable/modules/model_evaluation.html#matthews-corrcoef

	Introduction
	Goals of the thesis
	Outline

	Background
	TCP Flags
	TCP Timestamp Option
	IP Siblings
	NLNOG Network
	RIPE Atlas
	Ground Truth

	Related Work
	Sibling identification for DNS resolvers
	Classification via remote clock skew estimation
	Summary

	Problem Analysis
	Scenarios
	Happy Eyeballs
	Traffic from one machine to multiple others
	Failed connection attempt

	Summary

	Ground Truth Data Set
	Happy Eyeballs
	Traffic from one machine to multiple others
	Domain with External Resource
	1 Client n Server and n Clients 1 Server

	Implementation
	Structure
	Packet Source
	Main Packet Handler
	Candidate Identification
	Candidate Decision
	Results

	Evaluation
	Preparations
	Metric
	Results
	Happy Eyeballs
	Tracking Pixel
	1 Client n Server and n Clients 1 Server
	Interpretation and Summary

	Conclusion and Future Work
	Detailed Statistics for the Happy Eyeballs Captures
	Command Line Usage
	Abbreviations
	Bibliography

