Technische Universitit Miinchen L X
Fakultat fiir Informatik Q "«
Lehrstuhl fiir Netzarchitekturen und Netzdienste 'A;

Implementation and Performance
Analysis of Firewall on
Open vSwitch

Interdisziplindres Projekt in der Elektrotechnik

durchgefiihrt am
Lehrstuhl fiir Netzarchitekturen und Netzdienste
Fakultat fir Informatik
Technische Universitdt Miinchen

von

Jay Shah

Aufgabensteller: Prof. Dr.-Ing. Georg Carle
Betreuer: M.Sc. Cornelius Diekmann and M.Sc. Florian Wohlfart
Tag der Abgabe: 29. April 2015

Ich versichere, dass ich die vorliegende Arbeit selbsténdig verfasst und nur die angegebenen
Quellen und Hilfsmittel verwendet habe.

Garching, den 29. April 2015

Abstract:

Software Defined Networking (SDN) is a current research trend that follows the ideology
of physical separation of the control and data plane of the forwarding devices. SDN mainly
advocates with two types of devices: (1) Controllers, that implement the control plane and
(2) Switches, that perform the data plane operations. OpenFlow protocol (OFP) is the
current standard through which controllers and switches can communicate with each other.
Using OpenFlow, SDN controllers can manage forwarding behaviors of SDN switches by
managing Flow Table entries. Switches use these low-level Flow Table entries to forward
packets to appropriate hosts.

Firewalls are integral part of today’s networks. We can’t imagine our network without a
Firewall which protects our network from potential threats. As SDN is getting pace in
replacing traditional architecture, it would be very interesting to see how much security
features can be provided by OpenFlow-enabled switches. Hence, it will be very important
to see if SDN, on the top of OpenFlow, can efficiently implement Firewalls and provides
support for an advanced feature like connection tracking. The task is straightforward:
Controller will add Flow Table entries on switches based upon Firewall rules. Such way,
we can enhance packet-processing by providing security.

In this Document, one strategy for implementing Firewall on SDN is presented. We can
write some controller applications that work as Firewall and inspect incoming packets
against the Firewall rules. These applications are also able to implement connection track-
ing mechanism. As SDN devices for the experiments, we selected Ryu controller and Open
vSwitch. Initially, such applications are tested on local machine with small Firewall rule-
set. Later, they are tested with real-world traffic and comparatively large Firewall ruleset.
The testing results present that such strategy can be used as a first step in implementing
security features (including connection tracking) in SDN environment.

Contents

1 Problem Analysis

1.1 Software Defined Networking
1.2 OpenFlow and Open vSwitch
1.2.1 Introduction to OpenFlow
1.2.2 OpenFlow Events and Messages
1.2.3 OpenvSwitch
1.3 Ryu . .o e
1.3.1 Introduction
1.3.2 Ryu Architecture
1.4 Firewall on SDN Controller

Design and Implementation

2.1 Ryu Application - General Template Design

2.2 Firewall Implementation as Ryu Applications
2.2.1 Inefficient Stateful Firewall Application
2.2.2 Efficient Stateful Firewall Application
2.2.3 Inefficient Stateless Firewall Application
2.2.4 Efficient Stateless Firewall Application

Results and Evaluations

3.1 Testing on Local Machine
3.1.1 Inefficient Stateful Firewall
3.1.2 Inefficient Stateless Firewall
3.1.3 Efficient Stateful Firewall
3.1.4 Efficient Stateless Firewall

3.2 Deployment on Memphis Testbed
3.2.1 Tests with single TCP packet
3.2.2 Tests with Real world traffic

10
11
12
12

i1

Contents

4 Summary

E Appendix

E.1 MAC address learning,

E.2 No direct support for TCP flag based Match Rule

E.3 Firewall Rules and Flows

E.4 Commands for Mininet

References

31

1. Problem Analysis

This chapter illustrates the technologies that are used in this IDP. Section 1.1 discusses
the concept and need for Software Defined Networking along with architectural diagram.
In the next Section 1.2, OpenFlow protocol, message exchange types and Open vSwitch
are explained. Ryu controller, its architecture & features are described in Section 1.3,
whereas Section 1.4 demonstrates Firewall and its implementation strategy on Ryu.

1.1 Software Defined Networking

Software Defined Networking (SDN) is a rising network architecture which splits the func-
tions of networking devices into two groups, namely network control and forwarding; where
network control is directly programmable. Earlier, these functions were tightly coupled
within a device. But, since they are separated into two individual functions, they make
network a logical entity by abstracting the underlying complex architecture for upper layer
networking applications and services [1].

SDN has risen from the failure of current networking technologies to meet current market
needs [1],[2]. Static nature of a network fails to adapt network traffic and user demands that
are tremendously growing. Carriers and enterprises seek to deploy new capabilities and
services, however lack of standard and open interfaces between networking devices limit
their abilities. Although enterprises are encouraging cloud services, scaling of computing
and networking resources has been a painful task yet to be solved. These issues put forward
a need of a new standard which should be capable of overcoming them; and hence, Software
Defined Networking has been introduced [3],[4].

The architecture of Software Defined Networking, which is illustrated in Figure 1.1, con-
sists of 3 major parts, namely Application Layer, Control Layer and underlying Infrastruc-
ture Layer. Unlike traditional network architecture where each device possesses a separate
control plane, in SDN architecture it is taken out and made centralized on a remote pro-
cess (called controller) running at Control Layer. This remote process (controller) provides
global view of the network. As a result, the applications and services running at Applica-
tion Layer appear to be running on a single, logical network switch. Network carriers and
companies face significantly less complexity in designing and operating a network since
the Infrastructure Layer becomes vendor-independent with the introduction of SDN. In-
frastructure Layer devices (for example: switches and routers which are also referred as
forwarding devices) should be configured to understand instructions from SDN controllers
only. This makes the configuration process easy and fast.

2 1. Problem Analysis

[
C |
Application Layer | Business Applications ’_'J
API API API
3 k l | 3 3
Networ
Control Layer Services | Network Services }—‘J

] [Open Flow

Infrastructure
Layer

Figure 1.1: Software Defined Networking: Architectural Diagram [1]

Since the Control Layer has become programmable, Network Managers can easily config-
ure the state of the network by writing some SDN programs [5]. These programs break
the vendor specific software dependencies of the devices and make them self-contained.
In addition to network abstraction, common network services like routing, multicasting,
security, load balancing etc. can also be implemented on SDN architecture to achieve busi-
ness objectives [6]. These advantages and features make SDN right candidate to overcome
current network problems and establish a new norm of Networking.

1.2 OpenFlow and Open vSwitch

1.2.1 Introduction to OpenFlow

OpenFlow Protocol(OFP) is the first, industry-specified, standardized SDN protocol which
defines a way for the controller to communicate with switches. The purpose behind it is
to provide standardized specification for communication interfaces of Control and Infras-
tructure Layer devices. It allows manipulation of the data stored on forwarding devices to
refine policy-based decision for packet forwarding [7].

OpenFlow is implemented on both ends of communication: On SDN controller and on
forwarding devices. With OpenFlow, each forwarding device can export their network
interfaces to the controller which will manage their forwarding states. The managed states
are segregated into Flow Tables on such devices, which are nothing but set of packet header
fields and associated actions. Some examples of these set of fields are standard Ethernet,
IP and transport protocol fields which are roughly equivalent to the fields used in ASIC
match. The actions associated with these fields are basically common packet operations
like sending a packet to some ports or modifying protocol fields [8]. OpenFlow has been
consistently revising under various versions and in this IDP, OpenFlow version 1.3 is used.

Deploying OFP-enabled SDN on physical (and virtual) networks is thought to be an easy
process for an enterprise to gradually introduce SDN on the existing network infrastructure.
This is because OFP enabled switches can forward packets based on matching rules as well
as in traditional manner. Even in multi-vendor network infrastructure, carriers can easily
deploy it ignoring vendor dependencies. According to the opennetworking.org, OpenFlow
protocol is currently the only standardized SDN protocol that allows direct manipulation of

1.2. OpenFlow and Open vSwitch 3

the forwarding plane of network devices, which makes it a key enabler for software-defined
networks [1].

1.2.2 OpenFlow Events and Messages

The OpenFlow protocol implementation is done between two devices by exchanging series
of OpenFlow negotiation messages. It supports three message types, namely controller-
to-switch, asynchronous, and symmetric; each with multiple sub-types. Controller-to-
switch messages are sent by the controller to directly manage the state of the switch.
Asynchronous messages are sent by the switch in order to notify the controller about
network events and changes made to the switch state. Symmetric messages are sent by
either the switch or the controller to one another without prior request. Messages are
summarized in Table 1.1 [9].

Type Message Description
Svmmetric Hello Version Numbers are negotiated
y Echo Sent to detect liveliness of each other

Feature Request Determine which switch ports are available

Controller — Switch | Set Configuration | Controller asks switch to inform about Flow
Table entry expirations

Packet Out It tells switch to send packets out of specific
port. It is also used to forward packets
received via Packet In messages

Packet In Transfer control of the packet to controller

Asynchronous

Port Status Inform controller about a change on a port

Table 1.1: OpenFlow protocol: Messages Types

1.2.3 Open vSwitch

According to ovs.org, Open vSwitch (OVS) is an open source software switch designed to
be used as a “virtual switch® in virtualized server environments. The goal of OVS is to
implement a switching platform that enables standard, vendor-independent management
interfaces and opens the forwarding functions of switches to programmatic extension and
control [10]. It supports all versions of OpenFlow protocol. Using ows-ofctl tool, any
desired OpenFlow version can be implemented on a physical switch.

Simply, Open vSwitch is a “software switch“ which implements OpenFlow protocol on
switching hardwares [11]. It manages the Flow Tables for the Datapaths which are used
for forwarding the incoming traffic according to matched entries. The structure of Flow
Table entries is explained in the Table 1.2.

Match Fields ‘ Priority ‘ Counters ‘ Instructions | Timeout ‘ Cookie ‘

Table 1.2: Flow Table Entry structure

e Match Fields: will be matched against incoming packets. It includes packet header
and input port

e Priority: matching priority for this Flow Table entry

4 1. Problem Analysis

Counters: number of received packets matching this rule

Instructions: Used to modify the action to be applied on the packet

Timeout: The number of seconds this Flow Table entry lives in the Table

Cookie: Opaque value chosen by controller. Not used while processing a packet.
Used by controller

Figure 1.2 shows the example of entries within a Flow Table.

SDN Controller Software

‘ ‘ OpenFlow

OpenFlow Enabled Network Device

Flow table comparable to an instruction set

10:40:. Portl
* a Z 5.6.7.8 * * Port2 325
* * * * 18 * Drop 30
* * * * & * Controller 150

Figure 1.2: Flow Table Entries [9]

1.3 Ryu

1.3.1 Introduction

Ryu [12] is a component-based SDN framework which delivers a suitable platform for SDN
applications to run on the top of Ryu controller. It is an open source tool written in Python
that provides well-defined APIs & packet libraries and supports all versions of OFP. It is
well tested with various OpenFlow switches and suits well on Open vSwitch which is used
in this IDP. Ryu has a powerful but complex architecture. However, its active community
support, nice documentation and few exemplary applications provide novice developers
a room to understand and get adapted to the environment easily. There are numerous
controllers that deliver SDN capabilities, but choosing the best of them is confusing for
the developers. As a research was carried out with number of controllers, Ryu has been
selected as the best controller choice for SDN environment [6].

The following Figure 1.3 depicts the role and features of Ryu SDN framework [13].

1.3.2 Ryu Architecture

RYU has ‘Event-based‘ architecture. Asshown in Figure 1.4, it uses ‘Event Dispatcher* for
generating and handling events from incoming OFP messages [13]. The controller works
as an event source. Explanation about the architecture in a stepwise manner can be found
below:

Ryu 5

[sonapp | [sonapp | [sonapp |
e e S R S R g b R T ey e | B N Well Defined
AP
RYU Built Application
RYU App RYU App PP
In App Layer

Control Layer
Packet and Other library ‘

Event Dispatcher

Open Protocol
| OpenFlow parser ofp vl 3 parserpy | (e.g.
OpenFlow)

[oFp switch | | oFpswiteh | [oFP switch |

Figure 1.3: Ryu SDN framework

1. Ryu manages two threads for sending and receiving the packets to and from the
switch. Upon receiving a packet, controller’s Receive Thread stores the packet in a
receiving queue. This packet is nothing but only raw bytes and yet to be parsed in
order to understand the OFP message that it has carried. To understand the OFP
message, controller calls an OFP parser (parser file: ofproto_vl_N_parser.py where
N is the protocol version negotiated with the switch upon connection).

2. OFP Parser will generate appropriate OFP event by parsing the packet and labels
it as ‘OFPxxx‘. As for example, a ‘Packet In‘ event becomes ‘OFPPacketIn‘ event
[14].

@) RyuAppl
Ofp_v1_3_parser.py
def OFPFlowRemoved Thread
Consuming
Ryu Controller returm xx 2) Events
def OFPPacketin
Sending Queue Receiving Queue ; retumn msg ;
(W) cal pars? def OFPPacketOut ’
[D @ gee™® | - !
ToV !
25 /!
Bk Call to generat: / et
L T EventOFPxxx L gvent Han
s REBD Al Ryu App 2
@ Event DR
Dispatcher Thread
Consuming
{5) Ey, Events
entog:
OFP Switch Blect s
patcﬁed

Figure 1.4: Ryu architecture: Structural Diagram

3. On the other hand, RYU applications that are running on the top of RYU framework,
maintain queue of events. Applications register event handlers dynamically according
to their specification to the Event Dispatcher. It simply means that RYU applications
are waiting for necessary events to occur in order to start execution.

4. At this stage, Event Dispatcher plays an important role. It decouples Event source
(which is RYU controller) and Event sinks (which is RYU App). Event source will
call the methods of Event Dispatcher to construct event objects (from OFPxxx to

6 1. Problem Analysis

EventOFPxxx. [Figure 1.5]). Event dispatcher knows to which RYU app it has to
dispatch an event [13].

Ofp_event
OFPxxx EventOFPxxx

Ofproto_v1_N_parser

Figure 1.5: Conversion of an OFPxxx event into EventOFPxxx

5. These events are dispatched to event queues of RYU Apps. As shown in Figure 1.6,
each RYU App runs a thread over the event queue to consume the events. Only one
instance of RYU app can run at a moment [14].

Ryu App

Event Queue

Event Thread
consuming event

Figure 1.6: Dispatching the event to Event Sink

1.4 Firewall on SDN Controller

Firewalls are the systems which control the incoming and outgoing packets to and from the
inner network. They provide security barrier against potential attacks coming from the
Internet that can disrupt the services running in the inner network. Firewalls are divided
into 2 types: Stateful Firewall and Stateless Firewall. In Stateful Firewall, the connection
is tracked by the Firewall and the packets part of the tracked connection, are allowed to
pass by. Stateful Firewall uses attributes in order to track the traversing packets. These
attributes include the source and destination IP addresses, port numbers and sequence
numbers which are also known as state of the connection. In our Ryu application, we will
use a Python dictionary to implement connection tracking mechanism of Stateful Firewall.

In contrast, Stateless Firewall checks all incoming packets individually with the ruleset. It
does not track connections nor keeps state of the traversed packets, rather simply check
each packet with Firewall rules and identifies whether the packet is allowed to pass by or
not. It assumes that the information within a packet is trustworthy. Hence, one possible
breach could be: a TCP SYN-ACK packet can be passed by the Firewall before the
Firewall has seen a TCP SYN packet. With the Stateful Firewall case, such a packet will
be discarded by the Firewall itself as there is no state information found for the packet.

The goal of this IDP is to implement both types of Firewall applications with real-world
Firewall rules on SDN architecture and analyse the performance of the controller & the
applications with incoming traffic.

2. Design and Implementation

In section 2.1, general structural design of a Ryu application is presented by means of
a Flow-Chart. It also features security limitation of the applications that are developed
using the proposed design. The next section 2.2 covers description about all 4 types of
Firewall applications developed for the purpose of the IDP. It also explains design of those
applications in a Flow-Chart manner and compares Inefficient and Efficient applications
in greater details.

2.1 Ryu Application - General Template Design

Ryu applications can be run via command-line tool called ryu-manager. We developed
our Ryu applications to run under OFP version 1.3, hence, connecting switch must use
same protocol version in order to communicate with the controller. Firewall rules are
written down in a text file which will be taken as an input by Ryu application. When
the application starts running, it maps these rules into Python dictionary keys, which will
be used later for packet inspection. As soon as switch connects with the controller, Ryu
application will flush out all existing Flow Table entries from switch and installs a Default-
Miss Flow entry. Using Default-Miss Flow entry, switch will forward all incoming host
traffic to the controller where packets will be inspected. Figure 2.1 shows the structural
diagram of Ryu application.

The applications do not include following security features:

(1) ARP security: Applications are designed to work at Layer 3 or above. Hence, Layer 2
security considerations are not taken into account while designing the applications. This
can make ARP spoofing attacks successful.

(2) Link layer security: Applications can learn the MAC address of a host from its as-
sociation with a switch port. However, applications can not verify the associated MAC
address; hence, a spoofed MAC address attack can be successful. More information about
the design can be found in E.1.

(3) With Stateful Firewall applications, torn down connection can not automatically re-
move the 'tracked’ state from the application. Hence, A TCP FIN packet does not trigger
deletion of the Firewall’s state.

2. Design and Implementation

Flush all Flow
Table Entries and

Controller Started

Start RYU
application

Parse Firewall
Policies

Is OVS
with OFP 1.3
connected ?

Start negotiation and

add default entry.

packet handling

Stop negotiation and
packet handling,
inform admin "switch
disconnected"

Steps repeated for
each new event

Yes

vV

Catch incoming
new event from

Take out packet from
the event and

switch

Is
this ARP
request

No

Set action to drop
the packet

decode ethernet
Header

Set action to flood
on all ports and
decode the packet

Is this
ARP packet

Yes

Add Flow table
entry to pass all
packets from this
flow.

Send the packet
back to switch and
inform to carry out

the action.

Learn switch port
associated with
source MAC address

Is
output
port known
?

No

Yes

Set action to
forward to output
port and decode

the packet

No Is this IP

packet?

Yes

Check with firewall
policy and perform
actions.

Figure 2.1: Flow-Chart: general template design of a Ryu application

2.2. Firewall Implementation as Ryu Applications

2.2 Firewall Implementation as Ryu Applications

Using a template from previous section, four Ryu applications are developed to measure
performance of Stateful and Stateless Firewall in SDN environment. They are listed below.

e Inefficient Stateful Firewall application

e Efficient Stateful Firewall application

e Inefficient Stateless Firewall application

o Efficient Stateless Firewall application

Main difference between these Firewall applications lies within how they inspect incoming
packets and how they speed up packet processing by using Flow Tables. Table 2.1 compares
Efficient and Inefficient Firewall application in general with various parameters.

Inefficient Firewall

Efficient Firewall

Terminology

Switch forwards all received
packets to controller. No
extensive use of OFP Flow
tables.

Switch forwards only initial
packets of the connection to
the controller. Afterwards,
it will use Flow table entries
to forward/drop packets
without asking controller.

Connection Tracking
capabilities with
Stateful Firewall

Yes

Yes

Which packets of a
connection are seen
on controller?

ICMP — all PINGs & PONGs
TCP — all segments
UDP — all datagrams

ICMP — First PING & PONG
TCP — SYN & SYN-ACK only
UDP — First 2 datagrams

How to handle them?

Simply inspect each packet
individually against Firewall
policies. If a policy allows the
packet then inform switch to
forward it, otherwise drop it.

Check connection initiation
and response packets against
Firewall policies on controller.
Add one Flow Table entry
per inspection on switch to
allow/deny further traffic
from the host.

Flow Table rules to None One
be added per flow
Efficiency Less More

Potential Connection
Tracking Accuracy

100% accurate

can approximate after hand-
shake

Table 2.1: Comparison between Inefficient and Efficient Firewall

10 2. Design and Implementation

2.2.1 Inefficient Stateful Firewall Application

As per terminology, Inefficient Stateful Firewall application makes switch forward all in-
coming traffic to the controller. It does not store any Flow Table entry on switch that
speeds up packet processing. When first packet of an unseen flow is received by the con-
troller, the application checks it against Firewall rules and creates new state information
for that flow. This information will be used later when subsequent reply-packet from des-
tination host shows up at the controller. The application tracks down the reply-packet
with the stored information and learns about newly established connection. Figure 2.2
explains the mechanism of Inefficient Stateful Firewall application in detail.

Decode IP header

Which
protocol
inside IP

2

Decode UDP
header

UbDP

ICMP

Decode ICMP
header

TCP
Decade TCP
UDP Pin UDP Pon
g g
Check with firewall Ehecwith SYN SYN-ACK Check with firewall Check with
tracked tracked
rule rule

information information

Check with
tracked
information

Check with
firewall rule

No Could be

tracked?

Firewall
rule allows
by 4

Firewall No

rule allows
?

No Could be

tracked ?

Yes

No

Could be
tracked?

Firewall
rule allows ?

No

Store tracking
information

1

Instruct switch to
forward the packet

Instruct switch to
drop the packet

Figure 2.2: Flow-Chart: Infficient Stateful Firewall application

2.2. Firewall Implementation as Ryu Applications 11

2.2.2 Efficient Stateful Firewall Application

Unlike its Inefficient counterpart, here switch will forward only first few packets of a new
flow to the controller. Upon receipt of such packets, Firewall application will decode
them, prepare some Flow Table entries according to the Firewall policies and finally add
them upon switch’s Flow Table. This way, Efficient Stateful Firewall application will
take the advantage of OpenFlow’s capability to set Flow Table entries for fast packet
processing. After that, switch will check incoming packets with the Flow Table entries.
Once a matching entry is found, switch will take out necessary action associated with
it rather than forwarding the packet to the controller. However, packets which are not
matched with any Flow Table entries are simply forwarded to the controller. Flow Table
actions can be forwarding or dropping depending upon firewall policies.

Decode IP header

Which
Decode ICMP IcMP protocol LDk
header

Decode UDP
header

inside IP
2

Decode TCP
header

UDP Ping UDP Pong

SYN-ACK

Check with firewall
rule

Check with firewall
rule

tracked
information

tracked
information

‘ Check with ’ SYN

‘ Check with ’

Check with
tracked
information

Check with
firewall rule

No Could be
tracked?

Could be
tracked ?

Yes

Could be
tracked?

Store tracking
information

Add Flow Table
entry to forward
packets

]

Instruct switch to
forward the packet

Add Flow Table
entry to drop the
packet

1

Instruct switch to
drop the packet

Figure 2.3: Flow-Chart: Stateful Efficient Firewall application

12 2. Design and Implementation

2.2.3 Inefficient Stateless Firewall Application

Compared to 2.2.1 case, Inefficient Stateless Firewall application does not manage any
state information for packet flows. It does not use any connection-tracking feature to
track down ongoing connections; rather simply checks each packet individually against the
Firewall rules and takes out necessary action associated with a rule on the packet. As the
name suggests, the application will not store any Flow Table entry on switch either, which
makes it inefficient in terms of packet inspection.

Decode IP header

Which

protocol

inside IP
?

Decode UDP
header

Decode ICMP
header

For PING &

Decode ICMP
header

For PING &
PONG

Decode IP header

Which

protocol

inside IP
2

Decode UDP
header

PONG

Decode TCP

Decode TCP

header header

For all types of TCP packets For all types of TCP packets

Check with firewall

rule Check with firewall
S
rule

Yes Firewall No
rule allows
2

Add Flow Table
entry to drop the
packets

Add Flow Table
entry to forward
packets

Instruct switch to
drop the packet

Instruct switch to
forward the packet

Instruct switch to
drop the packet

Instruct switch to
forward the packet

(a) Inefficient Stateless Firewall application (b) Efficient Stateless Firewall application

Figure 2.4: Flow-Charts of Stateless Firewall applications

2.2.4 Efficient Stateless Firewall Application

Similar to 2.2.2, Efficient Stateless Firewall application also stores Flow Table entries
on switches to reduce bandwidth consumption of controller-switch link and to speed up
packet-processing. It also does not keep any state information to track down ongoing
connections. It can be seen from details of Flowchart 2.4b that Packet inspection of the
application is very similar to the one with 2.4a except the Flow Table rule addition for
each inspected packet.

Application code are uploaded to Github.org and can be found via [15].

3. Results and Evaluations

This section explains different tests that are conducted with the designed Firewall applica-
tions on local machine and Memphis Testbed. General network tools like Ping and Netcat
are used for the tests. Section 3.1 enhances the testing on local system in more details.
Next section 3.2 encompasses details about Memphis Testbed, its topology designs and
testing results.

3.1 Testing on Local Machine

In order to determine correct behavior, the applications are tested with Mininet [16] on
local machine. Mininet is a command-line tool that creates a virtual network with con-
trollers, switches & hosts and runs applications on the top of controllers to simulate Soft-
ware Defined Networking environment. Virtual image file consisting Ryu controller with
Mininet tool can be downloaded from [17]. Figure 3.1 shows network topology used for
local testing.

Controller

cO

Port 6633

loopback
(127.0.0.1)

s1 OpenFlow Switch

Host 1 Host 2 Host 3

hl IP: 10.0.0.1 h2 IP: 10.0.0.2 h3 IP: 10.0.0.3

MAC: 00:00:00:00:00:01 MAC: 00:00:00:00:00:02 MAC: 00:00:00:00:00:03

Figure 3.1: Mininet Topology for Local Testing

Following Fig. 3.2 depicts how switch can be connected with a controller in Mininet en-
vironment. On the controller, Ryu application code is given as argument to ryu-manager
command. Correct OpenFlow version can be provided by owvs-vsctl command whereas,
ovs-ofctl command is used to list out Flow Table entries of the switch. More details about
the commands can be found in Appendix E.4.

14 3. Results and Evaluations

1tFirewall

Figure 3.2: Console outputs after starting application

In this IDP, default policy for the Firewall is set to deny-all. This means all packets
not matching Firewall rules, will be dropped by the Firewall. For local tests, following
Firewall policies are considered. Motivation behind such design of policies is to cover
all functionalities of Firewall applications; e.g., pinging policy covers ICMP functionality,
TCP policy covers Stateful & Stateless functionality and datagram policy covers UDP
functionality of the applications. In this way, these policies will be used to test correctness
of the four Firewall applications.

1. Host 1 can ping Host 2 & Host 3 but they can not ping it back.

2. Only Host 1 can initiate TCP connection to port 8080 on Host 2 & Host 3 using
1000 as source port.

3. Host 2 & Host 3 can establish TCP connection with each other only on port 1000.

4. Host 1 can send datagrams to port 8080 of Host 2 & Host 3 through port 1000.

Following subsections represent local tests that are conducted with each of the applications.

3.1.1 Inefficient Stateful Firewall

Ping Test: Ping Test is carried out by sending ICMP Echo Request packets from Host 1
to Host 2. Upon receipt of such packets, switch forwards them directly to the controller.
It can be seen from controller’s screen that application checks the request with Firewall
Policy to take out necessary actions. Since Policy 1 permits this, application creates new
states corresponding to the packet and forwards it to Host 2 via switch. When Host 2 sends
the response message, it should also be allowed by the controller. Here, the application
tracks down the response via managed states and allows it to pass through Firewall. Figure
3.3 shows the results of successful ping test with Host 1. The application also behaved
correctly when Host 2 tried to ping Host 1. (which is not allowed by the Firewall.)

x controller: c0 (root) | @ host: h1

ohe of the

=» 10,0,0,1 ; BLOCKED

3.1. Testing on Local Machine 15

Figure 3.3: Console outputs for Ping Test

TCP Test: When Host 1 first sends TCP SYN packet, Firewall application checks this
new connection initiation request with the Firewall Policy. Since Policy 2 allows the port
combination, it would send out the packet to Host 2 and create a new TCP state to
track down other packets of the flow coming from this direction. Host 2, upon getting
SYN packet, prepares SYN ACK packet and sends to Host 1 which will be forwarded to
controller by the switch. Application will track down this SYN ACK response as it is part
of the previously created connection state and also creates a new state to track all packets
of the flow coming from this direction to get passed through. This way, packets coming
from both directions will be tracked down further and hence, the TCP handshake will get
completed successfully. Other tests were also carried out in order to see correctness of the
application with different port combinations and with different connection initiators (both
of which should be denied). The result of such tests are shown in Figure 3.4.

% host: h1 x host: h2

% controller: c0 (root) | switch: s1 (root)

G0, idle_timeo

Figure 3.4: Console outputs for TCP Test

UDP Test: Packet inspection in UDP Test is exactly same as TCP Test. Application will
create new state information when datagram with appropriate port combination is received
from Host 1 and forwards it to Host 2 via switch. Subsequent datagram from Host 2 will
be tracked down using state information and sent to Host 1. Main difference of UDP
handling compared to TCP handling is: UDP is a connection-less protocol. Unlike TCP,
tracking down one entire session is not possible because it lacks handshake mechanism.
Hence, application will keep track of one Round Trip of UDP datagram exchange. So,

16 3. Results and Evaluations

when Host 1 sent datagram, application will keep state as "'UNREPLIED’ and change it
to "ASSURED’ once Host 2 replies back. Results of UDP Test are shown in Figure 3.5.

% controller: c0 (root) x host: h1

UNREFLIET

I am back!
UNREFLIET

Figure 3.5: Console outputs for UDP Test

3.1.2 Inefficient Stateless Firewall

Ping Test: Unlike previous Test, application simply checks all incoming ICMP packets
against Firewall rules rather than tracking down subsequent replies. Hence, Ping packet
from Host 1 and Pong packet from Host 3 are treated equally for packet inspection. Since
connection tracking mechanism is not adapted, a Pong packet from Host 3 without pre-
ceding Ping packet is also allowed by Firewall. However, upon receipt of such unsolicited
Pong packet, Host 1 will simply discard it. Figure 3.6 shows application behavior for
Policy 1.

x controller: c0 (root) ® host: h1

Figure 3.6: Console outputs for Ping Test

TCP Test: The Test was carried out by initiating connection request from Host 1 to Host
3. As Policy 2 allows such connection, application will allow all packets to pass through
Firewall. Here, application does not differentiate between any of the packets while doing
packet inspection. Each incoming packets are tested only against Firewall rules. So, if
only response packets are allowed from a Host, then Firewall designers should keep that
in mind while creating rules rather than leaving it upto the application to handle them.

3.1. Testing on Local Machine 17

® controller: co (root) x host: h1
Table-mizz Flow entry added on its e 16 —p 1000

da..

e =1 1000

Figure 3.7: Console outputs for TCP Test

UDP Test: It can be seen from Fig. 3.8 that UDP Test also succeeds with the application
when Host 2 and Host 3 communicated with each other on port 1000. As opposed to
3.1.1 UDP Test, here application does not keep track of 'UNREPLIED’ or "ASSURED’
datagrams. It simply forwards datagrams if Firewall Policy allows, otherwise rejects.

controller: cO (root)

host: h3

1000 -p 1000

001 -p 1000 -u

Figure 3.8: Console outputs for UDP Test

3.1.3 Efficient Stateful Firewall

Ping Test: Figure 3.9 shows behavior of Efficient Stateful Firewall with Ping Test.
Upon receipt of first Ping packet at switch, it is forwarded to the controller. Since Policy
1 allows it, application creates new state information to track down Pong packet and also
adds Flow Table entry on switch to allow all Ping traffic from Host 1 to Host 2 in future.
When subsequent reply from Host 2 is received by application, it finally learns about
established Ping connection and adds another Flow Table entry to allow Pong traffic from
Host 2 to Host 1 in future. As a result, next 4 Ping request/reply packets are handled by
switch itself which take less RTT time than first packet exchange.

18 3. Results and Evaluations

% controller: cO (root) % switch: s1 (root)

one of ti

® host: h1 | & host: h3

Figure 3.9: Console outputs for Ping Test

TCP Test: TCP Test is carried out with Host 3 initiating connection to Host 2. The
connection request is allowed by application and it creates state information for SYN
ACK packet to track down the Handshake. Here, application can only track down TCP
Handshake rather than entire session of the connection. This is because, upon receipt of
SYN and SYN-ACK packet, application adds two Flow Table entries to allow future traffic
from both hosts. Hence, data transmission and connection termination packets will not
be seen by the controller. However, since TCP flag-based matching is not supported with
OFP 1.3, Flow Table entries for TCP packets will only have allowing action rather than
rejecting. E.2

® controller: c0 (root) 5 switch: s1 (root)

1000

x host: h3 . '@ host: h2
g ~ode# he -1

11er, |

e# ne -1 1001

Figure 3.10: Console outputs for TCP Test

UDP Test: As shown in Figure 3.11, application carried out connection tracking with
UDP datagrams and also added two Flow Table entries (1 per incoming packet at con-

3.1. Testing on Local Machine 19

troller) to transfer flow-handling to the switch. However, since UDP is connectionless
protocol, it is possible to add Flow Table entry to reject a UDP flow if Firewall Policy de-
nies. This will stop unnecessary consumption of controller-switch link and fastens packet
processing.

* controller: cO (root) ® switch: s1 (rootk)

IMREFLIED

% host: h1 % host: h2

Figure 3.11: Console outputs for UDP Test

3.1.4 Efficient Stateless Firewall

Ping Test: Compared to 3.1.2, only first pair of Ping request-reply packets is seen
at controller. As it is intended, application does not create any state information to
differentiate between Ping and Pong inspections. It allows the packets to pass through
Firewall and also adds Flow Table entries on switch to make switch handle this Ping-Pong
flow on its own.

x controller: co (root) * switch: s1 (root)

OFPHandler

ALLOWED
ALLOWED

* host: h1 ® host: h2

Figure 3.12: Console outputs for Ping Test

20 3. Results and Evaluations

TCP Test: TCP test is carried out with Host 1 and Host 3. First packet from each
host is checked against Firewall rules by the application. This inspection adds two-way
Flow Table entries upon switch, hence, rest of the packet exchange will not be seen by the
controller. However, as explained in TCP Test of 3.1.3, decision of packet rejection was
performed only at the controller. Figure 3.13 shows console output of controller, switch,
Host 1 and Host 3 with TCP test.

x controller: c0 (root) ® switch: s1 (root)

% host: h1 * host: h3

Figure 3.13: Console outputs for TCP Test

UDP Test: UDP datagram handling was inherited from 3.1.2 and 3.1.3 applications.
E.g., application does not keep state information for incoming datagrams, as well as, it
also adds Flow Table entries upon switch to fasten packet processing. If the inspection
allows/rejects the packet, Flow Table entries with respective actions will be added on
switch. Similar to TCP Test, only first two packets from communicating parties are seen
by controller. Rest of them will be handled by the switch.

x controller: c0 (root) ® switch: s1 (root)

of the

nc -1 1001 -y
=3 |

Figure 3.14: Console outputs for UDP Test

3.2. Deployment on Memphis Testbed 21

These test-results prove correct behavior of the designed Firewall applications. Appli-
cations allow only those packets which are intended to pass through Firewall and reject
everything else. Ping test, TCP test and UDP test succeed with each application which
determines credibility of applications’ conduct.

3.2 Deployment on Memphis Testbed

These applications were deployed on Memphis Testbed to test their robustness against
real world traffic. Memphis Testbed (part of Memphis Project) is developed at the Chair
for Network Architectures and Services, TUM [18]. The goal of this testing environment
is to use commodity hardwares for high-speed data transmission and to evaluate the per-
formance for improving packet processing on current computer systems. Real world traffic
was provided by means of pcap (packet capture) files consisting of random sized packets
captured via Internet. For this IDP, four such pcap files with variable number of packets
(e.g. 50000, 100000, 500000, 1000000 packets) were used for testing.

Management Network

Kaunas

Vilnius

Figure 3.15: Memphis Testbed

The topology of Memphis Testbed used for the tests is shown in Figure 3.15. Three hosts,
namely Riga, Vilnius and Tallinn, are used for the test setup where their respective roles
are predefined. All of the hosts are connected with management host, Kaunas, which will
define their respective roles prior to start of the test and in the end, collects data from
each host for analysis purpose. Riga acts as an end-host which sends out packets from
the pcap files using eth-test-1 interface. These packets are, however, forwarded to Tallinn
(controller) via Vilnius (Open vSwitch). Tallinn runs one of the Firewall applications on
top of it where packet inspection will be carried out. Based upon Firewall Policies, Tallinn
will guide Vilnius either to forward these packets to Riga or to drop them off. Riga will
receive the forwarded packets from Vilnius on its interface eth-test-2.

The following subsections present results for running Firewall applications with different
bandwidth and different ruleset.

3.2.1 Tests with single TCP packet

To measure behavior of the system, test is conducted with single, 69 Byte TCP packet.
The packet is sent out repeatedly from Riga at variable packet rates. PF_RING [19], a high

22 3. Results and Evaluations

speed Linux network library, is used on each host to count number of captured packets for
analysis purposes. Here, the test is performed at packet rates ranging from 1 Mbps to 30
Mbps with increment of 1 Mbps. Pfsend, a PF_RING application, is used on Riga to send
packets at the specified rates. Each testcase is set to run for duration of 30 seconds. Prior
to start of the test, Vilnius is configured to act as Open vSwitch. On Tallinn, Inefficient
Stateful Firewall application is deployed with a single Firewall rule that allows this TCP
packet to pass through Firewall. Graphical analysis of the test is presented in Figure
3.16. Figure 3.16a shows that relation between offered packets and received packets

6000 | - 6000 |-

70100) PRSSUPN oot SN S e -5 N e A S U U S O e A e S S e A A 5000 -

40001} 4000 |-

3000 |- 3000

riga received rate [pps]
tallinn received rate [pps]

2000 /- 2000 |

1000 R B 1000 -

H H H H H
0 200 400 600 800 1000 1200
timestamps [seconds]

H H H H H H H
5000 10000 15000 20000 25000 30000 35000
riga offered rate [pps]

(a) Packet capture on Riga (b) Packet capture on Tallinn

6000 | 6000 |

5000} 5000 |
4000} 4000 |

3000} 3000

tallinn offered rate [pps]
tallinn sent rate [pps]

2000 f oo . 4 2000 |-

1000 - ; - - e 1000 |

H H H H H i i i i H L i 1
1000 2000 3000 4000 5000 6000 5000 10000 15000 20000 25000 30000 35000
tallinn received rate [PPs] riga sent rate [pps]

(c) Packet capture: Tallinn vs Vilnius (d) Packet capture: Tallinn vs Riga

Figure 3.16: Test: Single TCP packet [69 Bytes] with Inefficient Stateful Firewall

on Riga grows almost linear until we reach equilibrium state at roughly 5000 PPS. After
this point, the relation becomes steady with increasing offered rate. Similarly it can be
seen from Figure 3.16b that after some timestamp value (~ 100 seconds since start of the
test), switch reduces down the number of packet exchange with controller to 2500 PPS. The
actual packet exchange between controller and switch is illustrated in Figure 3.16c. Here,
a point represents a testcase. The packet exchange varies over testcases. Initially, it grows
linearly and later it moves back and forth. After reaching point 4, controller’s offering
rate remains constant (~ 5000 PPS) with varying receiving rate. This behavior reflects
in Figure 3.16d where controller handles only 5000 PPS even though Riga’s sending rate
increases significantly.

Another test is carried out by changing the packet size to 1400 Byte. The sending packet
rate is now ranged between 40 Mbps to 100 Mbps. It can be seen from Figure 3.17a that

3.2. Deployment on Memphis Testbed 23

the relation between offered and received packets on Riga grows exactly the same way as
with the previous test. However, Figure 3.17b shows different mechanism of the switch
that is divided into 3 regions. In the first region (till ~ 400 seconds since start of the test),
switch’s offered rate increases linearly with the time. After that, it remains in equilibrium
state (till ~ 800 seconds) by offering roughly 5500 PPS. At 800th second (third region),
there is a sudden increase in the offered rate (7000 PPS) and it remains constant for the
rest of the testcases. On the other hand, Figure 3.17c depicts packet exchange between
controller and switch. Initially, controller’s offering rate grows linearly (like first region
of Fig. 3.17b), then remains constant at 5500 PPS of receiving rate (like second region
of Fig. 3.17b) and after a quick increase, it remains constant again (like third region of
Fig. 3.17b). This behavior reflects in Figure 3.17d in which Tallinn has offered more
than 11000 PPS compared to Riga’s offering rate of 6000 PPS. Such results make us debug
more about controller-switch connection.

__Packet Rate - 40Mbps to 100 Mbps ‘ Packet Rate - 40Mbps to 100 Mbps
10000 |- : : :

6000 [|
9000}

8000}

5000 -
7000 |

6000 |-

4000 - 5000 |

riga received rate [pps]
tallinn received rate [pps]

4000 |

3000 S - - - - - S - e 3000;

2000
0

3000 2000 5000 5000 7000 8000 T s o0 1500
riga offered rate [pps] timestamps [seconds]
(a) Packet capture on Riga (b) Packet capture on Tallinn
Packet Rate - 40Mbps to 100 Mbps

12000 [! ! : !] 14000 [}
10000 |- 12000 f:
8000/

10000 -+

6000 8000}

tallinn offered rate [pps]
tallinn sent rate [pps]

4000 - 6000 f:

2000 v : : 1 4000

2000 f;

[oy i I i L i I - Bl A - i - b - i - il e
3000 4000 5000 6000 7000 8000 3000 4000 5000 6000 7000 8000

tallinn received rate [pps] riga sent rate [pps]
(c) Packet capture: Tallinn vs Vilnius (d) Packet capture: Tallinn vs Riga

Figure 3.17: Test: Single TCP packet [1440 Bytes] with Inefficient Stateful Firewall

To debug the connection, packets are captured on controller-switch link using tcpdump and
later analyzed using Wireshark. This analysis explains interesting TCP mechanism. As
mentioned in OpenFlow 1.3 specification book [9], OpenFlow channel between switch and
controller runs over TCP. Upon connection establishment, TCP parameters like Congestion
Window, MSS etc. are negotiated to control congestion. Using such parameters, TCP acts
as a rescuer when there is a sense of congestion between two communicating nodes. This is
what we are seeing in our test-results. Initially, when there is no congestion, switch could

24 3. Results and Evaluations

forward all the packets to the controller without dropping them (for eg. first region in Fig
3.17b). However, after sometime, switch compresses lot of host packets within few giant-
sized OFP Packets and sends them to the controller. This can be illustrated from Figure
3.18a. On the other side, controller will decompress such giant OFP Packets, takes out all
compressed host packets and checks each of them individually with the Firewall policies.
Instead of compressing all these host packets to bulky OFP packets, controller returns
each packet as a separate OFP Packet Out message associated with OFP action to the
switch.[see Figure 3.18b] Hence the output of 3.16c and 3.17c, where controller replied
more number of packets than it actually received, is well justified. We also see in the results
that TCP governs the OpenFlow channel by dropping some packets at the switch when
incoming packet rate exceeds certain limits [20]. It is advised in [9] that switch should
define the forwarding policies based upon QoS or rate limiting for the packets destined
for the controller to prevent denial-of-service attack to the controller connection. Since
TCP congestion control is out of the scope of the IDP, we can say with such results and
explanation that OFP’s performance is highly influenced by the underlying TCP congestion
control.

»Frame 347: 1514 bytes on wire (12112 bits), 1514 bytes captured (12112 bits)
pEthernet II, Src: 98:e2:ba:1c:55:2a (9@:e2:ba:1c:55:2a), Dst: 90:e2:ba:1c:58:54 (90:e2:ba:1c:58:
»Internet Protocol Version 4, Src: 192.168.1.1 (192.168.1.1), Dst: 192.168.1.2 (192.168.1.2)
»Transmission Control Protocol, Src Port: 42575 (42575), Dst Port: 6633 (6633), Seq: 25023, Ack:
b OpenFlow 1.3
»OpenFlow 1.3
»OpenFlow 1.3
b OpenFlow 1.3
»OpenFlow 1.3
wOpenFlow 1.3
Version: 1.3 (8x04)
Type: OFPT_PACKET_IN (18)
Length: 102
Transaction ID: @
Total length: &0
Reason: OFPR_NO_MATCH (@)
Table ID: ®
Cookie: 0x0000000000000000
»Match
Pad: 0000

(a) Giant Sized Packet In message

@ - o 1060 118.695392 118.695392 192.168.1.2 192.168.1.1 OpenFlow Type: OFPT_PACKET_OUT 106

»Frame 1666: 166 bytes on wire (848 bits), 106 bytes captured (848 bits)
»Ethernet II, Src: 90:e2:ba:1c:58:54 (90:e2:ba:1c:58:54), Dst: 90:e2:ba:1c:55:2a (90:e2:ba:1c:55:
»Internet Protocol Version 4, Src: 192.168.1.2 (192.168.1.2), Dst: 192.168.1.1 (192.168.1.1)
»Transmission Control Protecel, Src Port: 6633 (6633), Dst Port: 42575 (42575), Seq: 9445, Ack: 1
wvOpenFlow 1.3

Version: 1.3 (0x084)

Type: OFPT_PACKET OUT (13)

Length: 40

Transaction ID: 448901380

In port: 1

Actions length: 16

Pad: 006908006088

pAction

(b) Single Packet Out message

Figure 3.18: Wireshark Output

The same test is also carried out with Efficient Stateful Firewall to determine the behav-
ior of the system against fast packet-processing. The result of the test are presented in
Figure 3.19. Obviously, the number of packet exchange with Tallinn should be reduced
down drastically. Upon seeing this flow for the first time, Tallinn stores Flow Table entry
on Vilnius for handling future traffic-flow. Hence, receiving rate in Figure 3.19a remains
in linear proportion throughout with the sending rate. With each incoming packet from
Riga, Vilnius is still able to handle it on its own by looking into Flow Table and finding
suitable match. This reduces down traffic on controller-switch link which reflects in Figure
3.19b. Now the packets exchanged on this link are basically "Keep Alive’ messages and
unwanted LLDP packets generated by the system.

3.2. Deployment on Memphis Testbed

25

riga received rate [pps]

35000

30000

25000

20000

15000

10000

5000

i i
5000 10000

H
15000
riga offered rate [pps]

i i
20000 25000

i
30000

(a) Packet capture on Riga

Figure 3.19: Test: Single TCP packet with Efficient Stateful Firewall

i
35000

i ; ; ; T ; ;
100 + el
% 50} i
[=3
=
-] :
c : i
1 8 o ¥ E — B i
z !
g
4
7 [=4
£
B sof f
-100} ,
10 11 12 13 14 15 16

3.2.2 Tests with Real world traffic

(b) Packet capture on Tallinn

tallinn received rate pps

After testing with single TCP packet, tests are performed with previously mentioned 4 pcap
files. The goal of these tests is to determine packet handling capacities of the controller

Packets offered by Tallinn (pps)

Packets offered by Tallinn (pps)

Figure 3.20: Test: Real-world traffic with Inefficient Firewall applications

10000

8000

2
]
3
S

2
8
3
S

Stateful Firewall - 10 mbps to 100 mbps packet rates

DERRRES)

1mio packets & 10% rules
1mio packets & 20% rules
500k packets & 10% rules
500k packets & 20% rules
100k packets & 10% rules
100k packets & 20% rules

50k packets & 10% rules

50k packets & 20% rules

~

2000 4000

6000

8000
Packets offered by Riga (pps)

10000

14000

(a) Test: Inefficient Stateful Firewall application

Stateless Firewall - 10 mbps to 100 mbps packet rates

8000

6000

[BERES)

1mio packets & 10% rules
1mio packets & 20% rules
500k packets & 10% rules
500k packets & 20% rules
100k packets & 10% rules
100k packets & 20% rules

50k packets & 10% rules

50k packets & 20% rules

/

/)

2000

/

2000

4000

6000 8000

Packets offered by Riga (pps)

10000

12000

(b) Test: Inefficient Stateless Firewall application

26 3. Results and Evaluations

with respect to both types of Firewalls. First, tests are performed with Inefficient Stateful
Firewall application. Later, same parameters are used to perform tests with Inefficient
Stateless Firewall application. Packets are captured on Tallinn and Riga using PF_RING.
Riga sends packets from a pcap file at 10 Mbps to 100 Mbps packet rates. In addition to
packet rates, size of Firewall ruleset is also considered as a testing parameter. For each
pcap file, two types of Firewall rules are created in a purely random fashion: one allows
10% flows and second allows 20% flows from the pcap. Graphical representation of such
tests is shown in Figure 3.20.

Graph 3.20a shows that with Stateful Firewall, Tallinn’s handling capacity overlaps for all
testcases. It handles roughly 8000 PPS for every testcase once it reaches equilibrium state
which is highly influenced by TCP congestion mechanism as explained earlier. However,
its behavior differs largely with Stateless Firewall. Graph 3.20b shows the result of the
tests with Stateless Firewall application where Tallinn’s handling capacity scatters for
all testcases. For each pcap file, Tallinn’s handling capacity is noted higher with 10%
matching rules compared to 20% matching rules. This observation makes us find the
relation between Tallinn’s handling capacity and size of Firewall ruleset.

Stateful Firewall vs Stateless Firewall: Avg Packet output by controller vs Size of Firewall Ruleset

7000 1

)

a
ol
=}
3

6000 12

ent by Tallinn (pps]

5500

erage Packets s

e—e 50k packets - Stateful Firewall

% gooo|| ™= 100k packets - Stateful Firewall | Tt

A

e—e 500k packets - Stateful Firewall
e—e 1mio packets - Stateful Firewall
m-m 50k packets - Stateless Firewall
4500 m-m 100k packets - Stateless Firewall 16
=-m 500k packets - Stateless Firewall
=-m 1mio packets - Stateless Firewall

0 500 1000 1500 2000 2500
Firewall Ruleset (lines of rules)

Figure 3.21: Comparison between Stateful and Stateless application

Graph 3.21 is drawn to measure average number of packets Tallinn sends out with respect
to size of Firewall Ruleset. It can be seen from the graph that, for Stateful testcases,
the slope remains almost negligible or zero. E.g. for 50k pcap file, slope of line joining
point 1 and 2, is almost negligible. Similarly, line 7-8 that represents tests with 1mio
pcap file has slope of zero. Interestingly, the Stateless testcases represent different results
where slope is negative & nonnegligible. Compared to its Stateful counterpart, number of
packets sent by Tallinn with 50k pcap file & 10% matching rules(point 9) are quite higher
than the test with 50k pcap file & 20% matching rules(point 10). It happens for all pcap
files. With almost same size of ruleset, Tallinn sends more packets with Stateful testcases
than Stateless testcases. The reason for such strange controller behavior lies within the
design of these applications. With Stateful applications, we first check packets against
connection tracking mechanism. If we do not find a match, only then we check against
original Firewall ruleset. Such design is desirable. For a packet belonging to some existing
connection, it smooths up packet inspection at the controller. Since there will be few
such tracked connections, it relatively speeds up overall packet processing. With Stateless
applications, we do not differentiate packet inspection by checking it against connection
tracking mechanism. Each packet is checked directly against Firewall ruleset which is

3.2. Deployment on Memphis Testbed 27

definitely larger than tracked connections. Hence, as the number of Firewall rules grow,
controller’s rate of packet inspection reduces down gradually with Stateless applications.

1400 x2teful Firewall - 10% matching rules and 10 mbps to 100 mbps packet rates Stateful Firewall - 20% matching rules and 10 mbps to 100 mbps packet rates
e—e 1mio pcap - Efficient 4000 -
e-e 1mio pcap - Inefficient
1200 || ~—a 500k pcap - Efficient
500k pcap - Inefficient
¥—v 100k pcap - Efficient
1000 w-» 100k pcap - Inefficient
+— 50k pcap - Efficient
50k pcap - Inefficient

3500
-

»

3000

—

2500+

800

2000+

1500

Packets received by Riga (pps)
Packets received by Riga (pps)

1000 |-

500 |-

0 2000 4000 6000 8000 10000 12000 0 2000 4000 6000 8000 10000 12000
Packets offered by Riga (pps) Packets offered by Riga (pps)

(a) (b)

Stateless Firewall - 10% matching rules and 10 mbps to 100 mbps packet rates Stateless Firewall - 20% matching rules and 10 mbps to 100 mbps packet rates

—

2500
3000

2000 2500

2000 -
1500

1500 |-

1000

Packets received by Riga (pps)
Packets received by Riga (pps)

1000 -

500

2000 4000 6000 8000 10000 12000 0 2000 4000 6000 8000 10000 12000
Packets offered by Riga (pps) Packets offered by Riga (pps)

(c) (d)

Figure 3.22: Recevied packets: Inefficient vs Efficient Firewall applications

When tests are conducted with Efficient Firewall applications, Riga has received quite
higher number of packets. A comparison graph can be found in Figure 3.22. The Figure
is divided into four subgraphs, each of which represents number of sent & received packets
on Riga with respect to both types of applications. Such results are conceivable because
of Flow Table entries. With Inefficient Firewall applications, switch forwards all incoming
packets to the controller that leads to quick & high congestion in the OpenFlow channel.
The congestion creates high number of packet-drops at the switch. This mechanism affects
controller’s handling capacities and reduces down overall receiving packet rate at Riga. It
can be seen from the subgraphs that the receiving rate remains constant with Inefficient
Firewall applications over all testcases even though sending rate increases.

As opposed to this, switch implements productive mechanism with Efficient Firewall appli-
cations for forwarding the packets. It handles traffic on its own by using Flow Table entries
and forwards less number of packets to the controller. As a consequence, this slows down
the rate of congestion on the channel with time, and in turn, the packet-drops too. With
such mechanism, controller’s handling capacities can be increased by delaying the TCP
congestion control. Hence, the receiving packet rate increases gradually with the sending
rate. The subgraph results show that receiving rate with Efficient Firewall applications
outnumbers the receiving rate with Inefficient Firewall applications by the factor of two
to three.

3. Results and Evaluations

Packets received by Riga (pps)

Packets received by Riga (pps)

Stateful Firewall - 1 mbps to 25 mbps packet rates

Stateful Firewall - 10 mbps to 100 mbps packet rates

I ete 5 10% rul ©-o 1mio packets & 10% rules
1200 lmf° pa:kets & 20% rules =-m 1mio packets & 20% rules
sa o
50’“0"; p“kets & 10% "‘Ies x-4 500k packets & 10% rules
. packets oo rules 25001 ~- 500k packets & 20% rules
1o0o|| 200k packets & 20% rules ¥-v 100k packets & 10% rules
— 100k packets & 10% rules === 100k packets & 20% rules
— 100k packets & zoo/e rules -+ 50k packets & 10% rules
#—#+ 50k packets & 10% rules G 20001 —-. 50k packets & 20% rules
~— 50k packets & 20% rules &
800 P
&
2
2z
3 1500
3
600 e z
g
€ 1000
400 &
200 00
o 500 1000 1500 2000 2500 3000 2000 000 5000 5000 0000 2000
Packets offered by Riga (pps) Packets offered by Riga (pps)
Stateless Firewall - 1 mbps to 25 mbps packet rates Stateless Firewall - 10 mbps to 100 mbps packet rates
o—e 1m packets & 10% rules 2000 1m packets & 10% rules
1oo||®® Im packets & 20% rules a 53 1m packets & 20% rules
+—s 500k packets & 10% rules =t #-4 500k packets & 10% rules
— 500k packets & 20% rules 500k packets & 20% rules
— 100k packets & 10% rules oo e g . 100k packets & 10% rules
1000 [— 100k packets & 20% rules ot - 100k packets & 20% rules
«— 50k packets & 10% rules P 1500 -7 50k packets & 10% rules
7 w7 50k packets & 20% rules T +-+ 50k packets & 20% rules
& A &
g 2
z z
H $ 1000
g 600 z
H g
H i
& o &
500
200
EQ 000 1500 2000 2500 3000 2000 000 5000 000 0000 2000
Packets offered by Riga (pps) Packets offered by Riga (pps)
Stateful Firewall - 1 mbps to 25 mbps packet rates Stateful Firewall - 10 mbps to 100 mbps packet rates
1200|[o—= 1mio packets & 10% rules 4000|[#- " 1mio packets & 10% rules
m-u 1mio packets & 20% rules
s—a 1mio packets & 20% rules 00k bockate & 105 rul
4 500k packets & 10% rules 500 oo packets & 200 "‘Ies
— 500k packets & 20% rules 100K Packets N 100/: "’Ies
1000 — 100K packets & 10% rules 100k “Ckes o 200 “‘Ies
— 100k packets & 20% rules 3000 a0k packet o 20 "‘Ies
_ #—+ 50k packets & 10% rules = B ok Datkels o 20; rules
£ ~— 50k packets & 20% rules g packets o rules
s 8 2500
g z
: 3
3 £ 2000
£ o0 &
§ 8
] 1500
1000
200
500
500 000 1500 2000 2500 3000 2000 %000 000 10000 12000
Packets offered by Riga (pps) Packets offered by Riga (pps)
Stateless Firewall - 1 mbps to 25 mbps packet rates 40 Stateless Firewall - 10 mbps to 100 mbps packet rates
e—e 1m packets & 10% rules - 1m packets & 10% rules
a8 1m packets & 20% rules 58 1m packets & 20% rules
1200/ |+— 500K packets & 10% rules 3500 || #-4 500k packets & 10% rules
— 500k packets & 20% rules o 500k packets & 20% rules -
— 100k packets & 10% rules 100k packets & 10% rules .
— 100k packets & 20% rules R 3000 100k packets & 20% rules
1000, . 50k packets & 10% rules e 50k packets & 10% rules -
»—v 50k packets & 20% rules s g #-+ 50k packets & 20% rules
P £ 2500
Z
d H
o g 2000
8
600 A 8
§ 1500
p 3
400
e 1000
 —
200 500
500 7060 560 2000 2500 3000 000 10000 12000

Packets offered by Riga (pps)

(2)

6000 8000
Packets offered by Riga (pps)

(h)

Figure 3.23: Comparison: received packets with 10% rules vs 20% rules

3.2. Deployment on Memphis Testbed 29

Even though such Firewall rules were created in purely random manner, it is observed
that Riga has received more number packets with 20% matching rules than 10% matching
rules. Such behavior is desirable which determines credibility of the testing environment
and the working of Firewall applications. The size of 20% matching rules is almost double
than the size of 10% matching rules. This difference plays important role with the tests.
Since 20% matching rules have more number of lines, more number of incoming packets
will have a matching entry. Hence, more number of packets will be allowed by the Firewall
rules which results into higher receiving packet rate on Riga. Though PF_ RING sends
packets randomly from the Pcap, the overall receiving rate is found to be higher with 20%
matching rules.

Result of the tests is shown in Figure 3.23. The Figure is divided into eight subgraphs
that illustrates comparison between different testcases. Graph 3.23a, 3.23b, 3.23¢ & 3.23d
represent test-results of Inefficient Firewall applications while graph 3.23e, 3.23f, 3.23g &
3.23h represent test-results of Efficient Firewall applications. The result produces constant
receiving rate for 1 Mbps to 25 Mbps tests. However, with 10 Mbps to 100 Mbps of packet
rate, tests with 20% matching rules produce almost double receiving rate than tests with
10% matching rules.

Analysis of the tests with real-world traffic draws some important conclusions which are
listed below.

(1) Efficient Firewall applications scale very well with the time. When implemented on
controller, it was noticed that switch had handled approximately 50% of the requests by
its own. Compared to their Inefficient counterparts, Efficient Firewall applications boost
performance by 200% after some testcases.

(2) Stateful applications are good options for implementing Firewall in Software Defined
Networking environment. They reduce down the burden of packet-inspection on controller
by managing tracking mechanism. The mechanism delays TCP congestion on the Open-
Flow channel and allows controller to handle more packets. The test-results show that
controller handles roughly 8000 packets per second before TCP congestion comes into
picture. These results depend upon the tracked states managed by the application. In
contrast, Stateless applications can handle between 5000 - 8000 packets per second before
TCP congestion affects the OpenFlow channel. Firewall rulesize and relevant entries play
important role with Stateless applications. More rules with less relevant entries results
into drastic performance whereas, less rules with more relevant entries delivers higher
performance.

(3) Efficient Stateful application delivers highest performance among all applications. Since
it uses connection tracking mechanism and Flow Table entries, one should consider it as a
first choice where performance is the biggest concern.

30

3. Results and Evaluations

4. Summary

In this document, SDN applications are presented as a way to implement Firewall func-
tionality (Stateful and Stateless) in SDN environment. These applications are tested with
local machine to determine their correct operational behavior. Later, they are deployed on
real network to determine their robustness against real-world traffic with varying transmis-
sion rates. Applications are able to implement advanced Firewall feature like connection
tracking which speeds up packet processing in general compared to traditional way. It
is also noted that the overall performance of the applications is highly influenced by the
underlying protocol (TCP) upon which OpenFlow is implemented. In general, the test re-
sults show that the applications take advantage of Flow Table entries to fasten up packet
processing as well as provide security to the protected network. The test results also show
that applications can work effectively with 10-100 Mbps speed but it is also capable of
working with Gigabit Ethernet. However, TCP congestion mechanism limits the handling
capacities of the applications; hence implementing them with Gigabit Ethernet does not
affect the results.

32

4. Summary

E. Appendix

E.1 MAC address learning

Throughout the experiments, association between MAC addresses and switch ports was
kept static. That is, in this IDP, controller was made aware of the topology in advance
rather than discovering it dynamically. It is known that controller is communicating
with forwarding devices that deal with Layer 2(MAC) addresses. In order to identify the
network topology, controller keeps track of switch ports and the hosts connected to them.
Whenever a packet is forwarded to controller, it learns the incoming switch port which
has received this packet (for example Portl) and the sender‘s Layer 2 address. It stores
this information in 2 dimensional tabular data structure like python dictionary.

After that, it checks in the table to find the correct switch port associated with destination
MAC address (for example Port2). This way, controller will tell the switch to forward this
packet to its particular port (in this case: Port2). Upon not finding an entry, controller
will tell switch to flood this packet to all the ports except the received one (in this case:
Port1).

This mechanism is vulnerable and can breach the Firewall. What if controller does not
know the forwarding switch port for given destination IP address? With this mechanism, it
will simply flood the packet to all ports. So, for example, if controller receives a TCP SYN
packet matching the Firewall rule, then it will flood this packet to all switch ports. This
can raise the issue of spoofed TCP connection in which attacker can create a spoof TCP
SYN ACK packet with legitimate source IP address and can easily by pass the Firewall
rule.

To overcome this vulnerability, the mechanism can be changed a bit such that controller
will drop all the IP packets until it has learned about the switch port associated with
destination host’s MAC address. This way, we can block all TCP SYN packets to be
flooded and exposed to all devices that can bring serious violation to the Firewall.

E.2 No direct support for TCP flag based Match Rule

Open vSwitch and OpenFlow Protocol support various protocol header fields like Ethernet
addresses, Ethertype, IP addresses, IP protocol, TCP ports and more for constructing a
Flow Table entry. However, OFP 1.3 does not provide support for TCP flags or any
higher level protocol header fields directly. OFP has introduced its support for TCP flag

34 E. Appendix

matching from version 1.5. (through OFPXMT_ OFB_ TCP _ FLAGS) [21]. On the other
end, OVS has just started matching packets based on TCP flags in Flow Table entries
[22]. But, since OFP and Ryu do not support TCP flag based matching directly [23];
implementing TCP flag based matching rule on OVS would become unnecessary task in
such environment.

Therefore, initial TCP handshake packets are forwarded to the controller and matched
against Firewall rule. This could lead to serious performance degradation as all packets
need to be forwarded to the controller for identifying the flow. If TCP flag based matching
is implemented then only TCP SYN packet from the flow can be seen at the controller
and rest of the packets can be handled directly by the switch as controller can add Flow
Table entries based upon TCP flags.

E.3 Firewall Rules and Flows

It is for sure the most important thing to check the relation between traffic flows and con-
structed Firewall rules. Of course, the more the flows match the rules, the more precisely
we can measure the performance of the system. Hence, we can conclude that trade-off
between Firewall rules and matching flows is a parameter which cannot be neglected while
measuring the performance and concluding the result.

E.4 Commands for Mininet

To create Mininet topology:
sudo mn —topo single,3 —mac —switch ovsk —controller remote -x

Set up OVS to adapt to OFP 1.3
ovs-vsctl set Bridge br0 proto=0OpenFlowl3

To check installed Flow Table entries on OVS.
ovs-ofctl -O OpenFlow13 dump-flows br0

References

1]

[10]

[11]

Software-Defined Networking : The New Norm for Networks. White Paper, Open
Networking Foundation, April 2012.

Software-Defined Networking and Network Programmability Use Cases for Defense
and Intelligence Communities. White Paper, Cisco Inc., January 2014.

S.H. Yeganeh, A. Tootoonchian, and Y. Ganjali. On Scalability of Software-Defined
Networking. Communications Magazine, IEEE, 51(2):136-141, February 2013.

Nick Feamster, Jennifer Rexford, and Ellen Zegura. The Road to SDN: An Intellectual
History of Programmable Networks. SIGCOMM Comput. Commun. Rev., 44(2):87—
98, April 2014.

Robert Colin Scott, Andreas Wundsam, Kyriakos Zarifis, and Scott Shenker. What,
Where, and When: Software Fault Localization for SDN. Technical Report
UCB/EECS-2012-178, EECS Department, University of California, Berkeley, Jul
2012.

R. Khondoker, A. Zaalouk, R. Marx, and K. Bayarou. Feature-based comparison and
selection of Software Defined Networking (SDN) controllers. In Computer Applications
and Information Systems (WCCAIS), 2014 World Congress on, pages 1-7, Jan 2014.

Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Peterson,
Jennifer Rexford, Scott Shenker, and Jonathan Turner. OpenFlow: Enabling Innova-
tion in Campus Networks. SIGCOMM Comput. Commun. Rev., 38(2):69-74, March
2008.

Martin Casado, Teemu Koponen, Scott Shenker, and Amin Tootoonchian. Fabric: A
Retrospective on Evolving SDN. In Proceedings of the First Workshop on Hot Topics
in Software Defined Networks, HotSDN 12, pages 85-90. ACM, 2012.

OpenFlow Channel Connection. In OpenFlow Switch Specification - Version 1.3.0.
Open Networking Foundation, June 2012.

Open vSwitch FAQs. [Online] Available: https://github.com/openvswitch/ovs/blob/
master/FAQ.md.

Charalampos Rotsos, Nadi Sarrar, Steve Uhlig, Rob Sherwood, and Andrew W.
Moore. OFLOPS: An Open Framework for Openflow Switch Evaluation. In Pro-
ceedings of the 13th International Conference on Passive and Active Measurement,
PAM’12, pages 85-95. Springer-Verlag, 2012.

Ryu website. [Online] Available: http://osrg.github.io/ryu/certification.html.

Ryu: SDN Framework - slides. [Online] Available: http://www.slideshare.net/
yamahata/ryu-sdnframeworkupload.

36

References

[14]

[15]

[16]

[17]

[18]

[21]

[22]

[23]

RYU: SDN Framework - Book. In Using OpenFlow 1.3, RYU SDN Framework. RYU
project team.

Application Code. [Online] Available: https://github.com/jms30/SDN_Firewall/
tree/master /Latest.

Mininet - An Instant Virtual Network on your Laptop or other PC. [Online] Available:
http://mininet.org/.

Ryu - VM image. [Online] Available: http://archive.openflow.org/wk/index.php/
OpenFlow_Tutorial#Controller_Choice:_Ryu_.28Python.29.

Measurement- and model-based performance Evaluation and speed-up communica-
tions of Multiprocessor PC systems in High-Speed networks. [Online] Available:
http://www.net.in.tum.de/de/projekte/dfg-memphis/.

PFSEND and PFRING. [Online] Available: https://svn.ntop.org/svn/ntop/trunk/
PF_RING/doc/UsersGuide.pdf.

Open vSwitch - Packet Drop at High Packet Ins. [Online] Available: http://
openvswitch.org/pipermail /discuss/2013-November/012110.html.

OFP version 1.5. In OpenFlow Switch Specification Version 1.5.0. The Open Net-
working Foundation, December 2014.

Open vSwitch: Newsletter version 2.1.0. [Online] Available: http://openvswitch.org/
releases/ NEWS-2.1.0, March 2014.

RYU - mailing list. [Online] Available: http://sourceforge.net/p/ryu/mailman/
message,/32402649/.

	Contents
	1 Problem Analysis
	1.1 Software Defined Networking
	1.2 OpenFlow and Open vSwitch
	1.2.1 Introduction to OpenFlow
	1.2.2 OpenFlow Events and Messages
	1.2.3 Open vSwitch

	1.3 Ryu
	1.3.1 Introduction
	1.3.2 Ryu Architecture

	1.4 Firewall on SDN Controller

	2 Design and Implementation
	2.1 Ryu Application - General Template Design
	2.2 Firewall Implementation as Ryu Applications
	2.2.1 Inefficient Stateful Firewall Application
	2.2.2 Efficient Stateful Firewall Application
	2.2.3 Inefficient Stateless Firewall Application
	2.2.4 Efficient Stateless Firewall Application

	3 Results and Evaluations
	3.1 Testing on Local Machine
	3.1.1 Inefficient Stateful Firewall
	3.1.2 Inefficient Stateless Firewall
	3.1.3 Efficient Stateful Firewall
	3.1.4 Efficient Stateless Firewall

	3.2 Deployment on Memphis Testbed
	3.2.1 Tests with single TCP packet
	3.2.2 Tests with Real world traffic

	4 Summary
	E Appendix
	E.1 MAC address learning
	E.2 No direct support for TCP flag based Match Rule
	E.3 Firewall Rules and Flows
	E.4 Commands for Mininet

	References

