
Technische Universität München
Department of Informatics

Bachelor’s Thesis in Informatics

A multi-tenant and privacy-preserving
information processing system

Thomas Mauerer

Technische Universität München
Department of Informatics

Bachelor’s Thesis in Informatics

A multi-tenant and privacy-preserving information processing
system

Ein mandantenfähiges und Privatheit achtendes
Informationsverarbeitungssystem

Author Thomas Mauerer
Supervisor Prof. Dr.-Ing. Georg Carle
Advisor Marcel von Maltitz, M.Sc., Dr. Holger Kinkelin, Dipl.-Inf. Johann Schlamp
Date January 15, 2016

Informatik VIII
Chair for Network Architectures and Services

I con�rm that this thesis is my own work and I have documented all sources and material
used.

Garching b. München, January 15, 2016

Signature

Abstract

In today’s world smartphones have become indispensable. Most people use smartphones
for sur�ng, chatting, email, photos, playing games, etc. However, another possible
application is to use the available sensors (hardware and software) in order to measure
several aspects. Collected data can be used for research studies or to compile statistics,
for instance. For the process of collecting and governing sensor data of Android devices
the MeasrDroid framework can be used. However, it is currently not possible to use
the capabilities of MeasrDroid for individual situations, but only to support research by
donating data.

This thesis is part of a bigger project which has the main goal to introduce multi-
tenancy in MeasrDroid in a privacy-preserving way. Therefore, the overall structure
and architecture of MeasrDroid has changed. Virtual machines are introduced as the
individual data sink for each tenant which can be used in order to store collected data
con�dentially.

Apart from encryption, privacy preservation requires also an authenticated and integrity-
checked connection for every data transmission. Therefore, the MeasrDroid Pairing
Protocol has been introduced which enables the establishment of such a connection.
This can either be achieved by the use of self-signed certi�cates or by the use of a PKI.
The protocol needs to be performed before data is sent from one entity to another one
and can therefore be seen as the initial pairing. Because of the protocol clients can also
be allowed to directly push data to the VM where it is stored. This enables real-time
data collection which has not been possible in the existing MeasrDroid project.

Apart from providing the theory to the MeasrDroid Pairing Protocol and the new archi-
tecture in general, this thesis includes also the implementation of the aforementioned
protocol for the pairing between clients and VMs. Security plays a major role in the
whole project because security is closely related with privacy which is the essential
requirement. Therefore, the security model is investigated in detail in order to prove
that privacy is obtained as best as possible.

I

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Problem . 2
1.3 Goals and Research Questions . 2
1.4 Structure of this Document . 3

2 Background 5
2.1 De�nition: Privacy Preservation . 5
2.2 MeasrDroid Project . 6

2.2.1 MeasrDroid Core . 6
2.2.2 Backend Infrastructure . 6
2.2.3 Necessity of Changes . 7

2.3 Cryptography . 8
2.3.1 Public-Key Encryption . 8
2.3.2 Message Authentication Code 9
2.3.3 Public Key Infrastructure . 11
2.3.4 SSL/TLS . 13

3 Analysis 15
3.1 Structure and Privacy Model . 15
3.2 Overall Architecture . 16

3.2.1 Individual Data Sinks . 16
3.2.2 Statistical Database . 17
3.2.3 Trusted Tenant Device . 18
3.2.4 Virtual Machine Management 18

3.3 Use Cases . 18
3.3.1 Measurement of a Private Area 18
3.3.2 Support Research . 19
3.3.3 Comparison of Measurements 19

3.4 Attacker Model . 19
3.5 MeasrDroid Pairing Protocol . 20

II Contents

4 Design 23
4.1 Pairing based on Self-Signed Certi�cates 23

4.1.1 Client↔ VM . 23
4.1.2 VM↔ VM . 24

4.2 Pairing based on a PKI . 27
4.2.1 Client↔ VM . 27
4.2.2 VM↔ VM . 30

5 Implementation 33
5.1 MeasrDroid Core . 33

5.1.1 QR-Code Scanner . 33
5.1.2 Certi�cate Tools . 35
5.1.3 HTTP Client . 36
5.1.4 Pairing Manager . 37
5.1.5 Pairing Service . 38
5.1.6 Graphical User Interface . 38

5.2 MeasrDroid Backend . 38
5.2.1 TLS Protection . 40
5.2.2 Pairing and User Feedback . 40

6 Evaluation 41
6.1 Usability . 41
6.2 Performance . 41
6.3 Privacy Preservation . 42
6.4 Evaluation of the Two Solutions . 43

6.4.1 Investigation of the Security Model (Self-Signed) 44
6.4.2 Investigation of the Security Model (PKI) 44
6.4.3 General Comparison . 45

6.5 Real-Time Data Collection . 46

7 Related Work 49

8 Conclusion and Outlook 51

Appendices 53

Appendix A Abbreviations 55

Appendix B Glossary 57

Bibliography 59

III

List of Figures

1.1 Number of Smartphone Users [1] . 2

2.1 Overview of the Backend Components 7
2.2 Hierarchical PKI . 12

3.1 Structure of MeasrDroid . 16
3.2 Overall Architecture . 17

4.1 Pairing between a Client and a VM based on Self-Signed Certi�cates . 25
4.2 Pairing between two VMs based on Self-Signed Certi�cates 26
4.3 Pairing between a Client and a VM based on a PKI 29
4.4 Pairing between two VMs based on a PKI 30

5.1 Graphical User Interface . 39

IV List of Figures

V

List of Tables

2.1 Format of X.509 . 11

VI List of Tables

1

Chapter 1

Introduction

1.1 Motivation

Smartphones are omnipresent all over the world. Figure 1.1 shows a prediction of the
number of people using a smartphone. At the time of this writing 7.32 billion people
are living in the world [2]. This means that approximately 26 percent of all people
in the world own a smartphone. According to �gure 1.1 the number of smartphone
users is continually increasing on a linear basis. This may have two main reasons:
Firstly, because the number of all people living in the world is increasing, too. Secondly,
because smartphones have a vast amount of capabilities and can be useful in a huge
variety of situations. A smartphone is not just a device for telephony or text messaging
[3]. However, it is more like a lightweight version of a desktop computer that can
be taken everywhere and has become more and more powerful over time. Hence,
developing applications for smartphones is a good idea in general because many people
are addressed this way.

Depending on the age and the manufacturer, smartphones are usually equipped with
a multitude of hardware sensors. This includes sensors for motion, acceleration or
environmental properties, like temperature or pressure. These data sources can be
complimented with software-based sensors, e.g. based on the wireless modules in order
to measure network characteristics like roundtrip times or signal strength. Gathered
data can then be exported in order to conduct research, compile statistics or to be used
otherwise.

For the process of collecting and governing sensor data the MeasrDroid framework was
developed at the chair of Network Architectures and Services which is explained in detail
in section 2.2.

2 Chapter 1. Introduction

Figure 1.1: Number of Smartphone Users [1]

1.2 Problem

As explained in section 2.2 the main goal of MeasrDroid is to conduct network research.
Users can therefore participate in the project by donating data. However, the individual
user can not really take advantage of this because he has no access to the database
where all measurements are stored. By implication, this means that individual users
can currently not use the capabilities of MeasrDroid for their personal situations.

A second problem is that currently no real-time data collection is possible. This is
due to the security model which hinders clients to directly push data to the server
where it is stored. However, this reduces the application possibilities of MeasrDroid
tremendously. One could think of using MeasrDroid as a communication infrastructure
for a feedback system, for instance. In this case it may be problematic if feedback is not
given instantaneously.

1.3 Goals and Research Questions

The main goal is to redesign MeasrDroid in order to o�er the capabilities for individual
situations. Therefore, multi-tenancy must be introduced in a privacy-preserving way.
This basically means that the system is able to deal with individual tenants in the way
that each tenant is the only party that has access to the measurements taken.

1.4. Structure of this Document 3

To obtain this goal the overall structure and architecture of MeasrDroid has changed
which is explained in detail in chapter 3. The main innovation are individual data sinks
for every tenant in the form of virtual machines with no third-party access. There are
two situations where data is sent from one entity of MeasrDroid to another one: Firstly,
when a smartphone uploads gathered data to the virtual machine. Secondly, when a
tenant wants to share data with another tenant and therefore data is sent from one virtual
machine to another one. Beside from having no third-party access to measured data,
privacy preservation also requires an authenticated and integrity-checked connection
in these two situations. For the establishment of such a connection a protocol has been
introduced which manages the initial pairing between the two entities. This protocol is
the main part of this thesis.

In the same context the security model is investigated. This is necessary because
the current security model has changed due to the new structure and architecture of
MeasrDroid (see chapter 3).

As a summary the research questions that will be answered in this thesis are as follows:

• RQ1: How can smartphones and virtual machines be paired to enable an authen-
ticated and integrity-checked connection for uploading data?

• RQ2: How can two virtual machines be paired to enable an authenticated and
integrity-checked connection for sharing data?

• RQ3: How can real-time data collection be enabled without undermining the
common security concept?

This thesis also includes the implementation of the aforementioned pairing protocol in
MeasrDroid.

1.4 Structure of this Document

Chapter 2 describes fundamentals that are needed in order to understand the main theory
part of this thesis. As even being part of the title, privacy preservation is an important
requirement. Therefore, chapter 2 starts with a de�nition of privacy preservation. Also,
the MeasrDroid project is described as it is at the moment and aspects of cryptography
are explained.

Chapter 3 introduces the theory part of this thesis. It starts with the description of the
new structure of MeasrDroid and architecture. Afterwards the use cases are explained
and the attacker model is de�ned which leads to the central aspect of this thesis: the
MeasrDroid Pairing Protocol.

Chapter 4 describes two possible solutions of the aforementioned MeasrDroid Pairing
Protocol. The �rst solution is based on self-signed certi�cates, whereas the second

4 Chapter 1. Introduction

solution uses a Public Key Infrastructure to achieve the same goals.

In chapter 5 the practical part of this thesis is documented. This is the implementation
of the MeasrDroid Pairing Protocol.

Chapter 6 evaluates both the theoretical and practical part of this thesis under certain
aspects. This chapter refers to the research questions and states how they are achieved.
Also, a comparison of the two solutions described in chapter 4 is given here.

Chapters 7 and 8 �nally introduce to related work, conclude this thesis and provide
an outlook on further work that has to be done in order to have a privacy-preserving
multi-tenant MeasrDroid.

5

Chapter 2

Background

This chapter provides the reader with some basics and background knowledge needed
to follow the discussions in chapters 3 and 4. A larger part of this section are aspects of
cryptography.

2.1 De�nition: Privacy Preservation

According to [4] privacy is a term for which no consistent de�nitions exist. Prof. Dr.
Lutz Prechelt tries to de�ne it as the area in which a person can decide to whom, when
and why information is accessible [4]. This can be justi�ed by the so called Golden
Rule (ethic of reciprocity) which prescribes to always treat others in the way one would
also expect others to treat oneself [4]. As a general rule, this means that every kind
of information related to a person has to be kept private until the particular person
decides to share this information with others. In this thesis information basically means
collected sensor data.

Privacy preservation then means methods to obtain privacy which can be achieved by
mainly two possibilities: [4]

1. Physical Blockade: By taking appropriate measures of security it is not possible
for an unauthorized person to get access to stored data. Furthermore, Physical
Blockade means secrecy of sensitive data which is a crucial aspect of many security
concepts.

2. Encryption: Data is never sent or stored in plain format but always encrypted
and can only be decrypted by the authorized person.

This de�nition is subject of the overall new concept of MeasrDroid. Derived from the
two aspects, privacy preservation requires also the authentication of communication

6 Chapter 2. Background

partners and veri�cation of the integrity of transmitted messages. This con�rms that
messages are sent only to valid entities and are not manipulated during the transport.

2.2 MeasrDroid Project

This section describes the existing MeasrDroid project as it is at the moment and also
states why changes are necessary in order to ful�l the research questions mentioned in
1.3.

MeasrDroid is an Android framework for collecting and governing sensor data of An-
droid devices [5]. The project was started in March 2011 by members of the chair of
Network Architectures and Services and more than 10 students [6]. The lead developer
is Dipl.-Inf. Johann Schlamp who is also advisor of this thesis. The main goal is to run
network research [6]. MeasrDroid consists of a client (see 2.2.1) which is installed on
the device in order to measure sensor data and a backend infrastructure for storing
collected data (see 2.2.2).

2.2.1 MeasrDroid Core

The MeasrDroid Core is an Android application that has to be installed on the device.
It is responsible for measuring sensor data. Collected data is always encrypted on the
device before it is pushed to the backend server. At the �rst start a wizard opens which
lets the user con�gure several aspects, like how much data he wants to donate per day
or which sensors should be activated or deactivated [6]. The core itself does not consist
of any activities. However, every Android application that wants to use the features of
MeasrDroid only has to include the core into the project, let the main class inherit from
the core and mark it with the special @MeasrDroidSetup tag. The most famous Android
application that uses MeasrDroid is the MeasrDroid Application which is available on
the Google Play Store for free. [7] It lets the user visualize all taken measurements.

2.2.2 Backend Infrastructure

The aim of the MeasrDroid backend is to store collected data. The data can be made
available for research projects later on. An overview of the backend components is
given in �gure 2.1.

The MeasrDroid backend consists of the following components:

• C3PO: The C3PO is the main server of MeasrDroid. It is responsible for decrypting
collected data and storing it in the database. The C3PO itself is not connected to

2.2. MeasrDroid Project 7

Figure 2.1: Overview of the Backend Components

the internet, due to security reasons. Therefore, it is not possible to directly push
data to the C3PO.

• Upload.droid: The Upload.droid is the server where clients push their measured
data to. The Upload.droid is therefore accessible on the Internet. The C3PO
periodically pulls the temporary stored data from the Upload.droid and stores it
in the database.

• Database: All taken measurements are stored in a centralized database which is
only accessible by the C3PO.

2.2.3 Necessity of Changes

In general there are two aspects in the backend infrastructure which make it impossible
to ful�l the research questions (see 1.3) and general goals of this thesis without any
changes:

1. Centralized database: A single database for all taken measurements is not
compatible with a privacy-preserving multi-tenancy concept. That is because the
operator of MeasrDroid can learn all data collected from all clients and tenants,
respectively. Instead, this should only be possible for the particular tenant.

2. Polling: Storing collected data in the database is currently not event-based, but
done by polling. This means that the C3PO periodically asks the Upload.droid

8 Chapter 2. Background

whether data is available. If this is the case, data gets pulled by the C3PO and
is stored in the database. However, the time steps between two polls can not be
made arbitrary small because of two main reasons: Firstly, due to the amount of
processed data, depending on how many Android devices participate. Secondly,
due to performance reasons. In general, it is not recommended to set the time
step as small as possible because this means that work is often in vain when no
data is available. However, this makes real-time data collection impossible.

2.3 Cryptography

This section describes basics of cryptography and protocols that are used in the Measr-
Droid Pairing Protocol described in section 3.5.

2.3.1 Public-Key Encryption

Public-key encryption was invented in the mid-70s by M. Hellman, W. Di�e and R.
Merkle. The idea behind public-key encryption is that every participant has a key pair
consisting of a public key KE and a private key KD . The public key can be made publicly
available, for example on a website, whereas the private key always has to be kept
private. Data is then encrypted with somebody’s public key and can only be decrypted
with the dedicated private key. The advantage of public-key encryption is that there is
no need for a shared secret between sender and receiver. The most famous public-key
encryption scheme is RSA [8] invented by R. Rivest, A. Shamir and L. Adleman. [9]

The most important properties of a public-key cryptosystem are as follows (a detailed
de�nition can be found in [9]):

1. (KE ,KD) can be created e�ciently and there is a relation between KE and KD .

2. ∀m ∈ M : D (E (m,KE),KD) = m, where M is the set of all plaintexts, E is the
encryption function and D is the decryption function.

The security in public-key encryption lies in the fact that there is a relation f between
the public key KE and the private key KD but the private key can not be calculated
e�ciently by just knowing the dedicated public key. That is because f is a so called one
way function: [9]

f : X −→ Y

1. ∀x ∈ X : f (x) can be calculated e�ciently.

2. x = f −1 (y) can not be calculated e�ciently.

In general, it is not proven that one way functions exist at all [9]. However, one assumes
that every function is suitable if no e�cient algorithms are known to revert the function.

2.3. Cryptography 9

An example is the multiplication of two big primes p and q, so that n = p × q. This is
quite easy to achieve. However, to revert this, one would have to solve the mathematical
problem of factorizing a numbern in its primesp andq, for which no e�cient algorithms
are known if n is big enough. This is used in RSA, for instance. [9]

Encryption and decryption is also based on a one way function. However, this would
mean that even an authorized person is not able to decrypt a message e�ciently. There-
fore, a special form of a one way function is applied in this context, a so called trapdoor
one way function. The de�nition is nearly the same, only aspect 2. changes to the
following: [9]

2. x = f −1 (y) can only be calculated e�ciently with the knowledge of an additional
information.

The additional information is the trapdoor which is the private key [9].

2.3.2 Message Authentication Code

A cryptographic hash function H is a non-injective function that maps every word
x ∈ X of arbitrary size to a value H (x) ∈ Y of a �xed size k

H : X ∗ −→ Y k

and also has the following properties: [9]

1. H is a one way function:

• ∀x ∈ X : H (x) can be calculated e�ciently.

• x = H−1 (y) can not be calculated e�ciently.

2. Given x ∈ X and the dedicated hash value h = H (x). It is not e�ciently possible
to �nd x ′ ∈ X with x , x ′ that produces the same hash value, H (x) = H (x ′) = h.

These two properties de�ne a cryptographic hash function with weak collision re-
sistance. For a cryptographic hash function with strong collision resistance also the
following property must be ful�lled: [9]

3. It is not e�ciently possible to �nd two di�erent words x ,x ′ ∈ X that produce the
same hash value, H (x) = H (x ′).

Cryptographic hash functions can be used to verify the integrity of a message m, for
instance. The calculated hash value h = H (m) is a �ngerprint form. Any transmission
errors can be uncovered by re-calculating the hash value of the received message m′.
If the re-calculated hash value h′ = H (m′) does not equal h, there were changes to
m during the transmission. That is because any change to m leads to a completely
di�erent hash value due to the aforementioned properties. However, one can not use

10 Chapter 2. Background

cryptographic hash functions to protect against deliberate manipulation. That is because
an attacker can also re-calculate the hash value for the manipulated messageh′ = H (m′)

and replace the original h by h′.

The most famous and widely used cryptographic hash functions are the SHA-#-functions
(where # means 1,2 or 3) [10] and the MD5 [11]. These are so-called dedicated hash
functions [9].

Sometimes it is also necessary to authenticate the sender of a message beside from
having an integrity-protection. This is where MACs come into play: A MAC is a
cryptographic hash function combined with a secret key K only known to the sender
and receiver of a message. A usual communication between Alice and Bob looks as
follows: [9]

1. Alice calculates a MAC for a messagem with the key K .

MAC (m,K) =mac

2. Alice sends both, the messagem and the valuemac to Bob.

3. Bob veri�es the integrity of the received messagem∗ by calculating the MAC of
m∗ and comparing it with the received valuemac .

MAC (m∗,K) =mac∗
?
=mac = MAC (m,K)

Usually the key K is concatenated to the messagem, som′ =m‖K orm′ = K ‖m. This
means that calculating the MAC of a message m is nothing more than performing a
cryptographic hash function H onm′:

MAC (m,K) = H (m′)

Depending on the taken hash function, this can be problematic in the way that an
attacker can modify the messagem and also calculate a valid MAC without even knowing
the secret key. He just has to concatenate his message m′′ with m′ and perform the
cryptographic hash function. To prevent this attack one should always use the HMAC
procedure in order to create a MAC. [9]

HMAC is a procedure that uses the hash function H two times. The key K is not only
concatenated with the message m but also with the result of the �rst run of the hash
function:

HMAC (m,K) = H (K ‖ (H (K ‖m)))

Using a hash function two times, increases collision resistance signi�cantly, too. Until
today, the HMAC procedure is considered to be secure. [9]

2.3. Cryptography 11

2.3.3 Public Key Infrastructure

As described in section 2.3.1 in public-key cryptography every participant has a key pair
consisting of a public and a private key. Without any further means several problems
may occur: [12]

1. Authenticity of public keys: If Alice wants to send an encrypted message to
Bob, she takes Bob’s public key for encryption. However, when Bob’s public key
is spread on the Internet, Alice can not be sure that the key really belongs to
Bob. An attacker may have replaced Bob’s key with his own key without being
recognized by Alice.

2. Revocation of public keys: If Bobs’s private key got lost or stolen, it is not
secure anymore to use this key pair for encryption. The key pair should therefore
be revoked and replaced by a new key pair. However, there are no ways for Alice
to recognize that Bob’s public key is not valid anymore.

3. Non-repudiation: If Alice signs a message with her private key, it should not
be possible to deny this signature. However, this is quite easy to achieve by just
saying that Alice’s public key does not belong to her.

The solution for the mentioned problems are digital certi�cates. A certi�cate is a signed
piece of data that maps somebody’s identity to the public key [12]. The common format
for certi�cates is the X.509 format described in table 2.1.

Field Explanation
Version The version �eld describes the version number of X.509. The

common version is 3.
Serial Number The serial number is a unique id for a signing party to unambigu-

ously recognize the signed certi�cate.
Signature The signature �eld describes the algorithm and additional param-

eters used for signing the certi�cate.
Issuer The issuer is the name of the signing party. This has to be a X.500

conformable name.
Validity The validity �eld describes the start and end date for the certi�-

cate to be valid.
Subject The subject is the name of the owner of the certi�cate. This has

to be a X.500 conformable name.
Public Key This is the public key that belongs to the owner of the certi�cate.

Table 2.1: Format of X.509

A certi�cate can either be self-signed or signed by an independent, so called Certi�cate
Authority (CA). Self-signed means that the subject is equal to the issuer.

12 Chapter 2. Background

In a common scenario there are multiple CAs and they are ordered hierarchically. This
means that there is one root CA who has a self-signed certi�cate which signs certi�cates
for underlying CAs. Those CAs may sign certi�cates for other participants in turn, for
example for Alice and Bob or other CAs. This ends up in a certi�cate chain. The idea
behind this is: if one trusts the root CA, one can also trust everybody else in the chain.
The entirety of all participating parties is called a PKI. [12] An example PKI is illustrated
in �gure 2.2.

Figure 2.2: Hierarchical PKI

The example shown in �gure 2.2 looks as follows: If Alice wants to send an encrypted
message to Bob, she �rst veri�es Bob’s certi�cate. Bob’s certi�cate is signed by CA-B
which is in turn signed by CA-Root. Due to the fact that Alice trusts CA-Root, she can
be sure that Bob’s public key really belongs to Bob.

The solution for problem 2 is a Certi�cate Revocation List (CRL). This is simply a list
provided by a CA which contains all serial numbers of revoked certi�cates. If a certi�cate
is part of this list, it should not be trusted anymore. [12]

The creation of a certi�cate is usually split into two parts. At �rst, a so called Certi�cate
Signing Request (CSR) is created. This contains the subject and the public key. The CSR
is then sent to the signing party (e.g. CA) which creates the actual certi�cate and signs
it in the second step.

2.3. Cryptography 13

2.3.4 SSL/TLS

SSL (Secure Sockets Layer) and TLS (Transport Layer Security) are protocols located
above the transport layer in the OSI model [9]. All aforementioned aspects of cryptog-
raphy, like Public-Key Encryption, Message Authentication Codes and Digital Certi�cates
are part of these protocols. SSL was invented by Netscape with the goal of secure HTTP
connections. This is called HTTPS and means simply a secure SSL channel which can
be used to transfer HTTP data [9]. However, SSL can not only be used for HTTP but a
huge variety of protocols. An overview of these protocols can be found in [9]. TLS is
the improvement of SSL and is currently the international industry standard. However,
the core aspects of TLS and SSL are the same [9].

The tasks of SSL/TLS can basically be divided into three parts: [9]

1. Authentication of Communication Partner: This is achieved by the use of
public-key encryption and digital certi�cates. The idea behind this is that a sender
can be sure that he is connected to the desired receiver.

2. Con�dential end-to-end transmission: This is achieved by the use of encryp-
tion using a session key that is only known to the sender and the receiver.

3. Veri�cation of Integrity: This is achieved by the use of Message Authentication
Codes. TLS supports only HMAC which is considered to be secure.

It is not prede�ned what algorithms of public-key encryption, symmetric encryption
or MACs should be used. This is negotiated in every connection. The procedure of
exchanging all necessary information and key material is not a trivial task. Hence, this
is not further explained in this thesis but can be found in detail in [9].

The security of SSL/TLS lies mainly in the used algorithms for cryptography. If only
secure algorithms are used with recommended key lengths, the protocol is considered
to be secure. [9]

However, one known security leak is the management of digital certi�cates. If an
attacker manages to get a valid certi�cate signed by a globally veri�able, trusted CA,
he can redirect a client to a malicious server which authenticates itself with the valid
certi�cate. In this case a client can not recognize that he is not connected to the desired
server but to the malicious one. [9]

14 Chapter 2. Background

15

Chapter 3

Analysis

This chapter is the main theory part of this thesis. The reader gets information about
the new structure, as well as an overview of the new architecture of MeasrDroid. Also,
the privacy model is de�ned in this chapter. This basically means at which layer we are
going to obtain privacy preservation. The thoughts on this are required, due to the new
structure. Apart from that, use cases and the attacker model are presented which lead
to the central aspect of this thesis: the MeasrDroid Pairing Protocol.

3.1 Structure and Privacy Model

A multi-tenancy concept requires a new structuring of MeasrDroid. Prior, every person
that participated in the project was an individual user of MeasrDroid per de�nition.
Therefore, it was only necessary to install the application on the client device (smart-
phone) and start donating data. This changes in the new concept. Figure 3.1 shows the
new structure of MeasrDroid.

According to �gure 3.1 a completely new layer is introduced: the layer of tenants. Per
de�nition, every tenant is an individual user of MeasrDroid now and every tenant can
have an arbitrary number of clients as data sources. Each client belongs to exactly one
tenant. A client is a smartphone, whereas a tenant is meant to be a person or even a
group of people. In this case there is no distinction between the individual persons of
the group. They are all on an equal footing.

Privacy preservation is only applied to the layer of tenants. This means that collected
data from one of the clients is only accessible by the respective tenant. By implication,
this means that there is no privacy preservation at the layer of clients. When a client
participates as a data source for a tenant, he has to accept that the respective tenant has
access to all of his collected data.

16 Chapter 3. Analysis

Figure 3.1: Structure of MeasrDroid

However, this de�nition is acceptable because we assume that all clients that belong to
one tenant have the same interests. If one client does not accept this decision, he can
still use the capabilities of MeasrDroid by becoming his own tenant.

3.2 Overall Architecture

In comparison to the architecture described in section 2.2.2 several aspects changed in
the new architecture of MeasrDroid in order to ful�l the research questions and satisfy
the new structure explained in section 3.1. Figure 3.2 illustrates the new architecture.
All components are described in the following subsections.

3.2.1 Individual Data Sinks

In general, multi-tenancy can be achieved by di�erent ways. Due to privacy preservation
as the central requirement of this work, it is necessary to separate data - owned by
individual tenants - from each other. One possible solution are individual data sinks for
every tenant with no third-party access. This can be reached by the use of containers.
Here, a container simply means an isolated environment that o�ers the possibility of
storing data. On a technical point of view it does not matter whether the containers
are isolated by physical aspects (e.g. di�erent servers) or because of special software.
One possibility are virtual machines (VMs) in order to reach the goal of isolation. In
this thesis we are always talking about VMs.

3.2. Overall Architecture 17

Figure 3.2: Overall Architecture

Each tenant is assigned a VM which he can use to store collected data. In general, two
interfaces exist on all VMs for the exchange of data: One in order to receive data from
clients and one in order to share data with other VMs. Both interfaces demand the
presence of a secure and authenticated connection, due to the requirement of privacy
preservation: In the �rst case between a client and a VM, in the second case between
two VMs. In chapter 4 a protocol is presented that enables the establishment of such a
connection.

Furthermore, privacy preservation requires that data is never sent or stored in plain-
format, but always encrypted. This ensures that reading some tenant’s private data is
not possible at any time - and even not for the provider of MeasrDroid who may have
access to the VM because of administrative tasks.

In �gure 3.2 three VMs are illustrated exemplary with two clients, respectively.

3.2.2 Statistical Database

The statistical database is kind of a remnant of the centralized database of the old
architecture. Its main purpose is to o�er the original objectives of MeasrDroid, e.g.
network research if tenants are willing to donate data. Also, it enables an easy possibility
of compiling statistics because it is a central database with which all tenants can share
data. On a technical point of view the statistical database is nothing more than a VM

18 Chapter 3. Analysis

apart from not being assigned to any tenant. Therefore, the same interface for sharing
data between two VMs can be used for sharing and receiving data from the database.

3.2.3 Trusted Tenant Device

The Admin Device is the tenant’s device that has direct access to the particular VM in the
form of a TLS-protected connection. It is meant to be the control center of MeasrDroid
for the respective tenant. It is necessary in order to register a new client or to inspect
and evaluate collected data. This is only possible on the Admin Device because the
private key, which is needed for decryption, is stored here. Apart from that, a tenant
can select parts of collected data that he wants to share with others on the Admin Device.
Due to the fact that the Admin Device has direct access to the VM, it must be secure and
trusted which it is per de�nition. We assume that only the respective tenant has access
to the Admin Device.

3.2.4 Virtual Machine Management

The VMLCS (Virtual Machine Lifecycle Service) as it is called in �gure 3.2 is a service that
is responsible for the creation, maintenance and deletion of VMs and the assignment to
tenants. The VMLCS is part of a di�erent work and therefore it is not investigated any
further in this thesis.

3.3 Use Cases

Based on the new structure and architecture of MeasrDroid several use cases are con-
ceivable.

3.3.1 Measurement of a Private Area

In this use case all capabilities of the original MeasrDroid are used for somebody’s
personal purposes. A tenant, which can also be a group of people in this use case
(maybe a company), wants to measure a private area. However, collected data should
never be accessible by anybody apart from the tenant. Therefore, a VM is rented to
which all clients upload their measured data. Data is stored con�dentially on the VM
and can only be inspected and evaluated on the particular Admin Device which is the
entity that has direct access to the VM.

3.4. Attacker Model 19

3.3.2 Support Research

This use case is the original goal of MeasrDroid. Due to the fact that a centralized
database still exists, which is basically a VM managed by the service provider, supporting
research by donating data is still possible. Only the data�ow of collected data changes.
A tenant rents a VM and starts measuring data with his smartphone. The collected data
is uploaded to the VM where it is stored con�dentially. The tenant can then inspect the
collected data on his Admin Device and select the parts he wants to donate and therefore
share with the centralized database.

3.3.3 Comparison of Measurements

This use case is the situation where two persons want to compare several aspects of
their private area. Therefore, both rent a particular VM, measure their private area and
upload the collected data to their VMs where it is stored con�dentially. Data must then
be shared with each other in order to enable a comparison. Collected data is transferred
from one VM to the other one. However, if one person wants to keep some of the
collected data con�dential, he can select only parts before sharing. The selection can
be done on the Admin Device where data is inspected.

3.4 Attacker Model

Privacy as it is de�ned in section 2.1 mainly depends on security. Hence, it is necessary
to de�ne the attacker model in order to �gure out which means of security are required
in order to achieve the goal of privacy preservation. According to section 3.3 there are
mainly three forms of data �ow in the new concept of MeasrDroid.

1. The data �ow from a client to a VM.

2. The data �ow from a VM to the particular Admin Device.

3. The data �ow from one VM to another one.

Privacy preservation requires the presence of means of security in the situations when
data is sent from one entity to another one. In the following only the aspects 1 and 3
are taken into the de�nition of the attacker model because aspect 2 is part of a di�erent
work.

A1: Steal Private Data
The �rst kind of attacker tries to gain insights into some tenant’s private data. Basically,
there are three possible targets to perform this attack:

20 Chapter 3. Analysis

1. Access to VM: All collected data is stored on the VM. If the attacker manages to
get access to the VM, he has also access to all of the data. Therefore, it is required to
have common security aspects in place like Access-Control mechanisms, Intrusion
Detection Systems, Firewalls, etc. which make it hard to ever get access to the VM.
Apart from that, it is necessary to store data only in encrypted format. In this
case an attacker has no chance of stealing private data even if he manages to get
access to the VM.

2. Access to Client Device: The client is the device that is responsible for measur-
ing data. If an attacker manages to get access to the client device, he has also
access to the measurements collected from the speci�c client. Therefore, it is
required to not store any data on the client device but only upload it to the VM.
If the VM is not reachable at any moment, the data needs to be stored temporary
on the client device and uploaded later. In this case it is necessary to encrypt the
data before it is stored.

3. Intercepting the Transmission/Spoo�ng: If the attacker manages to intercept
the transmission of some data, he can get access to the sent data. Therefore, it is
required to never send data in plain format but always encrypted. This means
that both a client and a VM must always encrypt data before it is sent. Apart from
that, an attacker could also redirect the transmission in order to let the client or
the VM send their data to a malicious VM. Therefore, it is required to authenticate
the receiver and have a con�dential end-to-end data transmission.

A2: Distort Data
The second kind of attacker tries to distort collected data by foisting senseless data on
some tenant. This would be possible if the VM accepts and stores incoming data from
all clients or VMs, respectively. Therefore, it is required to authenticate the sender of a
message and only establish a connection if the sender is valid.

A3: General Attacks
The third aspect encompasses all general attacks against an IT system, in this case
basically against a VM. This concludes cripples of a whole system, viruses, worms, etc.
To prevent this kind of attacks, common security aspects like Intrusion Detection Systems,
Firewalls, etc. are necessary.

3.5 MeasrDroid Pairing Protocol

We assume there are two entities of MeasrDroid, called A and B. A can either be a client
or a VM, whereas B is always a VM. According to the use cases (3.3) and the attacker
model (3.4) there are situations when data is sent from A to B. In these situations it is
required to have an authenticated and integrity-checked connection for the transmission

3.5. MeasrDroid Pairing Protocol 21

of collected data in order to prevent attacks of the type A1 and A2.

This can both be achieved by a TLS-protected connection with mutual authentication.
Therefore, it is necessary to exchange cryptographic material that can be used in order
to establish such a connection. The MeasrDroid Pairing Protocol has been developed to
reach exactly this goal. The protocol does not depend on which kind of data should
be transmitted. As a side e�ect, it enables real-time data collection which is also part
of the research questions. This is explained in section 6.5. The protocol is used in two
situations:

1. Upload Data to VM: In this case the protocol must be performed between a
client and a VM. After the point when a client has performed the protocol suc-
cessfully, he is a valid client and can therefore always establish the TLS-protected
connection with the VM in order to upload data. Due to this aspect, the Measr-
Droid Pairing Protocol can also be seen as the registration of a new client for an
existing VM.

2. Share Data: In this case the protocol must be performed between two VMs.
After the point when a VM has performed the protocol successfully, the particular
tenant can always establish the TLS-protected connection with the second VM in
order to share data.

Chapter 4 describes two di�erent possible solutions for the protocol.

22 Chapter 3. Analysis

23

Chapter 4

Design

This chapter describes two possible solutions for the MeasrDroid Pairing Protocol in-
troduced in section 3.5. The �rst solution is based on self-signed certi�cates, whereas
the second solution is based on a PKI. Each solution is split into two parts: the pairing
between a client and a VM and the pairing between two VMs. In section 6.4 the security
model of both solutions is investigated to prove that both solutions are secure.

4.1 Pairing based on Self-Signed Certi�cates

This solution is based on self-signed certi�cates. The goal is to exchange self-signed
certi�cates and mark them as trusted. This enables the establishment of a TLS-protected
connection for sending/sharing sensor data later on. That is because both the client and
the VM or two VMs can use the self-signed certi�cates for authentication then.

4.1.1 Client↔ VM

Participating entities are the VM, the client and the Admin Device. In this solution, both
the client and the VM generate self-signed certi�cates and exchange them. At the end
of the protocol the exchanged certi�cates are stored and marked as trusted.

Problematic is that there is no secured connection between the VM and the client at
the start of the protocol. Hence, sending the certi�cates via a non-con�dential channel
is vulnerable for Man-in-the-Middle attacks. An attacker may either replace the client
certi�cate with a self-signed certi�cate of himself in order to gain the rights of being an
authorized client. Or he could also set up an own VM and replace the transmitted VM
certi�cate with the certi�cate of his VM. In this case he could manage to let the client
send his collected data to the attacker’s VM.

24 Chapter 4. Design

The solution in both cases is the veri�cation of the integrity of the transmitted message.
If the integrity is correct, the receiver can be sure that the message was not manipulated
during the transmission. Apart from that, authentication of the sender is necessary.
This way the receiver can be sure that the message was really sent from the valid sender
but not from an attacker. Integrity veri�cation and authentication is both achieved by a
Message Authentication Code based on a shared secret only known to the VM and the
client. The protocol is illustrated in �gure 4.1. The creation of the VM certi�cate is not
part of the illustrated protocol because we assume that the VM already possesses a valid
certi�cate.

According to �gure 4.1 a shared secret is generated on the Admin Device and delivered to
the VM and the client. Apart from that, the client is also provided with the client name
and the URL of the VM. The client name is used in the subject �eld of the certi�cate.
The URL is necessary in order to let the client send its certi�cate to the VM.

The transmission medium for the client is a QR-Code where all information is encoded.
The client then only has to scan the QR-Code in order to get the provided information.
The reason for using aQR-Code is simply that it is more convenient to scan an image than
typing in all the needed information. If a device is not able to scan a QR-Code because
of a missing camera, for instance, the transmission medium can easily be replaced by a
di�erent side channel (e.g. USB �ash drive).

Before the client certi�cate is created, a new key pair is generated because this is the
main part of the certi�cate. Afterwards the Message Authentication Code is calculated
using the HMAC procedure. The value of the MAC as well as the certi�cate itself are then
sent to the VM using the HTTP protocol. The VM can then verify the integrity of the
received certi�cate. Afterwards the MAC of the self-signed VM certi�cate is calculated
and sent to the client together with the VM certi�cate itself. If the veri�cation of the
integrity fails for some reason, the protocol is aborted either by the VM or by the client.

4.1.2 VM↔ VM

Participating entities are two VMs and the respective Admin Devices. Again, the goal
is to exchange self-signed certi�cates and mark them as trusted which enables the
authentication later on for the establishment of a TLS-protected connection.

The protocol is illustrated in �gure 4.2. The creation of the two self-signed certi�cates
is not part of the illustrated protocol because we assume that both VMs already possess
valid certi�cates.

According to �gure 4.2 the procedure is not much di�erent than the one described in
section 4.1.1. To prevent Man-in-the-Middle attacks the integrity of the sent messages
must be veri�able and an authentication of the sender is required. This is again achieved
by a Message Authentication Code based on a shared secret. The only di�erence now

4.1. Pairing based on Self-Signed Certi�cates 25

Figure 4.1: Pairing between a Client and a VM based on Self-Signed Certi�cates

26 Chapter 4. Design

Figure 4.2: Pairing between two VMs based on Self-Signed Certi�cates

4.2. Pairing based on a PKI 27

is that the two Admin Devices, more precisely the two tenants, have to agree on a
shared secret. That is because the Admin Devices are the two entities for which a
secure connection to the particular VM exists. The agreement on the shared secret must
happen on a secure side channel. This can be a telephone, for instance. We assume this
is acceptable because if a tenant wants to share data with another one, it must also be
reasonable for him to make contact with the other person.

In analogy to the procedure described in section 4.1.1, the VM who wants to send data
to the second VM must initiate the pairing by sending the certi�cate �rst. This can be
justi�ed as follows: If VM 1 (VM which wants to send data) receives the certi�cate of
VM 2 and veri�es the integrity, VM 1 can be sure that the pairing has been successful.
Otherwise it would have never received a certi�cate from VM 2. At this point, VM 1
can open the connection in order to send its payload. In consequence, if the pairing
is initiated by VM 2, VM 1 has no possibility to know whether the pairing has been
successful. If it was not, due to transmission errors, for instance, opening a connection
in order to send payload will fail.

4.2 Pairing based on a PKI

This solution can either be based on a local PKI or a global PKI. Using a global PKI makes
the protocol a lot easier, especially the pairing between two VMs, and should therefore
be preferred. Again, the goal is the establishment of a TLS-protected connection. The
unique identi�er that is needed in order to verify the authentication of a VM is the
domain name per de�nition. The domain name is part of the URL of the VM.

4.2.1 Client↔ VM

Participating entities are the VM, the client and the Admin Device. The following
paragraphs describe the solution based on a local PKI. However, to improve this solution
by the use of a global PKI only a few changes are necessary which is explained in the
last paragraph of this section.

The root CA is the Admin Device which possesses a self-signed certi�cate. At the end
of the protocol the client has a certi�cate signed by the root CA which he can use to
authenticate himself against the VM later on. The main idea is that the client generates a
CSR and sends it to the Admin Device (root CA) in order to get back a signed certi�cate.

Problematic in this solution is that the main conversation is between the client and the
Admin Device (root CA) for which no bidirectional direct connection exists. Therefore,
the VM is used as a means for the purpose because both the client and the Admin Device
can connect to the VM. Due to the fact that no direct connection exist, we decided to
use a Message Authentication Code based on a shared secret only known to the client

28 Chapter 4. Design

and the Admin Device as an additional security feature. This way the integrity of sent
messages can be veri�ed and authentication of the sender is possible, too. This protects
against manipulation of the CSR on the VM where it is stored temporary until it is sent
to the Admin Device. Sender authentication is also essential for the Admin Device in
order to sign only valid CSRs. The protocol is illustrated in �gure 4.3. We assume that
the VM already possesses a valid certi�cate signed by the root CA.

According to �gure 4.3 the shared secret is created on the Admin Device and delivered
to the client. Apart from that, the client is provided with the client name, the URL of
the VM and the root certi�cate. The client name is used in the subject �eld of the CSR.
The URL of the VM is necessary in order to let the client send the CSR to the VM. The
URL and the root certi�cate are also required by another reason: That is because the
URL contains the domain name which is the unique identi�er. The VM authenticates
itself with a certi�cate signed by the root CA. Due to the fact that the client is provided
with this information, he can verify the authentication.

The transmission medium is a QR-Code where all information is encoded. If a device is
not able to scan a QR-Code because of a missing camera, for instance, the transmission
medium can easily be replaced by a di�erent side channel (e.g. USB �ash drive).

After the storage of the root certi�cate a new key pair for the CSR is generated and
the CSR itself. A Message Authentication Code is calculated using the HMAC procedure.
Afterwards the value of the MAC as well as the CSR itself are sent to the VM. This is
secured by TLS which is possible because the authentication of the VM can be veri�ed
by the client.

The two received information are transferred to the Admin Device, again secured by TLS.
This is possible because we assume that this connection already exists after the point
when a VM is assigned to a tenant. The Admin Device can then verify the integrity of
the received CSR, create the certi�cate and sign it. Afterwards a Message Authentication
Code for the certi�cate is calculated and together with the certi�cate itself sent back to
the VM.

The VM transfers the certi�cate and the MAC to the client, secured by TLS. Finally, the
client can verify the integrity of the received certi�cate and store it.

To improve this solution by the use of a global PKI, a few changes are necessary: The
Admin Device is no longer the root CA but an intermediate CA. This means that it does
not possess a self-signed certi�cate but a certi�cate signed by a globally veri�able CA.
This leads to the fact that the client can authenticate the VM without being provided
any certi�cate before. Hence, it is not necessary to encode a certi�cate in a QR-Code
and store it on the client. The rest of the protocol is exactly the same.

4.2. Pairing based on a PKI 29

Figure 4.3: Pairing between a Client and a VM based on a PKI

30 Chapter 4. Design

4.2.2 VM↔ VM

Participating entities are two VMs and the respectiveAdmin Devices. The steps explained
in the following are only necessary when we use a local PKI. The protocol is illustrated
in �gure 4.4.

Figure 4.4: Pairing between two VMs based on a PKI

According to �gure 4.4 the two Admin Devices, more precisely the two tenants exchange
their respective root certi�cates. This step is necessary because the Admin Devices are
the two entities for which a secure connection to the particular VM exists. The received
root certi�cates are transferred to the VMs where they are stored. Apart from that, the
URLs of the VMs are exchanged. This is required because the URLs contain the domain
names, which are the unique identi�ers.

The idea behind this is best explained in an example: We assume VM 1 wants to share
data with VM 2 and therefore it connects to VM 2. As mentioned before, the connection
should be TLS-protected. Therefore, VM 2 authenticates itself with its certi�cate signed
by its root CA (Admin Device 2). Due to the fact that VM 1 knows the root certi�cate of
Admin Device 2 it can verify the authentication and the connection can be established.

The exchange of the two root certi�cates between the two Admin Devices has to happen
on an arbitrary side channel. The exchange itself does not have to be con�dential
because certi�cates do not consist of any sensitive data. However, the integrity must be
veri�ed to prevent Man-in-the-Middle attacks. This can be achieved by telephone, for
instance. This also applies to the exchange of the two URLs of the VMs.

Exchanging certi�cates is not really comfortable for the tenants. However, in a real
situation this is never needed because we assume that we use a global PKI if we basically
decide to use the solution based on a PKI. In this case, it is only required to exchange

4.2. Pairing based on a PKI 31

the URLs of the VMs, which can be done by telephone. We assume this is acceptable
because if a tenant wants to share data with another one, it must also be reasonable
for him to make contact with the other person. The example before would then look
like this: VM 1 wants to connect to VM 2. Therefore, VM 2 authenticates itself with its
certi�cate signed by the intermediate CA (Admin Device 2) which again has a certi�cate
signed by a global veri�able CA. This way, the authentication can be veri�ed directly
and the connection can be established.

32 Chapter 4. Design

33

Chapter 5

Implementation

This chapter documents the implementation part of this thesis. The concrete protocol
that has been implemented is the MeasrDroid Pairing Protocol between a client and
a VM based on a PKI described in section 4.2.1. Due to the fact that no global PKI
existed during the time of development, the solution is based on a local PKI. However,
to improve this solution by the use of a global PKI only a few changes are necessary.
The implementation required both work on the Android application and on the backend.
The steps that are done by the Admin Device were not implemented because this is part
of a di�erent work.

5.1 MeasrDroid Core

The MeasrDroid Core is the Android application that has been extended. The work
hereby was mainly the client part of the protocol. The programming language was
exclusively Java. For testing purposes the MeasrDroid Application that is available on
the Google Play Store was used [7]. The smartphone used for testing was a rooted HTC
Desire S running a Custom-ROM based on Android 4.0.4.

5.1.1 QR-Code Scanner

A really important aspect of the protocol is the QR-Code because all necessary infor-
mation is encoded there. This includes the root certi�cate, the shared secret between
the Admin Device and the client, the URL of the VM and the client name. The infor-
mation is encoded in URI style. This means that the QR-Code is only one String that
contains all information concatenated with the & sign. An example would look like
this: cert=abcd&secret=1234&url=measrdroid.de&name=client.

34 Chapter 5. Implementation

For the root certi�cate we used a size of 2048 bits. The certi�cate is encoded in the PEM
format. Therefore, it has a size of 1402 characters. The shared secret is a symmetric
key created with a KeyGenerator in Java. It is encoded using the Base64 encoding.
Therefore, it has a size of 86 characters. The URL has a size of 26 characters and the
client name has a size of 10 characters. Apart from that, the names of the variables must
be encoded in order to be able to split the concatenated String in its components again.
Therefore, 45 additional characters are necessary. In total, a size of 1569 characters must
be encoded.

At the time of this writing a QR-Code can store a maximum size of 3Kb [13]. Hence, it
is theoretically possible to encode all necessary information in one QR-Code. However,
the test smartphone was not able to scan this amount of data. Maybe newer cameras
are able to manage this. According to [14] it is not recommended to store more than
300 characters in one QR-Code if the QR-Code is meant to be read by a camera of a
smartphone. Therefore, we decided to split the root certi�cate into three QR-Codes and
used a fourth QR-Code for the encoding of the other information.

For the scanning of the QR-Code a library was used which is called barcodescanner [15].
The library is licensed under Apache licence, Version 2 and can therefore be used for
free. It is based on ZXing and ZBar [15]. The library provides an embedded solution
for scanning a QR-Code without the need of installing any third party scanner applica-
tions. Positive is the simplicity of using it. The only thing that needs to be done is to
implement the interface ZXingScannerView.ResultHandler and override the handleRe-
sult(Result rawResult) method. In the manifest of the application it must be allowed to
use the camera. One negative aspect may be that development is still well underway.
Hence, regular updates are quite presumable. Listing 5.1 shows an excerpt of the scanner
class.

1 public class QRScanner extends Activity implements ZXingScannerView.

ResultHandler {

2

3 [...]

4

5 @Override

6 public void handleResult(Result rawResult) {

7 splitRawResult(rawResult.toString());

8 finish();

9 }

10 }

Listing 5.1: Excerpt of QRScanner

The library allows some advanced settings, like automatic focus or �ash. However, the
standard settings are already suitable. When the camera is started and the QR-Code

5.1. MeasrDroid Core 35

is recognized, the method handleResult(Result rawResult) is called. In this context it is
enough to only use the String representation of the rawResult because we know that
the input is just an encoded String of the aforementioned information. The splitRawRe-
sult(String rawString) method is a helper method that splits the concatenated String in
its components and stores them in the database. MeasrDroid uses the SharedPreferences
for storing data. This way, stored data is accessible by all components of the application
but not for other, installed applications.

Beside the QRScanner class, a ScannerManager class exists which manages all of the
scanning. Therefore, it provides a method to actually initiate a scan and ways to check
whether all needed information has already been scanned. Only if this is true the
application can move on performing the pairing.

5.1.2 Certi�cate Tools

The Certi�cateTools class is a helper class that enables the creation of a key pair and
a CSR. It is also possible to convert a CSR to the common PEM format. According to
the coding conventions of tool classes, everything is de�ned statically here and it is not
possible to create an object of this class.

The creation of the key pair is done by classes and methods from the java.security
package. At �rst an instance of a KeyPairGenerator has to be created with the speci�ed
algorithm. The object then has to be initialized with the key size in order to generate
the key pair. The algorithm and the key size are de�ned in the PairingManager class.
We used RSA as the algorithm and a key size of 2048 bits which is strong enough at the
time of this writing according to NIST [16].

By contrast, creating a CSR is not possible in Java without external libraries. That is
because a provider is needed that implements the functionalities [17]. We decided to
use the Bouncy Castle library because it is probably the most known library related
to this topic, written in Java [18]. Also, it is free to use and well documented. One
negative aspect in the eyes of the author is that it is not possible to use all of the needed
functionalities by just adding one .jar �le. To be exact, two �les have to be included:
one for the aspects related to the provider and one for the main aspects of creating a
CSR. Listing 5.2 shows the important parts of creating the CSR.

36 Chapter 5. Implementation

1 public static PKCS10CertificationRequest generateCSR(KeyPair pair, String

subject, String algorithm) {

2 PKCS10CertificationRequestBuilder builder = new

JcaPKCS10CertificationRequestBuilder(new X500Principal(subject),

pair.getPublic());

3 ContentSigner signer = new JcaContentSignerBuilder(algorithm).build(

pair.getPrivate());

4 return builder.build(signer);

5 }

Listing 5.2: Excerpt of the creation of a CSR

The method returns an object of the class PKCS10Certi�cationRequest which represents
a CSR. The needed parameters are the key pair, the subject and the algorithm which are
de�ned in the PairingManager class. The algorithm is used for signing. We used SHA256
with RSA encryption. At �rst, a PKCS10Certi�cationRequestBuilder object is created
speci�ed with the subject and the public key. Secondly a ContentSigner object is created
speci�ed with the dedicated private key. The build(ContentSigner signer) method �nally
creates the CSR.

The common format of a CSR is the PEM format. To convert the PKCS10Certi�cation-
Request to PEM format a second method has been implemented that uses a JcaPEMWriter
object to obtain the desired goal.

5.1.3 HTTP Client

According to the protocol, sending the CSR and the MAC to the VM has to be TLS-
protected. Therefore, a HTTPS client is needed. This is already implemented in Measr-
Droid. However, since Android 5.1 (Lollipop, API 22) all classes from the org.apache.http
package have been deprecated [19]. The existing HttpClient class is based on these
classes. Therefore, a new HTTPS client has been implemented based on HttpsURLCon-
nection from the javax.net.ssl package. A customized SSLSocketFactory is speci�ed with
a TrustManager that trusts the root certi�cate. The root certi�cate has to be stored in
the KeyStore before.

Due to the fact that posting data to a VM triggers network tra�c, the HttpsPost is
implemented as an AsyncTask [20]. This is necessary in order to prevent the UI-Thread
from getting blocked because of background tasks.

5.1. MeasrDroid Core 37

5.1.4 Pairing Manager

The PairingManager class is responsible for performing the pairing of the VM and the
client. The class consists of a constructor and one method that does all the needed steps:
public boolean doPairing(Context ctx). This is the highest possible encapsulation and
allows an easy usage. The only thing that needs to be done is to create an object of the
class and call the doPairing() method. To be exact, this is never done directly but with
a service (see 5.1.5). The method returns true if the pairing was successful, otherwise
false. Everything else is kept private. For correct work a few input variables are needed.
These are the application context, the client name, the URL of the VM, the shared secret
and the root certi�cate. Apart from the context, all of this information is stored in the
database. The PairingManager class also de�nes a few static variables at the very start
which are needed for all subroutines. This concludes the algorithm for the MAC, the
algorithm for the key pair and the key size. Also, the algorithm for the CSR is de�ned
here and the subject itself where only the client name is added dynamically. These
variables can be changed in order to satisfy the own needs.

The steps that are done in the doPairing() method are as follows:

• Store root certi�cate: This step is necessary for the TLS-protected connection
between the client and the VM. That is because the VM authenticates itself with
a certi�cate signed by the root CA. Therefore, the root certi�cate needs to be
stored in the KeyStore so it can be trusted by a TrustManager. The location of the
KeyStore is a directory on the �lesystem. A KeyStoreManager already exists in
MeasrDroid which is used for this task.

• Generate CSR: This is done using the aforementioned Certi�cateTools helper
class. The CSR is converted to PEM format immediately.

• Calculate MAC: Before the MAC can be calculated the secret has to be created
from the encoded String that is already stored in the database. This is done using
classes and methods from the javax.crypto package. Also, an algorithm for the
MAC has to be speci�ed. We used the HMAC procedure based on SHA-1.

• Send CSR and MAC: This is done using the aforementioned HttpClient helper
class. CSR and MAC are stored in a HashMap which is converted to post parame-
ters before it is sent.

• Receive certi�cate: When the integrity of the sent CSR is veri�ed by the Admin
Device the certi�cate is created, signed and stored on the VM. From there it can
be pulled by the client together with the MAC. Afterwards the certi�cate is stored
in the KeyStore if the calculated MAC matches the received one.

38 Chapter 5. Implementation

5.1.5 Pairing Service

The overall Pairing Protocol can take quite a long time, depending on how fast the
Admin Device signs the CSR and stores the certi�cate on the VM. Therefore, we decided
to use an Android Service. [21] This has the advantage that the user does not have to
wait the whole time for the application to be �nished. The user can always exit the
application and come back later on. Once started the service will continue its work until
it is �nished even if the application is closed. Secondly, a service provides an easy way
to perform tasks in the background. This is needed in order to prevent the UI-Thread
from getting blocked.

The PairingService class simply creates an object of the PairingManager class and calls
the doPairing() method. If something went wrong, it waits for one minute and tries
again until the pairing was successful. The service is managed by an already existing
ServiceManager class.

5.1.6 Graphical User Interface

The implemented protocol does not really need a Graphical User Interface apart from
the scanning of the QR-Code. That is because all of the main steps are done in the
background using the aforementioned service. However, in two situations it appears
to be useful to have a graphical feedback. Firstly, to inform the user of what will be
done during the setup. This is achieved by a simple Wizard Page. Secondly, to have
some kind of a placeholder which prohibits the user from doing something during the
time when the service is running. Therefore, an activity has been introduced. A simple
gear animation shows that the service is currently running and a progress bar together
with some text informs the user about which step is currently done by the service. The
activity can not be left, apart from exiting the whole application. When the pairing is
�nished it automatically destroys itself and moves on. Figure 5.1 shows two screenshots
of the two mentioned situations.

5.2 MeasrDroid Backend

In this context the MeasrDroid Backend is the VM where CSR and MAC are pushed
to and the certi�cate is pulled from. This thesis concentrates only on part of the web
development. Therefore, a framework was used which is called Flask [22]. It is written
in Python and is based on Werkzeug and Jinja. It is licensed under BSD licence and can
therefore be used for free [22]. The advantages of using a framework like this are easy
usage and the fact that not everything needs to be implemented by one’s self. This
includes Cookie management or defence against Cross-Site Scripting, for instance [22].

5.2. MeasrDroid Backend 39

(a) Pairing Wizard (b) Pairing Activity

Figure 5.1: Graphical User Interface

40 Chapter 5. Implementation

Also, it is quite easy to implement a routing system based on URLs. Only a special
decorator needs to be added. Listing 5.3 shows an example of this.

1 @app.route("/")

2 def index():

3 return "MeasrDroid is awesome"

Listing 5.3: Example of URL routing in Flask

The route(path) decorator tells Python to call a speci�ed method when a certain path
is requested. Requesting the index page automatically calls the index() method in this
example. It is also possible to add more settings to the route decorator, like the allowed
methods (GET, POST).

Flask comes with a simple built-in web server. This is good enough for development and
testing purposes. However, in a real situation it may be better to use a more advanced
server, like Apache.

5.2.1 TLS Protection

Due to the fact that the protocol foresees a TLS-protected connection between the client
and the VM, the server must be able to handle HTTPS. This is also quite easy to achieve
in Flask. Only the ssl_context variable must be speci�ed in the run() method. This is in
fact just a tuple of a valid certi�cate and the dedicated private key. The certi�cate is
signed by the root CA.

5.2.2 Pairing and User Feedback

The only thing that needs to be implemented in this context is to receive the CSR and
MAC and store them in a directory from where the Admin Device can pull them later
on. Flask provides a request object which enables to read from a POST variable. The
content of the csr variable is written to a �le and stored in the Uploads directory. The
exact same thing is done with the mac variable.

For user feedback the server sends the HTTP status code back to the client. This can
either be 200 if the upload was successful, or 400 otherwise. Also, a short message is
provided which describes what value is missing in the case of an error.

41

Chapter 6

Evaluation

In this chapter both the theoretical and practical part of this thesis are evaluated under
certain aspects. This chapter also compares the two possible solutions of the MeasrDroid
Pairing Protocol described in chapter 4.

6.1 Usability

Easy usage is an implicit requirement of every application. If an application is too
complicated, it is quite unrealistic that the application ever becomes successful.

The parts that have been added to the Android application are directly inserted into
the start wizard. Therefore, the same colour scheme is used and the operation is not
more complicated than it was in the already existing application. In fact, only two user
interactions are necessary: Firstly, accepting the information given in a wizard page
by clicking on a button. Secondly, the scanning of the QR-Code. All of the rest is done
automatically in the background which is quite comfortable for the user.

The scanning of the QR-Code itself is not really convenient in the current solution
because the user has to scan four times. However, this is only because we use a local PKI
at the moment as explained in section 5. In a real situation the local PKI will be replaced
by a global PKI and in this case there is no need for scanning a whole certi�cate. Then
only one QR-Code has to be scanned which is reasonable.

6.2 Performance

The overall performance of theMeasrDroid Pairing Protocol in the form it is implemented,
depends an a few factors. A major factor is the power and equipment of the smartphone.
If the smartphone is only equipped with a camera with low resolution, it may take

42 Chapter 6. Evaluation

longer to recognize and scan the QR-Codes. The smartphone used for testing (HTC
Desire S) was introduced in 2011. By comparison to newer smartphones the general
power and equipment is much worse. However, also in this case it did not take longer
than a few seconds to scan the QR-Codes. Also, the creation of the key pair, the CSR
and the calculation of the MAC took only a few seconds. Due to the fact that we used a
service which runs in the background, this depends furthermore on how many other
tasks are currently running on the smartphone.

If we assume that the VM is online all the time, the upload of CSR and MAC is also
really fast. In our test scenario the sent package had a size of only 1049 bytes. Hence,
the upload does not take very long even with a low internet connection.

The further performance depends on how fast the Admin Device becomes active and
signs the CSR. Due to the fact that the Admin Device is not online all the time and is
also not in our area of competence, we can not make any statement about the amount
of time in this case. However, in a real situation we assume that the tenant who wants
to register a client immediately performs the necessary steps.

When the certi�cate is stored on the VM, it can take a maximum time of one minute
until the smartphone tries to pull again. Then the certi�cate is downloaded, the integrity
is veri�ed and it is stored in the KeyStore. This takes only a few seconds again.

In our test scenario the whole pairing took only approximately 3 minutes. An important
aspect is also the fact that the protocol needs to be performed only one time. Afterwards
uploading data to the VM is possible in real-time (see 6.5). Hence, one can say that
the overall performance of MeasrDroid is much better than before because the most
frequently step (uploading data to VM) is much more e�cient now.

6.3 Privacy Preservation

As even being part of the title, privacy preservation is a really important requirement of
this thesis. According to the de�nition in section 2.1 privacy preservation are methods
to obtain privacy.

In this context privacy means that collected data - owned by a tenant - is only accessible
by the particular tenant at any time. This is mainly reached by encryption. Data is
always encrypted on the client device before it is uploaded to the VM. Furthermore, data
is only stored in encrypted format. This way, it can be ruled out that any unauthorized
person is able to gain insights into the tenant’s private data even if the person manages
to get access to the VM. The private key for decryption is stored on the Admin Device
which is only accessible by the tenant. Hence, the tenant is able to inspect or evaluate
collected data on the Admin Device.

6.4. Evaluation of the Two Solutions 43

Secondly, privacy means that the decision on sharing private data with others can only
be made by the tenant itself. A tenant can use the Admin Device in order to select parts
of the collected data that should be shared with others. Also, the tenant can explicitly
decide to whom selected data should be accessible.

To achieve these two aspects it is required to have a secure, integrity-checked and
authenticated connection in every data transmission from one entity to another one.
This thesis concentrates only on the situations when data is sent from a client to a
VM (upload) and when data is sent from one VM to another one (sharing). By default
there is no possibility to either verify the integrity of a message or to authenticate the
sender/receiver of a message. According to the attacker model presented in section 3.4
this is susceptible to several attacks. Data can be manipulated during the transmission
and it can not be veri�ed that data is sent to a valid communication partner but not to
an attacker.

Therefore, it is necessary to provide a mechanism that enables the establishment of such
an integrity-checked and authenticated connection, which is basically a TLS-protected
connection. This is achieved by the MeasrDroid Pairing Protocol. After performing the
protocol both communication partner are able to authenticate each other and establish
the secure connection for exchanging data. Hence, it can be ruled out that either the
sender of a message is malicious or the receiver. Furthermore, no Man-In-The-Middle
attacks are possible.

Hence, the security of the overall system lies in the MeasrDroid Pairing Protocol itself.
If the protocol is secure, one can say that no attacks are possible to gain insights into
private data during the transmission. This is proven in section 6.4 for both possible
solutions presented in chapter 4. Due to the fact that data is always sent and stored in
encrypted format, one can also say that privacy is obtained in the whole system.

6.4 Evaluation of the Two Solutions

The two solutions presented in chapter 4 are both suitable. Hence, it is worthy to
compare the two solutions to each other. Apart from that, the security models are
investigated in this section in order to prove that both solutions are secure.

It is useful to provide two possible solutions to achieve the same goals. In general, one
can not say that either solution one is better or solution two. It depends on the situation.

The most common use case is probably that a tenant rents a VM which is managed by
the service provider. Therefore, the whole IT infrastructure is provided by the service
provider. This situation basically allows both solutions. Therefore, one can say that
solution two based on a PKI is more bene�cial here because it has more advantages
according to section 6.4.3. However, if a tenant is not willing to pay any money, which

44 Chapter 6. Evaluation

is the most decisive factor in most cases, solution one is also a good opportunity because
self-signed certi�cates can be created for free.

In general, it is not required that the VM is managed by the service provider. It is
also conceivable that a tenant sets up the whole IT infrastructure at his home. In this
case it may be better to use solution one based on self-signed certi�cates. If the whole
infrastructure is not connected to the Internet, it is not even possible to use a global
PKI in this situation.

6.4.1 Investigation of the Security Model (Self-Signed)

The initial connection between the VM and the client or two VMs can not be secured.
The security of this protocol lies only in the veri�cation of the integrity of the sent
messages and authentication of the sender. This way it can be proven that the messages
were not manipulated during the transmission and were not sent from an attacker. This
is achieved by a Message Authentication Code. Hence, the security lies in the shared
secret between the VM and the client or between the two VMs.

The secret is sent to the VM securely because we assume that the VM is already assigned
to the tenant. Hence, a secured connection between the VM and the Admin Device
already exists. The QR-Code is a secure side channel per de�nition because we assume
that the tenant only provides this information to the particular client he wants to register.
This also applies to a di�erent side channel like USB �ash drive, for instance. With these
two assumptions in mind we can assume that the shared secret is only known to the
VM and the client and the setup for using a Message Authentication Code is therefore
secure.

In the other situation we assume that the agreement on the shared secret has happened
on a secure side channel, like telephone, for instance. Hence, we can assume that the
shared secret is only known to the two VMs and again the setup for using a Message
Authentication Code is secure.

Using a non-con�dential channel for sending self-signed certi�cates is acceptable be-
cause certi�cates do not consist of sensitive data. However, the integrity must be
veri�able because of Man-in-the-Middle attacks. Assuming that the HMAC procedure is
secure, the whole protocol is therefore secure.

6.4.2 Investigation of the Security Model (PKI)

The security of this concept lies mainly in TLS. It is used to secure both the connection
between the client and the VM and the connection between the VM and the Admin
Device. We assume that the secure connection between the VM and the Admin Device
already exists after the point when the VM is assigned to the tenant. Using TLS for the

6.4. Evaluation of the Two Solutions 45

connection between the client and the VM is possible, too because we assume that the
VM possesses a valid certi�cate which can be veri�ed by the client.

Under the assumption that TLS is a secure protocol, it can be ruled out that any trans-
mitted message is manipulated during the transmission. However, authentication is
only possible for the client at the initial connection but not for the VM. By implication,
this means that anybody can generate a CSR and send it to the VM. Apart from that,
the message can still be manipulated when it is stored temporary on the VM. Therefore,
it is necessary to verify the integrity of transmitted messages and also authenticate the
sender. This is achieved by the Message Authentication Code based on a shared secret
between the Admin Device and the client. Hence, the further security lies in the shared
secret.

The secret is encoded in a QR-Code. The QR-Code is a secure side channel per de�nition
because we assume that the tenant only provides this information to the particular
client he wants to register. This also applies to a di�erent side channel, like USB �ash
drive, for instance. Hence, we can assume that the shared secret is only known to the
Admin Device and the client and the setup for using a Message Authentication Code is
therefore secure.

Assuming that the HMAC procedure is secure, the whole protocol for the pairing of a
client and a VM is therefore secure.

For the pairing of two VMs only non-sensitive data has to be exchanged. These are
certi�cates (only local PKI) and URLs (local and global PKI). This is also no security
leak if we assume that the integrity of the sent messages are veri�ed by the respective
tenants. The exchange itself can happen on an arbitrary side channel.

6.4.3 General Comparison

This chapter compares the two provided solutions in general and independently from
the situation.

Advantages of solution one based on self-signed certi�cates:

• Direct connection: The main conversation is either between a client and a VM
or between two VMs. In both situations there is a bidirectional, direct connection,
whereas solution two has to use the VM for redirecting transmitted messages.

• Smaller QR-Code: There is no need to encode a whole certi�cate in a QR-Code.
Hence, this solution can get along with just one QR-Code which is convenient for
the client. However, this is only an advantage over solution two if we assume
that solution two is based on a local PKI which is probably never the case in a
real situation.

46 Chapter 6. Evaluation

• Costs no money: Self-signed certi�cates can be created with free tools. Hence,
this solution does not cost any money, whereas solution two can be very expensive
if every Admin Device needs a certi�cate signed by a globally veri�able CA.

Advantages of solution two based on a Public Key Infrastructure:

• Based on TLS: TLS is currently the international industry standard for secure
communication. TLS is used to secure all transmitted messages during the per-
formance of the protocol. As a consequence, it is also easier for foreigners to
understand the security model of this solution.

• No need for storing client certi�cates: The VM does not have to store any
client/VM certi�cates which saves memory. Also it is more performant to only
authenticate a client/VM by verifying the root certi�cate, instead of looking
through all stored client/VM certi�cates.

• Scalability: Based on the previous aspect authentication stays the same in perfor-
mance even with more than 100 valid clients/VMs because only the root certi�cate
must be veri�ed. In solution one this requires to look through more than 100
certi�cates.

• Easy extensibility: If money is a decisive factor, this solution can simply be
based on a local PKI which costs no money. However, improving this solution by
the use of a global PKI is possible without many changes and should always be
preferred because of other advantages.

• Easy protocol: If we assume that we use a global PKI, the pairing between two
VMs is very easy to achieve. The only step that is required is the exchange of the
URLs which is done directly by the tenants. Therefore, no further implementation
is necessary, too.

Both solutions have their advantages and can be used in a real situation. However,
advantages of solution two are considered to be more strong. This is mainly because
of easy extensibility and scalability. If the protocol is only needed in order to register
one client, the performance of the system after performing the protocol is nearly the
same in both solutions. However, using solution two, the system is also performant in
the case of more than 100 registered clients. Therefore, solution two was taken for the
implementation described in chapter 5.

6.5 Real-Time Data Collection

As mentioned in section 1.3 real-time data collection is one of the desired goals of this
thesis, more precisely of the whole new concept of MeasrDroid.

6.5. Real-Time Data Collection 47

This was not possible in the old version of MeasrDroid due to security reasons. That is
because a client was not able to directly push data to the database where it is stored.
Instead, it was only possible to push data to the Upload.droid from where it is pulled
after a certain time by the C3PO. The reason for this is that the C3PO does not need to
be accessible on the internet which is probably the highest possible level of security.
This way, most attacks against an IT system can be warded o�. However, as explained
in section 2.2.3 the time steps between two pulls can not be made arbitrary small which
makes real-time data collection impossible.

In the new version of MeasrDroid real-time data collection is possible because every
client can directly push data to the VM where it is stored. This means that uploading
data from a client to the location where it is stored is no longer done by polling, but
is event-based. This is the fastest possible solution because the only delay that may
appear is due to network tra�c.

However, allowing clients to directly push data to the VM is only possible because the
VM is accessible on the Internet. This looses up the former security concept because in
general, this enables two kind of attacks:

1. Distortion of Data: If every client is allowed to directly send data to the VM, an
attacker could also distort collected data by uploading senseless data to the VM.

2. General Attacks against the VM: All conceivable attacks against a server,
which is accessible on the Internet, can be performed against the VM, as well.
This could be attempts to cripple the whole VM or to get access to it. If an attacker
manages to get access to the VM, he has also access to all stored data.

Hence, a new protection mechanism is required in order to ward o� these attacks.
This is mostly achieved by the MeasrDroid Pairing Protocol. The protocol enables the
establishment of a TLS-protected connection with mutual authentication. Therefore,
the VM can be con�gured to never accept a connection with a client for uploading data
if the client is not able to authenticate himself. If the client has performed the protocol
successfully, he is able to authenticate himself and establish a connection. This means
that attack 1 can be completely warded o� only because of the MeasrDroid Pairing
Protocol.

For attack 2 the argumentation is nearly the same. The only problem is that the VM can
not be con�gured to never accept a connection in general. This is due to the fact that it
must be possible for a client to either send his self-signed certi�cate or the CSR to the
VM. However, it is not realistic that many attempts to perform the pairing appear in a
short time. Therefore, the VM can be con�gured to only accept a few connections per
day, for instance or use an IP blacklisting/whitelisting in order to prevent Dos attacks.
Apart from that, common security aspects like Intrusion Detection Systems and Firewalls
are in place to generally protect the VM against attackers. However, this is part of a
di�erent work and is therefore not investigated in this thesis.

48 Chapter 6. Evaluation

Under the assumption that the mentioned security aspects are applied correctly, the
further security lies only in the protocol itself. Due to the fact that the protocol is secure,
as proven in section 6.4 one can say that the overall system is not more insecure than it
was before and therefore real-time data collection is now possible without undermining
the common security concept.

49

Chapter 7

Related Work

This chapter gives an introduction to other work that is related to this thesis.

There are many bachelor -and master theses related to the original MeasrDroid project.
A selection can be found in [6]. Of course, these theses are also related to this work.
However, this is not investigated in this chapter.

A paper that introduces a related topic is called Multi-tenant Databases for Software as
a Service: Schema-Mapping Techniques, written by A. Kemper et al. and was published
2008 [23]. The authors describe a new schema-mapping technique which is multi-tenant
capable. This technique is called Chunk Folding. The idea is that "logical tables are
vertically partitioned into chunks that are folded together into di�erent physical multi-
tenant tables and joined as needed" [23]. Transferred to our context, this means that no
isolated virtual machines are necessary in order to achieve multi-tenancy. Instead, there
is only one server where all collected data is pushed to and multi-tenancy is achieved
by the special schema-mapping technique. This is an interesting approach. However,
it is not really suitable for our requirements, especially not for privacy-preservation.
This is because the service provider learns all data collected by all of the clients and
tenants, respectively. Instead, we require that each particular tenant is the only party
with access to the collected data.

A second paper that is related to this work is called CloudVisor: Retro�tting Protection of
Virtual Machines in Multi-tenant Cloud with Nested Virtualization, written by F. Zhang
et al. and was published 2011 [24]. The situation in this paper is nearly the same
as in our context: virtual machines are used in order to achieve multi-tenancy. The
authors present the statement that "software stacks in typical multi-tenant clouds are
non-trivially large and complex, and thus are prone to compromise or abuse from
adversaries including the cloud operators" [24]. In simpler words, this means that virtual
machines can be attacked and exploited. The authors developed a system for security
monitoring which is based on nested virtualization. The prototype implementation
is called CloudVisor and is mainly "responsible for protecting privacy and integrity

50 Chapter 7. Related Work

of resources owned by VMs" [24]. As often mentioned in this thesis, security plays a
major role in order to obtain privacy which is the central requirement of this project.
Therefore, the paper has also importance for our project but in fact, it is not required in
our situation. The main idea of CloudVisor is to �lter and monitor every access to the
VM. If anybody - even the service provider - tries to get access to the data owned by the
VM, he "can only see the encrypted version of that VM’s data" [24]. This means that
the best security guarantees (apart from integrity-checks) of CloudVisor are to never
make data available to anybody in plain format. However, in our solution data is never
stored in plain format. Hence, a monitoring tool like CloudVisor is not required.

Related to our project are also all kind of platforms where a user can upload personal data
and evaluate it later on. An example for this is Runtastic. Runtastic is an austrian start-up
founded in 2009 which was sold to Adidas in 2015 [25]. The idea of Runtastic is that every
user can measure several aspects related to sports training (pulse, calories, kilometres,
etc.) with a smartphone and upload it to the Runtastic platform where it is stored [26].
The goals are mainly to motivate users to do more sports. Therefore, uploaded data can
be evaluated or shared with others in order to enable a comparison [26]. This is exactly
the same which can be done in our project. However, there is one big di�erence: Due to
privacy preservation in our project it is guaranteed that even the service provider has
no access to uploaded data. This is not the case in a commercial platform like Runtastic.
According to the privacy explanation the provider is explicitly allowed to collect personal
data of its users and use the data for purposes of the Runtastic application [27]. However,
the data is not transmitted to any third-parties [27].

51

Chapter 8

Conclusion and Outlook

This thesis is part of a bigger project. The entire project is to introduce multi-tenancy
in MeasrDroid in a privacy-preserving way. Therefore, the overall architecture and
structure of MeasrDroid has changed. Virtual machines are introduced in order to
provide individual data sinks for each tenant. A tenant can have an arbitrary number
of clients as data sources. Every client is able to upload collected data to the VM
where it is stored con�dentially. Furthermore, new concepts are introduced like sharing
mechanisms between two tenants.

Privacy is the central requirement of the whole project. To obtain privacy data is
never sent or stored in plain format but always encrypted. As a consequence it is
not possible for unauthorized people to ever gain insights into some tenant’s private
data. Furthermore, privacy preservation requires the presence of an authenticated
and integrity-checked connection for every data transmission. The MeasrDroid Pairing
Protocol has been developed to enable the establishment of such a connection. The
protocol needs to be performed before data is sent from one entity to another one and
can therefore be seen as the initial pairing. As a side e�ect, it enables real-time data
collection which has not been possible in the existing MeasrDroid project.

This thesis provides two di�erent solutions for the MeasrDroid Pairing Protocol. The
�rst solution is based on self-signed certi�cates, whereas the second solution is based
on a PKI. Both solutions are suitable and secure which is proven in the thesis. Apart
from providing the theory, the MeasrDroid Pairing Protocol has also been implemented
in the form based on a PKI.

Currently there are two further students involved into the project: The �rst one is
mainly responsible for the management of the VMs. This includes the VMLCS as it is
called in �gure 3.2 in section 3.2. The second one is mainly responsible for the web
development of the VMs and the Admin Device. This includes user management or the
steps in the protocol that are done by the Admin Device. Next, we also have to think
about ways how to encrypt sensor data on the client device in order to e�ciently enable

52 Chapter 8. Conclusion and Outlook

partial sharing with other tenants. This could be achieved by the use of Attribute Based
Encryption.

All in all the project is very interesting and �rst steps are already done. However, a lot
more things need to be done in order to have a multi-tenant MeasrDroid that is ready
for the market.

Appendices

53

55

Appendix A

Abbreviations

• CA: Certi�cate Authority

• CRL: Certi�cate Revocation List

• CSR: Certi�cate Signing Request

• HMAC: Keyed-Hashed Message Authentication Code

• HTTP: Hypertext Transfer Protocol

• HTTPS: Hypertext Transfer Protocol Secure

• MAC: Message Authentication Code

• MD5: Message Digest 5

• NIST: National Institute of Standards and Technology

• PKI: Public Key Infrastructure

• SHA: Secure Hash Algorithm

• SSL: Secure Sockets Layer

• TLS: Transport Layer Security

• UI: User Interface

• URI: Uniform Resource Identi�er

• URL: Uniform Resource Locator

• VM: Virtual Machine

• VMLCS: Virtual Machine Lifecycle Service

56 Appendix A. Abbreviations

57

Appendix B

Glossary

• Admin Device: The Admin Device is the tenant’s device with direct access to the
particular VM. It is meant to be the control center of MeasrDroid for the respective
tenant. Collected data can also be inspected and evaluated here.

• Android: Android is an operating system for smartphones. Android is based on
Linux and is open source. Applications for Android are usually written in Java.

• CA: A Certi�cate Authority is an organisation that signs digital certi�cates.

• Client: A client is basically a device that uses some service of an IT-system. In
this context, client always means smartphone.

• CSR: A CSR is kind of a precursor of a digital certi�cate. It contains all information
related to the person for which the certi�cate is issued. This especially concludes
the public key.

• Digital Certi�cate: A digital certi�cate is a signed piece of data that maps the
identity of somebody to the public key. A certi�cate can either be self-signed or
signed by a Certi�cate Authority.

• MAC: A MAC is a calculated value for a given message which enables both, the
veri�cation of the integrity of the message and the authentication of the sender.

• MeasrDroid Backend: The MeasrDroid Backend is the counterpart to the Meas-
rDroid Core. This concludes basically everything that is part in the architecture
of MeasrDroid apart from the client.

• MeasrDroid Core: The MeasrDroid Core is the Android application that has to
be installed on the device in order to measure sensor data.

• PKI: A PKI contains all parties that are necessary in order to create, distribute
and verify digital certi�cates.

58 Appendix B. Glossary

• Privacy: Privacy is the area in which a person can decide to whom, when and
why information is accessible.

• QR-Code: A QR-Code is a two-dimensional code which can be used to store
text. A QR-Code can contain a maximum of 3Kb. [13] In order to read a QR-Code
speci�c scanner applications are necessary.

• Smartphone: A smartphone is a mobile phone with more possibilities than a
conventional mobile phone. This concludes e.g. navigation, email, etc. [3]

• TLS: TLS is a protocol for secure communication. It contains authentication
of the communication partner, con�dential end-to-end data transmission and
veri�cation of the integrity of sent data.

• VM: A VM is a computer system that is not installed on a real hardware but runs
in an isolated virtual environment of a real computer system. It can either have
complete, partial or no access to the hardware. [28]

59

Bibliography

[1] “Statista - Prognose zur Anzahl der Smartphone-Nutzer weltweit von
2012 bis 2019,” http://de.statista.com/statistik/daten/studie/309656/umfrage/
prognose-zur-anzahl-der-smartphone-nutzer-weltweit/, Accessed: 2015-12-31.

[2] “Statista - Weltbevölkerung von 1950 bis 2015,” http://de.statista.com/statistik/
daten/studie/1716/umfrage/entwicklung-der-weltbevoelkerung/, Accessed: 2015-
12-31.

[3] “Smartphone,” Website, http://wirtschaftslexikon.gabler.de/De�nition/smartphone.
html, Accessed: 2016-01-07.

[4] P. D. L. Prechelt, “Vorlesung Anwendungssysteme: Privatsphäre,” http://www.
inf.fu-berlin.de/inst/ag-se/teaching/V-AWS-2011/31_Privatsphaere.pdf, Accessed:
2016-01-05.

[5] “MeasrDroid,” Website, http://www.droid.net.in.tum.de/, Accessed: 2015-12-08.

[6] M. Faath, “Analysis of content delivery networks with an android-based mea-
surement framework,” Master’s Thesis, Technische Universität München, Munich,
Germany, 2013, advised by Dipl.-Inf. Johann Schlamp.

[7] “Measrdroid on the Google Play Store,” Website, https://play.google.com/store/
apps/details?id=de.tum.in.net.measrdroid.gui.stats, Accessed: 2015-12-07.

[8] “Public-Key Cryptography Standards (PKCS) 1: RSA Cryptography Speci�cations
Version 2.1,” Website, https://tools.ietf.org/html/rfc3447, Accessed: 2015-12-08.

[9] C. Eckert, IT-Sicherheit, 8th ed. Oldenburg Verlag, Jan. 2013.

[10] “Secure Hash Standards,” http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.
pdf, Accessed: 2016-01-06.

[11] “MD5,” Website, https://www.ietf.org/rfc/rfc1321.txt, Accessed: 2016-01-06.

[12] K. Schmeh, Kryptogra�e, 5th ed. dpunkt.verlag, Feb. 2013.

[13] “QR-Code,” Website, http://qrcode.meetheed.com/question7.php, Accessed: 2015-
12-08.

http://de.statista.com/statistik/daten/studie/309656/umfrage/prognose-zur-anzahl-der-smartphone-nutzer-weltweit/
http://de.statista.com/statistik/daten/studie/309656/umfrage/prognose-zur-anzahl-der-smartphone-nutzer-weltweit/
http://de.statista.com/statistik/daten/studie/1716/umfrage/entwicklung-der-weltbevoelkerung/
http://de.statista.com/statistik/daten/studie/1716/umfrage/entwicklung-der-weltbevoelkerung/
http://wirtschaftslexikon.gabler.de/Definition/smartphone.html
http://wirtschaftslexikon.gabler.de/Definition/smartphone.html
http://www.inf.fu-berlin.de/inst/ag-se/teaching/V-AWS-2011/31_Privatsphaere.pdf
http://www.inf.fu-berlin.de/inst/ag-se/teaching/V-AWS-2011/31_Privatsphaere.pdf
http://www.droid.net.in.tum.de/
https://play.google.com/store/apps/details?id=de.tum.in.net.measrdroid.gui.stats
https://play.google.com/store/apps/details?id=de.tum.in.net.measrdroid.gui.stats
https://tools.ietf.org/html/rfc3447
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
https://www.ietf.org/rfc/rfc1321.txt
http://qrcode.meetheed.com/question7.php

60 Bibliography

[14] “QR Code Generator,” Website, http://goqr.me/de/, Accessed: 2016-01-12.

[15] “Barcode Scanner Library,” Website, https://github.com/dm77/barcodescanner, Ac-
cessed: 2015-12-07.

[16] “Cryptographic Key Length Recommendation,” Website, http://www.keylength.
com/en/4/, Accessed: 2015-12-08.

[17] P. Lipp, J. Farmer, D. Bratko, W. Platzer, and A. Sterbenz, Sicherheit und Kryptogra-
phie in Java, 1st ed. Addison-Wesley, Jul. 2000.

[18] “The Legion of the Bouncy Castle,” Website, https://www.bouncycastle.org/, Ac-
cessed: 2015-12-08.

[19] “Android 5.1 APIs,” Website, http://developer.android.com/about/versions/
android-5.1.html, Accessed: 2015-12-08.

[20] “AsyncTask,” Website, http://developer.android.com/reference/android/os/
AsyncTask.html, Accessed: 2015-12-08.

[21] “Services,” Website, http://developer.android.com/guide/components/services.
html, Accessed: 2015-12-08.

[22] “Flask,” Website, http://�ask.pocoo.org/, Accessed: 2015-12-08.

[23] S. Aulbach, T. Grust, D. Jacobs, A. Kemper, and J. Rittinger, “Multi-Tenant
Databases for Software as a Service: Schema-Mapping Techniques,” SIGMOD ’08
Proceedings of the 2008 ACM SIGMOD international conference on Management of
data, 2008, http://wwwkemper.informatik.tu-muenchen.de/research/publications/
conferences/sigmod2008-mtd.pdf, Accessed: 2016-01-08.

[24] F. Zhang, J. Chen, H. Chen, and B. Zang, “CloudVisor: Retro�tting Protection
of Virtual Machines in Multi-tenant Cloud with Nested Virtualization,” SOSP
’11 Proceedings of the Twenty-Third ACM Symposium on Operating Systems Prin-
ciples, 2011, http://www.sigops.org/sosp/sosp11/current/2011-Cascais/printable/
15-zhang.pdf, Accessed: 2016-01-08.

[25] “Adidas kauft Runtastic,” Website, http://wirtschaftsblatt.at/home/boerse/europa/
4794623/Adidas-kauft-Runtastic_Ein-Deal-mit-perfektem-Timing, Accessed:
2016-01-13.

[26] “Runtastic,” Website, https://www.runtastic.com/de/ueber, Accessed: 2016-01-13.

[27] “Runtastic Datenschutz,” Website, https://www.runtastic.com/de/datenschutz, Ac-
cessed: 2016-01-13.

[28] “Virtuelle Maschine,” Website, http://www.itwissen.info/de�nition/lexikon/
Virtuelle-Maschine-VM-virtual-machine.html, Accessed: 2016-01-07.

http://goqr.me/de/
https://github.com/dm77/barcodescanner
http://www.keylength.com/en/4/
http://www.keylength.com/en/4/
https://www.bouncycastle.org/
http://developer.android.com/about/versions/android-5.1.html
http://developer.android.com/about/versions/android-5.1.html
http://developer.android.com/reference/android/os/AsyncTask.html
http://developer.android.com/reference/android/os/AsyncTask.html
http://developer.android.com/guide/components/services.html
http://developer.android.com/guide/components/services.html
http://flask.pocoo.org/
http://wwwkemper.informatik.tu-muenchen.de/research/publications/conferences/sigmod2008-mtd.pdf
http://wwwkemper.informatik.tu-muenchen.de/research/publications/conferences/sigmod2008-mtd.pdf
http://www.sigops.org/sosp/sosp11/current/2011-Cascais/printable/15-zhang.pdf
http://www.sigops.org/sosp/sosp11/current/2011-Cascais/printable/15-zhang.pdf
http://wirtschaftsblatt.at/home/boerse/europa/4794623/Adidas-kauft-Runtastic_Ein-Deal-mit-perfektem-Timing
http://wirtschaftsblatt.at/home/boerse/europa/4794623/Adidas-kauft-Runtastic_Ein-Deal-mit-perfektem-Timing
https://www.runtastic.com/de/ueber
https://www.runtastic.com/de/datenschutz
http://www.itwissen.info/definition/lexikon/Virtuelle-Maschine-VM-virtual-machine.html
http://www.itwissen.info/definition/lexikon/Virtuelle-Maschine-VM-virtual-machine.html

	Introduction
	Motivation
	Problem
	Goals and Research Questions
	Structure of this Document

	Background
	Definition: Privacy Preservation
	MeasrDroid Project
	MeasrDroid Core
	Backend Infrastructure
	Necessity of Changes

	Cryptography
	Public-Key Encryption
	Message Authentication Code
	Public Key Infrastructure
	SSL/TLS

	Analysis
	Structure and Privacy Model
	Overall Architecture
	Individual Data Sinks
	Statistical Database
	Trusted Tenant Device
	Virtual Machine Management

	Use Cases
	Measurement of a Private Area
	Support Research
	Comparison of Measurements

	Attacker Model
	MeasrDroid Pairing Protocol

	Design
	Pairing based on Self-Signed Certificates
	Client VM
	VM VM

	Pairing based on a PKI
	Client VM
	VM VM

	Implementation
	MeasrDroid Core
	QR-Code Scanner
	Certificate Tools
	HTTP Client
	Pairing Manager
	Pairing Service
	Graphical User Interface

	MeasrDroid Backend
	TLS Protection
	Pairing and User Feedback

	Evaluation
	Usability
	Performance
	Privacy Preservation
	Evaluation of the Two Solutions
	Investigation of the Security Model (Self-Signed)
	Investigation of the Security Model (PKI)
	General Comparison

	Real-Time Data Collection

	Related Work
	Conclusion and Outlook
	Appendices
	Appendix Abbreviations
	Appendix Glossary
	Bibliography

