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Abstract:

With the establishment of Smart Buildings and the possibility to measure the energy
consumption of an entire building in real-time, automatic energy monitoring on a large
scale has become an opportunity. For example, by monitoring the energy of individual
rooms, possible power eaters can be identified and the consumption can be optimized
accordingly.

However, when collecting measurement values typical for buildings, like energy consump-
tion, this data may contain information that could be used to observe the behaviour of
persons living or working in that building. Violating the privacy of subjects in such a
way does not only present a major threat to the individual’s desire for privacy, but is
also against established law in many countries, like, for example, Germany. Thus, when
designing an architecture for data processing, the preservation of the individual’s privacy
has to be a major goal.

This work is aimed at designing such an architecture for privacy-friendly collecting, pro-
cessing and storing of data. To do this, encryption and storage schemes are designed that
allow the reduction and hiding of privacy-critical information from plain view and the en-
forcement of access restrictions in a way preventing any unauthorized person to ever gain
access to information violating the individual’s privacy. The design and implementation
considerations of the implemented Privacy-Preserving Post-Processing and Storage (P4S)
architecture are demonstrated in detail and with special focus on the features implementing
the privacy preservation.

The evaluation of the implementation shows that the architecture does well when hiding
individual information, assumed a properly configured and secured environment is pro-
vided. Moreover, additional tests for correctness, stability and performance show that the
architecture is ready-to-use in a real-world environment.



Kurzfassung:

Aus der Etablierung von Smart Buildings folgt eine Reihe von Möglichkeiten zur Mes-
sung und Auswertung von Größen wie dem Energieverbrauch in Echtzeit. Beispielsweise
kann der Energieverbrauch ganzer Gebäude oder größerer Umgebungen automatisch erfasst
werden. Durch die Überwachung von einzelnen Räumen kann etwa Energieverschwendung
entdeckt und darauf reagiert werden.

Durch diese feinkörnigen Messungen können jedoch Daten anfallen, die einen detaillierten
Aufschluss über das Verhalten von individuellen Personen geben, die in einem solchen
Smart Building leben oder arbeiten. Derartige Überwachung stellt nicht nur eine Bedro-
hung für die individuellen Personen und ihr Bedürfnis nach Privatsphäre dar, sondern
verstößt zudem in Deutschland und vielen anderen Ländern auch gegen geltendes Recht.
Daher muss bei der Entwicklung einer Architektur zur Speicherung solcher Messdaten
besonderes Augenmerk auf die Achtung der Privatsphäre gelegt werden.

Diese Arbeit behandelt den Entwurf und die Implementierung einer solchen Architektur für
das privacy-freundliche Sammeln, Verarbeiten und Speichern von Messdaten. Dazu werden
Schemata zur Verschlüsselung und Speicherung entworfen, die es ermöglichen, privacy-
kritische Informationen in den Datenströmen gezielt zu verbergen, und zu verhindern,
dass (unberechtigte) Personen Einblick in die feinkörnigen Daten erhalten. Die Ideen
hinter dem Entwurf und der Implementierung dieser Privacy-Preserving Post-Processing
and Storage (P4S) Architektur werden dazu detailliert dargelegt.

Die Evaluierung dieser Implementierung zeigt, dass die Architektur gut dafür geeignet
ist, persönliche Informationen zu verbergen. Voraussetzung hierfür ist jedoch, dass die
Architektur entsprechend konfiguriert ist und in einer sicheren Umgebung ausgeführt wird.
Zusätzliche Tests bezüglich Korrektheit, Stabilität und Performance zeigen, dass einem
Einsatz in einer wirklichen Umgebung nichts mehr im Wege steht.
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1. Introduction

With climate change being a major topic and the Energiewende (energy turnaround) being
realized in Germany, further efforts have to be taken on saving energy. But because there
usually is no direct feedback for measures taken and only the invoice at the end of the
accounting period gives a coarse impression on the energy spent or saved, for many people
energy consumption remains an abstract matter and, therefore, often nothing is actually
done to improve energy efficiency.

To provide individuals with immediate feedback and, hence, being able to animate them
for economical energy consumption, real-time measurements of the energy consumption
have to be taken. For example, this can happen in large office buildings with many
employees. By motivating the subjects to reconsider e.g. ventilation, air conditioning
and lighting, a considerable amount of energy could be saved. By applying gamification
ideas, it could indeed give even rise to an improvement of the general atmosphere in the
concerned companies.

However, measuring data in real-time and then relating this data with individuals can pose
a major threat to the privacy of the individual person. From the link between identity
and location in a building, movement profiles can be derived. The person in charge of the
staff could, for example, try to measure the amount of time employees spend on smoking,
drinking coffee, etc., if the energy consumption in office rooms drops significantly due to
monitors switching to power saving mode. Possibilities of this kind could not only transfer
the atmosphere in the company to a very paranoid mood, but are also strictly prohibited
by law in many countries like Germany.

To still be able to provide, for example, employees with immediate feedback, strict mea-
sures have to be taken in order to protect the privacy of the individual subjects. It must be
ensured rigorously that only persons with justified reason have access to privacy-imperiling
data, for example an energy manager who has to contractually agree to strict confidential-
ity, and that no other person can derive anything inappropriate from stored data.

As an important aspect it can be noted that in most situations the actually measured real-
time data is not required to be in this fine-grained state. Instead, often an aggregated form
is quite sufficient that, for example, summarizes the overall consumption of one whole day.
Thus, in an actual environment it could be decided on purpose how the data is processed:
The employee herself may exclusively get access to the real-time data while other persons
in charge only can see the aggregated, defused form.
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To be able to apply this strategy in a real-world environment, an architecture has to be
designed and implemented that provides all the functionality required to process and store
measurement data in a privacy-friendly manner. Because this work has been done as a
part of the IDEM project (see [RiCB14] and [idem] as well as [KMPK+14] for details) at
the Chair for Network Architectures and Services at TU München, the implementation
is tested and evaluated using an already installed real-time measurement system at that
chair. However, the architecture is not specially designed for that exact situation, but
with as much flexibility in mind as possible.

1.1 Scientific questions

While the development of this architecture aims at providing an application that can
actually be used in a real-world situation, a number of scientific questions have to be
answered as well.

Which situations regarding energy monitoring do exist in which the pri-
vacy of subjects is in danger?

In times of Big Data, the collecting of massive amounts of data is omnipresent and so
are applications that are designed to do exactly this collection. Products like the deZem
logger used for retrieving actual data values in the evaluation of this work already collect
consumption values and post-process them in a cloud-like server application. Thus, it has
to be investigated at first, in which situations such classical data collection endangers the
privacy of subjects.

Which properties allow privacy-friendly data monitoring?

In order to grant privacy friendliness, a set of properties has to be defined that actually
describe the characteristics of architectures called privacy-friendly. By using these prop-
erties it should be possible to design a privacy-friendly architecture and to validate this
property.

How can an architecture for flexible data processing and storage provide
these properties?

The specified properties have to be applied to the architecture. It has to be verified, which
traditional design patterns can be used in an architecture and what has to be changed or
derived in order to be privacy-friendly. To provide additional value, the approaches taken
should be described as universally as possible.

1.2 Outline

Chapter 1: Introduction

Chapter 1 introduces the motivation behind this work and enumerates the scientific ques-
tions addressed.

Chapter 2: Background

Chapter 2 is focused on providing the background knowledge needed to comprehend the
following chapters to the reader. Thereto an introduction is given to concepts regarding ba-
sic privacy preservation in software development, energy monitoring and using encryption
methods to achieve confidentiality.
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Chapter 3: Related Work

In chapter 3 an overview is given of methods used for privacy preservation in various
contexts. These concepts are then compared to the situation this work is based on. The
goal is to decide whether those concepts apply to the situation described or not.

Chapter 4: Analysis

In chapter 4 the answer to the first two questions is investigated. To do this, at first
situations are analyzed in which privacy has to be protected. From these situations then
properties are derived that a privacy-friendly architecture has to fulfill. Finally, the chap-
ter translates these properties to actual requirements the architecture has to accomplish.
Additionally, the chapter enumerates some other requirements that have to be fulfilled in
order to provide the functionality needed to process and store measured data.

Chapter 5: Design

The requirements described in the chapter before have to be applied to an architecture
design. Chapter 5 is focused on actually designing an architecture capable of providing the
required functionality as well as guaranteeing privacy-friendly data processing and storage.

Chapter 6: Implementation

The chapter 6 gives an overview of the implementation of the architecture described in the
chapter before. The focus is laid on the server application, because most of the important,
that is, privacy-friendly functionality is located in the server rather than in the client code.

Chapter 7: Evaluation

In chapter 7 the designed and implemented architecture is evaluated regarding the prop-
erties and requirements described before. Additionally, performance tests verifying the
operational capability of the application are discussed.

Chapter 8: Interpretation

In chapter 8 the preliminary findings are summarized and applied to the scientific questions
stated above. It is verified whether a satisfying answer has been found to every question.

Chapter 9: Conclusion

Finally, chapter 9 gives a final summary of this work’s results and provides an outlook on
future progression regarding energy monitoring and privacy preservation.
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2. Background

Before proper answers to the questions defined in the preceding chapter can be found, some
background knowledge has to be provided to the reader that is required in the following
chapters.

2.1 Energy monitoring

The monitoring of the energy consumption in buildings, facilities or whole company struc-
tures is already in wide use today and various standards like for example ISO 50001 (see
[ISO11]) exist that define how monitoring can be done. Different approaches in hardware
and software exist to continuously take measurements of all kinds of different values.

To measure the real-time consumption, measuring probes have to be deployed to the energy
supply infrastructure. For example, the energy loggers offered by the German company
deZem GmbH are installed near the fuse panel (see [deze]). Inductive clips are attached
to the actual supply lines and measure the power.

While everybody is talking about the so-called Smart Meters, the energy monitoring de-
vices discussed in this work generally are different: A classical Smart Meter is deployed
and operated by the energy provider company and measures the energy consumed before
the feed-in (see, for example, [ErTs12]). In contrast, the devices characterized here are
attached after the feed-in point and, therefore, usually have advanced insight into the
distributed energy consumption inside the monitored domain.

Most current systems (like the deZem system described in [deze]) use a centralized ap-
proach. That means, the values measured by local probes are transmitted to a central
processing device that executes post-processing and stores the value in a database. Usu-
ally, a Graphical User Interface exists that can retrieve stored sets of data and visualize
them. As a consequence of these mostly centralized systems, data that may be privacy-
critical often is not immediately aggregated, but processed in the fine-grained state it has
been generated in.

Especially cooperation between multiple devices in a distributed system still seems to be
rather rare. That means, if multiple devices are installed in one domain, e.g. a building,
usually these devices only collect data in their respective subdomain, but do not exchange
data points.
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2.2 Privacy

Privacy not only is a valid concern of every individual person, but also is commonly
protected and enforced by laws and standards. Thus, companies and building operators
have to strictly verify any attempt to collect and evaluate any measured data that may
threaten the individual subjects’ privacy.

For example, in Germany the Bundesdatenschutzgesetz (see [bund09]) requires public au-
thorities as well as companies to comply with a number of restraints: Among other things,
when person-related information is collected automatically, the subjects have to be in-
formed, may always opt-out and may also request the deletion of collected and stored
data.

While the privacy aspect is not the main focus point of standards like ISO 50001, those
standards usually explicitly mention the importance of compliance with national and in-
ternational laws. For example, in ISO 50001 (see [ISO11]) this compliance is specially
considered in the PLAN as well as in the CHECK phases. Additionally, persons in charge
and in-house points of contact have to be constituted. Regarding privacy, for example, an
energy manager could be constituted, who is responsible for the verification of the internal
structure.

To design and implement an architecture for automatic data collecting, processing and
storing in this context, an application, of course, has to strictly comply with these legal
requirements, too. Additionally, to not to lose the subjects’ trust in, for example, the
company, processing privacy-imperiling data should always take the subjects’ well-being
into account, no matter what the law would actually allow.

As a means to design such architectures, the eight strategies for “privacy friendly” design
defined and described by Hoepman in [Hoep12] provide a good base. These strategies as
well as the original definitions are listed in table 2.1.

In his paper Hoepman takes into consideration “existing privacy principles and data pro-
tection laws” to enable applications to be “privacy by design” (see [Hoep12]), for example,
the OECD guidelines as well as the European Data Protection Directive. While the first
four strategies, MINIMISE, HIDE, SEPARATE and AGGREGATE affect the con-
text of the application itself, the last four, INFORM, CONTROL, ENFORCE and
DEMONSTRATE rather concern the managing and operating process that is also re-
quired when deploying a full-scale measurement and processing architecture.

2.3 Ciphertext-Policy Attribute-Based Encryption

Generally, crypto systems are divided into two sub classes: Symmetric and asymmetric
crypto systems.

While symmetric crypto systems use the same secret key for encryption and decryption,
asymmetric systems usually possess two different keys, one private and one public key. The
public key is used for encrypting messages and the private key for decrypting messages
that have been encrypted with the corresponding public key. Therefore, in contrast to
symmetric systems, in an asymmetric system the one encrypting messages does not need
to be able to decrypt messages. This comes in handy when designing architectures with
components that only may write sets of data, but not read them.

Traditional asymmetric crypto methods like RSA (see [RiSA78]) and DSA (see [KeDi13])
require to supply every user of the system with her own key-pair, i.e. every user possesses
a private key as well as an own public key. Hence, the entity responsible for encrypting
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MINIMISE “The amount of personal data that is
processed should be restricted to the
minimal amount possible.”

HIDE “Any personal data, and their inter-
relationships, should be hidden from
plain view.”

SEPARATE “Personal data should be processed
in a distributed fashion, in separate
compartments whenever possible.”

AGGREGATE “Personal data should be processed
at the highest level of aggregation
and with the least possible detail in
which it is (still) useful.”

INFORM “Data subjects should be adequately
informed whenever personal data is
processed.”

CONTROL “Data subjects should be provided
agency over the processing of their
personal data.”

ENFORCE “A privacy policy compatible with le-
gal requirements should be in place
and should be enforced.”

DEMONSTRATE “[. . . ] A data controller [should] be
able to demonstrate compliance with
the privacy policy and any applicable
legal requirements.”

Table 2.1: This table lists the eight strategies for designing privacy-friendly applications
stated by Hoepman in [Hoep12].
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data must have access to all public keys and also has to know the mappings between keys
and identities.

Like other key-pair-based crypto systems, Ciphertext-Policy Attribute-Based Encryption
(CP-ABE, see [BeSW07]) utilizes private keys that are deployed to the users, so they
can exclusively decrypt encrypted information. However, instead of using public keys to
determine the one being able to decrypt a message, CP-ABE makes use of a concept called
attributes: When generating a new private key for a user, a set of attributes is weaved into
this key. These attributes determine the capability to decrypt messages. When encrypting
a message, a policy string is used instead of a conventional public key. This policy string
specifies, which attributes must be present in a private key in order to be able to decrypt
the message.

For example, if a message is encrypted using the policy “employee or energymanager”,
the owner of a private key with the attributes employee and management is able to
decrypt the message, because the attribute employee matches the policy. By contrast, a
private key with other attributes than the two mentioned in the policy would not be able
to be used to decrypt the message.

Besides the checking of attributes set, the policy language supports recursive trees using
the keywords and and or. Additionally, numeric constants can be defined as attributes
and then inquired by inequations in the policy language (see [BeSW07]).

Like other asymmetric crypto systems, CP-ABE is usually used in a hybrid way (see
for example the OpenPGP message format described in [CDFS+07]). The mathematical
methods regarding the actual asymmetric encryption are very slow or simply not fitting for
encrypting and decrypting arbitrary messages (both cases are true for CP-ABE). Thus,
the asymmetric functions are used only to encrypt and decrypt an element of constant
size, e.g. a random group element. This element is then used as a key for an arbitrary,
fast, symmetric procedure like, for example, AES.

To encrypt a message (see figure 2.1), a random sequence of bytes is generated. These bytes
are used as a key for AES to encrypt the actual message. Then the key is asymmetrically
encrypted using the specific crypto system and the public key of the designated recipient.
Both resulting sequences of bytes are then concatenated such that a combined ciphertext
is formed, that can be transferred or stored.

When the recipient receives the combined ciphertext (see figure 2.2), at first she uses her
private key to decrypt the first part into the sequence of bytes used as symmetric key. She
then decrypts the actual message using this key.

Therefore, a ciphertext derived by an asymmetric method usually consists of two parts:
The asymmetrically encrypted key and the message symmetrically encrypted using that
key.

It is worthwhile noting that both the policies and the attributes advect in a mathemati-
cal sense into the mathematical group elements that are saved as keys or ciphertext (see
[BeSW07]). Therefore, CP-ABE really enforces access policies cryptographically (in con-
trast to programmatic rules that are obeyed). This makes the crypto system particularly
worthwhile for cases where access to information is to be restricted based on a role concept.
As a consequence, CP-ABE seems to be well-suited to be used as an underlying solution
for a privacy-friendly storage system.
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Figure 2.1: This diagram demonstrates how CP-ABE applies hybrid encryption in order
to process arbitrary messages.
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Figure 2.2: This diagram demonstrates how CP-ABE applies hybrid decryption in order
to restore arbitrary plaintext messages.
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3. Related Work

This chapter is focused on giving an overview of other works that feature one or more of
the concepts and problems discussed in this work. All of these works are described shortly
and then compared to the subjects discussed in this work.

In their publication Security for Future Networks: D6.1 - Cryptographic Requirements
(see [AMKL+13]) the authors Abdalla, Kreutz, Lyubashevsky, Malichevskyy and Santos
describe a wide range of problems and solutions for dealing with security in the so called
future networks, i.e. “environments based on virtual networks and clouds”. Many of these
considerations also apply or are directly related to the protection of the privacy and have
some bearing on the concepts described in this work.

One part is focused on methods for secure data outsourcing and computation when work-
ing with untrusted providers. Functional Encryption and Fully-Homomorphic Encryption
(FHE) are proposed as possible solutions to this problem, even though it is stated that
“current FHE schemes remain mostly of theoretical interest and are still far from being
practical”. However, because this work assumes the provider of the architecture to be a
trusted party, these solutions do not match to the design described in this work.

Encryption is also mentioned as a means to provide confidentiality and privacy. The
publication even mentions Attribute-based Encryption (ABE) methods like CP-ABE used
in this work as well as Identity-based (IPE) approaches.

The authors Yang, Zhong and Wright describe in their paper Privacy-preserving Queries
on Encrypted Data (see [YaZW06]) methods for storing encrypted, privacy-critical data
in a database as well as running queries in order to retrieve already stored sets of data.
Therefore, the paper addresses one of the major questions when encrypting databases also
asked in this work: How can an encrypted database be searched for specific entries, if
as much as possible of the information is hidden from the view of the entity executing
queries?

The model designed in the paper uses a frontend entity that translates queries into a form
applicable to retrieve the correct results from a database server as well as decrypts the
results, such that the issuer of the query receives the decrypted version of the queried data
set. While the number of query types supported is limited, the authors show that their
solution may perform well on a large set of data.
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In comparison to the paper, this work uses explicit plain text indices for retrieving specific
documents from the database. By doing that, the step of translating queries can be
omitted. The drawback of this approach is, of course, that no advanced queries can be
executed like in the approach discussed in that paper. In this work, this is mitigated by
the client GUI caching results and, therefore, running queries on the set of decrypted data
values.

In their paper “k -anonymity: A Model for Protecting Privacy” (see [Swee02]), the author
Sweeney describes the property k -anonymity as a means to characterize whether a set of
data meets the requirement that “the information for each person contained in the release
cannot be distinguished from at least k-1 individuals whose information also appears in
the release”. She considers this a good solution in situations, where a data set has to be
published, but no privacy-critical information may be retrievable from the published set.

The paper “L-diversity: Privacy Beyond K-anonymity” (see [MKGV07]), written by Kifer,
Machanavajjhala, Gehrke and Venkitasubramaniam provides detailed information about
attacks on k -anonymity and then describe a more powerful property called l -diversity.
This property is characterized in a formal way as well as evaluated against practical needs.

While k -anonymity and l -diversity aim at protecting the individual subject’s privacy, the
resulting data sets would only be suitable for coarse-grained analysis in the context of
energy monitoring. For individual feedback, the access to personalized data must still be
possible.

The publication “Achieving energy efficiency through behaviour change” (see [BaGM13]),
produced by the European Environment Agency and written by Barbu, Griffiths and
Morton consolidates a number of studies about behavioural change in energy consumption.
Among other things, the text focuses on the relationship between consumer behaviour and
consumption practices (over time). Feedback on energy consumption is described such
that “without an appropriate frame of reference, consumers cannot know whether their
consumption is excessive”.

The results of the publication show that at least some influence on the energy consumption
can be shown, but that no adequate quantification exists so far. It is stated that this
mainly results from the lack of reliable long-term studies, so it can be expected that
further investigation in that direction can show more suitable results. These results would
be of great interest when associated with the architecture resulting from this work.

The authors Erkin and Tsudik cover in their paper “Private Computation of Spatial and
Temporal Power Consumption with Smart Meters” (see [ErTs12]) the usage of the so-
called Smart Meters for measuring and monitoring the power consumption of individual
consumers. To do this, temporal and spatial aggregation is used on the individual values.
Homomorphic computation and encryption is used to protect the data and preserve the
privacy.

In their publication “Privacy-friendly Energy-metering via Homomorphic Encryption” (see
[GaJa11]) the authors Garcia and Jacobs propose a solution for energy metering similar to
that described before. Once again, homomorphic encryption is used in order to preserve
the subjects’ privacy. The focus is laid on fraud detection, i.e. detecting malicious nodes
that deliberately provide false values, and preventing other users from receiving privacy-
critical information.

In contrast to this work, both papers consider Smart Meters, which usually measure the
consumption of whole buildings. Additionally, malicious nodes are excepted explicitly,
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because a trusted party as operator of the measurement architecture is assumed. This
applies to many other applications of secure multiparty computation like the one described
in [LiPi08].

In the paper “Identity based encryption from the Weil pairing” from Boneh and Franklin
(see [BoFr01]) a working identity-based encryption (IBE) scheme is proposed. IBE schemes
allow the usage of an identity information as an encryption key and, therefore, manage to
require only one global public key for encryption, while decryption, once again, is done
using a traditional private key.

Because the encryption and storage scheme used in this work is mainly independent from
the asynchronous encryption method in use, IBE could be used instead of the actually used
CP-ABE without any problems. However, the explicit usage of identities as encryption
entities would immediately reveal the underlying identity. By contrast, CP-ABE allows to
specify any attribute as a policy for encryption, so identity and the ability to decrypt a
document are effectively decoupled. This allows for a more flexible dealing with keys and
identities.
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4. Analysis

Because the purpose of this work is not only to give an answer to the three questions
defined before, but designing and implementing an architecture reassembling the gained
knowledge, this chapter is divided into two parts: In the first part, the questions are ana-
lyzed and conclusions are drawn accordingly. In the second part, a requirements analysis
is performed to find the functional and non-functional requirements for the architecture
to be designed.

4.1 Privacy and energy monitoring

As mentioned before, the eight privacy design strategies (see [Hoep12]) provide a reasonable
base to derive requirements regarding a privacy-friendly design and to give an answer to
the questions stated before.

4.1.1 Privacy-critical situations

The possible exploitability of data sets consisting of a greater number of individual mea-
surement values depends on the type of measured values as well as the fine-graininess.

For the former, e.g. energy consumption measurements in individual rooms can cause
inferences to be drawn about the behaviour of subjects working in these rooms. When
the subjects switch the light on or off, or leave the computers in an idle state causing
power saving functions to kick in, these changes usually are visible in a real-time energy
consumption visualization. However, other measurements, like, for example, of humidity
values may allow inferences to a much lesser extent, especially if these values are influenced
distinctly by environmental factors that are not caused by humans. Though, even mea-
surement factors that may seem to have no impact on the privacy should not be underrated
when estimating the privacy danger potential.

For the latter, the fine-graininess surely has direct impact on the information density of
the data flow and, thus, the amount of information or knowledge that can be drawn from
the collected data about individual subjects. Because measurements usually are taken
at discrete points in time and, thus, represent snapshots of the monitored factor paired
with the respective timestamp, every value already contains a temporal aggregation of a
continuous1 time span implicitly. The more information one data value aggregates from
the actual value, that is, the continuous, real-time variable, the less information can be

1Of course, unless the factor measured is discrete on its own.
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derived about a specific point in time. That means, that coarse-grained flows of data are
less dangerous and, thus, by artificially lowering the density, a degree of coarse-graininess
can be reached that is acceptable for all parties.

Partially, this also applies to implicit spatial aggregation, that is, for example, the measure-
ment of the combined energy consumption of multiple rooms. However, in that situation
the problem is that rather than the individual privacy now the group privacy is in danger:
Inferences could be drawn about the behaviour of a whole group of subjects. Because of
the possible impact monitoring still could have on this kind of privacy, spatial aggregation
is considered an inferior method for preserving privacy compared to temporal aggregation.

Besides both spatial and temporal density of information contained in a flow of energy
consumption values, a person trying to derive information from the data flow usually has
to have access to additional knowledge in order to properly generate additional information.
For example, if she does not know from which room a specific set of data has been measured,
no information can be linked to an individual person. Because of that, it has to be taken
into consideration, what knowledge may be accessible or made available.

4.1.2 Properties of a privacy-friendly architecture

To define the properties and requirements of a privacy-friendly architecture, it seems to be
a good idea to straightly follow the eight design strategies described in [Hoep12]. These
strategies have to be applied on the situations mentioned above in order to set the bound-
aries of how such an architecture should be designed.

The first strategy MINIMISE implies that only a minimal amount of data is collected,
so no unnecessary data is processed. While an application usually can not decide alone
what is collected, but the person in charge makes this decision, the application still has to
provide the means to regulate the amount of data collected and reduce this amount when
necessary. Thus, the architecture should implement a flexible filter system to drop infor-
mation that is not needed. For example, data values could be automatically anonymized
or pseudonymized. Additionally, the application could implement the data collection in an
opt-in kind of way. That means, data is not collected unless it is explicitly stated to do so.
That way, no data is collected accidentally, e.g. when the system has been misconfigured.
Moreover, it would be more obvious, what kind of data is collected, especially for people
verifying the correctness of a configuration.

The second strategy HIDE is meant “to achieve unlinkability and unobservability” (see
[Hoep12]). As mentioned in the paper, encryption traditionally provides a solution for
this problem. By encrypting the data and making sure the secret required for decryption
is only known by authorized persons, the information is protected from unauthorized
access. While encryption usually is only used for transport confidentiality, to protect the
persistently stored data in the database these values should also be encrypted. To protect
these encrypted data values from decryption by an unauthorized person, an encryption
scheme is required where the ability to encrypt and decrypt is separated into two pieces of
knowledge: The server holds the piece required for encryption, while only the authorized
persons have access to the other piece of knowledge. This scheme is provided e.g. by
traditional methods like DSA (see [KeDi13]) and RSA (see [RiSA78]) as well as CP-ABE
(see [BeSW07] and section 2.3). To be able to properly encrypt all of the privacy-imperiling
data, an encryption scheme has to be designed that makes sure, after encryption only
harmless data is still visible.

As a third strategy Hoepman states to SEPARATE, i.e. process the data“in a distributed
fashion” (see [Hoep12]). While a classical approach for such an architecture would con-
tain a central server instance that executes all processing and storing tasks, this always
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increases the risk of a massive data leakage if this server gets compromised. But on the
other hand, by distributing the architecture into many small instances of such a server,
information flows between the individual instances would no longer be possible. There-
fore, a compromise has to be found between these two concepts. In particular, that means
the individual local parts of a distributed architecture do have to be able to cooperate
by exchanging information. In order to minimize the amount of unneeded data in every
node, the methods required for the strategies MINIMISE and AGGREGATE could be
applied. For example, a hierarchy could be formed with a tier 2 layer processing real-time
data and a tier 1 layer for central accounting calculations. The accounting devices usually
do not have to have information in real-time, so the tier 2 devices could send an aggregated
version, e.g. a summation of each month, to the tier 1 devices.

The fourth strategy AGGREGATE is used to decrease the information density in a flow
of data by grouping the information and, thus, removing parts of the fine-graininess. Be-
cause reducing the amount of data, in particular if the density is higher than required, is
an important aspect in making an architecture privacy-friendly, a comprehensive aggre-
gation functionality has to be provided. As the amount and kind of aggregation possible
heavily depends on the environment to be monitored, the architecture should enable the
operator to flexibly configure the aggregation functionality to solve as many situations as
possible. For example, in the hierarchical environment described in the paragraph before,
the operator should be able to decide precisely which device is provided with which level
of detail and on which attributes the aggregation should take place (e.g. over time spans,
rooms, companies, etc.).

As many laws regarding privacy state that authorities have to INFORM the subjects
“whenever personal data is processed” (see [Hoep12]), this strategy may not be neglected
when deploying an application collecting and processing privacy-critical data. Certainly
the application itself has no means to directly inform the subjects and the operator of the
architecture must remain in charge for doing this. However, the application can assist the
operator by providing information that can be handed to the subjects in order for them to
verify how data regarding them is processed. In particular, by making all data regarding
one subject visible to her, the amount of data collected is obvious to her. Because usually
laws and standards include opt-out possibilities, subjects may always decide to allow or
deny access to privacy-critical data.

As stated in [Hoep12] the CONTROL strategy gives the subjects “the right to view,
update and even ask the deletion of personal data collected about her” as well as the
ability to control on higher scale what information might be collected and what not, and,
therefore, goes one step further than the INFORM strategy. For the architecture, this
means in particular that an opt-out possibility must exist, and that a subject is no longer
concerned by any collection of privacy-critical information if she decides to do so. Because
the architecture is required to be able to be used for accounting issues, automatic, user-
initiated deletion of data records may seem to be not feasible. However the architecture
should provide at least the operator with the means to delete sets of information. That
way a subject may always request the deletion of data records. While this solution may
not be the best, it makes a compromise, which should be applicable in most situations.

While the legal part of the ENFORCE strategy as always has to be fulfilled by the
company or the architecture operator, enforcement of this privacy policy can be assisted
by implementing access control (as described in [Hoep12]). While the encryption approach
mentioned above already provides access control on a cryptographic level, an additional,
traditional access control system using e.g. username and password as credentials can be
used at server side to prevent any unauthorized access.
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The last strategy DEMONSTRATE requires the operator to “be able to demonstrate
compliance with the privacy policy and any applicable legal requirements” (see [Hoep12]).
Therefore, the application itself has to provide means enabling the operator to prove this
compliance. For example, information about the processing storage schemes should be
available in a format that can easily be validated by third-parties. This may also turn out
to be helpful when certifying application environments.

4.2 Requirements analysis

Besides the requirements that can be derived from the properties stated above, the ar-
chitecture has to fulfill a number of rather normal requirements that are required for
processing and storing data values as well as accessing them.

This section is focused on these functional and non-functional requirements.

4.2.1 Functional requirements

Because the architecture should be able to take data values and process them as well as
allow subjects to access the persistently stored values afterwards, the functionality of the
architecture can be divided in two parts.

4.2.1.1 Processing

To be able to process data values from measurement devices or other sources, the archi-
tecture requires a network endpoint that can accept those values. Along with the value
itself, additional information like the sensor identifier, the unit and a timestamp have to
be specified. The architecture should be able to take raw and processed values from mea-
surement devices like the deZem logger and convert them to a general format if needed.
The endpoint interface has to support taking data values from various sources, e.g. clients
written by oneself or a deZem logger device.

Once values have been received, the architecture should be able to process these values
in a way required by the processing stage itself, as well as by privacy-concerning means.
This includes aggregation, filtering, dispatching2, calculations and modification of meta
data information among other things. By providing these, an operator should be able to
adjust the architecture in order to answer a wide range of different situations.

Once the data values have been processed, they have to be stored persistently, for example
in an external database. As described above, an encryption scheme could be used to store
these values in a privacy-friendly manner.

4.2.1.2 Accessing

When accessing data, subjects should be able to issue queries on the stored data sets.
While the stored data values may have been encrypted, the subjects must be able to get
the data they are interested in, by at least specifying a time interval. The data values
resulting from these queries have to be transferred in the same encrypted format they have
been stored, so the subject can decrypt them locally.

2In this context, dispatching means to decide between multiple different processing paths to proceed
the processing of one data value.
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4.2.2 Non-functional requirements

Of course, the privacy friendliness is the most important non-functional requirement. But
in order to provide an architecture ready-to-use for production, other requirements have
to be defined and fulfilled as well.

To provide security features like confidentiality, special care must be taken when designing
and implementing security-critical functionality in the architecture.

To be able to process and store even a large number of data values per second, the architec-
ture has to be scalable on a high degree. As much work as possible should be parallelized,
so the architecture can utilize the hardware effectively.

Finally, the architecture has to be flexible in configuration and deployment, so a wide
range of situations can be covered.
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5. Design

In the analysis, a set of requirements that must be met by a privacy-friendly architecture
was identified. Besides these special demands, the architecture must be able to act like
a standard architecture that provides a specified service to users and processes on the
network.

Therefore, this chapter not only takes into account the privacy-friendly design, but also
the design of an architecture ready to be used day-to-day by users. Also, the main focus
of this chapter lies on the server application.

5.1 Server architecture

As from now, the term server architecture identifies the part of the architecture that is
responsible for data processing and storage on the one hand and data access (by users or
processes) on the other hand.

Typical distributed applications can be categorized in multiple ways. One of them is the
distinction between classical client-server-architectures and decentralized architectures.

This section aims to provide a comparison between these approaches while considering
advantages and disadvantages for a privacy-friendly architecture.

5.1.1 Centralized approach

A classical centralized client-server approach like the solution provided by deZem (see
[deze] for details) features one central application that provides services to one or many
remote client applications invoking service methods on the server. Using these service
methods, the clients, for example, could in this case query the server for measured data or
add new data points to be processed and stored.

Figure 5.1 shows the basic structure of such an architecture. The central server instance
is responsible for storing and processing the actual data. Two types of clients connect to
the server: Input clients, for example a measuring device, add data points to be processed.
Access clients, on the other side, query the server for already stored sets of data, be it a
client application that provides a graphical analysis, or a program that further processes
these data sets. To restrict the access to data sets to certain users, an ACL system or the
like has to be used.
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Figure 5.1: An example of a centralized architectural structure. One or multiple mea-
surement devices provide sensor data that is sent to the server application. The server
processes the data and stores the results in a database. If users (or processes) want to
access data, they connect to the server and execute queries.

The drawback of this approach is the risk that arises when too much privacy-endangering
data is stored at the same location. If that one server gets compromised, an attacker
instantly could gain access to all the data that is stored there.

While there are still possibilities to circumvent this problem, a pure centralistic approach
always has the restriction that every single data point eventually passes this one server
application, so the application depicts a single-point-of-failure, both in security and privacy
as well as redundancy terms.

5.1.2 Decentralized approach

Although the term decentralized may awake associations with peer-to-peer systems, in
this case the term refers to an approach where multiple independent server instances exist
that do not interact with one another. In figure 5.2 one can see an example setup with
three server instances, each with its own database server. Every server instance processes
measurements from (in this case) one or more measurement units. When a user wants to
access stored data sets, she connects to the server holding that specific data set and queries
for it. To be able to do that, the client has to know on which node the data is stored.
Even so, this approach could be extended with an indexing service to provide clients with
that information.

The general idea of this approach is the partitioning of the processing domain into self-
sufficient parts. By doing this, the impact of one compromised node is minimized, because,
in the worst case, only the part of the data can be obtained by an attacker that has been
processed and stored on this node. While this possibility still means a major threat for
the user’s privacy, the risk is mitigated slightly at least. Although, room for improvement
still exists.
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Figure 5.2: An example of a decentralized architectural structure. Multiple measurement
units provide data points to a number of independent server applications. Clients connect
to one or more servers and query for data. As long as there is no directory service, the
clients have to know, on which server a specific data set is stored, to retrieve it.

Another problem of this approach is the fixedness in configuration possibilities. For exam-
ple, to provide the individual users with their personal consumption data on the one hand
and the building manager with the aggregated energy consumption of an entire company
on the other hand, the separation into independent domains is a non-trivial task: Either
both processing domains are combined on one server node and, thus, again exposed to a
single attack, or one of these processing steps is relinquished in favor of the other.

5.1.3 Hybrid approach

Both of the approaches mentioned in the sections above were rather basic approaches and
therefore not really fitting to provide a substantial solution to the problem of privacy
preservation. Because of that, a reality-related approach rather uses a combination of
these ideas described above.

Different streams of data usually have an affinity to an actual location, e.g. the energy
consumption in a specific room, floor or building. While consumption information may be
required in devices not located near that location, these entities usually are content with
coarse-grained, aggregated information.

Because of that, those streams can be separated into different domains. Here, a domain
depicts a group of data streams that belongs together. Once any such groups have been
identified, the processing can be decentralized using these domains.
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For example, let there be an office building subleased to a number of companies (see figure
5.3). The building owner operates an energy measurement system that can fine-grainedly
measure the consumption in all office rooms. While the energy manager of the building
itself usually is only interested in getting aggregated consumption values (e.g. for a total
month) for accounting, the energy manager of a specific company may want to optimize
the efficiency of the company by monitoring individual rooms.

This opens the possibility to separate both processes into domains possibly running on
different hardware devices: The actual sensors send the fine-grained data points to a local
device that stores and processes the streams of data for e.g. an individual company. An
aggregated form of these data points is then forwarded to a central device that can be
used for accounting.

Besides an improvement of the overall scalability, this separability lays the ground for a
concept that could be called privacy-by-configuration: Information (i.e. streams of data)
are configured to only be forwarded to a place where it is needed and in a way that it is
needed.

In the example above, the building energy manager does neither need to have access to
fine-grained information regarding individual rooms nor is she interested in the names of
employees.

While this allows to straighten out the overall processing and therefore avoids single pro-
cessing devices to become too desirable for attackers, it still does not prevent data leakage
in the case of a compromised server or an overly inquisitive employee. To also provide this
feature, the architecture must therefore implement another layer of privacy preservation.

5.1.4 Privacy using public-key cryptography

While classical access control systems are able to manage access restrictions by e.g. using
a set of rules, these rules tend to be overridable. That means, once the rule is disabled,
access may be granted to subjects that were not able to do so before. This problem persists
as long as the processed data is permanently stored in an unencrypted form. However, by
encrypting the data using a secret that only the intended subjects do possess, no other
subject can decrypt and, therefore, access the data, even if the whole system, including its
database, is compromised.

Because the server system has to be able to encrypt data, but must not be able to decrypt
it, an asymmetric encryption system provides an excellent solution to this requirement.
The server only possesses one or more public keys, while the corresponding private keys
are kept secret by their holders.

5.2 Data processing

Because the basic idea of the architecture is to assure that the processing is privacy-friendly
itself on the one hand and its outcome non-privacy-violating on the other hand, the process
of handling and storing data must be the main focus of the design process.

The following sections describe in detail the decisions made in constructing this architec-
ture.

5.2.1 Data model

The data model used by this architecture is centered around the concept of data points.
A data point represents the value state of a subject at a specific point in time. Because
values are measured within discrete intervals, a presumption must be made for the period
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Figure 5.3: An example of the hybrid architectural structure. Measurements are processed
and stored by devices near the measurement location. Users having access to fine-grained
data streams can directly access them using these devices. Views on data that are relevant
on a more global level are forwarded to another server instance that collects these data
streams from multiple devices below. While this and other examples depict hierarchical
architecture, this approach is not limited to such structures.
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between measurements. Because the measurement devices used for this work issued new
data values whenever a change was observed, this data model is designed to assume a data
value to last until the next value is measured.

Each data point contains the timestamp it has been measured at in UTC. The storage
of the measurement value itself requires some special consideration, because measurement
devices often provide a number format that not only consists of a single floating point
number, but rather a combination of values that has to be normalized or manipulated
otherwise to yield an absolute, comparable number.

As a consequence, in this data model a dynamic definition of the concept of a value is
used: The actual data that is stored as value depends on the value type and is picked at
run-time. To be combinable with data values of other types, every value type must comply
to a number of requirements: It must support being converted to an unambiguous basic
floating point value and support mathematical basic operations like addition, division etc.
with other values of arbitrary type.

Besides these two basic information entities, a data point holds the unit of the value, the
name of the flow (see 5.2.4.2) and a set of meta data information (see figure 5.4).

The meta data is individually determined for each data point and contains information
about the acquisition and context of the measured value. While some meta data is di-
rectly generated by the sensor itself, other meta data must be derived by using external
knowledge.

As one can see in the figure mentioned above, every piece of meta data consists of one part
describing the type of information and one part representing the information itself. They
are called class and tag respectively. Multiple tags can have the same class and no order
exists for tags of one specific class. Using this model for storing meta data, relationships
like measurement affects person A, B, . . . can easily be expressed.

Except the flow field partially, there is no real relationship between individual data points.
While this means an overhead in storage space at first, it also allows supporting dynamic
switching of entities in the context between data points. For example, if the energy con-
sumption of a room should be allocated to the overall consumption of employees using that
room and there is knowledge on when the individual persons are present in that room, the
meta data class person can just be switched between two data points.

Because the model is meant to be implemented in a way supporting serialization and
deserialization for permanent storage and transmission over a network connection, client
and server can both use the same implementation of the model.

5.2.2 Storage model

A traditional architecture would simply take the data point documents described in the last
section, serialize them and write them to a database or another conventional permanent
storage.

However, because the data points contain mostly information that is highly precarious in
terms of privacy preservation, leakage of concerning bits of information must be prevented.

To achieve this, a storage scheme is used that makes sure an attacker, who can obtain
access to the permanent storage, is not able to extract any useful information. The storage
scheme is designed around Ciphertext-Policy Attribute-Based Encryption (CP-ABE), the
asymmetric crypto system described in section 2.3.

As a first step in designing a storage model, it appears that, in order to minimize overhead,
data points should be consolidated into blocks, because CP-ABE introduces a significant
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Figure 5.5: This figure describes the basic procedure of processing and storing data points.
The measurement device (e.g. a deZem logger) generates a data point with some basic
meta data attached to it. The architecture then derives a set of additional meta data tags
like room or person. When the processing is finished, the data point is encrypted using all
identities derived in the step before and then stored in a classical database.
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amount of additional data that needs to be stored along with an encrypted block of payload.
Since this block does not depend on the actual size of the plaintext message, this can be
compensated by choosing bigger blocks of payload. As from now, the document containing
an encrypted set of data points is called block document.

To additionally decrease the amount of storage space required, it is desirable to support
shared access for data blocks that can be accessed by multiple users. While those blocks
could be encrypted using a dynamically assembled policy containing identifying attributes
of all target users, this approach contains a tricky pitfall: The policy used for encrypting
a chunk of data is included in the ciphertext in unencrypted form. This means that an
attacker could always see who can decrypt a block of data. In a system that dynamically
assigns and revokes access rights to data points based on presence, that could imply the
knowledge of mutual presence of persons.

To bypass this problem, the usage of access sharing by CP-ABE policy should be avoided.
Instead, every user and/or attribute, respectively, that should be able to decrypt the data,
must have an own document exclusively.

So as to nevertheless share the actual data among multiple identities, the storage of effective
data points and data access information must be separated.

For that reason, another type of document is introduced: the index document (see figure
5.6). The content of an index document itself is encrypted using CP-ABE1 and a pol-
icy containing one single attribute (that therefore is “public” in the sense of an attacker
having access to the database). Of course, an index document must be created for every
user/attribute that should have access to the actual data. To lessen this overhead, index
documents can last for a specific amount of time until they are renewed.

On the other side, the block documents no longer have any relation to an attribute or
CP-ABE in general. Instead, the content (the set of data points, that is) is encrypted
using a strong symmetric cipher like AES and a randomly generated code of bytes, the
AES key. Additionally, another random code is created and added in unencrypted form
to the document as a findable (referring to database queries) field. This code is called
reference id and is used by all users having access to the data to retrieve the encrypted
data blocks (see figure 5.6).

Both the AES key and the reference id are then stored in encrypted form in the corre-
sponding index documents. If a user is able to decrypt her index document, she can restore
both codes. By using the reference id, she can retrieve the correlating data blocks and
decrypt them with the AES key.

An index may have a specified life span in which all emerging data blocks are encrypted
and tagged with the same pair of keys. On the other hand, one data block may belong to
one or more index documents. Figure 5.7 further demonstrates these relationships.

As a last optimization, the sharing of single reference ids is removed. Instead, every index
gains its own reference id. To accommodate this, the block documents in turn no longer
contain one reference id, but now each of them contains a set of reference ids (see figure
5.6). This adds another barrier between the ability to connect knowledge as well as allows
to selectively remove and garbage collect blocks whose indices have been deleted by the
users bit by bit.

The already mentioned figure 5.6 demonstrates the final model that reassembles all of
these considerations.

1Technically, CP-ABE is a hybrid crypto system. That means, CP-ABE itself is only used to encrypt
and decrypt a secret keyword of a fixed length. This keyword, in turn, can be used by a conventional,
symmetric cipher to encrypt and decrypt, respectively, the actual payload. CP-ABE uses AES as symmetric
crypto system.
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Figure 5.8: This figure shows the knowledge relationships between the three meta data
classes sensor, room and person. The class person is only reached using the intermediate
class room.

5.2.3 Enhancing and knowledge

Once a data value is measured, usually a set of simple meta data tags is added (e.g. the
identifier of the sensor, the measuring device, etc.) To provide additional information
that is required for assigning identities to individual data points and encrypting them
accordingly, another node type must be defined that works on the meta data information,
the enhancer node.

While the term enhancing seems to actually target only the augmentation of meta data
information density, nodes of that type can likewise be used to reduce the density; a sepa-
ration of both manipulation types would make no sense in respect of the implementation.
Therefore, enhancing is meant to be referred to the act of changing the information density
in the desired manner.

An advanced, dynamic enhancer usually is equipped with knowledge. The term knowledge
targets an abstract set of information that leads to transitive relations between classes of
meta data. The transitivity feature is of special importance in cases where the intermediate
classes are not used in the end, but are the only way to reach the classes of interest (see
figure 5.8 as an example).

For example, this set contains the knowledge that a specific sensor S measures the energy
consumption in room 1. It also knows that person A resides in room 1. Based on that
knowledge it can assume that data values from sensor S depict the energy consumption of
person A.

To be able to store this knowledge in an applicable way without having understanding on
the knowledge itself, a data structure is needed that can hold this set of information. A
knowledge provider is responsible for augmenting this data structure, while the processing
part of the architecture utilizes the collected information to tag the incoming data points.
The implementation details of the used knowledge providers is covered in the next chapter.

A tree of matching rules is chosen as such a data structure suitable for easy application
on meta data sets. The tree consists of match, add and remove nodes. Beginning with
the root, which always is an empty match node, the tree is traversed.

A match node contains a set of regular expressions which are checked against the meta
data set of the currently processed data point. If the expressions of a match node fit,
the child nodes of this match node are evaluated. The add and remove nodes depict
the respective action to be executed on the meta data. The combination of nodes of these
three types allows the realization of transitive tagging relationships like those described
above (see figure 5.9).
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Figure 5.9: An example knowledge tree for assigning rooms and person identities to sensor
ids. Applying this tree on a data point that has been tagged with sensor id S would also
tag this point with room 1 and person A.

5.2.4 Flow graph

To provide a configurable and flexible processing environment, a model is required that fits
the needs of defining and describing the path of a data point. This path ranges from the
moment the data point is measured to the moment it is dropped or stored permanently.

There are some prerequisites for such a model: At first, it must contain entities that re-
semble the creation and finalization of data points, therefore the entry and exit points of
the model. Between these there must be additional entities that each conduct a speci-
fied action on bypassing data points. All of these entities must then be connected in a
relationship that models the forwarding of data points from one entity to another.

A very close-by representation of these prerequisites can be met by modelling the processing
environment as a directed graph: Entities are expressed by nodes and the forwarding
actions between entities by edges, directed from the source node to the destination node.

Entry nodes and exit nodes may only have outgoing and ingoing edges, respectively, and
a graph may have one to many nodes of both types. All other nodes, however, may have
an arbitrary number of edges. An edge represents a possible forwarding path, but whether
a data point is forwarded along a specific edge or not is decided by the source node and,
thus, depends on the processing function definition of that node.

As in forwarding graphs in computer networks, cycles in the graph must be strictly pro-
hibited to prevent data points from looping forever and, thus, overexert the processing
application.

As mentioned earlier, a set of node types has to be designed to meet all requirements of
a data point processing architecture. The following sections will give an in-depth look in
the definition of these nodes.

5.2.4.1 Stateless and stateful nodes

The differentiation between whether a node has a state or not embodies an important
distinctive feature for the definition of processing nodes. In this case, the term state refers
to whether the processing of a specific data point has further influence on the processing
of subsequent data points.

For example, a node that simply counts the data points passing through would be labelled
stateful, because the node would increase an internal counter variable every time a point
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passes by. This counter variable represents the internal state of the node and is maintained
between the processing of multiple data points.

By contrast, a node that e.g. increases the measured value of all data points by a constant
value would, thus, be called stateless: Regardless of how many data points pass and in
which order they pass by, neither the processing action nor any internal state depends on
the processed data points.

5.2.4.2 Flows and flow states

Initially, individual measured data points do not have any relationship to one another
other than a chronological order in time. Almost no relationship can be introduced until
some background knowledge has lead to additional information (in the form of meta data)
that implies such relationships.

Once such virtual relationships are established, e.g. by adding rooms or personal identities
to the data points, some requirements must be met to ensure proper further processing
of these data points. For example, when aggregating all values belonging to one room,
values from other rooms may not be interweaved. Instead, the aggregator would have to
aggregate for every room separately.

As a rule, stateless nodes usually do not have to take these dependencies into account.
That is because these nodes can not distinguish between individual data points anyway.

In contrast, stateful nodes do have to differentiate between data points grouped into spec-
ified divisions. In general, the factor behind this subdivision must be configured for a
processing unit in order to be able to obey these restrictions.

Usually, such a subdivision is maintained as far as the end, that is, the processing step
where the data points are permanently stored. When accessing the data later, the subdi-
vision can also be used to sort the stored data into groups belonging together. Henceforth,
these subdivisions of streams of data points are called flows.

5.2.4.3 Entry node

Entry nodes represent the entrances of a graph. Entry nodes may only possess outgoing
edges and do only forward data points along all these edges. That means, no alteration or
filtering may be done.

Thus, the very simple processing function of entry nodes can be summarized in the fol-
lowing pseudo code:

1 func t i on proce s s ( data po int p)
2 f o r a l l e : edges
3 forward p on edge e ;
4 end
5 end

As one can see from this code, no state information is used. Thus, all entry nodes are
stateless.

5.2.4.4 Temporal aggregator node

A common task for data point processing is the aggregation of the real-time data over
a time interval. For example, alongside the momentary energy consumption in a room,
one could be interested in the aggregated amount of energy that has been consumed on a
specific day.

Different mathematical aggregation functions are possible and the choice depends on the
actual area of application. Thus, the node design can be split up into one generic part and
one part that assembles the aggregation function itself.
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Because the aggregation node must mathematically combine all data point values from the
used interval, an internal state must be maintained that holds these values, until the next
output value is computed and forwarded. This state is handled by the generic, function-
independent part. For this, that part tracks the point in time where data points have
arrived and accumulates these data points until a specified interval is over. As mentioned
before, stateful nodes must make sure to preserve and separate flows from each other. To
do that, an own state instance for every observed flow that passes the aggregator is created
and stored:

1 func t i on proce s s ( data po int p)
2 get or c r e a t e s t a t e f o r p ;
3 add p to s t a t e ;
4 end

Once an interval has passed, a resulting data value is created from the interval’s state, an
appropriate meta data representation is added and, finally, the new data point is forwarded
along all outgoing edges:

1 func t i on f l u s h ( s t a t e s )
2 i f s . i n t e r v a l has exp i red
3 data po int p = aggregate ( s ) ;
4
5 assemble meta data f o r p ;
6
7 f o r a l l e : edges
8 forward p on edge e ;
9 end

10 end
11 end

The second part of the node functionality is contained in the aggregate() function. Depend-
ing on the type of processed data values, a range of mathematical aggregation functions
appear to be useful.

Sum and average

In some environments it is required to provide the sum or the average value of all incoming
data values for a time interval. This can easily be computed by summing up all the data
point values and then (in case of the average value computation) dividing this sum by the
count of data points used up:

1 func t i on aggregate ( s t a t e s )
2 f l o a t va lue ;
3
4 f o r a l l p : data po in t s in s
5 value = value + value o f p ;
6 end
7
8 % The f o l l ow i n g l i n e only appears in
9 % the average aggrega t ion func t i on :

10 value = value / number o f po in t s in s ;
11
12 re turn data po int with value ;
13 end

Because sum and average both reduce a number of data values to one single value, the
granularity and therefore the impact on the privacy may be greatly diminished.

Maximum and minimum

Storing maximum and/or minimum values instead of the real-time data may also greatly
reduce the granularity of the data output. The following pseudo code illustrates the
maximum case:



34 5. Design

1 func t i on aggregate ( s t a t e s )
2 f l o a t va lue ;
3
4 f o r a l l p : data po in t s in s
5 value = max( value , va lue o f p ) ;
6 end
7
8 return data po int with value ;
9 end

The corresponding minimum aggregate() function uses min() instead of max().

Integral over time

In many cases summing up the data points does not yield a useful result, because the
physical background demands a sum over infinitesimal small slices of time. To aggregate
such data value types, an integration approximation must be provided.

For example, to aggregate real-time consumption data values ([P (t)] = [W ]) over time into
energy (W (t) = [kWh]), an integral over the power function must be computed:

W (t) =

∫ t

0
P (t̂)dt̂

Because input values only appear at discrete points in time, no continuous integral can be
computed. Instead, the integral is approximated by using a Riemann sum over all n data
point values, weighted by the widths of the time slices:

WR(t) =
n∑

i=0

P ( ˆt = ti)(ti − ti−1)

This results in the following pseudo code:

1 func t i on aggregate ( s t a t e s )
2 f l o a t va lue ;
3 data po int l a s t ;
4
5 f o r a l l p : data po in t s in s
6 value = value + ( value o f p ∗ ( timestamp o f p − timestamp o f l a s t ) )
7 end
8
9 return data po int with value and new uni t ;

10 end

As one can see in line 9, this node must take into account the possibility of a changed unit
for the resulting value.

5.2.4.5 Spatial aggregator node

While the temporal aggregator node computes a combined data value from all the mea-
sured values in a time interval of a predetermined length, spatial aggregation means the
combination of the real-time values for a spatial entity. This could be a room, a floor,
or even a whole building. To make the spatial aggregator easily distinguishable from the
temporal one, from now on it is named combiner node.

To generate a spatially combined value, this node has to aggregate the current values of
all inputs grouped by spatial origin into one resulting value at every single point in time.
Because actually the data values are supplied within discrete, variable time slots, real-time
aggregation is not possible. Instead, the node must store the latest corresponding values
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for all input entities and then aggregate them on-demand, once a new output value is being
created. Usually, this is the case whenever one of the input devices yields a new value.

As with temporal aggregation, multiple aggregation functions are imaginable, like sum-
mation, minimum/maximum etc. Below the summation case is described; the design of
other functions can be done correspondingly.

Like in the sections before, a new data value must be assigned to a state, as soon as it
arrives. To differentiate between states, a meta data class must have been configured.
Values from different states can then be processed without interfering with one another:

1 func t i on proce s s ( data po int p)
2 get or c r e a t e s t a t e s f o r p ;
3 add ( s , p ) ;
4 end

In contrast to temporal aggregation, a second configured meta data class is required to
define the spatial domain to aggregate over.

For example, if the real-time sum of the consumption of a group of rooms is to be computed,
the first class defines the group of rooms itself. Hence, for every group of rooms available,
a single output flow is generated. In turn, the second class determines entities of the actual
calculated sum. In this example case, this would have to be the room identification.

This second state information is contained in the outer state:

1 func t i on add ( s t a t e s , data po int p)
2 get or c r e a t e s p a t i a l domain d ;
3
4 i f p i s newer than l a s t va lue in d
5 add p to domain d ;
6
7 forward ( aggregate ( s ) ) ;
8 end

As one can see, an output data point is created whenever one of the inputs changes. This
means that a combiner node yields a higher output frequency than the single input nodes.

At last, the actual aggregation must take place. In this case, a simple summation is used:

1 func t i on aggregate ( s t a t e s )
2 f l o a t va lue ;
3
4 f o r a l l d : domains in s
5 value = value + d . value ;
6 end
7
8 return data po int with value ;
9 end

5.2.4.6 Filter node

A common task in data value processing is filtering, to distinguish between wanted and
unwanted data points. The filter node provides the functionality to define rules about
which meta data information is required for a data point to be forwarded. Points that do
not meet these requirements are dropped.

Because the rules are configured and loaded at startup of the application and after that
remain static, no internal state is required. Therefore, contrary to the nodes described as
yet, the filter node illustrates an example of a stateless node type.

The rules themselves are applied against the meta data information of the individual data
points. For a data point to fit a filter, all rules must apply. Hence, the set of rules describes
an and-relationship.
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Every rule consists of two regular expressions: One for the meta data class name and one
for the tag names (see section 5.2.3 for details).

Whenever a rule is about to be applied, at first the class name expression is checked against
all available classes of the data point. If none of the class names matches, the data point
is assumed to have failed the rule.

Otherwise, the tags of all matching classes are checked against the tag expression. If at
least one class contains a tag matching the tag expression, the data point succeeds the
rule and is forwarded. If not, the data point is dropped.

The following pseudo code demonstrates the behaviour of the node itself:

1 func t i on proce s s ( data po int p)
2 f o r a l l r : r u l e s
3 i f not matching ( r , p )
4 re turn ;
5 end
6 end
7
8 forward (p ) ;
9 end

And this code shows the actual matching process:

1 func t i on matching ( r u l e r , data po int p)
2 f o r a l l c : c l a s s e s in p
3 i f c matches r . c l a s s e x p r e s s i o n
4 f o r a l l t : tags in c
5 i f t matches r . t a g exp r e s s i on
6 re turn true ;
7 end
8 end
9 end

10 end
11
12 re turn f a l s e ;
13 end

5.2.4.7 Dispatcher node

Another common task in the structure of a flow graph is the separating of flows into
independent subflows. This separation also follows some rules that define which data
point is forwarded along which edges.

The core behaviour of such a node closely resembles the behaviour of the filter node
described above: Data points are checked against a set of rules and based on that a
decision is made. In fact, the exactly same behaviour could be modelled by using multiple
filter nodes as respective first nodes after a split up of a flow into multiple flows.

However, to simplify the modelling process, this action can be consolidated into one single
node. The resulting node type is called dispatcher node.

In respect of the code, only few changes are required compared to the filter node:

1 func t i on proce s s ( data po int p)
2 f o r a l l e : edges
3 f o r a l l r : e . r u l e s
4 i f not matching ( r , p )
5 break ;
6 end
7 forward ( e , p ) ;
8 end
9 end

10 end

The function matching() stays the same entirely.
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5.2.4.8 Enhancer node

As described above, the term enhancing addresses the act of modifying the meta data
information of data points in a desired manner.

Generally, an enhancer always does its work on the meta data set and then forwards the
data point along all outgoing edges:

1 func t i on proce s s ( data po int p)
2 f o r a l l e : edges
3 enhance (p ) ;
4 forward ( e , p ) ;
5 end
6 end

Enhancing can be done in a wide range of complexities.

Static enhancing

Static enhancing is done by using a set of match and modification rules defined at config-
uration time. These rules allow common, incomplex tasks like tagging every data point
with one or more specified tag strings or removing such strings.

The latter may be very important regarding privacy-preservation: While some information
in terms of meta data is required to determine the identities that should be able to decrypt
the data points, once they have been written to a database, some of these meta data classes
are no longer required later. These obsolete meta data classes could then be dropped using
a well-defined rule.

This behaviour can be outlined as follows:

1 func t i on enhance ( data po int p)
2 f o r a l l a : add ru l e s
3 apply a to p ;
4 end
5
6 f o r a l l r : r emove ru le s
7 apply r to p ;
8 end
9 end

Dynamic enhancing using knowledge

In section 5.2.3, the term knowledge and the design background of knowledge trees have
been introduced. The knowledge enhancer node uses these structures to actually apply the
stored knowledge to data points.

Because the actual enhancing work is implemented and done in the respective knowledge
provider, this node can turn out very simple:

1 func t i on enhance ( data po int p)
2 hand over p to knowledge prov ide r ;
3 end

The behaviour of the knowledge providers is described in greater detail in their respective
sections.

5.2.4.9 Exit node

Exit nodes provide the functionality of releasing data points from the flow graph and
processing them in a finalizing manner. This also means that an exit node may not have
any outgoing edges.

To make available the functionality required by the concepts described in this chapter, two
kinds of exit nodes have to be defined.
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Remote exit node

In order to make flexible decentralization possible, the remote exit node provides the ability
to forward data points along a virtual edge to a remote server’s flow graph. Technically,
this node uses a client implementation to connect to the remote server’s interface.

1 func t i on proce s s ( data po int p)
2 connect to remote s e r v e r s ;
3 wr i t e ( s , p ) ;
4 d i s connec t ( s ) ;
5 end

Database exit node

If the processing and enhancing of a data point has completed, the data point must be
written to a permanent storage. This is done by the database exit node.

This node implements the storage scheme described in section 5.2.2 in greater detail:

1 func t i on proce s s ( data po int p)
2 update i d e n t i t i e s from p ;
3
4 writeToDatabase ( renewInd ices ( ) ) ;
5
6 update block b ;
7 add p to cur rent block b ;
8
9 i f l ength o f b > MAX

10 writeToDatabase (b ) ;
11 c l e a r b ;
12 end
13 end

The function renewIndices() checks whether new index documents have to be generated
(e.g. due to a change in covered identities or a time out) and, if so, returns a set of newly
created ones. The currently active block is always referenced by all active indices, so a user
can retrieve the block if and only if she is able to retrieve and decrypt the corresponding
index document.

5.3 Data access

With the processed data stored in the database, there must be a possibility for users to
access their data eventually.

The data access usually originates from a client application that creates a network con-
nection to the server application in order to query for specific sets of data. Therefore, the
server has to provide an interface that is remotely accessible.

This interface allows two kinds of queries: The query for index documents as well as for
data blocks belonging to one specified reference id (see section 5.2.2 for details).

Figure 5.10 depicts an example of how such an access request is established. Usually,
the user specifies a time interval to retrieve first. The server then delivers a list of index
documents the user has access to. Once these index documents have been downloaded
to the client, the client can use the user’s private key to decrypt the index documents in
order to obtain the reference ids as well as the AES keys for all blocks of data that are
attached to the retrieved indices.

At last, the client has to query the server for all reference ids and then decrypt all blocks
of data using the AES key.

Note that the server does not have any information about relationships between data
values, so every kind of query (besides the specified time interval) that a typical storage
server would be able to handle must be executed by the client, like querying for a specific
flow.
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Database

Measured value
(sensor:S, room:1, person:A, 2014-10-29 10:32:29, 93.18, W)

Decryption (A)

The value can be decrypted using A's private key 

Encrypted value
Attributes: A, energymanager

Graphical User Interface

Figure 5.10: This figure shows a basic example on how a user can access processed data
after it has been written to the database. Because the database itself only contains en-
crypted values, the user has to specify exactly, which sets of data she is interested in. Once
the database provides the user with the encrypted values requested, the user can use her
own private key to decrypt the data in her local machine and e.g. display the results in a
graphical user interface.
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6. Implementation

In the chapter above, various focus points of a privacy-friendly architecture were designed
and described. Now, attention is turned to the actual implementation. The implemented
architecture is called Privacy-Preserving Post-Processing and Storage (P4S). Hereafter,
the server application is referred to by the term p4s while other modules are called by
their respective names once they are introduced.

6.1 Architecture and implementation overview

Because the architecture inherits several features of a classical client-server-architecture,
at least one client has to be implemented along with the server. For this architecture
approach in particular, there exist two kinds of clients for which a dedicated client library
and corresponding interfaces on the server have to be implemented:

The first type of client (called p4s-client-input) allows to send data points to a server for
processing. One purpose of this library is to provide the interface between two or more
server applications for decentralized processing flows. Every server that wants to forward
data points to another server instance can make use of this library.

However, pure client applications may exist as well. An application that reads values from
a measurement device and injects them to a server instance provides an example of the
purpose of such a client.

The second type of client (called p4s-client-access) in turn provides an interface for data
access by client applications. This client library encapsulates the whole process of re-
trieving index and block documents from the server and decrypting these. Ideally, when
implementing an access client application, the developer should be able to query for data
points in a specified time interval without taking notice of the special properties of this
privacy-friendly approach.

The server itself as well as the access client require access to various functions of the CP-
ABE toolkit (see section 5.2.2 for details). Because at the present moment the existing
implementations of CP-ABE in C (see [BeSW07]) and Java (see [Wang12]) are lacking
some of these required functions, a wrapper module called jcpabe has been created for this
work that provides a unified interface including some utility functions.

Functionality that has to be shared between modules has also been consolidated into
another extra module called p4s-common. This module contains the implementation of
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the whole data model described in the chapter before as well as a set of globally required
utility functions.

The main purpose of the p4s-client-access client library is to build actual client applica-
tions. As part of this work, two Graphical User Interfaces (GUI) were created that take
usage of the library: A standalone desktop application (called p4s-gui-desktop) as well as
an experimental app for Android smartphones and tablets (called p4s-gui-android).

Both GUI applications are based on yet another module, called p4s-gui-common. This
module acts as a code base for applications providing data access in terms of visual rep-
resentations, like charts. By using such a base module, implementing another graphical
interface is reduced to porting the device-dependent code to the target platform.

At last, two small tools are part of the implemented architecture:

p4s-key-tool provides a command-line interface for managing the CP-ABE key infrastruc-
ture. This includes the creation of such an infrastructure as well as the creation of private
keys.

p4s-key-user allows to execute maintenance tasks on the user repository used by the server
application. The current version supports the creation and deletion of users and the
modification of user permissions.

As an overview, figure 6.1 shows all of these modules as well as their mutual relationships.

6.2 Development environment overview

To be interoperable with other components of the IDEM project, Java was chosen as target
platform. Therefore, all modules can easily be deployed on any system supporting Java.
While the client and utility libraries are compatible with all Java versions since version 7,
the server application makes use of features introduced with Java 8 and hence only works
if a recent version of Java is installed. In order for the CP-ABE part to be usable, the
Java Cryptography Extension (JCE) has to be installed, too.

All development and testing has been done on an Ubuntu 14.04 LTS system using Maven
3.2.3 and the JDK 8 from Oracle. Other operating systems should also be supported,
though, because the implementation uses no specifically device- or system-dependent func-
tionality.

All required code is contained in the Git repository belonging to this work. The repository
also provides a set of utility scripts for building and deploying parts of the application (see
appendix A for details).

6.3 Server

The server application is implemented as a flexible application that is designed to run in
the background and process requests from remote clients.

This application itself is heavily based on the Spring framework (see [Inc.b]). Spring Boot
is used for bootstrapping the application and configuring all other parts that make use of
Spring modules. Spring Core provides Dependency Injection for bootstrapping the appli-
cation controller objects (see 6.3.4). Spring Web manages the web server sockets and the
corresponding RESTful interfaces for data input and data access. At last, Spring Secu-
rity provides the security layer used for enforcing access control on all remotely accessible
interfaces.

The application p4s supports three run modes: Standalone application mode, UNIX dae-
mon mode and application server mode.
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Figure 6.1: A summary of all modules developed for this work as well as their relationships.
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In standalone application mode, p4s simply acts as a standalone console program. Once
started, it listens on the configured ports and processes incoming HTTP requests. Logging
output is written to standard output. This mode can be used when running p4s for testing
or for starting it from out of a non-root user’s session.

In daemon mode, the application is started as a background process. The type of pro-
cess depends on the operating system. Apache Commons Daemon is used to handle the
operating system dependent part of starting the application as a daemon, like setting an
unprivileged user to run the executable (see [Founa]). Currently, Windows and UNIX-like
platforms are supported. When running in daemon mode, the logging output is always
redirected to a log file. Starting and stopping of the application is done using the utilities
provided by the operating system.

Before running in application server mode, a Web Archive (WAR) file has to be created
from the application packet. This file can the be deployed to an arbitrary Java application
server providing support for Java servlets.

These three modes only differ in the way of bootstrapping. Once the application has been
started, the functionality provided is exactly the same.

6.3.1 Flow graphs

As mentioned in the chapter before, the processing setup inside a server instance can
preferably be constituted by a graph. This graph must be provided as kind of a configura-
tion file to the server. Instead of reinventing the wheel by specifying an extra file format
for this, GraphML is used.

GraphML is a XML-based markup language for specifying graphs by providing a set of
nodes, as well as edges as interconnection information (see [BEHH+02] for details about the
specification). Every entity (node or edge) can have a number of properties (like strings,
numbers, etc.) specified. There exist a number of production-ready parser-libraries, with
the result that loading and parsing GraphML files in an own application states almost no
problem and is done in a few lines of code.

The structure of the processing graph can be mapped 1:1 to the GraphML format, with
nodes depicting processing steps (like aggregation etc.) and edges depicting the forwarding
between two such steps. While GraphML itself does not specify any properties regarding
the displaying of graphs (node position, size, color, etc.), third-party editors usually specify
their own namespace for saving these kind of information.

However, GraphML does not have a consistent concept of a node type1. Additionally,
specific nodes may have to be configured individually (e.g. a time interval to aggregate
over). Both of these information types are mapped to node properties. In order not to
interfere with the properties of other tools (like the used graph editor), all configuration
properties are equipped with the prefix p4s.

The GraphML configuration file is specified as one of the configuration files for p4s. At
application startup, the file is loaded and parsed. The configuration reader iterates over
all nodes and edges in the GraphML graph and generates an isomorph structure from node
objects. These objects are instances of classes extending the abstract base class Node and
contained in the Java package de.tum.in.net.p4s.server.core.processing. Each type
of node described in the chapter before has its own implementing class.

As an example, figure 6.2 shows a visual representation of the graph file actually used at
the test setup at the Chair for Network Architectures and Services at TU München. This

1GraphML does support embedding XML content, but most graphical editor tools do not support
proper editing and saving of such files.
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Figure 6.2: An example for a processing graph. This figure has been directly exported
as a graphics file from the actual configuration GraphML file. Thus, by using GraphML,
processing graphs can easily be built in an arbitrary graph editor. Entry nodes are colored
green, exit nodes red and all other node types orange.
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graph has been created with the yEd Graph Editor and demonstrates the great advantage
of using GraphML: There is no need for either editing complex graphs in a text editor or
developing an own, third-party graph editor. The graph can easily be edited in an arbitrary
GraphML editor and used as a configuration file as well as exported to a graphic file for
demonstration purposes (like in this case). This also serves the purpose of demonstrating
the privacy-friendly quality of a system configuration, like mentioned in chapter 4. The
example graph itself is described in greater detail in the next chapter.

To circumvent duplicated code, some nodes with similar functionality share an additional
own abstract ancestor. The class Aggregator provides the management of states for
different flows and time interval and contains two abstract methods. The first abstract
function process() is called every time a new value arrives, and takes this value as well as
the state it belongs to. The second abstract function aggregate() is called with a state as
parameter, whenever the current time interval has finished. The sub classes AverageAg-
gregator, MinAggregator, MaxAggregator, SumAggregator and IntegralAggre-
gator implement these methods by using their own specific functionality. Other additional
abstract sub classes of Node are Exit for graph exit nodes and Enhancer for all node
types that enhance the meta data information of data points. Diagram 6.3 depicts an
overview of the node type classes contained in the standard application package.

The base class Node features the two methods getRequiredProperties() and getAl-
lowedProperties(). These methods return a set of properties that are required for a
node class, or allowed, respectively. While loading the graph at boot time, it is verified
that these requirements are satisfied. If an error occurs, the loading process is aborted.

Node itself has two required properties, that therefore must be provided for every node
instantiated in the graph file: p4s.class and p4s.id. p4s.class contains the qualified name
of the Java class to instantiate2. p4s.id holds an id that must be unique in the graph
configuration. This id may differ from the id entity of GraphML itself. Sub classes of
Node may specify a variation of additional properties. For details see the documentation
of these classes.

While the set of implemented classes already covers a wide range of applications, there
may still be situations where a more specialized node type is needed. Because node classes
are instantiated by their qualified class names, own implementations of specialized node
types can easily be added to the architecture and loaded by specifying their class names.
To do this, the class must be contained in the Java classpath of the runtime environment
at application startup.

6.3.2 Knowledge providers

As mentioned in chapter 5, the server application uses a tree structure as a representation
of knowledge information. Because knowledge may originate from many different sources,
the application should provide an interface for implementing different approaches and
easily switching between them.

Because of this, the package de.tum.in.net.p4s.server.core.controller contains an in-
terface called KnowledgeProvider that can be implemented by a class to add such a
knowledge source to the server. The current version of P4S provides one built-in class:
XmlKnowledgeProvider uses a direct representation of the model described in the
chapter before to load a static knowledge tree from a file. While this does not provide any
dynamic source, it serves its purpose as a simple solution that can be replaced once e.g.
an interface to the knowledge plane has been established that is also part of the IDEM

2e.g. de.tum.in.net.p4s.server.core.processing.Combiner
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Figure 6.3: This UML diagram shows the classes and relationships contained in the Java
package de.tum.in.net.p4s.server.core.processing. Note that some methods have
been hidden in order to make the diagram more clear (for example, the getRequired-
Properties() and getAllowedProperties() methods in all sub classes).
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Figure 6.4: The UML diagram demonstrating the interface for providing dynamic knowl-
edge information. The current version of P4S only supports a pseudo-dynamic provider
that reads a knowledge tree from a XML file.

project. An example knowledge XML file is included in the standard distribution packets
generated by the helper scripts in the Git repository (see appendix A for details).

Figure 6.4 shows an UML diagram featuring the mentioned interface as well as its built-in
implementation. The implemented class to load is specified in the configuration file of
the server application. At start up, this class is instantiated and provisioned with a set
of properties optionally stated in the configuration file (for example, XmlKnowledge-
Provider takes the name of the XML file containing the knowledge tree as property). For
a class to be loaded, it must be on the Java classpath.

The method getRoot() takes a data point, an include and an exclude list and generates a
knowledge tree that is applied to the data point by the knowledge controller subsequently.
An implementing class may enhance the meta data indirectly with this returned knowledge
tree as well as directly using the reference to the data point. The latter is of particular
interest for dynamically changing properties like unit or value, because knowledge trees do
not support the modification of these.

The two provided lists allow to restrict all enhancement to a specified subset of meta data
classes by either blacklisting or whitelisting classes. This comes in useful when classes may
not be modified in any case.

6.3.3 Database, crypto and user backend

The current version of the server architecture implementation supports CP-ABE as asym-
metric crypto system and CouchDB (see [Founb] for details) as database storage backend.
However, the architecture uses the concept of context interfaces to be able to load addi-
tional implementations without changing the original code.

Internally, every entity that seeks access to crypto or database functionality is provided
with a context object that offers appropriate methods. This context object is of the type
DatabaseContext or CryptoContext, respectively. Both are interfaces that can be
implemented by third-party classes and loaded by placing these classes on the classpath of
the server application and setting up the server configuration file accordingly. Thus, the
server does not depend on one specific method. For example, a storage backend that saves
the encrypted documents as common files on the hard disk could easily be implemented.

The access control management does not use this context concept indeed, but the way
of loading third-party implementations is very similar. As contrasted to the crypto and
database backend, the user backend does not have a context. Instead, one single instance
of the class implementing the RoleHandler interface is created, that is used globally.

Detailed information about the interfaces can be found in the Javadoc documentation that
is contained in the Git repository or can be generated from the source code.
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6.3.4 Controllers

The main structure of the server implementation consists of a set of singleton classes called
controllers. Each of these controller components manages a specific scope of the server
and provides a public interface for other components. Figure 6.5 shows an overview of all
controller components the server architecture consists of, as well as the REST interfaces
for remote access.

These components can be categorized in three isolated realms (realized by using different
Java packages): Common (in the diagram: grey), processing (green) and access (blue).
The common part offers functionality that is used across all other components. For ex-
ample, both processing and data access need to have access to the database using the
DatabaseController instance. Hence, the other two parts both depend on the common
part, but not mutually on themselves.

The class ConfigController holds the configuration of the loaded environment and pro-
vides default values for non-set properties. The configuration itself is read by a class entity
called ConfigReader that is invoked at application startup.

The class TimerController globally manages the execution of periodic tasks by other
controllers. For example, node classes can implement a method called timer() that is
called on every timer cycle.

The class StatisticsController can be activated by a switch in the configuration file.
Once activated, it maintains a map of counters that can be used to measure the perfor-
mance of various parts of the architecture. The configuration mechanism is designed such
that a disabled statistics mechanism does not have any impact on the performance.

Because these three controllers provide very common functionality, multiples of the other
controllers have dependencies on them. These are not shown in figure 6.5.

The classes RoleController, DatabaseController, CryptoController and Knowl-
edgeController all manage instances of their respective actual implementation. This
means that they do not contain any code that directly provides functionality. Instead, all
calls are forwarded to specialized classes implementing the offered interfaces.

The class FlowController contains the core part of this architecture: the management
logic for processing data points. FlowController contains the representation of the flow
graph, composed of instantiated sub classes of the abstract Node class. Once the graph
has been read from a GraphML file and the application is ready for work, FlowController
passes incoming data points to the specified entry nodes.

FlowController is also responsible for the lifecycle of the processing graph. While the
designed initialization process makes no assertions regarding order of node initialization,
the finalization process has to be ordered. That is because nodes may want to flush
their internal state prior to finalization. If a stateful node would be finalized when its
successors have already been closed, this state would be lost irretrievably. To do this,
FlowController uses a simple algorithm that manages a queue of yet to be closed nodes.
For every node it is checked if all predecessors have been closed. If so, the node is also
closed and removed from the queue. If not, the node is once again added at the end of the
queue.

At last, the class AccessController provides methods for accessing encrypted data sets
using time intervals. The methods offer the possibility for a client to request data sets
that can be read locally using a private key. The server, however, does not have this secret
and, therefore, does only have a very basic view on the data.
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Figure 6.5: This figure shows the controllers the server application consists of. Dependency
relationships (depends-on) are depicted by arrows and the realm membership is depicted
by colors. Note that some dependencies have been omitted for clarity.
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6.3.5 RESTful controllers

The public interface of the server application consists of a set of controllers providing a
RESTful interface that can be accessed over HTTP or HTTPS. These controllers usually
do not contain any functionality going beyond calling functions in other controllers. This
dependency is also shown in figure 6.5.

All these controllers use JSON as transport format. The Java classes that contain the
various parts of the data model are marshaled at the one side and unmarshaled at the
other side. For details on the data model and the available request mappings provided by
these RESTful controllers, see the Javadoc documentation.

The class StatisticsRest provides the information collected by the StatisticsController.
This can be used by client programs that run benchmark tests on the server application as
well as for debugging purposes. If collecting statistics information is disabled, this RESTful
interface is not available. Note that user accounts do need to have a special permission
switch set in order to be qualified for remotely retrieving statistics information.

The controllers DeZemRest and InputRest both accept data points from remote sources
and inject them into the processing graph. While InputRest offers a self-defined interface
that can be accessed by the input client library described later, DeZemRest provides an
interface that is designed for receiving data points from a deZem energy logger device or
another device that processes data points of this type.

At last, the AccessRest class provides the remote interface for data access. The methods
provided are essentially the same ones as offered by AccessController.

6.4 Client libraries

While the remote interfaces offered by the server already provide an easy possibility for
a client application to access server functionality, a pre-implemented client library further
simplifies this issue by providing Java classes that can be used directly without setting up
an own HTTP client.

The project contains two ready-to-use client libraries: p4s-client-input and p4s-client-
access. Both client modules are meant to be used as a dependency package for developing
client applications. However, both include a simple command-line client application, that
runs, if the JAR file is started directly. These applications are meant for debugging and
testing purposes primarily. Nevertheless, both of them are feature-complete and could
even be used for scripting etc. in production environments.

6.4.1 Input client

The input client library contains the class InputClient, offering the method process()
as well as some common client functionality for connecting and disconnecting. The class
only supports synchronous calls.

To be able to forward data points to other server instances, the server module itself depends
on p4s-client-input. Custom client applications could implement functionality that imitates
the server behaviour by e.g. post-processing data points that have already been written
to the database.

6.4.2 Access client

The class AccessClient offers the method query() that allows to query the server for
data points in the specified time interval. Further querying and filtering has to be done
by the client application itself. Thus, p4s-client-access provides a very basic means of
synchronous data access. However, AccessClient supports callbacks for status reports,
so asynchronicity can be added by the surrounding implementation code. p4s-client-access
is used by p4s-gui-common that is described in the next section.
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6.5 Graphical User Interfaces

While the access client library already contains a small command-line interface, a typical
user might prefer a graphical application that is able to display a visual representation of
the data points, like, for example, a diagram plot.

This project contains a module called p4s-gui-common that offers the basic functionality for
retrieving, caching and managing sets of data. However, it does not contain any code that
actually displays anything. Instead, it provides interfaces that can then be implemented
to assemble a complete application. This allows to quickly build an application for a
target platform without worrying about the target independent code. Currently there are
two supported targets: The standalone desktop application p4s-gui-desktop for Windows,
Linux and Mac OS X and the Android app p4s-gui-android.

p4s-gui-common provides Java interfaces that have to be implemented by applications:
MainView, ConnectionView, PasswordView and ErrorView. These interfaces rep-
resent the parts of the graphical user interface for data display, choosing a server, entering
authentication information and displaying error messages respectively. The implementa-
tions of these interfaces have to call methods in the controller objects whenever the user
executes an action. The controller objects of p4s-gui-common then execute these tasks
asynchronously and inform about updates via a callback.

Because the access client library does not implement any caching or queueing mechanism,
p4s-gui-common adds an in-memory cache that supports querying for flows and meta data
tags besides time ranges.

6.5.1 Desktop

The module p4s-gui-desktop allows to display plots of flows within arbitrary time intervals.
This application is implemented using the SWT library for the GUI elements. This restricts
the use of the application to platform targets supported by this library, but provides a
native look and feel on every supported platform.

The module is deployed as an executable JAR file containing all dependencies, so the
application can easily be installed and executed. A private key as well as the public key
of the key infrastructure must be provided at start up.

6.5.2 Android

The module p4s-gui-android contains an app for Android smartphones and tablets. It
provides essentially the same functionality as the desktop variant, but uses the default
Android widget toolkit to display the graphical user interface.

Like the desktop application, both a private key and the infrastructure’s public key must
be provided as files on the SD card. The app itself is built as an APK file and can easily
be installed on any Android device running Android 4.x or higher.

6.6 Deployment

As an architecture that supports the distribution of components on a number of devices,
special care must be taken upon making the installation process as easy as possible. Es-
pecially the automatic deployment of virtual machines is a feature that allows the rapid
assembling of environments with a high number of processing entities.

To achieve this, administrators and users must be equipped with methods to set up a
working environment with the least possible effort. This environment must include a well-
supported operating system, preferably with Long Term Support, the Java 8 runtime, a
database server and finally a reasonable default configuration.
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The Git repository contains a set of script files that can assemble such environments.
To cover a wide field of application, these scripts are able to create different types of
deployment units: Currently packages for Debian distributions, docker images and Virtual
Machine images are supported. The respective scripts share as much code as possible, so
building an additional script for yet another deployment target can be done very easily.

All deployment methods are based on Ubuntu Server 14.04 LTS. This offers a very stable
platform that will be supported for some more years at the present point in time. It also
offers a wide range of included or installable packages, so almost all dependencies can
be installed and kept up-to-date using the built-in packaging tool APT. This is a very
important point for a security-critical device.

Currently, all scripts build deployment packages including all components of the architec-
ture (except the validation and testing tools discussed in the respective chapter), but do
not include any desktop environment. To deploy a desktop device for p4s-gui-desktop, the
X server and desktop packages have to be installed manually.

The deployment scripts create a user and group pair named p4s to run as, as well as an
init.d script for automatically starting the server application as a daemon at system boot.
However, this automatic start of the daemon is disabled by default and must be activated
by the user once. Additionally, a CouchDB server is installed and configured properly by
creating a user called p4s and three databases including the required views.

As a default configuration the example files contained in the Source folder are copied to
the deployment packages. To provide an own set of configuration files, one could either edit
these files before creating a package, or edit the files once the package has been created.
The approach differs slightly between the provided deployment strategies because of the
difference in the ease of manipulating an already assembled package.

All methods are based on third-party tools to create the bundled packages. These tools
usually are very mighty, so the provided scripts can easily be extended to provide even
more functionality or do very specific tasks that are required for deployment in a situation.

6.6.1 Debian package

This script creates a DEB package file that can be installed on any recent Debian-based
distribution. All other packages required are marked as dependencies and installed by
APT, the Debian package manager. If installed on a desktop operating system, the desktop
GUI can be used right after installation.

Besides the simple installation on an already running system platform, this deployment
method also supports to easily remove the application once it is no longer required on a
system. This comes in handy when using the desktop application p4s-gui-desktop.

6.6.2 Docker

Docker is an environment for operating system containers. These containers provide a
lightweight method of separating pseudo operating systems from the host system. While
this could be used for isolation out of security reasons, the real-world implementations
have had some trouble with isolation outbreaks in the recent time, so classical virtual
machines still seem to be the better choice when aiming for that target. However, with
major cloud platforms like OpenStack providing support for Docker, it would be waste of
potential not to support the platform (see [Inc.a] for details).

The repository contains a so called Dockerfile that can be used to assemble a Ubuntu
14.04 LTS based ready-to-use docker image. This image can then be deployed or extended
further.
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6.6.3 Virtual Machine images

Besides the creation of Docker images and containers, there also exists a script for building
classical hard disk image files that can be used by Virtual Machines. The script uses
utilities provided by the libvirt-tools (see [lTea] for details) and the QEMU environment
to create a QCOW2 image file containing an Ubuntu server system with all required
applications installed. This file format is used by the QEMU environment for virtual hard
disks and can also be loaded by XEN-based hypervisors without further ado.

Some other virtualization platforms do not support the QCOW2 format. However, QEMU
contains a set of tools that allow the conversion of QCOW2 files to many other hard
disk image formats like the ones used by VMware, VirtualBox or HyperV. Because of
that, QCOW2 acts as a good intermediate point for creating deployment packages for the
required virtualization target in almost every situation.
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The preceding chapter introduced the implementation of the architecture. Now, this chap-
ter is focused on analyzing and evaluating this implementation. In this process the quality
of the privacy-preservation is of particular interest, of course.

7.1 Evaluation environment

The evaluation was done at the Chair for Network Architectures and Services at TU
München. An energy logger device from the German company deZem was installed at the
chair, so the architecture could actually have access to real-world, real-time measurements.
The logger had access to a number of supply lines. However, some rooms shared one supply
line, so measurements would depict the energy consumption of multiple rooms. This was
acceptable in a test environment, but in a production environment every room should have
its own supply line measured. Otherwise, one always has the problem to decide whether
to hide the personal information from the employees or always reveal the consumption of
all employees affected by one supply line.

The server application itself was installed on a test system running Ubuntu Server 14.04
LTS. The system was equipped with an Intel Core i5 processor with 2.50 GHz and 4 GB
memory. A similar system was used to run the client applications.

The server application was configured to use the processing graph shown in figure 7.1.
This graph has been created for the setup at the chair using requirements defined by the
supervisors of this work and aims to be fully usable in the use case at the chair.

The graph takes measurements from the one logger device, processes them and finally
forwards them to various exit nodes. As a first step in the processing chain, data points
that do not contain power values are dropped1.

Then the current knowledge tree is applied. A static XML file was used as knowledge
provider. This XML file contained mappings from the sensor ids to rooms, from rooms to
persons and from persons to identities. Additionally, rooms were tagged with one of the
predicates office, management or public that was used to specify the information privacy
level per room. After that, the newly added meta data can be used to dispatch the data
points into one or more categories for further processing.

1The deZem logger generates power, energy and phase angle measurement values.
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If the room type office predicate is set, the data points are forwarded to the employee
chain. There, the consumption of the individual employees is grouped (combination over
the person meta data class). The results are forwarded to the employee database exit and
stored in the database. A similar output chain exists for offices (predicate office as well),
for public rooms (predicate public, e.g. the kitchen) and management rooms (predicate
management e.g. server rooms). All of these output chains only process real-time data,
so no aggregation over time is done.

The other two chains use aggregation over time to provide measurements over a specified
time interval. Both use an integral aggregator to yield a summarizing value in kWh. For
the individual quadrants2 the energy is aggregated on a daily base, so one day is chosen
as the interval for the aggregator. The chair chain summarizes the energy consumption
of all rooms of the chair and aggregates over a whole month. An Anonymizer3 is used to
make sure no person-related information remains in the resulting data points.

It has to be noted that the configuration described here does not contain multiple machines,
so it does not correspond to the ideal solution with multiple domains of varying information
density. However, because the setup only contained one measurement device, another tier
of processing would not have much influence. Nevertheless, one could always forward the
two time aggregated flows to another processing device to add a new tier.

7.2 Code validation

At first, it must be verified that every component of the architecture behaves in exactly
the way it is supposed to behave. Besides running the final product and testing whether
it reacts sanely, Unit Tests usually are the appropriate means to achieve that goal. A
Unit Test is used for testing whether single units of an application work correctly by e.g.
feeding specific input and verifying that the output is as expected.

In the development of this architecture, Unit Tests have been written for almost all mod-
ules. Only the two platform-specific GUI modules p4s-gui-desktop and p4s-gui-android do
not have any unit tests attached4. By using Maven as build automation tool, Unit Tests
are automatically run on every build of the project.

The main focus was on making sure that the processing part works as expected. To do
this, a Unit Test was written for every type of processing node. These Unit Tests create a
simple processing graph consisting of the node under test as well as special testing nodes
as needed (e.g. a special exit node that keeps track of any data points passing it).

According to the EclEmma plugin for Eclipse, all modules achieve a high test coverage
(above 90 percent). Additionally, there exist Integration Tests besides the classical Unit
Tests that verify whether the combination of multiple individual units behaves as expected.

At last, some additional tools like FindBugs and Checkstyle were used to automatically
analyze the code and find potential error sources.

7.3 Performance

As an architecture that has to process real-time measurement data, it is of crucial im-
portance that the incoming data points are processed in a way such that the available
processing capacity provided by the device’s hardware is utilized properly. Note that this

2A set of rooms arranged next to each other.
3A static enhancer node that removes all of the specified meta data classes.
4However, the shared code in p4s-gui-common is tested.
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Figure 7.1: The processing graph used for the test setup at the Chair for Network Archi-
tectures and Services at TU München. Entry nodes are colored in green, exit nodes in red
and all other nodes in orange.
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almost only applies to the server architecture, because the client traditionally does only
one action at a time.

That means that the server architecture in particular must be parallelizable on a very high
degree. As an additional requirement this also implies that a load that is higher than the
maximum load the device can handle does not break the system. The ideal behaviour
allows to linearly reach a load point where the number of processed data points per time
unit stagnates. When increasing the load further, this processing indicator may not begin
to drop, because this would allow to e.g. execute Denial of Service (DOS) attacks by
exhausting the server’s processing capacities.

7.3.1 Requirements considerations

Because the original requirement for the server application stated that it should be able to
handle “millions of measurement values per hour” when necessary, the performance tests
were conducted with a goal of ∼1000 data points per second in mind.

To be able to conduct performance benchmarks on the server application, a simple bench-
marking tool called p4s-burner was written. The program takes the length of a block of
data and the number of blocks per thread and second as parameters and gradually spawns
new threads. The input client library is used to send these blocks to a running server
application. Simultaneously p4s-burner continuously retrieves the current map of statis-
tics information from the server and writes these statistics to a data file that can e.g. be
plotted using Gnuplot.

Because it had been expected that the performance would be very dependent on the used
block size, additional consideration had to be done to choose an appropriate number. As
almost all entities that would send data points to other instances are using buffers, a
medium block size of 40 data points per block was considered a good choice. Therefore, all
tests were conducted using 40 as the block size. Because the number of blocks per thread
and second merely has only influence on the pace of the load gain, it was set to a static
value of 1, such that the measurements for a specific number of threads was based on a
wide range of values (considering one statistics sample per second).

On the server application, the processing graph mentioned above was used in most of the
measurement passes. Because a typical processing environment can behave in an unin-
tended way if the incoming data points do not have the expected meta data information like
sensor ids etc. attached, p4s-burner supports to specify a special XML file that contains
a scheme for randomly creating meta data that fits to the expected domain. For example,
one can specify a meta data class sensor and a set of ids from which one is chosen for
every data point randomly. By supporting this, the behaviour of a proper environment
can be mimicked.

7.3.2 Benchmarking results

To fine-tune the application, a number of benchmark runs were conducted. The measure-
ment results presented in this chapter are based on a final long-term execution lasting
several days. By running the benchmark this long, it additionally provided the proof that
the application remains stable even under a load that is significantly higher than the load
the hardware would support. It appeared that the high load had no impact on the stabil-
ity of the server application. After shutting down the benchmark, the server application
simply processed all data points remaining in the queue and then went idle.

Figure 7.2 shows the average number of data points the server application actually has
handled during a measurement interval (roughly one minute). The plot exhibits a very
noticeable phenomen: The processing throughput nearly linearly increases up to a plateau
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(approximately at 5000 data points per second). From that moment on the performance
stays the same for some hours. Then it begins to increase once again linearly until it finally
reaches its maximum at approximately 22500 data points per second. It is assumed that
this phenomen is caused by the Java HotSpot optimization. The Java VM can generate
machine-code for the running platform on-demand if a piece of code is executed many
times. For example, the optimization of the CP-ABE Java code could be the cause for
this phenomen, because examinations with VisualVM revealed that this code is one of the
most expensive calls in the processing functionality.

During the test, p4s-burner also monitored the size of the processing queue (see figure 7.3).
As expected, the queue stays at a low size while the server can process all incoming data
points without any problems, because new data points are taken away from the queue
faster than the client can provide new data points. As soon as some turning point is
reached, the queue size rapidly begins to increase and then stays at the maximum for the
remaining time of the test run.

Tests with other block sizes as well as other graphs showed that the former has a significant
influence on the performance while the latter has not.

Because the server application itself only processes individual data points, the influence
of the block size is based almost only on the connection between client and server. For
every input request, an own HTTP request must be created and sent. Therefore, smaller
blocks decrease the performance and bigger blocks in turn increase performance, because
the overhead is mitigated. The performance evaluation showed that a block size of 40 data
points leads to a good overall performance. Because of that, all entities that act as input
clients should consolidate data points in a buffer and only send such blocks of data. The
REST exit node of P4S already behaves this way.

On the other hand, influence of the size or complexity of the processing graph can be
explained by the characteristics which a typical processing graph possesses. It is surely
possible to construct graphs that do have a significant influence on the performance, but
these graphs often are not very useful. In fact, most of the nodes are very simple to
process and only few exist that really can have an impact on the performance. But these
node types (like e.g. the knowledge enhancer) are usually not included many times in a
processing graph. As long as the set of available node types stays at a very low number
and the graph complexity remains at a level comparable to the graph used for evaluation
in this chapter, the graph structure itself should not cause any performance problems.

In conclusion, these benchmarks have shown that the server architecture meets the require-
ments even at the first performance plateau. Considering that the architecture is designed
to be distributed among multiple machines, performance seems to be not a problem at
building measurement environments with this architecture at all.

7.4 Privacy friendliness

In the analysis chapter 4 several requirements and goals were defined that a privacy-
friendly architecture must obey in order to be privacy-friendly. These points were primarily
based on the eight privacy-by-design strategies nominated in [Hoep12]: MINIMISE, HIDE,
SEPARATE, AGGREGATE, INFORM, CONTROL, ENFORCE and DEMONSTRATE.
But as stated in chapter 4, in order to design a very flexible architecture some of these
requirements are better fulfilled in the configuration than in the architecture itself. Hence
this principle has been called privacy-by-configuration.

At first, besides the risks to protect against, there should be matters defined that an
architecture can not preserve. While in the preceding chapters there often have been
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Figure 7.2: The result of the long-term performance measurement run. The x-axis shows
the number of data points that the client tries to send and the y-axis shows the number
of data points the server actually processes. If the server queue is full, the server blocks
incoming input requests, so the difference between these two values does not mean that
any data points have been dropped. Instead, the benchmark threads have to wait until
there is space in the server queue once again. The number of points/s actually sent at the
client roughly equals the number of points received per second.
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company employees being called malicious (like e.g. a employer who wants to spy on
his employees), the architecture can only protect the employees from being spied on by
single entities. Because the company’s buildings or rooms are owned and controlled by
the company itself, a privacy-friendly architecture can achieve no protection if the spying
is done on behalf of the company and its decision makers. Likewise, it can not shield
the employees from malicious persons like an attacker having physical or remote access
to the supply equipment, supply lines or controller systems, or an attacker using social
engineering to acquire access to the system or to gain knowledge of any kind.

However, it is decisive that in these situations the privacy of subjects would be threatened
regardless of whether a privacy-friendly architecture would be in use or not. Thus, this
represents a problem that such an architecture is not able to solve. Because of that, it
also is not obliged to solve it. Instead, other measures have to be taken that are addressed
below.

On account of this, the remainder of this chapter is focused on how the designed and
implemented architecture preserves the privacy of the subjects in an environment where
it can be assumed that no one with malicious intents can tamper with the measurement
and processing equipment. As a greater goal it is verified that by using the architecture
the privacy of the subjects is at least not put in a position worse than the situation where
no measurement architecture is used at all.

7.4.1 Processing and storage

The processing and persistence functionality is the most privacy-critical part of the ar-
chitecture design. Other parts surely are able to have an impact on privacy preservation,
but these considerations that have to be taken into account naturally matter on every
architecture regardless whether it is designed privacy-friendly or not.

Hereafter, the design and implementation of the processing part is verified and compared
to the eight strategies defined in [Hoep12]:

7.4.1.1 MINIMISE

While in the designed architecture the minimization of the amount of collected data itself
is merely a matter of configuration, methods must be supported to actively and passively
prevent the collection of unwanted information that could be abused otherwise.

Because the architecture itself does not have any knowledge, the creation and combination
of potentially privacy-violating information depends on the knowledge that is provided.
Knowledge that is not provided can not be used. Therefore, one can determine fine-
granularily, which information may be stored. For example, if an employee decides to
completely opt-out of the measurement process, no data will be collected for her if she
does not appear in the knowledge tree. Hence, the knowledge tree acts as an upper bound
for the amount of privacy-imperiling information collected. In the Git repository there is
a simple Java tool called p4s-knowledge-tester that can test a static knowledge tree file by
applying the knowledge to randomly generated data points.

A properly configured processing graph always makes sure that only data points are for-
warded that are meant to be collected by filtering and dispatching data points. For ex-
ample, the processing graph at the chair almost immediately drops all values that do
not contain power (Watt) values. Therefore, unneeded information is not stored in the
database.

Besides the processing itself, the storage scheme must assure that no information can
be leaked from side-channels, like, for example, the documents stored in the database:
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While the bulk of the information is contained in the encrypted blob, any unencrypted
information may possibly be read by persons that actually should not have access to this
information. Because of that, only the index documents contain such information, namely
the timestamp and the identity, and just for querying reasons. But because there is indeed
no visible coherence between index and block documents, this information can barely be
used by an attacker.

For further minimization, it must be considered individually which pieces of information
are necessary, e.g. for accounting issues, and which are not required. With accounting in
mind it can be assumed that most companies and building operators will favour processing
graphs that reduce the amount of data.

7.4.1.2 HIDE

[Hoep12] states that “any personal data, and their interrelationships, should be hidden
from plain view” and explicitly mentions encryption to provide “confidentiality”.

As briefly mentioned in the section above, visible relationships like the one between index
and block documents could imply the leakage of privacy-imperiling information, if it is
possible to extract information. For example, if an encrypted block of data would have
the identities of person A and B visibly attached, an attacker could assume that both
persons were at the same location (e.g. the same room) at the time the measurement was
taken. Especially in a system that is designed to handle dynamic knowledge, it is of high
importance that those relationships never are revealed.

With the encryption scheme in place, almost all information is hidden from plain view.
However, the actual privacy and confidentiality certainly depends on the quality of the
configuration. Only if the set up infrastructure of identities and privacy keys makes sure
that e.g. only an employee and an energy manager may access information regarding her,
her privacy is preserved properly. Because the implementation simply does not support to
store sets of data points unencrypted, the risks of misconfiguration are lowered.

While the encryption itself already makes certain that unauthorized persons have no access
to restricted pieces of information, it should be mentioned that the classical access control
policies provided by the architecture implementation provide an additional layer of confi-
dentiality. Additionally, because of that, a misconfiguration only can lead to information
leakage if both layers are misconfigured in the same way.

Altogether, the role model has to be defined precisely by decision makers who also deeply
consider legal and directive policies. It must be assured that no role has the access right,
i.e. the attribute in its private key, to access restricted information.

7.4.1.3 SEPARATE

In [Hoep12] the goal of separation is meant as to distribute unrelated pieces of information
in processing as well as in storing. Distributed and decentralized systems are mentioned
as examples.

Here, too, the designed and implemented architecture can just provide the functionality
necessary to make those goals possible. Whether a setup really achieves the goal, is once
more a matter of configuration.

Because the architecture supports to connect server applications in such a way that a
bigger, global processing graph emerges, distributed environments can be built. It is
incumbent upon the administrator to assemble such a global graph that separates the
data flows.
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The best way to provide a reasonable separation depends on the requirements and proper-
ties and the environment, e.g. structure of the energy supply system of a building. A good
point where separation can be applied exists in environments where systems are already
distributed.

For example, in an office building with separate supply lines for resident companies there
is no need to interconnect the measurement devices that process the real-time data. In
every resident’s energy supply line a separate logging device can be deployed along with
a machine running the server application. Employees of these companies only connect
to the server provided for their company. The building operator usually only wants to
access aggregated data like the monthly overall consumption, so this aggregate value can
be computed in this device and then forwarded to another central device to which only the
building operator has access. That way, only aggregated values are forwarded to a central
place while all other processing and storing takes place in a heavily distributed way.

Other points from the paper mentioned above can not be applied to this architecture. The
splitting of database tables, for example, would lead to more information being derivable
from the plain database view. When using encrypted documents that appear as blobs
without any structure for an attacker, simply throwing all data in one table naturally
generates a kind of background noise, so no inferences can be drawn from analyzing these
blobs.

7.4.1.4 AGGREGATE

As aggregation over time and space provides the main concept to derive a coarse-grained
version of real-time data in the designed architecture, this goal seems to be easily achieved.

However, whether aggregation is properly applied “with the least possible detail in which
it is (still) useful” (see [Hoep12]) or not is decided by the quality of the configuration used
once again. The one creating the processing graph has to make sure that data is only
stored in the required granularity. Additionally, the meta data map usually has to be
cleaned up once before the data points are encrypted.

P4S supports two types of aggregation: Aggregation over time and aggregation over entities
(called combination) which in turn support multiple mathematical methods.

Aggregation over time allows the condensation of all data points belonging to one flow into
one derived, synthetic data point that contains a mathematical aggregation of all the data
points as one value. The amount of information density this value contains may vary and
heavily depends on the number of data points that were consumed in order to compute
the resulting value. For example, if on a specific flow a new value is measured only every
hour, an aggregator node using one hour as interval obviously will have almost no effect
on the resulting information density. Because of that, this number of data points also has
to be considered regarding the used time interval to aggregate over.

On the other side, aggregation over entities or space can be used to remove the relationship
between a flow of data points and identities from the view by summarizing real-time infor-
mation for a set of entities. For example, if not the consumption of individual employees,
but only the consumption of the whole floor is measured, the resulting values provide a
rather coarse view on the of the single employees. Like at aggregation over time, the degree
of the privacy preservation achieved by this may vary. If only few entities are combined,
information may still be retrieved, especially when combined with external knowledge. If
e.g. the consumption of two offices is combined and one of the employees resident in these
offices is on vacation, the resulting value probably reassembles the exact consumption of
the remaining employee. In that case, the more entities are used for combination, the
better is the result in case of privacy preservation.
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As mentioned above, it is incumbent of the one creating the processing graph to design a
graph that provides sufficient protection of the subject’s privacy. Considering the motto
described in [Hoep12], it seems to be a good method to first investigate which granularity
is required for operational purposes like accounting. Usually, most of these granularities
may tend to be very coarse. As an additional step it should then be checked whether there
still are flows that have a granularity that exceeds the appropriate amount.

Other problems and concepts stated in [Hoep12] are not applicable in this architecture
design. For example, the problem that k-anonymity (see [Swee02]) tries to address is
rather difficult to reproduce in an architecture like P4S. Because P4S primarily uses pairs
of timestamps and values as data points that may (or not) contain arbitrarily structured
meta data classes as additional information, classical matching of rows does not work that
easily. Even if in a situation a relationship between tuples of information exists, at least
no one should have the permission to access all required information at a single blow.

7.4.1.5 INFORM

Informing the subjects, that is the users of the system, is primarily a task to be done by
the company’s person in charge for the data collection matters. However, the software
used for collecting and processing data can assist that person in charge in this process of
informing.

The most important aspect of user information is the direct access to measured data. The
subjects can view the measurements regarding them, but, of course, have to trust the
environment operator that no additional data is collected.

The second aspect is the information about the type of measurements and the type of
knowledge that is used for enhancing and tagging. While the knowledge acquisition is
done individually and, thus, must be told to the subjects arbitrarily, the operator could,
for example, make the processing graph file public, so subjects can review, how and what
kind of data is collected.

7.4.1.6 CONTROL

As in the preceding section, the interaction between subject and system operator can,
if anything, only be assisted by the architecture, and not assumed completely. Even in
[Hoep12] no proper way of implementing such functionality is described.

Because the architecture was designed with accounting and other operating issues among
other things in mind, letting the subjects have complete control over the collected and pro-
cessed data is not possible without important data being not collected properly. For exam-
ple, when providing the subjects with the ability to delete sets of data from the database,
the energy consumption measurements can not reasonably be used for accounting. There-
fore, it is feasible for the architecture to not provide any full-featured functionality to
handle this.

Instead, it is once again the operator’s responsibility to provide e.g. the company employ-
ees with the possibility to actively shape the collecting process. For example, employee
organizations could be involved in finding a proper way how data of the subjects may be
collected and processed.

7.4.1.7 ENFORCE

The architecture alone can not force an environment operator to properly respect and
preserve the subjects’ privacy. However, national laws and policies still exist. For example,
in Germany the Bundesdatenschutzgesetz forbids the observing of the employee’s behaviour
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and enforces strict boundaries for data collection. This favours the collection of data in
an aggregated, anonymized form with the least possible information density.

With the number of Big Data companies collecting various data, governments may decide
to further restrict the collecting and processing of privacy-violating data. Therefore, a
system that explicitly allows to reduce the information density is well prepared for this
further development.

7.4.1.8 DEMONSTRATE

At last, the ability to “demonstrate compliance with the privacy policy and any applicable
legal requirements” (see [Hoep12]) is closely related to the other three more policy-related
strategies.

Once again, there is no real means to actually implement more than the equivalent of a
helping hand in the architecture.

7.4.2 Encryption model

When designing the encryption model, some detours had to be done to circumvent prob-
lems with information being derivable unintendedly. For example, the initial draft included
a timestamp field in the data block document, that later was removed, because it led to
relationships between indices and blocks being derivable from plain database view.

These detours do have an impact on the experience witnessed by users. For example, for
queries usually more than necessary data must be retrieved in order to properly display all
relevant information. Thus, performance is sacrificed for a more privacy-friendly approach.

While the model theoretically allows for user deletion requests (although these were not
implemented due to the thoughts described in section 7.4.1.6), the automatic cleaning
of the database is rather difficult to implement, because a garbage collector would not
have any information about whether a document is still in use or not. Thus, in a real-
world environment the database would simply grow. To circumvent this, one could simply
change the target database table, for example, once a year. Another solution would be to
re-add the timestamp to the block documents, which would only cause a slight information
leakage in case of unauthorized access to the database5.

7.4.3 Security considerations

As a very privacy-critical application, the usual countermeasures against malicious users
as well as external attackers must be applied. Additionally, some aspects deserve to be
observed further.

As stated multiple times, the encryption model aims to provide confidentiality once the
encryption scheme has been applied. However, before that very moment the data points
still exist as unencrypted, privacy-critical objects in memory. Thus, an attacker that
obtains access to a processing device may indeed not be able to read already stored data,
but would instead be able to eavesdrop on any incoming data.

Overall, this may lower the impact of short-time attacks, that is, an attacker that gains
access to a system but is detected and eliminated quickly. But instead, the impact of a
silent long-time compromising is drastically increased. Because the immediate detection
of an attacker would provide him with no benefit at all (unless, for example, when doing

5This applies only theoretically. In practice, the more data is processed and stored at a time, the less
is the risk of unintended data leakage through comparing of timestamps. Although in the implementation
created with this work no timestamps are saved along block documents, one could add this feature with
only a few changes to the server architecture.
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a denial of service attack), an attacker probably may do everything conceivable to re-
main undisturbed as long as possible. Therefore, attention has to be focused on intrusion
detection and appropriate reaction in particular.

To counteract this risk, intrusion detection systems (IDS) can be used to monitor process-
ing devices. When using a decentralized environment with multiple devices, a distributed
IDS could be used that correlates alerts from multiple systems to create a global view on
possible attacks. Further information to this topic is found in the respective literature.

Once an attack is detected, to prevent any leakage of privacy-critical data the system under
attack should be shut down immediately. Because the server architecture does not store
any unencrypted data permanently, the immediate shutdown ensures that the attacker’s
access to unencrypted data is denied. If the reaction happens rapidly, the attacker may
only gain access to the real-time data of a few seconds. When the device has been shut
down properly, the system can be inspected by the administrator and all attack gateways
can be closed without any problem of time.

Because the architecture uses private keys with a rather long validity, there always is the
risk that a private key is lost or compromised. In that situation, an attacker holding a valid
private key (and of course the password with which the key is protected, as well as the
login credentials) is able to access any data the owner of the key would have had access to.
In particular no perfect forward secrecy is provided, because the encryption scheme can,
in contrast to a transport security layer, not utilize a traditional key exchange protocol.
However, because the server application contains a separate access control system, access
for the compromised identity can always be denied completely, so an attacker without
having plain view on the database is not able to gain access to data, once the account has
been banned.

7.4.4 Crypto system choice

Because the encryption scheme does not have any requirements that common asymmetric
encryption systems like RSA do not support, the architecture is not restricted to any
special method.

While some of the additional features of CP-ABE were not used in the final version, it
sure provides some advantages to other methods like RSA. Because CP-ABE only has one
global public key for a key infrastructure and basically uses strings to determine whether
a private key should be able to decrypt content, the encryption process on the server is
simplified considerably. Additionally, the server can encrypt information for users that
have not yet obtained a private key.

A clear disadvantage of the CP-ABE method is the acquisition process of private keys.
Because the global master key has to be used to actually create the private key, there
always remains the risk of a malicious key infrastructure operator who secretly keeps
copies of all generated private keys. The person operating the key generation process, that
is the person with access to the master key, always can generate arbitrary user keys, and,
therefore, can access all data. In contrast, in an imaginary crypto context implementation
using RSA, the user would generate the key pair on her own trusted computer and only
provide the public key to the operator. To counteract this, there should be a clear personal
barrier between the server operator and the key infrastructure operator. If this two roles
are not executed by the same person, the risk of key compromising is minimized. More
particular, the key operator should not have any access to the processing devices at all.

With carefully forging an environment in which the key infrastructure is properly pro-
tected, CP-ABE still provides a reasonable crypto environment for privacy-friendly data
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storage. Because initial concerns about the possibly low performance of CP-ABE have
been dispelled as well, CP-ABE can be a good choice.

Nevertheless, by implementing a crypto context using any traditional asymmetric crypto
system like RSA, the security could possibly be improved further.



8. Interpretation

The last chapter focused on the evaluation of the architecture itself against privacy cri-
terias. Now, it remains to verify that the questions stated at the beginning have been
answered adequately. This is done by condensing the insights acquired in the preceding
chapters of this work and then drawing conclusions on the subjects covered.

Which situations regarding energy monitoring do exist in
which the privacy of subjects is in danger?

As described in chapter 4, the privacy of the subjects usually is in danger whenever the
relationship between a set of data and the identity of a subject provides an observer with
additional information. That means, with the desire to establish these links in order
to improve the energy saving, conflicts with privacy sensibility of subjects arise almost
inevitably.

The real-time energy monitoring in particular allows to track many behavioural facts of
subjects affected by the monitoring aspect. For example, some kind of hidden presence
detection could be implemented using energy monitoring. Even the energy consumption
behaviour, i.e. how much energy saving is an employee doing, is an information not being
in good hands with a malicious or simply unauthorized person.

In particular, the privacy of subjects is in immediate danger, whenever persons or au-
thorities have an interest in viewing privacy-critical data, which is not associated with
any energy saving matters. The prime example of such a privacy-violation, that must be
prohibited at all cost, is the boss who wants to check the actual working times of her
employees.

As a consequence, no simple solution exists that almost automatically allows to decide
whether data collection and processing in a specific situation can be done in a privacy-
friendly manner. Thus, the situation always requires extensive investigation and a set of
boundaries preserving the privacy of the subjects.

However, when designing an architecture, a set of properties and requirements can be
satisfied in order to provide the means to develop a strategy to make the architecture
privacy-friendly.
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Which properties allow privacy-friendly data monitoring?

In order to generally allow privacy-friendly processing of data gained by energy moni-
toring, some properties have been found that can facilitate the operation of monitoring
architectures in privacy-critical situations, as stated in the analysis part in chapter 4.

Decentralization can help spreading the data processing and storage on a wide range,
significantly decreasing the impact data leakage and compromising have on the privacy
preservation of an architecture. Additionally, it allows to split the environment into sep-
arate domains in which the flow of the data can be directed in a way minimizing the
processing of unrelated data.

Anonymization enables to remove privacy-critical information from the collected moni-
toring results specifically. By doing that and removing unneeded relationships between
identities and data values the ability of an observer to derive additional knowledge may
be greatly limited.

To further reduce the amount of data, aggregation can and should be used. Only by
reducing the density of the information to the outright minimal amount possible (as also
stated in [Hoep12]), a responsible dealing with privacy-critical is imaginable. In situations
where aggregation is not possible and the direct processing of real-time data is required,
further investigation has to be made in order not to violate the ideas of privacy-friendly
energy monitoring.

While strict access control may provide some protection against the violation of the sub-
ject’s privacy, this protection can be circumvented by persons having access to the per-
mission policies. In particular, persons can get access to data sets after they already have
been written to the storage system without the subjects being able to realize this.

In order to further protect persistently stored data, an encryption scheme can be used in
addition to a traditional storage scheme. By encrypting data right before it is written to
the database, the permissions to view data are set immediately once the data is measured.
Afterwards, these viewing permissions can no longer be manipulated.

If validation methods are provided or at least supported, correctness as well as general
approval can be enhanced. Only an architecture with its manner of functioning under-
standable by the subjects, can have the subjects’ acceptance. This also holds true for
giving the users immediate feedback on all data that is collected regarding them. This can
be done by simply setting the access permissions accordingly, such that all information is
always viewable by all persons who may be related to that kind of information. However,
knowledge about other subjects may be contained in this feedback.

Additionally, attention should be directed to optimize the realization of security properties
like confidentiality and authenticity when storing and transferring privacy-critical data.
Only a secure architecture can reliably protect the subjects’ privacy.

How can an architecture for flexible data processing and stor-
age provide these properties?

Because the described and implemented architecture has been designed according to the
properties mentioned above, it is expected that the architecture provides a good base for
privacy-friendly energy monitoring.

The storage scheme developed for the architecture effectively hides any information from
plain view that can be used to derive information. The configuration using GraphML files
allows for a satisfying amount of flexibility when adapting the architecture to the situation.
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However, configuring and testing the application in a real-world situation like the one at the
chair at TU München showed (as expected and described above) that the architecture alone
is not able to be privacy preserving entirely by itself. Instead, the configuration has to be
done accordingly. Thus, the term privacy-by-configuration describes the application best.
But the application, indeed, appears to provide the functionality necessary for building
and operating a privacy-friendly environment for energy monitoring.
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9. Conclusion

Finally, it is safe to say that the architecture designed and implemented along with this
work can indeed be used for operating privacy-friendly energy monitoring environments.
However, this always presupposes that the environment has been set up in a way appro-
priate for actually preserving the subjects’ privacy.

Indeed, because the architecture requires the operator to decide explicitly whether an
identity should be able to access data and in which form this data has to be, no automatic
solution to the configuration problem has been found. Instead, the server application has
to be configured accordingly by an authorized person. This person has to have insight to
the requirements of privacy preservation and the desire on which kind of data should be
collected. It remains the responsibility of this person to decide how the application is to
be configured.

Because this role is predestined to easily have collisions of interests, the operator should
be a person without any other obligations in the best case. Because the IDEM project
is focused on providing multi-client capable solutions, one possible solution could be to
let this role be staffed by the company or authority operating the building rather than a
person employed at one of the companies residing in the building.

By now having an architecture for monitoring the energy consumption, the next step is
the usage of the data gained by using the developed application. With intelligent energy
monitoring still in the early stages, a lot of progress can be expected in the immediate
future.
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A. Building and deployment

A.1 Building

P4S uses Maven as a build management tool. To build all components of P4S, go to the
directory pparch/Source in the Git repository and execute the build.sh script. This
script will execute a Maven build (including all tests) on every component except the
validation tools. After the build has completed, the generated JAR files are located in the
target directories in the respective component folders.

A.2 Deploying

The deployment helper scripts are located in the pparch/Deployment directory. All
these scripts require that a full build (described in the section above) has already been
run.

A.2.1 Debian package

The build deb.sh generates a .deb file from the built JAR files. This .deb file already
has the dependencies required on a standard Ubuntu system set accordingly, but it should
also work on other Debian-based operating systems. The package includes the desktop
GUI, but does not depend on any X11 related packages. To actually run the graphical
interface, a Desktop environment has to be installed. To run the script, the tool dpkg-deb
has to be installed first.

A.2.2 Docker image

The build docker.sh script builds a Docker image called idem p4s/server. This Docker
image is based on the default Ubuntu 14.04 LTS image and includes all components re-
quired to run the P4S server application.

A.2.3 Virtual Machine image

The build image.sh script generates a QCOW2 root file system image file based on
Ubuntu 14.04 LTS and including all components required for running the P4S server
application.

While QCOW2 originally is the file format used by QEMU and, thus, many other virtu-
alization environments do not support it, the QEMU command-line tools allow to easily
convert the image file to any other proprietary format. Thus, the deployment of this image
file should be possible for almost every other virtualization environment. The deployment
has been successfully tested with VMware Player, VirtualBox and XEN.
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A.3 Running

In order to run the P4S server application, a valid set of configuration files has to be
provided using the command-line option –config-file. See appendix B for details.

A.3.1 Standalone application

Once installed the P4S server application can be run by issuing the p4s –config-file
config file command on the command-line.

A.3.2 UNIX daemon

The P4S UNIX daemon can be started using the default service management tool provided
by the operating system. For example, on a standard Ubuntu the service could be started
by issuing service p4s start.

A.4 Tools

A.4.1 Server (p4s)

usage: p4s [-h] -c CONFIG-FILE

The P4S server application for data access, processing and storage.

The application is started in console mode.

optional arguments:

-h, --help show this help message and exit

-c CONFIG-FILE, --config-file CONFIG-FILE

The config file

A.4.2 Access client (p4s-client-access)

usage: p4s-client-access [-h] [-s PRIVATE-KEY] [-k PUBLIC-KEY]

[-i IDENTITY] [-u USERNAME] [-p PASSWORD]

[-l URL] [-o OUTPUT-FILE] from to

Access and query the flow database of a remote P4S server instance.

positional arguments:

from Start of the time interval (format yyyy-MM-dd

HH:mm:ss)

to End of the time interval (format yyyy-MM-dd HH:

mm:ss)

optional arguments:

-h, --help show this help message and exit

-s PRIVATE-KEY, --private-key PRIVATE-KEY

The private key file to use (default:

../p4s/admin.key)

-k PUBLIC-KEY, --public-key PUBLIC-KEY

The public key file to use (default: ../p4s/

pub.key)

-i IDENTITY, --identity IDENTITY

The identity to use for the query (default:
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admin)

-u USERNAME, --username USERNAME

The user name for authentication (default:

admin)

-p PASSWORD, --password PASSWORD

The password for authentication (default:

test)

-l URL, --url URL The server URL (default: http://localhost:8192)

-o OUTPUT-FILE, --output-file OUTPUT-FILE

The output file (default: standard

output) (default: )

A.4.3 Input client (p4s-client-input)

usage: p4s-client-input [-h] [-n ID] [-u USERNAME] [-p PASSWORD]

[-l URL] [-i INPUT-FILE] [-f {list,single}]

Read data points from a file and inject them into the flow of a remote

P4S server instance.

optional arguments:

-h, --help show this help message and exit

-n ID, --node-id ID The id of the destination node (default:

default)

-u USERNAME, --username USERNAME

The user name for authentication (default:

admin)

-p PASSWORD, --password PASSWORD

The password for authentication (default: test)

-l URL, --url URL The server URL (default: http://localhost:8192)

-i INPUT-FILE, --input-file INPUT-FILE

The input file (default: standard

input) (default: )

-f {list,single}, --format {list,single}

The input format. ’list’ a simple list of

data points, ’single’ one single data point

(default: single)

A.4.4 Key Management (p4s-key-tool)

usage: p4s-key-tool [-h] {init,create,passwd} ...

Create and manage CP-ABE key files.

positional arguments:

{init,create,passwd} Supported sub-commands:

init Create a new infrastructure key

pair (master/public).

create Create a new private key.

passwd Change the password of a key file.

optional arguments:
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-h, --help show this help message and exit

All required passwords are read from console or standard input

A.4.5 User Management (p4s-user-tool)

usage: p4s-user-tool [-h] [-t {database,xml}] [-u DBUSER] [-p DBPASSWORD]

[-x PREFIX] [-l URL] [-d PATH] username

{create,remove,passwd,show,enable,disable,

grant-statistics,deny-statistics,add-access,

remove-access,add-input,remove-input}

...

Create and manage P4S user accounts.

positional arguments:

username The user name

{create,remove,passwd,show,enable,disable,grant-statistics,

deny-statistics,add-access,remove-access,add-input,remove-input}

Supported sub-commands:

create Create a new user.

remove Remove an existing user.

passwd Change the password of an existing user.

show Show the details of an existing user.

enable Enable an existing user.

disable Disable an existing user.

grant-statistics Grant access to statistics to the user.

deny-statistics Deny access to statistics to the user.

add-access Add the given identities to the access

list of the user

remove-access Remove the given identities from the access

list of the user

add-input Add the given input node ids to the access

list of the user

remove-input Remove the given input node ids from the

access list of the user

optional arguments:

-h, --help show this help message and exit

-t {database,xml}, --type {database,xml}

The type of user management (default: database)

-u DBUSER, --username DBUSER

The user name (for database user

management) (default: p4s)

-p DBPASSWORD, --password DBPASSWORD

The password (for database user

management) (default: p4s)

-x PREFIX, --prefix PREFIX

The prefix (for database user

management) (default: p4s_)

-l URL, --url URL The url (for database user management)

(default: http://localhost:5984)
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-d PATH, --dest-path PATH

The destination path (for xml user

management) (default: ./)

All required passwords are read from console or standard input

A.5 Further information

The directory Documentation/Javadoc in the Git repository contains the generated
JavaDoc files for all components implemented in this work.
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B. Configuration

B.1 Server configuration file

For any configuration node, properties can be defined by using the property tag. Each of
this tags must consist of a name-value-pair of subtags. By name the property that is to
be set is defined while value denotes the value to set this property to.

B.1.1 server tag

The server tag serves as root node of the document and, thus, contains all other nodes.

Properties of the server node:

• server.port: The HTTP port

• server.secure port: The HTTPS port

• processing.queue size: The maximum size of the task queue

• processing.pool core size: The default size of the thread pool

• processing.pool max size: The maximum size of the thread pool

• statistics.enabled: Enable the statistics module to collect statistical information
at runtime

B.1.2 accesscontrol tag

The accesscontrol tag defines the method used for access control. This node may only be
specified once and must contain a class node specifying the class implementing the chosen
method.

Properties of the accesscontrol node:

• path: The path containing the XML user database (required by XmlRoleHandler)
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B.1.3 crypto tag

The crypto tag defines the crypto method to use. This node may only be specified once
and must contain a class node specifying the class implementing the chosen method.

Properties of the crypto node:

• publickey: The file containing the global public key (required by CpabeCryptoCon-
text)

B.1.4 knowledge tag

The knowledge tag defines the knowledge provider to use. This node may only be specified
once and must contain a class node specifying the class implementing the chosen provider.

Properties of the knowledge node:

• filename: The file containing the XML configuration (required by XmlKnowledge-
Provider)

B.1.5 dezem tag

The dezem tag defines that a deZem mapping has to be loaded. This is required when
using the deZem input interface. This node may only be specified once and must contain
a filename node specifying the file containing the mappings.

B.1.6 database tag

The database tag defines the database to use. This node may only be specified once and
must contain a class node specifying the class implementing the chosen database handler.

Properties of the database node:

• url: The database URL

• prefix: The prefix to prepend to all table names

• username: The user name for the database server

• password: The password for the database server

B.1.7 graph tag

The graph tag specifies the processing graph file to load. This node may be specified
multiple times, but at least once, and must contain a filename node specifying the file to
load.

B.1.8 Example file

<server>

<accesscontrol>

<class>

de.tum.in.net.p4s.server.controller.DatabaseRoleHandler

</class>

</accesscontrol>

<crypto>

<class>



B.1. Server configuration file 83

de.tum.in.net.p4s.server.core.controller.CpabeCryptoContext

</class>

<property>

<name>publickey</name>

<value>pub.key</value>

</property>

</crypto>

<knowledge>

<class>

de.tum.in.net.p4s.server.core.controller.XmlKnowledgeProvider

</class>

<property>

<name>filename</name>

<value>knowledge.xml</value>

</property>

</knowledge>

<dezem>

<filename>dezem.xml</filename>

</dezem>

<database>

<class>

de.tum.in.net.p4s.server.controller.CouchDbDatabaseContext

</class>

<property>

<name>password</name>

<value>p4s</value>

</property>

<property>

<name>prefix</name>

<value>p4s_</value>

</property>

<property>

<name>url</name>

<value>http://localhost:5984</value>

</property>

<property>

<name>username</name>

<value>p4s</value>

</property>

</database>

<graph>

<filename>graph.graphml</filename>

</graph>

<property>

<name>server.port</name>

<value>8192</value>

</property>

<property>

<name>statistics.enabled</name>

<value>true</value>

</property>

</server>
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B.2 Graph configuration file

To create graph configuration files preferably a graphical editor tool should be used.
When creating and editing files manually, see the official GraphML reference documents
in [BEHH+02] for details about the syntax.

The properties available for the individual node types are described in the Javadoc docu-
mentation for the de.tum.in.net.p4s.server.core.processing package.

B.3 Knowledge configuration file

Each knowledge XML file uses an (usually empty) match tag as root node.

B.3.1 match tag

The match tag matches regular expressions to the class and tag attributes of each meta
data item. If a match occurs on an item, the child nodes of the match node are considered.

A match node may contain any combination of match, add and remove nodes as children.

B.3.2 add tag

This tag adds one or more meta data tags to the data point. The meta data class is
specified by the class attribute while the tags are specified as plain text content of the
node (one tag per line).

B.3.3 remove tag

This tag removes one or more meta data tags from the data point. The meta data class is
specified by the class attribute while one or more regular expressions are specified as plain
text content of the node (one tag per line). All meta data tags matching these expressions
are removed.

B.3.4 Example

<match>

<!-- Tag every data point with identity energymanager. -->

<add class="identity">energymanager</add>

<!-- Assign room numbers and additional room-related information

to sensor ids -->

<match class="dezem.sensor" tag=".*">

<match class="dezem.sensor" tag="10000">

<add class="room.id">1</add>

<add class="room.name">Room 1</add>

<add class="room.type">office</add>

<add class="sensor.type">socket</add>

</match>

<!-- ... -->

</match>

<!-- Assign person names to office room ids -->

<match class="room.id" tag=".*">

<match class="room.id" tag=1">

<add class="person">John Doe</add>

</match>



B.4. deZem configuration file 85

<!-- ... -->

</match>

<!-- Assign personal private key attributes to person names -->

<match class="person" tag=".*">

<match class="person" tag="John Doe">

<add class="identity">doej</add>

</match>

<!-- ... -->

</match>

</match>

B.4 deZem configuration file

The deZem configuration file uses a config node without attributes as root node. This
node may contain multiple sensor nodes as children.

B.4.1 sensor tag

The sensor tag allows to configure all deZem sensors within an id range to use a specified
set of properties. The interval is specified by the attributes from and to. The attributes
type, unit and factor set the specific properties to be used when reading measurements
from the sensors in that range.

B.4.2 Example

<config>

<dezem id="i8">

<sensor from="8184" to="8203" type="0" unit="W" factor="0.3536" />

<sensor from="8204" to="8520" type="0" unit="W" factor="0.1020" />

<sensor from="8184" to="8203" type="1" unit="J" factor="1.020" />

<sensor from="8204" to="8520" type="1" unit="J" factor="0.1020" />

<sensor from="8184" to="8520" type="9" unit="" factor="0.0001" />

</dezem>

</config>
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