

Chair for Network Architectures and Services

Prof. Dr.-Ing. Georg Carle

Parsing geographical locations from DNS names - at scale!

Motivation

Internet measurement studies frequently come along DNS names that include city names or airport codes. Frequently, these are being used to assign a geographical location to a node, though this approach has been proven partially unreliable by Zhang et al. [1]. This work aims to extend the existing work by having a larger scale and an evaluation of accuracy of the geographical identifiers found.

ae1.br01.fra1.tfbnw.net be2.bb01.fra2.tfbnw.net be2.bb02.fra2.tfbnw.net ae12.bb01.ams2.tfbnw.net ae2.bb01.ams2.tfbnw.net ae3.bb02.bos2.tfbnw.net ae9.bb02.lhr2.tfbnw.net be9.bb01.ewr2.tfbnw.net

Frankfurt, Amsterdam, Boston, London and New York city codes

Approach

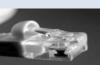
In a first step, reverse DNS resolutions of the entire IPv4 and parts of the IPv6 address space are to be gathered and potentially expanded by own measurements.

In a second step, these DNS names are then to be scanned for geographical codes embedded into these names (e.g. FRA for Frankfurt).

In a third step, the geographical location of those nodes is to be compared against existing geolocation approaches (e.g. [2]) and against own measurements through e.g. PlanetLab or Ripe Atlas to verify geographical location.

As a stretch goal, a fourth step could include correlation of that data to other opportunistic sources of geolocation, e.g. whois data, TLS certificate data or BGP community strings.

[1] M. Zhang et al., How DNS Misnaming Distorts Internet Topology Mapping, *USENIX Conference* 2006


[2] MaxMind, GeoLite City databases, http://dev.maxmind.com/geoip/geoip2/geolite2/

Contact

Quirin Scheitle scheitle@net.in.tum.de
Oliver Gasser gasser@net.in.tum.de
Johannes Naab naab@net.in.tum.de

http://go.tum.de/644204

