
Technical University of Munich
Department of Informatics

Bachelor’s Thesis in Informatics

Measuring and Modeling the
Performance of OpenStack

Adrian Weis

Technical University of Munich
Department of Informatics

Bachelor’s Thesis in Informatics

Measuring and Modeling the Performance of OpenStack

Vermessung und Modellierung der Performanz von OpenStack

Author Adrian Weis
Supervisor Prof. Dr.-Ing. Georg Carle
Advisor Daniel Raumer, Sebastian Gallenmüller
Submission date October 15, 2016

I con�rm that this bachelor’s thesis is my own work and I have documented all sources
and material used.

Garching b. München,

Signature

Abstract

A typical use case of cloud computing is the deployment of scalable web servers. Open-
Stack is a widely used open source cloud computing service. This thesis shows a way
how to implement an OpenStack environment capable of providing the resources for
a web server. Two di�erent network solutions are presented. One implements Open-
Stack’s legacy networking service Nova-networking, while the other one implements
Neutron, a networking service, that is about to replace Nova-networking in the future.
The network performance of a single node setup as well as a multi node setup is mea-
sured. It is found, that for a single node setup Nova-networking performs better than
Neutron. The results suggest that Neutron needs further improvements to e�ciently
replace Nova-networking.

Zusammenfassung

Eine typische Anwendung für Cloud Computing ist die Bereitstellung skalierbarer
Webserver. OpenStack ist eine weit verbreitete open source Lösung für Cloud Compu-
ting. In dieser Arbeit soll der Aufbau einer OpenStack Umgebung beschrieben werden,
die die Ressourcen für einen Webserver zur Verfügung stellt. Dabei werden zwei ver-
schiedene Netzwerklösungen vorgestellt. Die eine implementiert den ursrünglichen
OpenStack Netzwerkservice Nova-networking, die andere Neutron, einen Netzwerkser-
vice, der in naher Zukunft Nova-networking ersetzen soll. Die Netzwerkperformance
von einem Setup mit lediglich einem Computing Knoten wird ebenso vermessen wie
die Performance eines Setups mit mehreren Computing Knoten. Es wird gezeigt, dass
in einem Setup mit nur einem Knoten die Performanz von Nova-networking deutlich
besser ist als die von Neutron. Die Ergebnisse sprechen dafür, dass Neutron weitere
Verbesserungen oder Erweiterungen benötigt, um Nova-networking e�zient ersetzen
zu können.

I

Contents

1 Introduction 1
1.1 Goal of the Thesis . 2
1.2 Outline . 2

2 Background 3
2.1 Related work . 3
2.2 Cloud Computing . 4
2.3 Development of OpenStack . 4
2.4 OpenStack vs. alternative products . 5
2.5 How does OpenStack work? . 6

3 Setup 11
3.1 Physical Setup . 11
3.2 Identity Service . 12
3.3 Image Service . 13
3.4 Compute and network service . 15
3.5 Compute Node . 16
3.6 Instances . 18

4 Measurements 23
4.1 Tool selection . 23
4.2 Results . 24

5 Conclusion 30
5.1 Future work . 31

Bibliography 32

II

List of Figures

2.1 OpenStack Conceptual architecture [1] 7

3.1 Setup main topology. 12
3.2 Keystone Identity service. 14
3.3 Setup on the controller node extended by the Glance Image Service. . . 15
3.4 Complete setup on the controller node. 17
3.5 Compute node and its services. 18
3.6 VMs in the Nova measurement setup. 20
3.7 VMs in the Neutron measurement setup. 22

4.1 Latency measured with 20 connections open from same node. Diagram
in logarithmic scale. 24

4.2 Data throughput with 20 connections open from same node. Diagram
in logarithmic scale. 25

4.3 Measurement with 20 (darkblue) vs 100 (orange) open connections on
same host. Diagram in linear scale. 26

4.4 Measurement with 20 connections on same (darkblue) vs remote (light-
blue) host. 27

4.5 Neutron (green) vs Nova-networking (darkblue) with 20 open connections. 28
4.6 Measurement Neutron remote (purple) and same host (green). 29

III

List of Tables

2.1 OpenStack Releases [2]. 5

1

Chapter 1

Introduction

The very basis of our investigation shall be the following scenario: imagine an enterprise
which o�ers its services via web servers. Over time the tra�c on their webpage changes.
Be it because of day and night, or because the content is event based like a livestream.

Now in times of high tra�c, when there are many connections to be served, it is in this
enterprises interest to provide enough resources to ful�ll the great majority of incoming
requests, so that the user experience is generally positive. In the "low time", when the
number of requests is signi�cantly lower, the resources would not be needed.

So how can this uneven allocation of resources be solved without paying to much for
unused resources or losing users due to bad experience from many unful�lled requests,
caused by insu�cient resources? In this case dynamic allocation and horizontally
scalability of resources is the key to handle these issues.

This is the point where cloud computing comes into play. Cloud computing allows
another enterprise to provide resources for rent. And depending on the development
of tra�c on the web server one can either stock up in resources to serve the requests
or reduce the rented computing power to save money, when there are only few open
connections.

All that is a nice idea, but how is this implemented? The cloud computing enterprise
uses a cloud computing service to provide resources to its clients. There are several
di�erent of these services. Commercial ones, like e.g. Amazon own cloud computing
provider EC2 and there are open source solutions, such as OpenStack and OpenNebula.

So from this basic scenario we want to establish a realistic setup and measure its per-
formance under di�erent conditions. Our base Setup is a web server, which is operated
by the resources provided by an OpenStack cloud computing service setup.

Chapter 1. Introduction 2

1.1 Goal of the Thesis

The goal of this thesis is to get an overview over the capabilities of the performance of
OpenStack when providing resources for a webserver. In this thesis we will not focus
on a single component of OpenStack, but on measurements that cover a sample setup
of an OpenStack environment.

1.2 Outline

First of all we will de�ne Cloud computing in Section 2.2. Then we have a deeper look
into what OpenStack speci�cally is, how it works, and how its di�erent sub services
work together to form the providing cloud service in Section 2.5. After this we will
introduce our speci�c measurement setup in Section 3.1. Finally we will present the
di�erent results of our measurements in Section 4.2.

3

Chapter 2

Background

2.1 Related work

Most of the work on cloud computing are comparisons between di�erent services.
Wen et al. [3] compared Open Stack to OpenNebula in terms of architecture, security
compatibility to other services and ease of use. It is found, that OpenStack o�ers a wider
range of Interfaces to other services such as to the EC2 cloud computing solution by
Amazon, and also o�ers more �exible network solutions, while OpenNebula is more
focused on usability of the VM environment it provides. Li et al. [4] compared OpenStack
to OpenNebula and Nimbus (which are all Cloud Computing services operating with
KVM virtualization) in terms of computing performance. As a performance test the
High Performance Computing Challenge benchmark suite was used. It could be shown,
that OpenStack reached better results than both its competitors. Callegati et al. [5]
compared the performance of especially the virtual network capabilities of OpenStack
to virtual networks created solely with Open vSwitch and the Linux bridge. In their
work they could make out the Linux bridge as the performance limiting component,
while the Open vSwitch was not an in�uential part to the performance. This is an
important �nding, as the Open vSwitch contributes many essential features to multi
tenant cloud environments, as Goldberg et al. [6] analyzed. Callegati et al. [7] also
showed, that the virtual network environment created by OpenStack has a limiting
e�ect on the networking performance that is independent from the hardware on which
the environment is hosted. Their results suggest that the performance loss correlates to
an increasing number of tenants in the virtual network environment.

Chapter 2. Background 4

2.2 Cloud Computing

There are di�erent options how cloud computing systems provide resources to their
clients. One way would be to provide the client with a software interface. Very few
functionalities are provided by this interface, and the client has no insights into the
implementation, nor can he add functionalities or manage the resources underneath.
This concept is called "Software as a Service" (SaaS) [8].

A hybrid version is to provide the client a development platform, on which he can
customize e.g. an application from a back end. This concept is called "Platform as a
Service" (PaaS) [8].

A basic service cloud computing can provide is to give the client access to the infras-
tructure. This can e.g. be networking, CPU or memory. Often this is done by providing
a VM with an installed Operating system. The client can operate on this machine as if
he would have access to a PC and manage the provided resources without limitations.
Due to the VM nature of the provided resources, the client has no knowledge about the
underlying cloud computing infrastructure. This concept is called "Infrastructure as a
Service" (IaaS) [8]

This thesis will only cover systems that fall under the IaaS category.

2.3 Development of OpenStack

OpenStack is a service located in the IaaS realm of cloud computing. It has been founded
in the year 2010 by the joint e�orts of NASA and Rackspace [9]. Both organizations have
been working on solutions for an alternative to Amazon’s commercial cloud computing
service Amazon Elastic Compute Cloud (EC2). Both started from di�erent points and
where working on di�erent parts of the cloud computing service, so when they found out
of each other’s e�orts they decided to bundle it [8]. The outcome was OpenStack, which
was from then on published under the Apache 2.0 license. E�ectively this guaranteed a
free use of the product and its source code [10].

OpenStack has since then undergone many version updates. As seen in Table 2.1 the
most recent to this point is Mitaka [2].

The fact that the OpenStack source code is published under this rather permissive license
contributed a lot to its great success and spread. Today it is the software of choice for
many cloud computing solutions. An article from networkworld.com states e.g. Dell,
HP, Cisco and IBM amongst the big users of this cloud computing service [11].

Chapter 2. Background 5

Release Release Date
Queens TBD

Pike TBD
Ocata 2017-02-23 (planned)

Newton 2016-10-06 (planned)
Mitaka 2016-04-07
Liberty 2015-10-15

Kilo 2015-04-30
Juno 2014-10-16

Icehouse 2014-04-17
Havana 2013-10-17
Grizzly 2013-04-04
Folsom 2012-09-27
Essex 2012-04-05
Diablo 2011-09-22
Cactus 2011-04-15
Bexar 2011-02-03
Austin 2010-10-21

Table 2.1: OpenStack Releases [2].

2.4 OpenStack vs. alternative products

In the race on the market there are other products as well. Earlier we mentioned
Amazons EC2, which is a commercial service. It has been published as a beta version
in 2006 [12] and gone live in 2008 [13]. Amazon itself is using this service for its well
known commercial selling platform [14]. As a product from a major player in the online
business it is highly trusted by users, and there is no doubt many users do pay for this
service in exchange for easy and externally maintained cloud computing experience.
However, a company with a huge name as Amazon is all over the news if one of its
products hits controversial ground like when in 2010 Amazon decided to no longer host
the Wikileaks platform on its hosting service [15].

Another service in the cloud computing race is OpenNebula. It is one of the earliest
modern cloud computing platforms and persists until this day. It was developed from
2005 to 2006 and was �nally released in 2008 [16]. Like the OpenStack software it is
released under the Apache license [17]. It came more into focus in 2014 when Microsoft
announced a collaboration with OpenNebula [18]. It has a extended portfolio of compa-
nies using its services, many of them, such as Blackberry, Unity or the ESA are widely
known [19], but its impact remains smaller then the one of OpenStack, due to the little
number of big players, such as the ones OpenStack counts to their users. Interesting is,
that NASA despite having co-founded OpenStack also uses OpenNebula [19].

Chapter 2. Background 6

There are many more cloud computing platforms out there, but mentioning to many of
them is futile, as the markets are �exible, and though the demand in cloud computing
will probably increase over the years to come, these enterprises will come and go.

So what are the arguments for the use of OpenStack? First of all, in comparison to all
commercial platforms it is free, so the customer does not need to pay for the platform
software. Especially for small �rms, non pro�t organizations or public institutions this
is a great advantage, as it leaves expenses at a minimum. Another advantage is, that it is
open source, which means in terms of the Apache 2.0 license, that modi�cations can be
made to the source code, to better �t the customer. The performance of OpenStack has
proven superior to its competitors: Chunyan Li et al. [4] used the High Performance
Computing Challenge benchmarking suit to compare the performance of open source
cloud computing services. The benchmark was performed on Nimbus, OpenNebula and
OpenStack. OpenStack showed the highest performance in this comparison.

2.5 How does OpenStack work?

OpenStack is a multiple host setup which provides users ressources in the form of
VMs. One of the hosts is the designated controller host. The service that controls the
distribution of ressources to the users runs on this node. Apart from this authentication
issues are handled, and VM images are stored here. Also a database is located here,
which stores user data, as well as data used by the several services that run within
the OpenStack environment. Depending on the networking setup, the networking
components may also be located here. There are setups where there is a separate
networking node. The actual ressources provided reside on special compute nodes

OpenStack is constructed out of di�erent underlying services. These act together to
provide the cloud computing service. An Overview of the services can be seen in Figure
2.1. In the following we will give a description for all of the services:

Keystone is the so called identity service. It handles all the authentication issues and
manages permissions. For this job it divides the users into di�erent groups. Every client
has a User, Tenant and Role association which gives him certain privileges in the use
of resources. When a client wants to access a service of OpenStack, he �rst has to
authenticate to Keystone. This can be committed by either user name and password
authentication or by signed certi�cates. After the authentication Keystone grants the
user access to all functionalities, that lie within its permissions. This is implemented via
a token system. By authenticating to Keystone, the client is given out a timestamped
token, which expires after a while. The validity of this token is checked back with
Keystone by all other services the client wishes to utilize. After expiring, a new token is
given out to the client if he wishes to proceed to work in the OpenStack environment [8].

Chapter 2. Background 7

Figure 2.1: OpenStack Conceptual architecture [1]

Another task of Keystone is the management of the back end APIs of the services.
To communicate with an OpenStack service every user and also other services must
go through Keystone to achieve the endpoint URL over which the communication is
established. All OpenStack services must therefore be registered with Keystone. As
it is also a service, even Keystone needs to be registered with itself. This registration
contains the creation of the endpoint in Keystone and the creation of a respective
database entry [20].

Glance is the Image Service. Its main purpose is to store images for the VMs that are
provided to the client. Glance can load local copies of images or directly load and store
new image �les from their web source. The managing system allows to give names
and IDs to the images for a better overview. Also Glance works together with the
authentication service Keystone to de�ne security rules for the usage of images. It is
possible to disallow or allow the use of certain images to certain roles in a tenant [21].

Chapter 2. Background 8

All these meta information is stored in the mysql database. In the Glance service it
can also be determined where the images are stored. Usually, this is just a dedicated
directory on the controller node, where this service is running. However, it could also
be combined with the object storage service Swift, which makes it possible to distribute
the storage of the image away from the controller node. This is specially useful when
dealing with a great amount of images, or when images need to be redundantly stored.
Glance can store and manage images of di�erent �le formats (qcow2, raw, vhd, vmdk,
vdi, iso, aki, ari, and ami) [22] and container formats (bare, ovf, aki, ari and ami) [22].
Container formats determine how the meta data of an image �le is passed on.

Glance also handles the storage of snapshot images from VMs. In this concept it is a
good idea to combine it with the storage service, as the number and size of snapshot
�les can grow very fast in production environments [8].

Another helpful functionality of Glance is called �le injection. This allows Glance to
attach certain �les to a VM, when booting. This way you can e.g. establish a randomly
created password for the root user to increase the security of freshly booted machines,
and ensure, that it can not be highjacked until the user it rightfully belongs to, has
gotten access and the chance to change the password. This is also useful if your clients
of a certain tenant are employees of the same company. This way you can equip their
freshly started VMs with e.g. company Software or important data. Another important
aspect of �le injection is the possibility to inject con�guration �les, like e.g. network
con�guration, so that the con�gurations take place in the �rst boot, and the VM is
instantly ready to use [8].

Swift is the object storage service of OpenStack. The non hierarchical organization
gives way to automatize the access to the saved data. In the case of Swift this data
consists of the images and snapshots of the VMs. The object storage is horizontally
scalable and therefore suitable for setups with a huge number of VMs to deploy and
clients to serve. A disadvantage is that to ful�ll its redundancy as proposed, the Swift
setup contains out of seven di�erent hosts of which two serve as proxys and the rest
is actual storage [8]. This makes the use of swift only economically applicable in large
scale setups.

Cinder is also a storage service. In contrast to Swift it is a block storage, which means
the storage is provided as Volumes. Another di�erence is its use. It is reserved for the
dynamic disk allocation for the VMs [8].

Nova is the computing service. It handles the actual deployment of the VMs and the
resource allocation among VMs on the hosts. It is composed of several sub services. Of
these the nova-api is the most important. Over this interface all requests are processed
and access to resources is given. The nova-scheduler is also important, as it processes
the deployment of new VMs on the compute nodes. The scheduler hereby performs
several balancing mechanisms between the available hosts so that the deployment

Chapter 2. Background 9

brings optimal resource usage, while ful�lling requirements of the launched images.
Nova also handles the communication necessary for multi node systems, so that the
OpenStack users only interferes with the diversity of compute hosts if he wishes to.
(For example when certain VMs shall be deployed together on a single node to boost
performance. Which is possible as shown in the results). The fact that Nova can handle
several compute nodes by itself contributes to the horizontal scalability, as the addition
of new hosts is as "easy" as con�guring them and let them register to Nova via the
messaging API so the scheduler can access them. It has a built in VNC proxy that
allows remote access over VNC consoles. There is a certain compatibility given to other
systems, as Nova has implemented its API to �t systems like e.g. Amazons EC2. Nova
is known to be very fault tolerant due to the nature of its architecture. It is built around
processes which run isolated from each other as much as possible to stop exponential
growth of faults [8].

Nova also has a networking service. It is a lightweight networking service o�ering a
�at network bridge, a DHCP server and also VLAN functionalities. [23]

Neutron is an OpenStack standalone networking service. With the Folsom release
in 2012 the Nova-networking service was strived to be superseded by the Quantum-
networking service. Just one year later it was renamed due to a copyright issue [24]. This
now called Neutron networking o�ers a lot of di�erentiated network functionalities and
is often run on a dedicated network-node. In light-weight solutions Nova-networking
is often still preferred.

Horizon is a graphical interface designed to manage the cloud service as a whole. Many
administrative tasks can be done here. This contains managing images and networks, or
handling user related issues like creating new users or managing security con�gurations
among the user base. But also the users can use the dashboard to e.g. boot VMs or access
statistics and overview over used resources. Another important feature Horizon has to
o�er is is a Virtual Network Computing (VNC) client, to which the input/output of the
VM can be redirected and even the kernel logs can be monitored e.g. for debugging [8].

Ceilometer is also called "Measurement Service" [8]. It measures the resource usage
and maps it to the di�erent users. The data is only collected and not processed. This
lies in the hand of the cloud administration. Ceilometer is often used for monitoring
commercial OpenStack environments and plays an important role in the billing of the
client [8].

Heat is the orchestration service. It organizes the processes of all services to provide
the possibility to launch a cloud environment consisting of multiple VMs by making use
of templates. These templates act as con�guration �les and contain all the information
necessary to launch the right VMs equiped with initial data �les and con�gurations
(provided by �le injection). The templates can be used over and over again, and can be
adapted to new circumstances with a few alternations of their con�guration [8].

Chapter 2. Background 10

Not all of these service will be used in the measurement setup. The important ones are
Keystone, Glance, Neutron and Nova.

Apart from the OpenStack services there are several auxiliary services:

mysql is used as a database to store important data. It is used to store information about
user privileges and security groups. Also it contains the metadata about VM images
and their storage place on the controller node.

Rabbitmq is used as a messaging server between the di�erent services. It is a lightweight
but very �exible messaging broker. It supports a large number of messaging proto-
cols and provides several features such as mirroring of queues for high availability
applications, tracing for easier debugging or the possibility to write and embed own
plugins [25].

11

Chapter 3

Setup

3.1 Physical Setup

We set up the nodes on a system of servers connected via a HP-3800-48G4SFPP VLAN
switch over 1 Gbit links. The following are the properties of the hosting servers:

Riga:

• CPU: Intel(R) Xeon(R) CPU E31230 @ 3.20 GHz

• Number of CPUs: 1

• Memory: 16 GB

• Mainboard: X9SCL/X9SCM

• NICs: 4x 82576

Tartu:

• CPU: Intel(R) Xeon(R) CPU E3-1230 V2 @ 3.30 GHz

• Number of CPUs: 1

• Memory: 16 GB

• Mainboard: X9SCL/X9SCM

• NICs: 2x Intel 82599ES (1x X520-SR2)

Chapter 3. Setup 12

Vilnius:

• CPU: Intel(R) Xeon(R) CPU E31230 @ 3.20 GHz

• Number of CPUs: 1

• Memory: 16 GB

• Mainboard: X9SCL/X9SCM

• NICs: 4x 82576

Our controller node (and in case of the Neutron setup also the networking node) is
located on the Riga server. Tartu and Vilnius act as compute nodes. Figure 3.1 shows
which host will take on which part in the setup.

Riga

Tartu Vilnius

HP-3800-48G4SFPP

Controller node

Compute nodeCompute node

Figure 3.1: Setup main topology.

3.2 Identity Service

As mentioned before, the starting point in every OpenStack cloud is the identity service
Keystone. To get this running, the system service we need to install is called keystone.

Keystone is the authentication service and handles roles, tenants and users. First lets
have a look at what all these entities are:

User: A user is one speci�c person that logs into the OpenStack system. A user can be
associated to one or more tenants and �lls one speci�c role within this tenant [8].

Chapter 3. Setup 13

Tenant: A tenant or project is the union of a speci�c group of users which belong
together. This can be for example the entirety of VMs rented by a speci�c company.
Depending on the security role allocations these users can access selected VMs asso-
ciated to this tenant. A tenant needs at least one user ful�lling the admin role. The
admin has access to all VMs and can create and manage diverse roles and the security
rules associated with them. Direct access to VMs of other tenants is not possible from a
certain tenant, while the connection between VMs of di�erent tenants is possible like
e.g. the connection between hosts in a network. This makes indirect access e.g. via ssh
possible [8].

Role: Every user within a tenant or project ful�lls a certain role. With these roles come
di�erent levels of security. These can be created and managed by the Admin role and
contain features like the right to see or access di�erent VMs within the tenant. There
has to be at least one user in the admin role per tenant [8].

In our speci�c setup an admin user within an admin tenant is created and associated
the admin role. This account is used for the deployment of VMs, but also to perform
administrative tasks on OpenStack.

Also a service tenant is created, in which all the OpenStack services are registered. This
is necessary, as all the OpenStack services need to be identi�able via Keystone as a role
in a certain tenant to be able to communicate with each other. This time the Keystone
service itself does not have to be added to this tenant, as it is the registration entity itself.
So as for now this tenant is empty, it gains more and more members, as the services are
added one by one.

Nonetheless we need to create and register a Keystone API endpoint over which Key-
stone will be able to communicate with other services. The APIs are the communication
interfaces of the OpenStack services. As Keystone needs to communicate with the other
services we create an endpoint for it here. As with the users of the service tenant also the
number of endpoints increases, as we add new services to our OpenStack environment.

The information about the created tenants and users, and the roles we associated to
them, as well as the metadata about the created endpoints is stored in the mysql database.
Figure 3.2 summarizes the components of Keystone which have been added.

3.3 Image Service

The next service that comes into play is Glance. Glance is the image service of the
OpenStack installation. In our case Glance will save the images in a dedicated directory
directly on the controller node. This is especially possible, because we only have two
images stored. One is a Cirros minimal setup used mainly for test purposes, and the

Chapter 3. Setup 14

Keystone

Endpoint APIs

Keystone

Tenants

admin tenant

admin user

Role: admin

service tenant

System Services

keystone

Figure 3.2: Keystone Identity service.

production Operating System (Ubuntu 14.04 amdx64) for the VMs of the measurement
setup.

While the image�les themselves are stored in a directory on the controller node, the
path to this directory is stored in the mysql database. (This way the path could also be
altered to point to a Swift storage instead of a local directory.)

The respective system services that have to be installed are glance and python-glanceclient.
Unlike Keystone, Glance consists of several system services.

Now the service has to be registered to Keystone. To achieve this we create a database
entry for Glance. Then we create a Glance user within the service tenant of Keystone
to settle privileges and security issues. And �nally we create an API endpoint, so that
Glance can have an ear on what is going on in the OpenStack environment, and that it
can react when its services of providing a VM image are needed.

After the successfull installation of Glance we need to achieve and store some images.
For this we can simply call the create command of the Glance service with respective
parameters. This command creates a database entry for the image�le and stores it in
a dedicated directory. Its parameters contain the following information: the original
location from where to aquire the image�le (can be a weblink or a locale save), the

Chapter 3. Setup 15

name under which the image can be referred to, the disk format as well as the container
format, information about the security privileges (in general whether the image can be
used by non-admin users) and other optional parameters [26].

So by now we have expanded our service environment by yet another component:
Glance the Image Service. As can be seen in Figure 3.3 also Keystone has gained more
entries.

Keystone

Endpoint APIs

keystone

Tenants

admin tenant

admin user

Role: admin

service tenant

System Services

keystone

glance

Glance

glance user

System Services

glance

Images

python-glanceclient

cirros-0.3.2-x86_64

Ubuntu-14.04-x64

Figure 3.3: Setup on the controller node extended by the Glance Image Service.

3.4 Compute and network service

The last thing left to be con�gured on the controller node for now is Nova. There are
two tasks that Nova has to ful�ll. One of them is to run the computing service, which is
responsible for the balancing and distribution of the resources provided by the compute
hosts. The other is to provide basic network functionalities.

For the resources part we have to install the services nova-api, nova-cert, nova-conductor,
nova-consoleauth, nova-novncproxy, nova-scheduler, and python-novaclient. Before we
can start to use the services we need to establish a connection between the di�erent ser-
vices, so we start to con�gure the rabbitmq Messaging service, the database connection
and the VNC functionalities in the Nova con�guration �les.

Nova is an OpenStack service as well and so a database entry and a Keystone API end-
point have to be created and registered. To �nish the installation we need to con�gure

Chapter 3. Setup 16

the use of the credentials when identifying to Keystone. This is also done in the Nova
con�guration �les. And also we create a Nova user in the service tenant. The only thing
that is left to do is restarting all the Nova services, and our environment got extended
by our computing service.

The second part of Nova is the networking service. The networking is mainly done
on the compute nodes, when Nova-networking is in use, so there is relatively little
con�guration work on the Nova con�g �les. After restarting the Nova services again
the con�guration of the controller node is completed. Finally, on our controller we can
�nd the following environment shown in Figure 3.4.

3.5 Compute Node

On the compute node we have to install the python-mysqldb service to be able to work
with the mysql database, e.g. when requesting an image via Glance. The next thing to
install is nova-compute-kvm. This service is handling the hypervisor, which ultimately
manages the resources, that the VM has access to, and also manages the separation of
VM and underlying hardware. In our case this will be KVM. In some other cases QEMU
is used as the only hypervisor. This is e.g. the case, when the kernel version does not
allow hardware acceleration done by the KVM module [27]. After this installation, the
use of rabbitmq and mysql has to be con�gured correctly and also the remote access
via VNC has to be set up. The speci�cation of the Glance host (which in our case will
be the controller node) and the authorization instance (which is Keystone) �nish the
Nova-compute setup on the compute node.

What is left to do is to con�gure the compute node for network access. The easier
part is the installation of the two packages we need for this to work: nova-network
and nova-api-metadata. Then the networking parameters have to be con�gured. After
having de�ned the api responsible for the communication with other services, we de�ne
the used security-group and the �rewall driver. Nova-network comes with its own built
in �rewall, which works via IPtables. We then select the �at DHCP manager as the
network manager to delegate the task to give new instances IP addresses to an DHCP
server. In our speci�c setup this DHCP server has to be con�gured to only apply to the
instances addresses within the realm of the OpenStack environment. Otherwise this
DHCP server would con�ict with the one installed in the testbed. Nova now has to be
con�gured for a multiple host environment. This lets the nova-network service listen to
the same service on other compute nodes. And �nally we de�ne a public interface to
gain internet access for the VMs. After having restarted the freshly installed services,
we have �nished the con�guration of the compute node. You can see an overview of
the services in Figure 3.5.

Chapter 3. Setup 17

Keystone

Endpoint APIs

keystone

Tenants

admin tenant

admin user

Role: admin

service tenant

System Services

keystone

glance

Glance

glance user

System Services

glance

Images

python-glanceclient

cirros-0.3.2-x86_64

Ubuntu-14.04-x64

Nova

System Services

nova-novncproxy

nova-api

nova-cert

nova-conductor

nova-consoleauth

nova-scheduler

python-novaclient

nova

nova user

Figure 3.4: Complete setup on the controller node.

Chapter 3. Setup 18

Compute node

Computing servicesNetwork services

Auxiliary services

python-mysqldb

nova-compute-kvm nova-network

nova-api-metadata

Figure 3.5: Compute node and its services.

So while the number of services running on a compute node are much smaller than
the ones running on the controller node, there is a lot of con�guration resting on the
compute nodes, which contributes to the behavior of the overall system. The steps that
are carried out in order to con�gure the compute node also have to be carried out on
every other compute node you want to add to the environment. After the con�guration
is successful the new host automatically communicates via nova-api-metadata service
to acknowledge the controller that it is available for hosting VMs. In our case we have
con�gured both our compute nodes Tartu and Vilnius this way.

3.6 Instances

The next thing to do is starting the instances. We have three Instances we want to bring
up, two on Tartu and one on Vilnius. They all reside on the same network and share
a securitygroup that allows ICMP tra�c on all ports, TCP tra�c on port 22 and HTTP
tra�c on port 80. The following are their properties:

Chapter 3. Setup 19

Instance01

• Host: Tartu

• Number of virtual CPUs: 1

• Memory: 2048 MB

• Disk size: 20 GB

• OS: Ubuntu 14.04 amdx64 cloud

• Yields: nginx webserver listening on port 80

Instance02

• Host: Tartu

• Number of virtual CPUs: 1

• Memory: 2048 MB

• Disk size: 20 GB

• OS: Ubuntu 14.04 amdx64 cloud

• Yields: wrk measurement tool

Instance03

• Host: Vilnius

• Number of virtual CPUs: 1

• Memory: 2048 MB

• Disk size: 20 GB

• OS: Ubuntu 14.04 amdx64 cloud

• Yields: wrk measurement tool

The following Figure 3.6 depicts the deployment situation with the connections that
are to be measured in our environment. The connection does not leave the host, when
both VMs are deployed on the same compute node, while it is tunneled through the
Nova-networking service on the controller node in case of the VMs residing on di�erent
hosts.

Neutron is the other possibility to set up a networking infrastructure in OpenStack.
It is much more voluminous than Nova-networking and more extensive in the setup.
First the network infrastructure of the controller node has to be altered, as the Neutron
networking services run here. In large scale OpenStack installations it is possible to
deploy the Neutron Network service on a separate host. This would be called the

Chapter 3. Setup 20

nginx

Instance01

Instance03

Instance02

wrk

wrk

nova-networking

Riga

Tartu Vilnius

Figure 3.6: VMs in the Nova measurement setup.

Network node. In this case Neutron’s main services run on the controller node. The �rst
step is to create the Neutron user in the service tenant, and create the Neutron API. Then
the Neutron service must be registered to Keystone. Then Nova has to be con�gured to
use Neutron as the networking service. The next step is the installation of the Neutron
services. They are neutron-server neutron-plugin-ml2 neutron-plugin-openvswitch-agent
neutron-l3-agent neutron-dhcp-agent. The neutron-plugin-ml2 is a service that controls
the use of resources like the Open vSwitch, and the Linux bridges, that build up the
networking backbone of Neutron [28]. Open vSwitch is a virtual switch over which
the VMs are connected. The tunneling mechanisms to separate tenants from each other
are implemented here. Neutron also operates its own DHCP service for its internal
network. The modular Layer 2 (ML2) plug-in is then con�gured to use Open vSwitch

Chapter 3. Setup 21

and to use the hybrid IP tables �rewall Open vSwitch o�ers. The integration bridge and
the external bridge used for separating tenant communication and the internet access of
the VMs have to be set up and added to the Open vSwitch. Adding the external interface
of the controller node to the external bridge is a critical part in this setup, as we access
the host via a ssh connection that is dependent on this interface. The port binding and
recon�guration of the network addresses (one has to give the external address to the
external bridge, while removing it from the external interface) is done by executing a
script. The con�guration on the controller node is �nished

Regardless of whether you deploy the main services of Neutron on a separate node or
on the controller node, there are services to be run on the compute nodes. These are
neutron-common neutron-plugin-ml2 and the neutron-plugin-openvswitch-agent. On this
node the ML2 plugin has to be con�gured to work together with the counterpart on the
controller node. Then the integration bridge is added to the Open vSwitch. After this the
con�guration of Neutron is �nished and instances can be launched. The setup of VMs
and connections is similar to the situation in Nova, but �ows through the integration
bridge, as can be seen on Figure 3.7.

Chapter 3. Setup 22

nginx

Instance01

Instance03

Instance02

wrk

wrk

Neutron-networking

Riga

Tartu Vilniusbr-int br-int

br-int

Figure 3.7: VMs in the Neutron measurement setup.

23

Chapter 4

Measurements

On Instance01 a nginx webserver is deployed. It hosts �les of di�erent sizes and serves
them on demand via a HTTP request. This request can be carried out from the wrk
tool installed on both Instance02 and Instance03. In the case of Instance02 the tra�c
never leaves the host, while as explained above the tra�c caused by the request from
Instance03 will pass through the network service on the controller node. This should
result in a signi�cant di�erence of latency times between the two connections.

4.1 Tool selection

Despite the development of the releases shown above, we used the Icehouse version of
OpenStack. This is due to the fact that it is the most documented on the openstack.org
site. This is the source which many of the expertise necessary to build a setup came
from. We decided to install the Ubuntu 14.04 Operating system as the very basis of our
setup, and Icehouse is the default release for the cloud computing on Ubuntu 14.04 [29].

Ubuntu 16.04 was only released during our work [30], and it would have been too time
consuming to switch both the Linux distribution and the OpenStack release (which
would have been almost necessary, as the default release for Ubuntu 16.04 is Newton
[31]).

For our webserver setup we will use nginx. This choice was made, as it is smaller
and easier to install and operate than e.g. Apache, while still providing all needed
functionalities and beeing free to use. The statistics speak for itself: It is the second
most used web server among the top 10 million websites [32].

As a measurement tool we use a lightweight solution called wrk. It is an open source
software which works great with a wide range of webservers and not only with speci�c
ones like e.g. ApacheBench (ab) [33].

Chapter 4. Measurements 24

4.2 Results

All measurements are carried out from the wrk tool sending HTTP requests to the
nginx web server located on Instance01. This instance is deployed on Tartu. The
measurements are all from the same network. Each measurement cycle will last 60s and
will be carried out 2 threaded. 7 di�erent �le sizes will be provided by the webserver.
For each �le size there is a full measurement cycle carried out.

The �les are chosen to cover a wide range of diferent applications. To cover very small
�les like short .txt documents a �le of size 100 byte is provided. The next bigger �le
is 100 kilobyte. It represents e.g. small images or sound examples. Both the next two
sizes shall represent webpages. Today’s webpages are usually between 1500 and 2000
kilobyte in size. To test the boundaries of our setup there are three �les left. These are
50 MB, 100 MB and up to even 1 GB in size.

As a base case a measurement with 20 simultaneously open connections is conducted.
As can be seen in Figure 4.1 the latency increases with �le size, as expected.

Figure 4.1: Latency measured with 20 connections open from same node. Diagram in logarithmic
scale.

Chapter 4. Measurements 25

From the diagram we can see one anomaly: The latency is higher when the �le of 100 B
is transferred. This is likely to be explained by the packet size: The packets sent for this
�le size are much smaller then for the other �le sizes. Therefore a much larger number
of them can be given out by the webserver in a shorter period of time. The setup can
not deal with such a high packet rate, leading to higher packet loss and therefore to
higher latency.

Measurements of the throughput rea�rm this suggestion. From Figure 4.2 one can see
that the throughput is signi�cantly less in the case of the 100 B �le.

Figure 4.2: Data throughput with 20 connections open from same node. Diagram in logarithmic
scale.

To push the capabilities of the setup, the next measurement was made with 100 open
connections. What can clearly be seen in Figure 4.3 is the latency going up. In contrast
to the former Figure 4.1, this diagram is in linear and not logarithmic scale. The darkblue
bars depict the 20 connections base case, while the orange bars indicate the case for
100 connections. One can see that the latency increase �uctuates around a constant,
and is not dependent on the size of the �le. This can be explained by the more open
connections which create more packets in the communication link. A higher number
of packets leads to an increase in latency.

Chapter 4. Measurements 26

Figure 4.3: Measurement with 20 (darkblue) vs 100 (orange) open connections on same host.
Diagram in linear scale.

In the next step the measurement is taken from the remote host. This tra�c is directed
through the controller node. This should lead to a substantial increase of the latency, as
the tra�c has to leave the remote host, enter the controller node, is redirected there and
then lead to the host where the webserver resides. This prediction is proven valid, as
visualized in Figure 4.4. The dark blue bars again stand for the base case measurement
carried out from a VM residing on the same node (Tartu) as the VM that runs the
webserver. The light blue bars depict the latency in ms for the same �le requested from
the VM deployed on the remote host (Vilnius). There is a change in the number of
displayed bars, which is due to the fact that the connection for bigger �le sizes crossed
the 30 seconds mark, which causes the nginx webserver to time out the connection. All
of the connections in the measurements from the remote host requesting the �les from
50 MB upwards timed out that way.

One can see that the anomaly of larger latency in the smallest �le size decreases when
the measurement is taken from the remote host. The suggested explaination is that the
multi node setup can handle higher packet rates.

Chapter 4. Measurements 27

Figure 4.4: Measurement with 20 connections on same (darkblue) vs remote (lightblue) host.

Neutron is advocated to replace Nova-networking as the OpenStack network service
in the future instead of existing as an alternative. So an interesting question is: how
does it perform compared to Nova-networking. Our base case was made with the Nova-
networking setup and again it is depicted as the dark blue bars in Figure 4.5. The green
bars depict the same measurement (20 connections, same host) carried out on the setup
with Neutron. The diagram shows, that the latency with Neutron is higher than the one
with Nova-networking. This can be explained by the nature of Neutron’s packet �ow.
As mentioned before all tra�c from Neutron is always routed through the network
module, no matter if it is located on the same node or not. This of course makes it
possible to e.g. implement further security mechanisms, but this test case shows the
price for that, which is payed in networking latency. In our measurements the latency
when using Neutron is around 13 - 14 times the latency when using Nova-networking.

Chapter 4. Measurements 28

Figure 4.5: Neutron (green) vs Nova-networking (darkblue) with 20 open connections.

With the logic from the former result, one can predict, that the di�erence between a
measurement from the same host and one from the remote host should not be as high
as in the Nova-networking case, when using Neutron-networking. Figure 4.6 shows the
measurement from the remote host (purple bars) compared to the one from the same
host (green bars) for the Neutron case. And as predicted there is only a insigni�cant
di�erence, which can be explained by a small asymmetry in the connection of the hosts.

Chapter 4. Measurements 29

Figure 4.6: Measurement Neutron remote (purple) and same host (green).

30

Chapter 5

Conclusion

In this thesis a cloud computing setup was proposed, which is capable of hosting a
web server. This webserver was run on VMs which were deployed in two di�erent
OpenStack environments. The �rst environment implemented the networking solution
of the Nova-networking service. In the second environment the Neutron-networking
service was used. Measurements of the network performance were made under di�erent
�le sizes, and from di�erent places within the multi node environment. The average
latency occuring when using Nova-networking and Neutron in a one host setup was
compared. In the same-node test cases the latency measured when using Neutron was
by a factor of more than 10 larger than the latency when using Nova-networking. The
results suggest that nova networking provides a better networking performance than
Neutron, when used on the same node.

This shows that Neutron is not ready yet to replace its predecessor Nova-networking.
This issue could be approached by adding a light weight Nova-like networking module
to Neutron, for cases, when the user wants to reach the highest network performance
possible, and does not need the additional bene�ts Neutron has to o�er.

Neutron has advantages with large setups, containing big numbers of VMs. This is due
to the scalability Neutron has to o�er. When run on a separate host, it does not have to
share resources with the controller nodes services. Nova-networking is more limited in
performance due to its intertwining with the controller node’s Nova services.

For smaller setups, especially when there is only one compute node, Nova-networking
is a good choice, as the tra�c �ow stays in the same node and does not have to move
through the networking modules on the controller node. This results in a lower latency.
A disadvantage of this solution is, that the Neutron services such as Firewall as a Service
or VPN as a Service are not included in Nova-networking.

Chapter 5. Conclusion 31

5.1 Future work

The anomaly of the higher latency when serving a very small �le size could be further
investigated. Observing the packet behavior could con�rm the suggestion of this thesis,
that the higher latency is caused by a limited packet rate in the same node setup.

In the future the impact of Neutron’s additional services on the network performance
could also be analyzed. These services are e.g. Firewall as a Service or VPN as a Service.
Then these could be compared to a solution that is based on the Nova-networking
service. This would contribute to the development process of Neutron and the ultimate
goal to replace Nova-networking.

32

Bibliography

[1] “Openstack conceptual architecture,” http://docs.openstack.org/icehouse/
install-guide/install/apt/content/ch_overview.html, accessed: 2016-10-04.

[2] “Openstack releases,” https://releases.openstack.org/, accessed: 2016-08-26.

[3] X. Wen, G. Gu, and Q. Li, “Comparison of open-source cloud management plat-
forms: Openstack and opennebula,” Fuzzy Systems and Knowledge Discovery (FSKD),
May 2012.

[4] C. Li, J. Xie, and X. Zhang, “Performance evaluation based on open source cloud
platforms for high performance computing,” Intelligent Networks and Intelligent
Systems (ICINIS), Nov. 2013.

[5] F. Callegati, W. Cerroni, and C. Contoli, “Performance of network virtualization in
cloud computing infrastructures: The openstack case,” Cloud Networking (Cloud-
Net), Oct. 2014.

[6] V. Goldberg, F. Wohlfahrt, and D. Raumer, “Datacenter network virtualization
in multi-tenant environments,” 8. DFN-Forum Kommunikationstechnologien, Jun.
2015.

[7] F. Callegati, W. Cerroni, and C. Contoli, “Performance of multi-tenant virtual
networks in openstack-based cloud infrastructures,” Globecom Workshops (GC
Wkshps), Dec. 2014.

[8] T. B. et al., IaaS mit OpenStack- Cloud Computing in der Praxis, 1st ed. dpunkt
Verlag, 2014.

[9] “A bit of openstack history,” http://docs.openstack.org/project-team-guide/
introduction.html, accessed: 2016-10-08.

[10] “Apache license - version 2.0, january 2004,” https://www.apache.org/licenses/
LICENSE-2.0, accessed: 2016-09-28.

[11] “15 most powerful openstack companies,” http://www.networkworld.com/
article/2176960/cloud-computing/15-most-powerful-openstack-companies.html,
accessed: 2016-07-28.

http://docs.openstack.org/icehouse/install-guide/install/apt/content/ch_overview.html
http://docs.openstack.org/icehouse/install-guide/install/apt/content/ch_overview.html
https://releases.openstack.org/
http://docs.openstack.org/project-team-guide/introduction.html
http://docs.openstack.org/project-team-guide/introduction.html
https://www.apache.org/licenses/LICENSE-2.0
https://www.apache.org/licenses/LICENSE-2.0
http://www.networkworld.com/article/2176960/cloud-computing/15-most-powerful-openstack-companies.html
http://www.networkworld.com/article/2176960/cloud-computing/15-most-powerful-openstack-companies.html

Bibliography 33

[12] “Amazon ec2 beta release,” https://aws.amazon.com/de/blogs/aws/amazon_ec2_
beta/, accessed: 2016-08-28.

[13] “Amazon ec2 �nal release,” https://aws.amazon.com/de/blogs/aws/
big-day-for-ec2/, accessed: 2016-09-28.

[14] “Aws cloud tour 2011 | australia: Event highlights,” https://www.youtube.com/
watch?v=uf07L1RUOW4, accessed: 2016-09-28.

[15] “Wikileaks website pulled by amazon after us political pressure,” https://www.
theguardian.com/media/2010/dec/01/wikileaks-website-cables-servers-amazon,
accessed: 2016-09-28.

[16] “About the opennebula project,” http://opennebula.org/about/project/, accessed:
2016-09-28.

[17] “Opennebula key features,” http://opennebula.org/about/key-features/, accessed:
2016-09-28.

[18] “Microsoft forges more open-source partnerships for added cloud in-
teroperability,” http://www.computerweekly.com/news/2240225137/
Microsoft-forges-more-opensource-partnerships-for-added-cloud-interoperability,
accessed: 2016-09-28.

[19] “Opennebula featured users,” http://opennebula.org/users/featuredusers/, accessed:
2016-09-28.

[20] E. S. Kevin Jackson, Cody Bunch, OpenStack Cloud Computing Cookbook, 3rd ed.
Packt Publishing Ltd., 2015.

[21] “Openstack - image service installation,” http://docs.openstack.org/icehouse/
install-guide/install/apt/content/glance-verify.html, accessed: 2016-09-28.

[22] “Openstack - image service installation,” http://docs.openstack.org/icehouse/
install-guide/install/apt/content/glance-verify.html, accessed: 2016-09-28.

[23] “Networking with nova-network,” http://docs.openstack.org/admin-guide/
compute-networking-nova.html, accessed: 2016-10-06.

[24] “Openstack networking name change: From quantum to
neutron,” http://searchsdn.techtarget.com/news/2240200685/
OpenStack-networking-name-change-From-Quantum-to-Neutron, accessed:
2016-10-06.

[25] “what can rabbitmq do for you?” https://www.rabbitmq.com/features.html, ac-
cessed: 2016-10-04.

[26] “Verify the image service installation,” http://docs.openstack.org/icehouse/
install-guide/install/apt/content/glance-verify.html, accessed: 2016-10-08.

https://aws.amazon.com/de/blogs/aws/amazon_ec2_beta/
https://aws.amazon.com/de/blogs/aws/amazon_ec2_beta/
https://aws.amazon.com/de/blogs/aws/big-day-for-ec2/
https://aws.amazon.com/de/blogs/aws/big-day-for-ec2/
https://www.youtube.com/watch?v=uf07L1RUOW4
https://www.youtube.com/watch?v=uf07L1RUOW4
https://www.theguardian.com/media/2010/dec/01/wikileaks-website-cables-servers-amazon
https://www.theguardian.com/media/2010/dec/01/wikileaks-website-cables-servers-amazon
http://opennebula.org/about/project/
http://opennebula.org/about/key-features/
http://www.computerweekly.com/news/2240225137/Microsoft-forges-more-opensource-partnerships-for-added-cloud-interoperability
http://www.computerweekly.com/news/2240225137/Microsoft-forges-more-opensource-partnerships-for-added-cloud-interoperability
http://opennebula.org/users/featuredusers/
http://docs.openstack.org/icehouse/install-guide/install/apt/content/glance-verify.html
http://docs.openstack.org/icehouse/install-guide/install/apt/content/glance-verify.html
http://docs.openstack.org/icehouse/install-guide/install/apt/content/glance-verify.html
http://docs.openstack.org/icehouse/install-guide/install/apt/content/glance-verify.html
http://docs.openstack.org/admin-guide/compute-networking-nova.html
http://docs.openstack.org/admin-guide/compute-networking-nova.html
http://searchsdn.techtarget.com/news/2240200685/OpenStack-networking-name-change-From-Quantum-to-Neutron
http://searchsdn.techtarget.com/news/2240200685/OpenStack-networking-name-change-From-Quantum-to-Neutron
https://www.rabbitmq.com/features.html
http://docs.openstack.org/icehouse/install-guide/install/apt/content/glance-verify.html
http://docs.openstack.org/icehouse/install-guide/install/apt/content/glance-verify.html

Bibliography 34

[27] “Con�gure a compute node,” http://docs.openstack.org/icehouse/install-guide/
install/apt/content/nova-compute.html, accessed: 2016-10-08.

[28] “Neutron/ml2,” https://wiki.openstack.org/wiki/Neutron/ML2, accessed: 2016-09-
04.

[29] “Openstack packages - ubuntu cloud archive,” http://docs.openstack.org/icehouse/
install-guide/install/apt/content/basics-packages.html, accessed: 2016-09-28.

[30] “Ubuntuusers - ubuntu 16.04 lts,” https://wiki.ubuntuusers.de/Xenial_Xerus/, ac-
cessed: 2016-10-04.

[31] “Openstack cloud archive,” https://wiki.ubuntu.com/OpenStack/CloudArchive, ac-
cessed: 2016-10-04.

[32] “Usage of web servers broken down by ranking,” https://w3techs.com/technologies/
cross/web_server/ranking, accessed: 2016-10-08.

[33] “ab - apache http server benchmarking tool,” https://httpd.apache.org/docs/2.4/
programs/ab.html, accessed: 2016-10-08.

http://docs.openstack.org/icehouse/install-guide/install/apt/content/nova-compute.html
http://docs.openstack.org/icehouse/install-guide/install/apt/content/nova-compute.html
https://wiki.openstack.org/wiki/Neutron/ML2
http://docs.openstack.org/icehouse/install-guide/install/apt/content/basics-packages.html
http://docs.openstack.org/icehouse/install-guide/install/apt/content/basics-packages.html
https://wiki.ubuntuusers.de/Xenial_Xerus/
https://wiki.ubuntu.com/OpenStack/CloudArchive
https://w3techs.com/technologies/cross/web_server/ranking
https://w3techs.com/technologies/cross/web_server/ranking
https://httpd.apache.org/docs/2.4/programs/ab.html
https://httpd.apache.org/docs/2.4/programs/ab.html

	Introduction
	Goal of the Thesis
	Outline

	Background
	Related work
	Cloud Computing
	Development of OpenStack
	OpenStack vs. alternative products
	How does OpenStack work?

	Setup
	Physical Setup
	Identity Service
	Image Service
	Compute and network service
	Compute Node
	Instances

	Measurements
	Tool selection
	Results

	Conclusion
	Future work

	Bibliography

