
Technische Universität München
Department of Informatics

Bachelor’s Thesis in Informatics

Implementing and analysing the
Interface to the Routing System in a

Software De�ned Network

Daniel Kowatsch

Technische Universität München
Department of Informatics

Bachelor’s Thesis in Informatics

Implementing and analysing the Interface to the Routing System
in a Software De�ned Network

Implementierung und Analyse des Interface to the Routing
Systems in einem Software De�ned Network

Author Daniel Kowatsch
Supervisor Prof. Dr.-Ing. Georg Carle
Advisor Edwin Cordeiro, M. Sc.
Date August 16, 2016

Informatik VIII
Chair for Network Architectures and Services

I con�rm that this thesis is my own work and I have documented all sources and material
used.

Garching b. München, August 16, 2016

Signature

Abstract

This thesis aims to implement the route-add and route-delete Remote Procedure Calls
(RPC) of the Interface to the Routing System (I2RS) in a Software De�ned Network
(SDN). This is done in order to verify the speci�cation of I2RS and to �nd potential
errors within it. Our Implementation consists of two components, an agent and a
client. The client is implemented as an independent Python script. It uses ydk-gen to
generate a Python API for I2RS. The agent is a module of the OpenDaylight project. It
interacts with other modules like the one for BGP or the one for NETCONF to ful�ll
the requirements of I2RS. The test environment for the implementation is a SDN. Our
implementation of the I2RS client is not yet capable of interacting with an agent while
our agent can process the RPCs but still contains a bug regarding the route propagation.
The thesis also found two problems with the I2RS speci�cation. The more important
one is about a missing structure for storing next hops. It makes creating a working
implementation according to the here examined speci�cation of I2RS impossible. But
despite these problems, I2RS is developing towards a practicable, standardized interface.

Zusammenfassung

Diese Arbeit implementiert die Remote Procedure Calls (RPC) route-add und route-
delete für das Interface to the Routing System (I2RS) in einem Software De�ned Network
(SDN). Das hat den Zweck die Spezi�kation von I2RS zu überprüfen und mögliche Fehler
zu entdecken. Dafür sind zwei Komponenten erstellt worden. Die erste ist ein Client,
die zweite ein Agent. Der Client wird als unabhängiges Pythonskript implementiert. Er
nutzt das ydk-gen Tool zur Erstellung einer Python-API für I2RS. Der Agent dagegen
ist ein Modul des OpenDaylight Projektes. Er interagiert mit anderen Modulen von
OpenDaylight, welche für die Implementierung von BGP und NETCONF zuständig sind.
Unsere Implementierung wird anschließend in einem SDN getestet. Der Client ist im
Moment noch nicht im Stande mit einem Agenten korrekt zu interagieren. Der Agent
kann die RPCs verarbeiten, hat aber noch einen Bug beim Propagieren der Routen zu
anderen Geräten. Die Arbeit hat zwei Probleme mit der Spezi�kation von I2RS entdeckt.
Das schwerwiegendere von beiden befasst sich mit einer fehlenden Datenstruktur zum
Speichern von Next Hops. Durch dieses Problem ist es für die Version von I2RS, die wir
betrachtet haben, nicht möglich gemäß der Spezi�kation zu funktionieren. Trotz dieser
Probleme entwickelt sich I2RS jedoch zu einem praktischen Standardinterface.

I

Contents

1 Introduction 1
1.1 Goals of the thesis . 1
1.2 Outline . 2

2 State of the Art 3
2.1 Interface to the Routing System . 3

2.1.1 Architecture . 3
2.1.2 The RIB module . 6

2.2 Software-De�ned Networking . 11
2.3 OpenDaylight . 13
2.4 Network Simulation . 14
2.5 Related Work . 15

3 Methodology 17
3.1 Software . 17
3.2 Network Topology . 18
3.3 Control Plane . 20

3.3.1 I2RS client . 20
3.3.2 OpenDaylight . 21
3.3.3 Quagga . 21

3.4 Forwarding Plane . 21
3.5 Additional Networks . 22

4 Implementation 23
4.1 Software . 23
4.2 I2RS Agent . 23

4.2.1 Architecture . 24
4.2.2 Data structure . 24
4.2.3 Remote Procedure Calls . 25

4.3 I2RS Client . 26
4.3.1 Architecture . 26
4.3.2 Functionality . 27

Contents II

4.4 Testing the setup . 27

5 Results 30
5.1 Functionality of I2RS . 30
5.2 Encountered Problems . 31

6 Discussion 33
6.1 Discussion of the implementation . 33
6.2 Discussion of the Interface to the Routing System 34
6.3 Future Work . 35

7 Conclusion 36

Bibliography 37

III

List of Figures

2.1 Example interaction of two clients with one agent 6
2.2 Example interaction of a remote client with two applications and two

agents . 7
2.3 Depiction of Control Plane and Forwarding Plane in a software-de�ned

network . 12
2.4 Sequence diagram of the example for SDN 13

3.1 Illustration of virtualisation of the networks 18
3.2 Illustration of the di�erent Autonomous Systems inside the test network 19
3.3 Depiction of the network separated into control and data plane 20

4.1 Sequence diagram on how a RPC is processed 26

IV

Listings

2.1 Structure of the routing instance [1] . 7
2.2 Structure of the route-add RPC with route-list omitted [1] 9
2.3 Structure of the route-delete RPC with route-list omitted [1] 10
2.4 Structure of the nh-add RPC with details about the nexthop-types omit-

ted [1] . 10
4.1 Example of input data for a route-add RPC as XML �le 28
4.2 Example of input data for a route-delete RPC as XML �le 28
4.3 Example of input data for adding multiple routes with the route-add

RPC formatted as a XML �le . 29

1

Chapter 1

Introduction

The size and complexity of networks is increasing. They consist of a multitude of di�er-
ent hardware developed by di�erent vendors. This heterogeneity makes management
and automation of even the simplest tasks di�cult.

Additionally, dynamic data-center networking advances and dynamic routing policies
are required, but the forwarding decisions are still made based on static routing policies,
relying on de�ned link costs and route costs. So these policies are not capable of
providing real-time responsiveness towards security threats and can not use tra�c
control to deal with them. A more dynamic policy could for example redirect suspicious
tra�c to analyzers, honey pots or even drop packets. Another point is the paradigm of
separating policy-based decision-making from the actual router. But this also requires
more dynamic policies and analyzing of the network, its topology, and network tra�c
statistics.

In order to achieve these goals, a new standardized interface to the routing system needs
to be developed. So the IETF created a working group which is currently designing the
Interface to the Routing System (I2RS). [2]

1.1 Goals of the thesis

The I2RS working group has already written some drafts and RFCs, but the speci�-
cation of the Interface to the Routing System also requires an implementation. This
needs to be done in order to verify the speci�cation, �nd potential errors and improve
the design where necessary. So the goal of this thesis is to create a proof-of-concept
implementation of simple functions. The functions include adding new routes to an
already existing Routing Information Base (RIB) and deleting existing routes. Because
this implementation will be just a proof-of-concept, these features will be limited to
only support IPv4 and IPv6.

Chapter 1. Introduction 2

Additionally, the thesis aims to use the paradigm of separating control logic from actual
forwarding. Software De�ned Networking achieves this by introducing controllers,
which are separated from the actual forwarding device. The implementation will be
tested in a Software De�ned Network. This way, a separation can be achieved both on
layer 2 and layer 3 of the ISO-OSI model. This should enable an easy exchange of the
network.

1.2 Outline

Chapter 2 provides the state of the art. This includes an introduction to the Interface to
the Routing System and an explanation of the concept of Software De�ned Networking,
an overview on the OpenDaylight project which is an important building block of
the implementation, an illustration of network simulation tools and the discussion of
related work. Chapter 3 illustrates the methodology, including development, testing
and validation methods. Chapter 4 explains the architecture of the implementation and
why some design decisions were made. Chapter 5 presents the results of the tests and
an evaluation of the I2RS protocol. Chapter 6 discusses the results of the thesis. Chapter
7 provides the conclusion.

3

Chapter 2

State of the Art

This chapter presents the current state of the art. It illustrates the three fundamental
components of this thesis. The �rst one is the Interface to the Routing System (I2RS).
Section 2.1 explains the basics of I2RS. This includes its architecture as well as the most
important elements for the implementation. The second fundamental component of
this thesis is Software De�ned Networking (SDN). Section 2.2 introduces the idea of
SDN. The third component is the OpenDaylight project (ODL). Section 2.3 provides an
overview of ODL. In order to test the implementation, we simulate a network. Section
2.4 shows network simulation tools. This chapter ends with section 2.5, which illustrates
connections of this thesis to related work.

2.1 Interface to the Routing System

I2RS is a large topic and includes many speci�cations and drafts. So this section will
focus on the relevant ones for the thesis. The �rst one is the architecture of I2RS. The
second one is the RIB module. It describes the Routing Information Base (RIB) in I2RS
and which operations are supported.

One thing to keep in mind is that I2RS is still under development. So some drafts and
speci�cations might change. For this reason we will state the version of every draft.

2.1.1 Architecture

The architecture of I2RS is de�ned in RFC 7921 [3]. It consists of two major components.
The �rst one is the I2RS agent. It is also referred to as agent. The second one is the I2RS
client or client. In order to understand these components we �rst have to de�ne some
basic terms. This thesis uses the same de�nitions as RFC 7921 section 2 [3]. So �rst we

Chapter 2. State of the Art 4

introduce these terms. Next we explain the architecture in more detail. For this purpose
we use some examples as illustrations.

2.1.1.1 Terminology

An application is de�ned as software which requires to monitor or to change the network
for its services.

A routing element is an element which implements "some subset of the routing system"
[3]. It does not necessarily implement a Forwarding Information Base (FIB). There are
di�erent examples for routing elements. The �rst one is a router with a RIB Manager
and a FIB which runs protocols like OSPF or BGP. The second one is a BGP speaker
which acts as a Route Re�ector.

The term routing and signaling refers to the part of a routing element which implements
a subset of the Internet routing system. This includes the implementation of protocols
like BGP or IS-IS as well as the RIB Management layer.

Local Con�guration describes how the ephemeral state of I2RS is handled. Proposal
draft-ietf-i2rs-ephemeral-state-15 [4] explains ephemeral states in I2RS in more detail.
This is out of scope of this thesis so we will no further discuss ephemeral states.

The term Dynamic System State refers to data which may be required for I2RS but
is not part of the routing and signaling system. This includes dynamically changing
information like �ow data, statistics or counters.

The Static System State is like the Dynamic System State not contained in the routing
and signaling system. It includes static information like the speci�cation of queuing
behavior for interfaces.

I2RS service or service describes functions and policies to access states within I2RS. In
order to represent services we will use data models. One example of such a service is
the RIB service which is represented by a RIB data model.

Now we can de�ne the I2RS client and the I2RS agent. The client is an implementation
of the I2RS protocol which is capable of interacting with I2RS agents inside for example
routers. It can read and modify information from agents. The interactions of a client
are not limited to only one application or one agent.

An I2RS agent provides services from a routing subsystem. So it interacts with the
routing element. It also supports the I2RS protocol and can communicate with I2RS
clients. An example of a client is a command line interface an administrator can use to
access the routing system.

A client also has an identity. It is unique and every client has one. It is used to identify
clients. An identity can also be associated with a state and roles. The roles are part of a

Chapter 2. State of the Art 5

role based access control model in I2RS. We will not discuss this any further because it
is out of scope of the thesis.

A client can have a secondary identity. Since a client can provide services to multiple ap-
plications, the secondary identity can be used to associate operations with applications.
It is not interpreted by an I2RS agent.

2.1.1.2 Architecture interactions

The architecture de�nes interactions between clients and agents. Figure 2.1 illustrates
one possible interaction between two I2RS clients and an I2RS agent. In this case Client
1 is part of Application 1 and Client 2 is part of Application 2. Interactions between an
application and a client may include the usage of command line interfaces or Remote
Procedure Calls (RPC). The speci�cation of these interactions is out of scope of I2RS.

Both Client 1 and Client 2 are communicating with Agent 1. The protocols for com-
munication are NETCONF and RESTCONF for now. Proposal draft-ietf-i2rs-protocol-
security-requirements-06 [5] speci�es security requirements for this communication.
The communication includes the client requesting and modifying data and the responses
of the agent. It also contains noti�cations for events. The YANG data models of a
service de�ne the structure of requests, responses and data. The communication is
asynchronous to support multiple clients and multiple agents at the same time.

Agent 1 is part of Routing Element 1. Routing Element 1 also contains components for
Routing and Signaling, a Local Con�guration as well as a Dynamic and Static System
State. Agent 1 interacts with these components in order to collect or modify data.
Some components also interact with each other. Arrows illustrate possible interactions
between components.

In this case, the agent has to use the identi�er of the clients to associate clients with
the according operations. This needs to be done in order to achieve traceability. RFC
7922 [6] provides an explanation on how to handle traceability in I2RS exactly.

Figure 2.2 illustrates another possible setup of one client, two applications and two
agents. The components for Routing and Signaling, Local Con�guration, Dynamic
System State and Static System State are omitted. They interact with each other and
the according agent like depicted in Figure 2.1. Both Routing Element 1 and Routing
Element 2 have an I2RS agent.

In this case Application 1 and Application 2 use Client 1 as a remote client. The interac-
tions between both applications and the client are not part of I2RS. This also includes
the security of their communication. Client 1 is responsible for the authenticity of
Application 1 and Application 2. In order to associate operations with applications the
client may use secondary identities. In this case Client 1 is communicating with two

Chapter 2. State of the Art 6

agents. The communication between Client 1 and Agent 1 uses RESTCONF. The one
between Client 1 and Agent 2 uses NETCONF.

Figure 2.1: Example interaction of two clients with one agent

2.1.2 The RIB module

An info model and a data model de�ne the structure of the RIB service. In this thesis
we work with draft draft-ietf-i2rs-rib-info-model-08 [7] for the info model and draft
draft-ietf-i2rs-rib-data-model-05 [1] for the data model. The info model de�nes the
data structure of the RIB service and its functions. The data model contains a YANG
data model derived from the info model. YANG is a data modeling language [8]. It

Chapter 2. State of the Art 7

Figure 2.2: Example interaction of a remote client with two applications and two agents

enables modeling structures for con�guration and state data. These can be modi�ed
with NETCONF.

2.1.2.1 Routing instance

One important part of the RIB data model is the routing instance. It represents the data
structure for routing information and is managed by the I2RS agent. Listing 2.1 depicts
the structure of a routing instance. This includes several components: The �rst one is a
name for the routing instance which is used to identify a routing instance. Therefore it
has to be unique. The second one is an optional list of interfaces which can be used in
decision making for forwarding packets.

Listing 2.1: Structure of the routing instance [1]
+--rw routing-instance

+--rw name string
+--rw interface-list* [name]
| +--rw name if:interface-ref
+--rw router-id? yang:dotted-quad
+--rw lookup-limit? uint8
+--rw rib-list* [name]

+--rw name string
+--rw rib-family rib-family-def
+--rw ip-rpf-check? boolean
+--rw route-list* [route-index]

+--rw route-index uint64
+--rw match
| +--rw (route-type)?
| +--:(ipv4)

Chapter 2. State of the Art 8

| | ...
| +--:(ipv6)
| | ...
| +--:(mpls-route)
| | ...
| +--:(mac-route)
| | ...
| +--:(interface-route)
| ...
+--rw nexthop
| +--rw nexthop-id? uint32
| +--rw sharing-flag? boolean
| +--rw (nexthop-type)?
| +--:(nexthop-base)
| | ...
| +--:(nexthop-chain) {nexthop-chain}?
| | ...
| +--:(nexthop-replicates) {nexthop-replicates}?
| | ...
| +--:(nexthop-protection) {nexthop-protection}?
| | ...
| +--:(nexthop-load-balance) {nexthop-load-balance}?
| ...
+--rw route-statistic
| ...
+--rw route-attributes
| ...
+--rw route-vendor-attributes

It also includes a router-id and a lookup-limit. A router-id is used to identify the device
when interacting with other network devices. It is optional and can be used to di�er-
entiate multiple virtual routers in one hardware device. The lookup-limit describes
how many levels of look ups can be performed in order to determine if a next hop is
reachable.

The last component is a list of RIBs. These can be uniquely identi�ed by their name. A
single RIB is also bound to one RIB family. The RIB family describes the type of routes
the RIB contains. Some examples are IPv4 or IPv6.

A RIB also contains a list of routes. Each route is identi�ed by its route-index. A route
has a match condition. A match condition describes which packets this route applies to.
The match condition �rst speci�es the type of packet, for example IPv4. Next it de�nes
the direction. So it is possible to match packets based on source address, destination
address or both.

Each route must also specify a next hop. A next hop can contain a nexthop-id and a
sharing-�ag. The nexthop-id can be used to identify a next hop in case it is shared with
other routes. The sharing-�ag determines if a next hop is shared. By default it is false.
A next hop must contain a nexthop-type. The nexthop-type determines what kind of
next hop it is. This includes some base nexthop-types like IPv4 which says the next
hop is an IPv4 address. It also covers other types like nexthop-chaining or a type for
load-balancing.

Chapter 2. State of the Art 9

2.1.2.2 Remote Procedure Calls

Remote Procedure Calls (RPCs) are functions in the data model. The I2RS agent has
to provide these methods to clients. The RIB data model de�nes several which allow
interaction with the RIB, including rib-add, rib-delete, route-add, route-delete, route-
update, nh-add and nh-delete.

For adding or deleting RIBs of a routing instance rib-add and rib-delete have to be used.
The nh-add RPC adds new next hops to a RIB. The nh-delete RPC deletes one. In order to
add a new route to a RIB, the route-add RPC has to be used. It requires the nh-add RPC
to be called �rst in order to create next hops for the routes. If routes need to be deleted
the route-delete RPC has to be called. In case a route needs to be updated route-update
is useful. This thesis focuses on an implementation of route-add and route-delete. So
these will be explained in more detail. Since the nh-add RPC needs to be called before
the route-add RPC we will also examine this one.

Like every RPC, the route-add RPC de�nes an input and an output. Listing 2.2 depicts
the structure of the RPC. It omits the structure of a route-list since it is already depicted
in Listing 2.1. The input of the route-add RPC contains a list of routes. These routes
are de�ned like routes for RIBs in a routing instance. The client has to receive the
nexthop-id of a next hop inside a route by calling the nh-add RPC �rst. If one of the
values inside a route is invalid, adding the route should fail. Examples for such invalid
values are a route type which does not match the RIB family type or an invalid route
id. The input also includes a RIB name and a return-failure-detail �ag. The RIB name is
used to determine which RIB the route should be added to. If the speci�ed RIB does not
exist, adding routes should fail in all cases. The return-failure-detail �ag determines if
the error codes for failed routes should be included in the response. This �ag is optional
and is set to false by default. The output of a route-add RPC contains two counters.
The �rst one counts how many routes have been successfully added to the RIB. The
second one indicates the number of failed routes. If the return-failure-detail �ag is set,
the output also contains a list with information about the failed routes. It includes the
route index of every failed route as well as an error code.

Listing 2.2: Structure of the route-add RPC with route-list omitted [1]
+---x route-add
| +---w input
| | +---w return-failure-detail? boolean
| | +---w rib-name string
| | +---w routes
| | +---w route-list* [route-index]
| | ...
| +--ro output
| +--ro success-count uint32
| +--ro failed-count uint32
| +--ro failure-detail
| +--ro failed-routes* [route-index]
| +--ro route-index uint32

Chapter 2. State of the Art 10

| +--ro error-code? uint32

The schema for the route-delete RPC is depicted in Listing 2.3. The input of the route-
delete RPC is identical to the one of the route-add RPC. The speci�cation of route
attributes and a next hop is not required for this RPC. Therefore these �elds are omitted
from the input. This RPC tries to match the routes given in the input to routes in the
speci�ed RIB. If a match is found, it will be deleted. There are some cases in which
deletion of a route can fail. An obvious one is if a route simply does not exist. Another
one is if the requesting client is not allowed to delete the route. The output is also
identical to the output of the route-add RPC.

Listing 2.3: Structure of the route-delete RPC with route-list omitted [1]
+---x route-delete
| +---w input
| | +---w return-failure-detail? boolean
| | +---w rib-name string
| | +---w routes
| | +---w route-list* [route-index]
| | ...
| +--ro output
| +--ro success-count uint32
| +--ro failed-count uint32
| +--ro failure-detail
| +--ro failed-routes* [route-index]
| +--ro route-index uint32
| +--ro error-code? uint32

The structure of the nh-add RPC is illustrated in Listing 2.4. The input of this RPC
consists of two to four components. The �rst one is rib-name. It speci�es to which RIB
the next hop has to be added. If the RIB does not exist the RPC fails. The second one
is the nexthop-id. So far it is not yet speci�ed what this id does in the context of the
nh-add RPC because the purpose of this RPC is to add a new next hop to a RIB and to
return the nexthop-id. The sharing-�ag indicates whether a next hop can be shared by
multiple routes. The last component is the nexthop-type. It de�nes what kind of next
hop it is. It behaves like the nexthop-type inside a next hop of a route. The output of
the nh-add RPC informs the client if the operation was successful. When the �eld result
is set to true the RPC managed to add a new next hop to the RIB. Then it should also
return the nexthop-id of the newly added next hop. If the result �eld has the value false
the RPC failed. Then it may also contain the cause for failure in the reason �eld.

Listing 2.4: Structure of the nh-add RPC with details about the nexthop-types omitted [1]
+---x nh-add
| +---w input
| | +---w rib-name string
| | +---w nexthop-id? uint32
| | +---w sharing-flag? boolean
| | +---w (nexthop-type)?
| | +--:(nexthop-base)
| | | ...

Chapter 2. State of the Art 11

| | +--:(nexthop-chain) {nexthop-chain}?
| | | ...
| | +--:(nexthop-replicates) {nexthop-replicates}?
| | | ...
| | +--:(nexthop-protection) {nexthop-protection}?
| | | ...
| | +--:(nexthop-load-balance) {nexthop-load-balance}?
| | ...
| +--ro output
| +--ro result uint32
| +--ro reason? string
| +--ro nexthop-id? uint32

2.2 Software-De�ned Networking

The term Software-De�ned Networking (SDN) describes a set of methods. These methods
aim to ease design, delivery and operation of network services. This is done in a
dynamic and scalable way. The techniques also master components of the service
delivery chain, so the methods are capable of providing services that satisfy contracts
with customers. [9]

In this thesis the term "Software-De�ned Networking" will refer to the concept of
separating the process of making forwarding decisions from actual forwarding devices
[10]. Figure 2.3 illustrates this concept. It depicts Application 1 inside the Application
Plane. The Application Plane provides an interface for administrators to insert policies
into the Control Plane. It also shows two controllers, Controller 1 and Controller 2,
inside the Control Plane. These are responsible for making forwarding decisions. The
forwarding devices, here the three switches Switch 1 to 3, are inside the Forwarding
Plane, also referred to as Data Plane. Every forwarding device also requires a connection
to a controller. These are omitted in Figure 2.3 to not obfuscate the network. Instead it
illustrates an abstract communication between the Control Plane and the Forwarding
Plane. In this case the protocol for information exchange between Control Plane and
Forwarding Plane is OpenFlow [10]. Connections between Control Plane and Data
Plane are referred to as Southbound Connections. The ones between Control Plane and
Application Plane are called Northbound Connections.

To better demonstrate the concept we will look at an example. Figure 2.4 illustrates it.
We are just concerned with the functionality of SDN. So we assume both Computer 1
and Computer 2 run a network stack comparable to the one of Linux. They also have
already stored the layer 2 address of each other. The example starts with Computer 1
sending a frame to Computer 2. First it has to send the frame to Switch 1 because it has
only this link to another device. Switch 1 has to forward the frame to the next device.
But it is not capable of making forwarding decisions because the logic for decision
making is located in the Control Plane. So Switch 1 uses a protocol like OpenFlow

Chapter 2. State of the Art 12

Figure 2.3: Depiction of Control Plane and Forwarding Plane in a software-de�ned network

to request a decision from its controller. In this example we will use Controller 1 as
controller of all switches. Controller 2 is just used if Controller 1 is not reachable. So
Controller 1 receives the request and has to decide the next destination of the frame.
The decision is based on implemented policies. One policy can be a static con�guration
which states that all frames sent to Switch 1 from Computer 1 have to be sent to Switch
2. It is also possible for controllers to collect �ow data and to direct the frame to a certain
destination for load balance. But for this example we try to keep the policy simple. So
Controller 1 collects topology data of the network and determines the destination of a
frame based on the network graph. More speci�c the controller tries to use a minimum
of links for communication. Controller 1 replies to Switch 1 and states the frame has
to be sent to Switch 3 next. The switches do not know the topology of the network, so
to be more accurate Controller 1 will tell Switch 1 to sent out the frame on the port
which is connected to Switch 3. When Switch 3 receives the frame it will also request
a forwarding decision from Controller 1. Our policy is to use a minimum of links and

Chapter 2. State of the Art 13

Switch 3 is directly connected to Computer 2, so Controller 1 answers to send out the
frame on the port which is connected to Computer 2. Now Computer 2 receives the
frame what ends our example.

Figure 2.4: Sequence diagram of the example for SDN

2.3 OpenDaylight

OpenDaylight (ODL) is a modular open source platform for SDN [11]. It is based on
a microservice architecture. This refers to the model-driven approach of ODL. Every
module in ODL de�nes its data and service structure in YANG modules. This enables
the use of a Model Driven Service Abstraction Layer (MD-SAL). Data structures can be
stored and interacted with in one common MD-SAL store. The structure of installed
services is well-de�ned in YANG modules. Therefore other services can easily use the
API of another one. This enables ODL to create a chain of services. These services can
then be bundled to ease deployment. ODL also allows users to just load services in the
controller which are required for their use case. ODL’s microservice architecture is
especially useful because of the set of already implemented protocols and services. The
OpenDaylight web page provides documentation for all o�cial modules [12]. The most
notable ones include support for RESTCONF, NETCONF, OpenFlow and BGP. It also
uses the yangtools project [13] to auto-generate Java APIs from YANG modules.

The OpenDaylight controller supports a northbound implementation of both REST-
CONF and NETCONF. A northbound implementation refers to a server capable of using
the protocols. The RESTCONF server is listening on port 8181 and also provides an
con�guration interface. This allows both reading from and writing to the data store by
using a browser. It also allows to call RPCs implemented and registered by services in

Chapter 2. State of the Art 14

ODL. For NETCONF ODL runs two servers, one on port 1830 to access the con�gura-
tion subsystem, another one on port 2830 to interact with the MD-SAL data store. The
server which listens on port 2830 supports ssh and basic password authentication. The
con�guration �les also allow to change these ports or enable an additional server which
listens on port 2831. This additional server supports TCP. For interactions with other
NETCONF enabled devices ODL supports a NETCONF southbound implementation. So
ODL is also able to act as a NETCONF client. This feature is not part of the controller’s
odl-mdsal-all bundle. Instead it is supported in the odl-netconf-mdsal bundle which is
not included in the controller.

OpenDaylight includes a L2 Switch project [14]. This uses ODL’s OpenFlow library to
control OpenFlow enabled switches. It provides support for �ow tables. Based on these
a user can enforce his policies in regards of forwarding. The DLUX project is useful to
illustrate a network consisting of switches controlled by ODL.

The BGPCEP project [15] of ODL supports a southbound implementation of BGP and
allows ODL to run a BGP Route Re�ector. So it is capable of connecting to other BGP peers
and to listen for incoming connections, but it is not able to forward packets. Instead a
Route Re�ector simply propagates routes to connected peers and helps keeping the RIBs
homogeneously. BGPCEP supports an application-peer. An application-peer provides
an interface which allows an administrator to insert routes into or delete routes from the
RIB. All features like BGP peers, supported RIBs and application-peers can be con�gured.

2.4 Network Simulation

Network simulation allows to create virtual networks with speci�c conditions like
ideal transmission rates or transmission errors. It can also be used to test software and
protocols in networks, which are too expensive to be created with hardware. A variation
of tools has been created to simulate networks. One network simulation tool is the
Common Open Research Emulator (CORE) [16]. It provides a graphical user interface
which allows users to create networks using drag and drop. The supported services
can be con�gured for every element inside a network. These include routing protocols
like OSPF or BGP and con�gurations for default gateways and static routing. Even if a
service is not directly supported, CORE allows to run scripts for adding missing ones.
CORE also allows to track tra�c in real time with tools like tcpdump or wireshark.

Another tool for network simulation is Mininet [17]. It focuses on simulating SDNs with
OpenFlow. To interact with the network during run time Mininet provides a command
line interface. It has its own Python API for creating Mininet networks. The API allows
users to create switches and hosts. All of them can be put into their own namespace to
prevent problems when the same service is running on multiple simulated nodes. A user
can also execute commands on nodes to create a start con�guration. In regards of SDN,

Chapter 2. State of the Art 15

Mininet allows users to specify the controller of every switch inside the network. The
API does not support services of higher layers of the ISO-OSI model directly, but allows
to run them inside a Linux machine. The only exception is setting of IP addresses.

2.5 Related Work

Even though I2RS is still under development it is already a large topic. This thesis
only covers a part of a single service. So in order to put the work of this thesis in
perspective, we �rst discuss other related parts of I2RS. One of these is the �lter-based
RIB. The proposal draft-ietf-i2rs-fb-rib-info-model-00 [18] de�nes its current version.
Instead of destination-oriented routing like the RIB module de�ned in section 2.1.2, it
provides routing decisions based on �lters. These can match on headers of multiple
layers. An administrator can enforce policies based on size, time or packet/frame count,
too. It is possible that both a �lter-based RIB and a RIB contain a matching route for
a packet. To ensure determinism it is not possible to use both at the same time, but a
destination-based RIB can be utilized as default RIB in cases where a �lter-based RIB
has no matches for a packet.

I2RS is based on a client-agent architecture. A client may need to keep track of changes
in a network. Because other clients or routing protocols can trigger change events, RFC
7923 [19] de�nes requirements for a pub/sub service. It allows a client to subscribe to
a set of YANG data objects in a data store and get noti�ed when an event occurs. The
YANG PUBSUB project of OpenDaylight [20] is one attempt to implement a service
ful�lling the requirements of RFC 7923.

Another important part of I2RS are security requirements. This thesis focuses on a
proof-of-concept implementation of some features of the I2RS RIB service. Therefore it
does not make a detailed analysis of the security aspects of I2RS, but for deployment in
a business network, it is necessary to keep risks low. This is considered by draft-ietf-
i2rs-protocol-security-requirements-06 [5] that speci�es what security requirements
a deployable implementation of the I2RS protocol has to ful�ll. These include, but
are not limited to, a mutual authentication of client and agent, data integrity and data
con�dentiality.

In this thesis when we use the term Software De�ned Network we primarily refer to
the separation of Control Plane and Forwarding Plane in layer two of the ISO-OSI
model. But as Susan Hares et al. [21] points out is the Interface to the Routing System
also an approach of Software De�ned Networking. Therefore protocols like OpenFlow
of the Open Networking Foundation [22] are similar to I2RS. OpenFlow is a protocol
responsible for the communication between a controller and OpenFlow enabled switches.
So it takes care of the connection between the Control Plane and the Data Plane. Since it
is speci�ed to work with switches its purpose is to allow Software De�ned Networking

Chapter 2. State of the Art 16

on layer two. I2RS is also responsible for communication between control elements,
here the I2RS clients, and elements which are responsible for forwarding, here the
routing elements containing an I2RS agent. The di�erence in the approaches is that in
a SDN with OpenFlow enables switches, these do not make any forwarding decision.
Instead the devices request one from the controller. In I2RS a routing element is still
able to make forwarding decisions by itself, but the policies and information base which
is used for making forwarding decisions is in�uenced by clients.

17

Chapter 3

Methodology

This chapter illustrates the network in which we have tested our implementation of I2RS.
Since this thesis’ aim is a proof-of-concept implementation rather than a deployable
one the network is a small one. Nonetheless, it is intended to re�ect the paradigm of
separating the control plane from the forwarding plane. So the main sub-network will
implement this paradigm. First section 3.1 states the software used in our tests. Section
3.2 illustrates the overall topology of the test network. Then section 3.3 will focus on
the control plane of the main sub-network while section 3.4 explains the forwarding
plane in the setup. At last section 3.5 describes additional sub-networks required for
testing.

3.1 Software

In order to enable reproducibility we will state the software used in the tests. The
forwarding plane runs inside a virtual machine. To be more speci�c we use Mininet
2.2.1 on Ubuntu 14.04 LTS - 64 bit [23]. It is emulated by VirtualBox [24]. The used build
is VirtualBox build 5.0.14_Ubuntu r105127. The virtual machine has installed Mininet
2.2.1 [25] for network virtualisation of a SDN. Quagga 0.99.22.4 [26] implements the
BGP routers inside the networks.

The control plane is run on a host machine. This host machine runs the virtual machine
for the data plane. The I2RS agent is a ODL module. We deployed it in the Beryllium-SR2
stable build of ODL [12]. For the tests ODL runs in the OpenJDK Runtime Environment
(build 1.8.0_91-8u91-b14-3ubuntu1 16.04.1-b14).

Chapter 3. Methodology 18

3.2 Network Topology

The network topology is an augmentation of a network created by Edwin Cordeiro.
It can be found on github [27]. We adapted it to better �t our requirements. So we
removed OSPF, substituted some routers with switches and connected the network to
our control plane.

In order to better understand under which conditions our network is running we will
�rst focus on network virtualisation. Figure 3.1 illustrates this. The entire network is
run on a single hardware machine. We will now use the term Host machine or HM to
describe it. To keep testing conditions of the network constant the HM runs a virtual
machine. From now on we will refer to the virtual machine as VM. Other methods like
docker container are also possible but we decided to use a virtual machine because
Mininet already provides one and performance is not important in this thesis. The VM
runs Mininet to simulate all hosts, switches and routers in the network. Mininet is
not depicted in Figure 3.1 because it includes the entire network like the VM. Except
from the VM the HM also runs ODL including the I2RS agent module and the I2RS
client. These components are not inside the virtual machine so we can have a separation
between the control plane and the forwarding plane. For constant test conditions we
rely on a stable build of ODL which runs inside the Java Virtual Environment and a
Python virtual environment for the client.

Figure 3.1: Illustration of virtualisation of the networks

Since I2RS is about access to the routing system the used protocols and interactions

Chapter 3. Methodology 19

between routers are important. This network only uses BGP as its routing protocol.
Figure 3.2 depicts the di�erent autonomous systems (AS) in the network. AS 10 contains
a SDN consisting of �ve switches and the router r010_1 in a circle. It also includes the
hosts h010_11 to h010_51. Router r010_1 is connected to ODL. ODL acts as a route
re�ector inside of AS 10. AS 100 consists of the router r100_1 and the host h100_1. The
router r200_1 and the host h200_1 form AS 200. All three autonomous systems are
connected with each other. This is achieved by linking r010_1, r100_1 and r200_1 in a
circle. Interface eth2 of router r010_1 connects the network in the VM with ODL on
the HM. This is achieved by running r010_1 in the root name space of the VM. Router
r100_1 and router r200_1 run in their own name space to prevent problems with the
BGP daemons. The VM and the HM communicate with each other by using a Host-Only
adapter in VirtualBox.

Figure 3.2: Illustration of the di�erent Autonomous Systems inside the test network

Since this thesis focuses on I2RS in a SDN, we also separate AS 10 into the control
plane and the forwarding plane. AS 100 and AS 200 are additional networks for testing
purpose. Figure 3.3 illustrates this structure. Router r010_1 connects all components. So
it is, to some extend, part of each one. The following sections explain these components
in more detail.

Chapter 3. Methodology 20

Figure 3.3: Depiction of the network separated into control and data plane

3.3 Control Plane

The control plane is responsible for making forwarding decisions. It includes the I2RS
client, ODL and the Quagga router r010_1. The Quagga router is also responsible for
forwarding. So the control plane and the data plane are not clearly separated. We did
not investigate in �nding a solution to this problem because the main focus of the thesis
is I2RS.

3.3.1 I2RS client

The function of the client in the control plane is to allow administrators to access the
routing system. This is achieved by interacting with the I2RS agent via the I2RS protocol.
It provides a command line interface (CLI) for an user. The supported commands allow
to connect to an agent on a speci�ed address and port and to send RPCs to the agent.
In the setup both client and agent are located on the same machine. So the loopback
interface is used for communication. I2RS supports NETCONF and RESTCONF. The
client in this example uses NETCONF. To add and delete routes via RESTCONF the API
doc interface of ODL can be used.

Chapter 3. Methodology 21

3.3.2 OpenDaylight

ODL serves three functions in the control plane. The �rst one is as a controller for
switches in the SDN. So in regards of layer 2 of the ISO-OSI model, it implements the
entire control plane. For control on layer 3, it has to interact with the client and the
Quagga router r010_1. The second function is handling interactions with clients. The
I2RS agent module of ODL is responsible for this task. It listens for both RESTCONF
and NETCONF clients to connect. Once a client has established a communication, the
agent provides its services. For now they only include writing and deleting routes from
a RIB. When a client calls a RPC, the agent changes the RIB accordingly if possible. The
third function ODL provides is propagating route changes. ODLs BGP module acts as a
BGP Route Re�ector and sends route updates to its peers. Since ODL does not support
any forwarding functionality this is necessary for I2RS to have e�ects on the network.
Figure 3.3 shows that ODL has only one peer, the Quagga router r010_1.

3.3.3 Quagga

All routers in the network run Quagga’s BGP daemon for routing. The router r010_1 in
the control plane uses it to make forwarding decisions based on received route updates
from its peers. These include the router r100_1 and r200_1 from the additional networks.
Router r010_1 also communicates with ODL and implements routes inserted by I2RS.
Quagga is a traditional router implementation. So it does not have a separation of the
control plane and the forwarding plane. Instead the control logic resides inside the same
machine as the kernel which is responsible for forwarding. Therefore it is also, to some
extend, part of the data plane.

3.4 Forwarding Plane

The forwarding plane consists of �ve switches and partially the router r010_1. Figure
3.3 depicts this scenario. ODL controls the switches in the forwarding planes and makes
forwarding decisions. Therefore the switches request forwarding decisions from ODL.
In the network, these switches are responsible for the actual forwarding. The test setup
includes the data plane so we have a separation between control logic and forwarding
on layer 2 of the ISO-OSI model. I2RS is responsible for controlling the forwarding
decisions on layer 3.

Chapter 3. Methodology 22

3.5 Additional Networks

Figure 3.3 illustrates the additional networks. When considering Figure 3.2 we can
recognize that the additional networks are the autonomous systems AS 100 and AS
200. They are intended to emulate external networks so we can better check if added
routes are actually applied and used. Both ODL and Quagga’s BGP daemon state if
pre�xes are included in their RIB but sending ICMP echo requests and tracking tra�c
with wireshark or tcpdump is a more reliable source of information. Besides it is also
advisable to test if routes are propagated beyond directly connected BGP peers.

23

Chapter 4

Implementation

This chapter explains the implementation of the I2RS route-add and route-delete RPCs.
First section 4.1 lists the used software and explains decisions regarding their use.
Section 4.2 illustrates the implementation of the I2RS agent. Section 4.3 provides an
overview on the implementation of the I2RS client. This chapter ends with section 4.4
which describes some tests of the implementation.

4.1 Software

The I2RS agent is a module for ODL. The usage of ODL is suggested by the I2RS working
group. Except from that ODL provides modules which provide important services like
auto-generated YANG bindings or NETCONF support. We decided to use it for the
agent and not the client because ODL also provides a module for BGP and can already
be used as a controller of a SDN. Our implementation uses the ODL Beryllium-SR2
release. The target Java version of the implementation is OpenJDK version "1.8.0_91".
The client uses ydk-gen [28] to generate a Python infrastructure. It allows to create
Python modules based on YANG �les, to connect to servers and includes a NETCONF
Provider. The client is written for Python 2.7.12. Compatibility with Python 3 is not
tested.

4.2 I2RS Agent

The I2RS agent is responsible for interacting with the RIB manager. Therefore it listens
on the precon�gured port 2830. Clients can connect via ssh and use the NETCONF
protocol for communication. It also allows to change this port and to enable an additional
one for TCP connections. Besides it listens on port 8181 for RESTCONF clients. When a
client has connected, it provides implementations for the route-add and the route-delete

Chapter 4. Implementation 24

RPC to modify the RIB. It does not provide a working implementation of other RPCs
like route-update or nh-add.

4.2.1 Architecture

The architecture of the I2RS agent module is based on the Startup Project Archetype [29].
It consists of di�erent subprojects. The most important ones are api, impl, features and
karaf.

The api project includes the YANG data module for the RIB service. It uses ODL’s
yangtools project to generate a Java API from the YANG modules. Auto-generated
classes can also be found inside the project. The exact method on how a Java API is
generated from YANG modules is described in the yangtools documentation [30].

The subproject impl contains the implementations of the RPCs. When the module is
installed into ODL, it registers the RPCs as services into the MD-SAL data store. This
allows to use ODL’s modules for RESTCONF and NETCONF servers. Because of this
ODL’s controller is also able to delegate the RPCs to the correct implementation.

In order to make the I2RS agent module deployable in ODL, the features subproject
is required. It de�nes bundles which can be installed into ODL and is responsible for
dependency management. Currently four features are bundled. The �rst one is odl-
i2rsagent-api. It loads just the api project of the I2RS agent and OpenDaylight’s MD-SAL
models into ODL. The second one is odl-i2rsagent. This feature installs odl-i2rsagent-
api, the impl project of the I2RS agent and the feature for BGP support. It also enables
access to the MD-SAL data store and installs the NETCONF server. The third feature
is odl-i2rsagent-rest. It includes the odl-i2rsagent feature and the one for RESTCONF
support. The last one is odl-i2rsagent-ui. In addition to the odl-i2rsagent-rest feature it
also installs ODL’s MD-SAL API docs.

The karaf subproject contains a ODL version for testing of the module as a single feature.
Therefore it just installs modules which are required according to features. It also loads
the default con�guration for modules when provided. In the case of I2RS this especially
includes con�gurations for BGP peers, speakers and RIBs. In order to run the I2RS agent
correctly the BGP con�guration has to be adapted in this local instance of ODL.

4.2.2 Data structure

The I2RS agent does not yet implement the routing instance of the I2RS RIB service. So
a separate RIB is not supported. Instead, it uses the application peer of the BGP module
to interact with its RIB. It also does not yet support a con�guration �le. Because of
these conditions, it is currently limited to only work with the BGP module, a correctly
con�gured application peer, and prede�ned RIB names. Since the BGP module does not

Chapter 4. Implementation 25

support saving next hops separated from routes which include them, RPCs like nh-add
can not be implemented. This structural limitation is also the reason why the route-add
RPC processes next hops directly and does not rely on the nh-add RPC.

The data structure of input and output of the route-add RPC and the route-delete RPC
consist of classes auto-generated from the YANG module. The implementation will
try to map the input data to route information for the RIB of the BGP module. Since
a route for example does not necessarily have an autonomous system number, this is
not always possible. So it requires additional con�guration data which is hard coded
for now. Also the other way around the RIB of the BGP module does not support every
information which can be included in the RPCs input data. One example for this is the
route-index which is sent with every route. For now this data will be ignored and its
function inside of I2RS is not supported.

4.2.3 Remote Procedure Calls

RPCs can be called via NETCONF and RESTCONF. ODL’s controller checks if provided
input is consistent with data de�ned in the according YANG module. Then it will
delegate the input to the registered implementation of the service. It calls the method
belonging to the RPC in the implementation and hands o� the input formatted as Java
classes. The Java classes are the ones auto-generated from the YANG module by ODL’s
yangtools module.

The I2RS RIB service implementation will then check if input data like the RIB name is
valid and call a RPC handler to process the data. The handler will extract information
from the input and map it to a route instance for the BGP RIB. If an error occurs because
of an invalid value or a not yet supported type of route, the RPC handler will throw
an exception containing the error code. Error codes are not speci�ed in any document
so they are arbitrarily ordered. The implementation does not yet have a feedback loop
from BGP’s RIB or its peers. So everything which could be successfully put into the
MD-SAL data store will be regarded as a successful operation regardless of what was
actually propagated to other peers. Once all routes are either added to the data store
or have failed during processing, the output will be generated. It already supports the
return-failure-details �ag. This process is illustrated in Figure 4.1. How the BGP module
interacts with the changes inside the MD-SAL data store and how it handles propagating
routes to its peers is not depicted. This is part of the BGP module and is explained in its
documentation [31].

Only route-add and route-delete RPC are currently supported. Both are also limited
to IPv4 and IPv6 routes with a destination pre�x as the match condition. Matching on
source pre�x, source and destination or other types of routes can not be processed and
will throw an exception. Next hops are also limited to IPv4 and IPv6 addresses. Other
base-types of next hops or more complex next hops like ones for next hop chaining or

Chapter 4. Implementation 26

Figure 4.1: Sequence diagram on how a RPC is processed

load balance are not supported. If these are used the I2RS agent throws an exception.
All exceptions based on not supported or invalid input are caught by the I2RS agent’s
RIB service implementation. It marks the corresponding route as failed and will adjust
the output. This means it will increase the failed-count and create a failed-route if the
return-failure-detail �ag is set.

4.3 I2RS Client

The I2RS client is responsible for communicating with I2RS agents. It also provides a
user interface to send RPCs to an agent.

4.3.1 Architecture

The I2RS client uses a Python module generated by ydk-gen as the base of the imple-
mentation. The module contains class representations of the data structure de�ned in
the listed YANG �les during the generation. In this case we created only modules for
the RIB service data module and all of its dependencies. The generated modules also
include Service Providers, which can be used to connect to servers via NETCONF, and

Chapter 4. Implementation 27

a CRUD service for reading and writing of data.

The client itself consists of di�erent classes representing the client and its commands.
So di�erent implementations of commands are easily interchangeable. Except from this,
the client does not have any additional internal structure because of its small size.

4.3.2 Functionality

This implementation of an I2RS client provides a command-line-like interface for users.
So it is not possible to start it with parameters but once started a user can type in
di�erent commands and the client will request required information step by step. It
also informs users if a value is optional or has a default value. In this case skipping the
insertion of input for a �eld will lead to the client ignoring the �eld or the usage of
default values.

At the moment the client supports just basic commands. These include help, exit,
connect, route-add, route-delete and test. The help command will provide information
about the client itself and supported commands. For leaving the client exit can be used.
This will disconnect from all agents. The connect command speci�es the parameters
which should be used to connect to an agent. For now, the client is only capable of
connecting to one agent at a time and supports only the NETCONF protocol. Thus
session management is not provided. The commands route-add and route-delete call
the RPCs on the agent. This requires prior use of the connect command. The test
command can be used to run prede�ned tests on an agent. These basically call RPCs on
the agent with prede�ned values. The tests include only functionality tests and no ones
for evaluating performance.

4.4 Testing the setup

The tests consist only of integration tests. Unit tests inside an implementation of the
agent or the client are not included. The tests, which are also de�ned in the client’s test
command, include several scenarios. The �rst one is adding a single IPv4 route with an
IPv4 next hop. Second is adding multiple IPv4 routes with IPv4 next hops. The next
ones each add a single IPv4 route with di�erent invalid parameters. The tests are also
repeated with IPv6 next hops and IPv6 routes, that are veri�ed by reading from the
RIB. The tests also include deleting the routes again and deleting routes, which do not
exist. The test RPCs are �rst sent to the agent using a browser and ODL’s RESTCONF
API docs. After con�rming functionality inside the agent the tests are repeated but
this time they are sent from a NETCONF client. As independent NETCONF client we
use yangcli-pro [32]. It supports connecting to clients via ssh, session management,

Chapter 4. Implementation 28

loading YANG �les and using the RPCs of loaded YANG �les. Last we repeat the tests
by sending the RPCs from our I2RS client.

Listing 4.1 depicts an example input of the route-add RPC as XML �le. This example sets
the return-failure-detail to true. The target RIB has the name example-app-rib. It adds
just one route with route-index 600. This route matches every packet with a destination
address in the 110.3.0.0/24 network. The route attributes include a preference of seven.
Vendor speci�c attributes are not de�ned. The next hop has the IPv4 address 10.0.10.2.
Listing 4.2 depicts the input for a route-delete RPC which deletes this route again.

Listing 4.1: Example of input data for a route-add RPC as XML �le
<route-add xmlns="urn:ietf:params:xml:ns:yang:ietf-i2rs-rib">

<return-failure-detail>true</return-failure-detail>
<rib-name>example-app-rib</rib-name>
<routes>

<route-list>
<route-index>600</route-index>
<match>

<ipv4>
<dest-ipv4-prefix>110.3.0.0/24</dest-ipv4-prefix>

</ipv4>
</match>
<route-attributes>

<route-preference>7</route-preference>
<local-only>false</local-only>
<address-family-route-attributes/>

</route-attributes>
<route-vendor-attributes/>
<nexthop>

<nexthop-id>637</nexthop-id>
<sharing-flag>false</sharing-flag>
<nexthop-base>

<ipv4-address>10.0.10.2</ipv4-address>
</nexthop-base>

</nexthop>
</route-list>

</routes>
</route-add>

Listing 4.2: Example of input data for a route-delete RPC as XML �le
<route-delete xmlns="urn:ietf:params:xml:ns:yang:ietf-i2rs-rib">

<return-failure-detail>true</return-failure-detail>
<rib-name>example-app-rib</rib-name>
<routes>

<route-list>
<route-index>600</route-index>
<match>

<ipv4>
<dest-ipv4-prefix>110.3.0.0/24</dest-ipv4-prefix>

</ipv4>
</match>

</route-list>
</routes>

</route-add>

Chapter 4. Implementation 29

Listing 4.3 illustrates how multiple routes can be added by calling one RPC. In order
to achieve this, multiple instances of route-list are de�ned in the data structure. Each
of these route-lists represents a route which should be added. Besides, this input data
does not specify the return-failure-detail �ag. Therefore the agent has to use its default
value false.

Listing 4.3: Example of input data for adding multiple routes with the route-add RPC formatted
as a XML �le
<route-add xmlns="urn:ietf:params:xml:ns:yang:ietf-i2rs-rib">

<rib-name>example-app-rib</rib-name>
<routes>

<route-list>
<route-index>500</route-index>
<match>

<ipv4>
<dest-ipv4-prefix>10.2.0.0/24</dest-ipv4-prefix>

</ipv4>
</match>
<route-attributes>

<route-preference>42</route-preference>
<local-only>false</local-only>
<address-family-route-attributes/>

</route-attributes>
<route-vendor-attributes/>
<nexthop>

<nexthop-id>543</nexthop-id>
<sharing-flag>true</sharing-flag>
<nexthop-base>

<ipv4-address>10.10.0.6</ipv4-address>
</nexthop-base>

</nexthop>
</route-list>
<route-list>

<route-index>5300</route-index>
<match>

<ipv4>
<dest-ipv4-prefix>10.13.0.0/24</dest-ipv4-prefix>

</ipv4>
</match>
<route-attributes>

<route-preference>17</route-preference>
<local-only>false</local-only>
<address-family-route-attributes/>

</route-attributes>
<route-vendor-attributes/>
<nexthop>

<nexthop-id>542</nexthop-id>
<sharing-flag>true</sharing-flag>
<nexthop-base>

<ipv4-address>10.10.0.2</ipv4-address>
</nexthop-base>

</nexthop>
</route-list>

</routes>
</route-add>

30

Chapter 5

Results

This chapter presents the results of the thesis. First section 5.1 states the functionality of
I2RS. Section 5.2 demonstrates problems encountered while developing the I2RS agent
and client.

5.1 Functionality of I2RS

The implementation of I2RS consists of a client and an agent. The current implemen-
tation of the client is capable of reading input from the command line. It creates a
representation of the RPC as Python class object and inserts the given values. Because
of time restrictions full recognition is not yet implemented into the client. If invalid
input is given to a function it may lead the client to throw an exception and terminate
afterwards. The client can create a route-add and a route-delete RPC. It can also connect
to a NETCONF server on a speci�ed port and supports the usage of ssh and basic pass-
word authentication. When sending a RPC to the server it throws an exception because
of a timeout while waiting for the reply. The problem is on the client-side. Because of
this bug all connectivity tests fail for the client.

The agent supports a northbound interface for both NETCONF and RESTCONF. If input
data has an invalid structure ODL sends an error code to the client. This is handled by
the ODL controller and not by our implementation of the I2RS agent. If an error occurs
while processing the RPC, the agent marks the operation as failed. This is communicated
to the client by using the failed-count and optionally the failure-details in the output of
the RPC. With both protocols, NETCONF and RESTCONF, the agent was able to insert
valid routes into the MD-SAL data store and to delete them afterwards. So all test cases
were successful in regards of operating on the data store. The agent interacts with the
BGP module in order to advertise routes to its peers. These routes include ones learned
by other peers and ones inserted by the agent. The BGP module sends BGP update

Chapter 5. Results 31

messages containing the added routes. So far no invalid �elds inside an update message
could be found. In previous versions of the I2RS agent the BGP module has sometimes
thrown warnings because of a lack of attributes in the routes. This problem has been
resolved in the current version. Quagga’s BGP daemon marks routes sent by ODL as
valid and as best route, but crashes immediately after trying to install the route into the
RIB. So for now, it is not possible to insert routes into the routing system.

5.2 Encountered Problems

During development we encountered two problems with the I2RS protocol. The �rst
one is a di�erent route-index size. Proposal draft-ietf-i2rs-rib-data-model-05 de�nes the
route-add RPC. It contains a list of routes. A route is represented by a route-pre�x which
includes a route-index to be uniquely identi�able. The route-index of a route-pre�x is
of the type uint64. The output of the route-add RPC is a route-operation-state. It may
have a container failure-detail. This container is supposed to give more information
about failed routes. So it includes a list of failed-routes. A failed-route only contains
two elements. The �rst one is an error code, which speci�es the failure reason. The
second one is a route-index. The route-index is used to match failed-routes to the routes
which should be added. In this speci�cation the problem is that the route-index of a
failed-route is of the type uint32 and not uint64 like the route-index of a regular route.
So we have a mismatch of types. This makes representation as failed-route impossible
for every route which is added.

The second problem is a missing data structure for next hops. The route-add RPC
speci�es that the nh-add RPC has to be called �rst. The nh-add RPC is supposed to
add a next hop to a RIB and return its hexthop-id. Then the route-add RPC uses the
nexthop-ids for the next hops of the routes which should be added.

A normal work�ow for adding a route in I2RS is supposed to look like this: A client has
some routes it wants to add. So �rst it sends a nh-add RPC to an agent. It includes the
next hops of the routes, the client wants to add to a RIB. The agent looks if the next
hops already exist. If the next hops do not exist, the agent will create them and assign
an unique nexthop-id to every single one. Next the agent sends a reply to the client.
This reply contains the nexthop-ids of the requested next hops. The client can now use
these nexthop-ids to substitute the next hop inside the routes. Next the client sends a
route-add RPC to the agent. It contains the routes, the client wants to add and every
route contains a nexthop-id representing a next hop. The agent receives this RPC and
can add the routes to the RIB. The next hops can be resolved by matching the nexthop-id
of a next hop in a route and one in the next hop storage of the RIB.

The problem with this process is that neither a routing instance nor a RIB contains any
storage for next hops. An additional storage which can be mapped to a RIB is not de�ned,

Chapter 5. Results 32

too. This makes it impossible for an agent to keep track of already used nexthop-ids or
to resolve a next hop based on its id. Since this is required by the speci�cation of the
nh-add RPC and the route-add RPC, these can not be implemented correctly.

33

Chapter 6

Discussion

This chapter discusses the results of the thesis. First section 6.1 explains the state of
the implementation of I2RS presented in this thesis. Next section 6.2 discusses the I2RS
protocol. Section 6.3 states the future work.

6.1 Discussion of the implementation

The �rst part of the implementation is the I2RS client. Currently, when the client
connects to an agent and sends a RPC it times out while waiting for the reply from the
agent. We used other NETCONF clients like yangcli-pro to send RPCs to the agent. In
these cases the agent replied immediately. Therefore we can be sure it is a bug in the
client, not in the agent, but the reason for this bug is not known. It requires further
investigation and debugging of the client. Nevertheless, this bug leads to the fact that
the client is not working. Therefore it is a severe one.

For now the client only has to be able to send RPCs via NETCONF like every other
NETCONF client. So currently it is possible to substitute the I2RS client by a NETCONF
client like yangcli-pro. Later the client is supposed to combine the route-add RPC with
the nh-add RPC. This can not be done easily by a simple NETCONF client. Therefore, in
our opinion, it is still advisable to create a running I2RS client for implementing future
features.

Our implementation of the I2RS agent can receive route-add and route-delete RPCs via
NETCONF and RESTCONF. It is also capable of modifying the MD-SAL data store of
OpenDaylight. The agent can interact with the BGP module of OpenDaylight and insert
routes into its RIB. So this part of the implementation is working as supposed. The
BGP module acts as a Route Re�ector and therefore advertises the inserted routes to its
peers. In the test networks we used Quagga for its peers. Quagga crashed when it tried
to insert a route into its RIB. The exact reason for this problem is not known. In earlier

Chapter 6. Discussion 34

stages of development our setup used CORE for network simulation. In this setup we
also observed a similar misbehavior of Quagga. We were able to link it to the fact that
our virtual machine does not support IPv6 but it tries to install IPv6 routes into the RIB.
In our current setup Quagga also runs inside a virtual machine which does not support
IPv6. Because of this correlation we assume that the misbehavior of Quagga is due to
a lack of IPv6 support. But at the moment a bug in the implementation or a wrong
con�guration of our agent can not be excluded. So it requires further investigation to
solve this problem.

6.2 Discussion of the Interface to the Routing System

This thesis also introduced the basics of I2RS. Even though the implementation of the
Interface to the Routing System does not yet work correctly, this thesis has shown
that I2RS is on a good way. It can be used to interact with the routing system and
allows automation of tasks. This is achieved because of the YANG data modules and
already established protocols like NETCONF. In the thesis for example we were able to
substitute our not correctly working client with an already existing NETCONF client.
But it is also notable that there is still a lot of work to do. This includes �xing our
implementations of both, the I2RS agent and the I2RS client, and an implementation of
further speci�cation of the I2RS protocol.

In this thesis we found two errors in draft-ietf-i2rs-rib-data-model-05. The �rst one is a
type mismatch in the route-index of a regular route and a failed route. This problem
makes sending always correct output impossible because not every route can be mapped
on a failed route. This error can be solved by changing the type of a �eld and does not
require any structural change. Therefore we consider it to be a minor one, but draft-
ietf-i2rs-rib-data-model-06 [33] has not yet addressed this problem. Our suggestion is
to change the types of both, the route index of a regular route and the one of a failed
route, to uint64. This solves the problem and allows a huge number of di�erent routes
to be installed.

The second issue is about a missing data structure for next hops in the routing-instance
and in the RIBs. It makes storing next hops impossible. Because of this problem it
is not possible to implement the route-add RPC or the nh-add RPC according to the
speci�cation. Therefore we consider it to be a severe problem. In draft-ietf-i2rs-rib-
data-model-06 this has been addressed and is solved by adding a nexthop-list to every
RIB. The nexthop-list allows to reference next hops based on the their nexthop-id and
therefore enables an agent to manage next hops. This looks like a good approach to us,
but further evaluation is required in order to determine if it solves all related problems
and does not generate new ones.

Chapter 6. Discussion 35

6.3 Future Work

I2RS includes many services and requirements. Therefore a lot of work has to be done.
This thesis works with draft-ietf-i2rs-rib-data-model-05, but because of our �ndings
this proposal has been updated by the IETF working group. So the �rst step should be
to update to draft-ietf-i2rs-rib-data-model-06. An evaluation of this new speci�cation is
necessary, especially in regards of the data structure for next hops. The next step should
be solving the problem with the routers. Because if other routers are not implementing
routes advertised by the agent, the agent can not be used as supposed. Therefore a
setup which supports IPv6 can be used in order to test whether the lack of IPv6 support
causes the problem. If this does not solve the issue Quagga’s logs and the sent BGP
update messages should be reexamined to �nd more clues about this bug.

Afterwards the implementation of a routing-instance would be advisable. It allows to
create a separate RIB which enables the agent to support other protocols than BGP.
Also it makes it possible to manage next hops as supposed by I2RS. Therefore nh-add,
nh-delete, rib-add and rib-delete RPC should be implemented. Also the route-add RPC
has to be adapted to work with the nh-add RPC and the routing-instance. Other features
of the RIB Service of I2RS are the route-update RPC and noti�cations for events. These
have to be implemented over time, too. Besides the implementation of a con�guration
system is necessary. This allows to work with more than one speci�ed RIB of the BGP
module.

Except from that I2RS de�nes other services like �lter-based RIBs. An implementation
of these is also part of future work. Before deployment the security requirements and a
traceability frame work need to be implemented. So only for I2RS a lot of work has to be
done. But creating a working implementation of an I2RS client is also an important part.
Tools like yangcli-pro work for I2RS at the moment but when I2RS implements features
beyond NETCONF connections and calling RPCs, usage of these tools might not be
possible any more. Some of these features include multiple RPCs working together like
the nh-add RPC and the route-add RPC or even adding features to NETCONF [34]. An
automation of this interaction in a client is advisable. So future implementations of I2RS
clients can be based on our client, implement a new client by using adapted libraries
for NETCONF or even be based on already existing tools like yangcli-pro.

36

Chapter 7

Conclusion

In this thesis we presented a proof-of-concept implementation of an I2RS client and an
I2RS agent. These modules support the route-add and route-delete RPCs of draft-ietf-
i2rs-rib-data-model-05.

Our I2RS client can read input data from a command line interface and is capable of
creating Python class representations of RPCs. It can also connect to an agent on
speci�ed ports. Currently the client gets a time out when it is sending a RPC to an agent.
Therefore it is not working correctly and further investigation is required.

Our I2RS agent can receive and process the route-add RPC and the route-delete RPC. In
our test setup, when the agent propagates inserted routes to Quagga, its BGP daemon
crashes. The reason for this bug is currently not known. We assume that it is linked to a
lack of IPv6 support in our test environment. This assumption is based on experiences
with similar problems in previous test setups. Nevertheless this bug requires further
investigation to achieve a working implementation.

The development lead to the discovery of two errors in the speci�cation which form
our main contribution to the development of I2RS. The �rst one is a type mismatch
which makes creating an always correct reply to the route-add RPC and the route-delete
RPC impossible. A more severe one is the missing of a data structure for storing next
hops. This causes that the nh-add RPC is not usable and the route-add RPC can not
be implemented according to its speci�cation. The second error is solved in draft-ietf-
i2rs-rib-data-model-06, but it is required that the functionality of this speci�cation is
evaluated, too.

Because of these results, we conclude that I2RS still requires more development before
it can be used in a business network. The speci�cation requires more evaluations and
a working implementations is necessary. But in our opinion I2RS is on a good way to
become a practical standardized interface.

37

Bibliography

[1] L. Wang, H. Ananthakrishnan, M. Chen, amit.dass@ericsson.com, S. Kini,
and N. Bahadur, “A YANG Data Model for Routing Information Base
(RIB),” Working Draft, IETF Secretariat, Internet-Draft draft-ietf-i2rs-rib-data-
model-05, March 2016. [Online]. Available: http://www.ietf.org/internet-drafts/
draft-ietf-i2rs-rib-data-model-05.txt

[2] A. Atlas, T. Nadeau, and D. Ward, “Problem Statement for the Interface to the
Routing System,” Internet Requests for Comments, RFC Editor, RFC 7920, June
2016.

[3] A. Atlas, J. Halpern, S. Hares, D. Ward, and T. Nadeau, “An Architecture for the
Interface to the Routing System,” Internet Requests for Comments, RFC Editor,
RFC 7921, June 2016.

[4] J. Haas and S. Hares, “I2RS Ephemeral State Requirements,” Working Draft, IETF
Secretariat, Internet-Draft draft-ietf-i2rs-ephemeral-state-15, July 2016. [Online].
Available: http://www.ietf.org/internet-drafts/draft-ietf-i2rs-ephemeral-state-15.
txt

[5] S. Hares, D. Migault, and J. M. Halpern, “I2RS Security Related Require-
ments,” Working Draft, IETF Secretariat, Internet-Draft draft-ietf-i2rs-protocol-
security-requirements-06, May 2016. [Online]. Available: http://www.ietf.org/
internet-drafts/draft-ietf-i2rs-protocol-security-requirements-06.txt

[6] J. Clarke, G. Salgueiro, and C. Pignataro, “Interface to the Routing System (I2RS)
Traceability: Framework and Information Model,” Internet Requests for Comments,
RFC Editor, RFC 7922, June 2016.

[7] N. Bahadur, S. Kini, and J. Medved, “Routing Information Base Info Model,”
Working Draft, IETF Secretariat, Internet-Draft draft-ietf-i2rs-rib-info-model-
08, October 2015. [Online]. Available: http://www.ietf.org/internet-drafts/
draft-ietf-i2rs-rib-info-model-08.txt

http://www.ietf.org/internet-drafts/draft-ietf-i2rs-rib-data-model-05.txt
http://www.ietf.org/internet-drafts/draft-ietf-i2rs-rib-data-model-05.txt
http://www.ietf.org/internet-drafts/draft-ietf-i2rs-ephemeral-state-15.txt
http://www.ietf.org/internet-drafts/draft-ietf-i2rs-ephemeral-state-15.txt
http://www.ietf.org/internet-drafts/draft-ietf-i2rs-protocol-security-requirements-06.txt
http://www.ietf.org/internet-drafts/draft-ietf-i2rs-protocol-security-requirements-06.txt
http://www.ietf.org/internet-drafts/draft-ietf-i2rs-rib-info-model-08.txt
http://www.ietf.org/internet-drafts/draft-ietf-i2rs-rib-info-model-08.txt

Bibliography 38

[8] M. Bjorklund, “YANG - A Data Modeling Language for the Network Con�guration
Protocol (NETCONF),” Internet Requests for Comments, RFC Editor, RFC 6020,
October 2010. [Online]. Available: http://www.rfc-editor.org/rfc/rfc6020.txt

[9] M. Boucadair and C. Jacquenet, “Software-De�ned Networking: A Perspective
from within a Service Provider Environment,” Internet Requests for Comments,
RFC Editor, RFC 7149, March 2014. [Online]. Available: http://www.rfc-editor.org/
rfc/rfc7149.txt

[10] Open Networking Foundation, “Software-De�ned Networking: The New Norm
for Networks,” Open Networking Foundation, Palo Alto, CA, USA, White paper,
Apr. 2012. [Online]. Available: http://www.opennetworking.org/images/stories/
downloads/sdn-resources/white-papers/wp-sdn-newnorm.pdf

[11] “Platform Overview | OpenDaylight,” https://www.opendaylight.org/
platform-overview/, (Accessed on 07/31/2016).

[12] “Downloads | OpenDaylight,” https://www.opendaylight.org/downloads, (Ac-
cessed on 07/31/2016).

[13] “YANG Tools:Main - OpenDaylight Project,” https://wiki.opendaylight.org/view/
YANG_Tools:Main, (Accessed on 08/11/2016).

[14] “L2 Switch:Main - OpenDaylight Project,” https://wiki.opendaylight.org/view/L2_
Switch:Main, (Accessed on 07/31/2016).

[15] “BGP LS PCEP:Main - OpenDaylight Project,” https://wiki.opendaylight.org/view/
BGP_LS_PCEP:Main, (Accessed on 07/31/2016).

[16] “Common Open Research Emulator (CORE) | Networks and Communication
Systems Branch,” http://www.nrl.navy.mil/itd/ncs/products/core, (Accessed on
08/08/2016).

[17] “Mininet: An Instant Virtual Network on your Laptop (or other PC) - Mininet,”
http://mininet.org/, (Accessed on 08/08/2016).

[18] S. Kini, S. Hares, L. Dunbar, A. Ghanwani, R. R. Krishnan, D. Bogdanovic, and
R. White, “Filter-Based RIB Information Model,” Working Draft, IETF Secretariat,
Internet-Draft draft-ietf-i2rs-fb-rib-info-model-00, June 2016. [Online]. Available:
http://www.ietf.org/internet-drafts/draft-ietf-i2rs-fb-rib-info-model-00.txt

[19] E. Voit, A. Clemm, and A. G. Prieto, “Requirements for Subscription to YANG
Datastores,” Internet Requests for Comments, RFC Editor, RFC 7923, June 2016.

[20] “YANG PUBSUB:Main - OpenDaylight Project,” https://wiki.opendaylight.org/
view/YANG_PUBSUB:Main, (Accessed on 07/31/2016).

http://www.rfc-editor.org/rfc/rfc6020.txt
http://www.rfc-editor.org/rfc/rfc7149.txt
http://www.rfc-editor.org/rfc/rfc7149.txt
http://www.opennetworking.org/images/stories/downloads/sdn-resources/white-papers/wp-sdn-newnorm.pdf
http://www.opennetworking.org/images/stories/downloads/sdn-resources/white-papers/wp-sdn-newnorm.pdf
https://www.opendaylight.org/platform-overview/
https://www.opendaylight.org/platform-overview/
https://www.opendaylight.org/downloads
https://wiki.opendaylight.org/view/YANG_Tools:Main
https://wiki.opendaylight.org/view/YANG_Tools:Main
https://wiki.opendaylight.org/view/L2_Switch:Main
https://wiki.opendaylight.org/view/L2_Switch:Main
https://wiki.opendaylight.org/view/BGP_LS_PCEP:Main
https://wiki.opendaylight.org/view/BGP_LS_PCEP:Main
http://www.nrl.navy.mil/itd/ncs/products/core
http://mininet.org/
http://www.ietf.org/internet-drafts/draft-ietf-i2rs-fb-rib-info-model-00.txt
https://wiki.opendaylight.org/view/YANG_PUBSUB:Main
https://wiki.opendaylight.org/view/YANG_PUBSUB:Main

Bibliography 39

[21] S. Hares and R. White, “Software-De�ned Networks and the Interface to the
Routing System (I2RS),” IEEE Internet Computing, vol. 17, no. 4, pp. 84–88, Jul.
2013. [Online]. Available: http://dx.doi.org/10.1109/MIC.2013.76

[22] “OpenFlow - Open Networking Foundation,” https://www.opennetworking.org/
sdn-resources/open�ow/57-sdn-resources/onf-speci�cations/open�ow?layout=
blog, (Accessed on 08/11/2016).

[23] “Mininet VM Images ·mininet/mininet Wiki ·GitHub,” https://github.com/mininet/
mininet/wiki/Mininet-VM-Images, (Accessed on 08/01/2016).

[24] “Downloads – Oracle VM VirtualBox,” https://www.virtualbox.org/wiki/
Downloads, (Accessed on 08/01/2016).

[25] “Download/Get Started with Mininet - Mininet,” http://mininet.org/download/,
(Accessed on 08/01/2016).

[26] “Quagga Software Routing Suite,” http://www.nongnu.org/quagga/, (Accessed on
08/01/2016).

[27] “GitHub - edwinsc/mininet_ospf_bgp: A simple Mininet network running Quagga
(OSPF and BGP),” https://github.com/edwinsc/mininet_ospf_bgp, (Accessed on
08/01/2016).

[28] “GitHub - CiscoDevNet/ydk-gen: Extensions to pyang for generating code
from yang models.” https://github.com/CiscoDevNet/ydk-gen, (Accessed on
08/03/2016).

[29] “OpenDaylight Controller:MD-SAL:Startup Project Archetype - OpenDaylight
Project,” https://wiki.opendaylight.org/view/OpenDaylight_Controller:MD-SAL:
Startup_Project_Archetype, (Accessed on 08/03/2016).

[30] “YANG Tools:YANG to Java Mapping - OpenDaylight Project,”
https://wiki.opendaylight.org/view/Yang_Tools:Code_Generation_Demo:
YANG2JAVA_Mapping, (Accessed on 08/03/2016).

[31] “BGP LS PCEP:Beryllium Developer Guide - OpenDaylight Project,”
https://wiki.opendaylight.org/view/BGP_LS_PCEP:Beryllium_Developer_
Guide#BGP_Developer_Guide, (Accessed on 08/10/2016).

[32] “yangcli-pro - YumaWorks,” https://www.yumaworks.com/yangcli-pro/, (Accessed
on 08/10/2016).

[33] L. Wang, H. Ananthakrishnan, M. Chen, amit.dass@ericsson.com, S. Kini,
and N. Bahadur, “A YANG Data Model for Routing Information Base
(RIB),” Internet Engineering Task Force, Internet-Draft draft-ietf-i2rs-rib-
data-model-06, Jul. 2016, work in Progress. [Online]. Available: https:
//tools.ietf.org/html/draft-ietf-i2rs-rib-data-model-06

http://dx.doi.org/10.1109/MIC.2013.76
https://www.opennetworking.org/sdn-resources/openflow/57-sdn-resources/onf-specifications/openflow?layout=blog
https://www.opennetworking.org/sdn-resources/openflow/57-sdn-resources/onf-specifications/openflow?layout=blog
https://www.opennetworking.org/sdn-resources/openflow/57-sdn-resources/onf-specifications/openflow?layout=blog
https://github.com/mininet/mininet/wiki/Mininet-VM-Images
https://github.com/mininet/mininet/wiki/Mininet-VM-Images
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
http://mininet.org/download/
http://www.nongnu.org/quagga/
https://github.com/edwinsc/mininet_ospf_bgp
https://github.com/CiscoDevNet/ydk-gen
https://wiki.opendaylight.org/view/OpenDaylight_Controller:MD-SAL:Startup_Project_Archetype
https://wiki.opendaylight.org/view/OpenDaylight_Controller:MD-SAL:Startup_Project_Archetype
https://wiki.opendaylight.org/view/Yang_Tools:Code_Generation_Demo:YANG2JAVA_Mapping
https://wiki.opendaylight.org/view/Yang_Tools:Code_Generation_Demo:YANG2JAVA_Mapping
https://wiki.opendaylight.org/view/BGP_LS_PCEP:Beryllium_Developer_Guide#BGP_Developer_Guide
https://wiki.opendaylight.org/view/BGP_LS_PCEP:Beryllium_Developer_Guide#BGP_Developer_Guide
https://www.yumaworks.com/yangcli-pro/
https://tools.ietf.org/html/draft-ietf-i2rs-rib-data-model-06
https://tools.ietf.org/html/draft-ietf-i2rs-rib-data-model-06

Bibliography 40

[34] S. Hares and amit.dass@ericsson.com, “I2RS protocol strawman,” Internet
Engineering Task Force, Internet-Draft draft-hares-i2rs-protocol-strawman-03,
Jul. 2016, work in Progress. [Online]. Available: https://tools.ietf.org/html/
draft-hares-i2rs-protocol-strawman-03

https://tools.ietf.org/html/draft-hares-i2rs-protocol-strawman-03
https://tools.ietf.org/html/draft-hares-i2rs-protocol-strawman-03

	Introduction
	Goals of the thesis
	Outline

	State of the Art
	Interface to the Routing System
	Architecture
	The RIB module

	Software-Defined Networking
	OpenDaylight
	Network Simulation
	Related Work

	Methodology
	Software
	Network Topology
	Control Plane
	I2RS client
	OpenDaylight
	Quagga

	Forwarding Plane
	Additional Networks

	Implementation
	Software
	I2RS Agent
	Architecture
	Data structure
	Remote Procedure Calls

	I2RS Client
	Architecture
	Functionality

	Testing the setup

	Results
	Functionality of I2RS
	Encountered Problems

	Discussion
	Discussion of the implementation
	Discussion of the Interface to the Routing System
	Future Work

	Conclusion
	Bibliography

