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Abstract—Data center infrastructure monitoring (DCIM) uses
various features to track a data center’s state. In addition to
collecting device-level information, the monitoring also includes
physical features such as temperature or power intake to detect
equipment failures and anomalies. Measuring physical features
requires dedicated sensors at specific vantage points for efficient
and reliable data collection. We propose a novel approach
for DCIM using acoustic channels. Audio-based DCIM offers
substantial benefits: sensors are affordable, data collection is non-
intrusive, and audio processing is well-understood. Information
extraction from acoustic channels can be challenging due to audio
consisting of multiple devices’ mixed and often noisy signals. Our
paper demonstrates the feasibility of single-node state detection
over audio side-channels. Experiments in a real data center show
that our sound-based approach can successfully detect errors.

Index Terms—data center monitoring, side-channels, anomaly
detection

I. INTRODUCTION

Data centers (DCs) house servers at scale to provide com-
puting power and data storage capabilities to customers. The
availability of DCs heavily influences our daily lives since they
provide data for various applications. The criticality of their
constant availability leads to the meticulous monitoring of DCs
via data center infrastructure monitoring (DCIM) [1]. DCIM
combines multiple indicators such as energy consumption,
temperature, or humidity. Using these information channels,
problems may be detected in advance to prevent failures and
minimize service outages.

While some devices offer monitoring capabilities such
as IPMI [2], not all hardware supports these standards. In
addition, IPMI-like services may be disabled minimizing a
machine’s attack surface and avoid vulnerabilities introduced
by IPMI itself [3].

We suggest using audio side-channels to gather additional
data about a DC’s current state. Audio-signal monitoring
offers attractive benefits: collection is fast, well-understood,
easy, affordable, and non-intrusive. It can detect device states
without introducing a new attack vector to hosted devices.

The extraction of usable data is challenging. The soundscape
of a DC contains the sound of all devices running, e.g.,
switches, servers, or air conditioning blended into a single
information channel. We propose methods extracting valuable
information from the soundscape of a DC and demonstrate
their applicability to monitor specific events in the real world.
We extract information about server behavior from a DC audio
signal and detect device error codes in an audio stream.

The remainder of the paper is structured as follows: We
investigate related work in Section II before presenting back-
ground information in Section III. In Section IV, we present
our approach to leverage sound for DCIM and evaluate our
method in Section V. Section VI concludes the paper.

II. RELATED WORK

The private sector mainly drives DCIM progress [1]. Table I
summarizes commonly used DCIM features and related work
based on them.

Depending on the used features, DCIM may require ex-
pensive hardware, e.g., power meters or heat image cameras.
Typically, measurement hardware must be placed at critical
locations, e.g., the power lines, to collect accurate information.
In contrast, the still unused audio channels can be measured
non-intrusively, flexibly, and inexpensively through micro-
phones. While previous works utilize various side channels
for DCIM, to the best of our knowledge, none use sound.

Levy et al. [1] present a holistic approach for DCIM via IoT
sensors. They propose using IoT sensors to include physical
properties in the monitoring, such as vibration in cabinets,
differential air pressure, and water pressure of cooling systems.

Many approaches monitor power consumption at various
levels to detect abnormal behavior. Dayarathna et al. [4]
investigate methods to model the energy consumption of DCs.
Their survey presents techniques to model power consumption
on different levels of a DC. Borghesi [5] analyzes the power
consumption of single nodes in HPC environments to detect
anomalies. The presented prototype achieves an anomaly de-
tection accuracy of 95%.

Marwah et al. [6] present an approach to predict equipment
failure based on heat emission of DC devices. Similarly, Lee
et al. [7], [8] use thermal measurements to detect anomalies
in DCs. Ahuja [9] analyzes the importance of airflow man-
agement in DCs to optimize cooling capabilities. Rodriguez
[10] uses a wireless sensor network to support its DCIM. In
addition to temperature, deployed sensors monitor humidity to
optimize cooling capabilities.

III. DATA CENTER INFRASTRUCTURE MONITORING

DCIM combines sophisticated monitoring and management
tools to monitor large-scale information technology (IT) equip-
ment hosting. These tools have the purpose of capturing the
state of devices and enabling operators to make changes. Each
device has a physical state and a closely coupled cyber state.978-1-6654-0601-7/22/$31.00 © 2022 IEEE



TABLE I
PHYSICAL FEATURES OF DCIM USED BY RELATED WORK

Feature RW

Power consumption [1], [4], [5]
Heat [1], [6]–[8]
Airflow [1], [9]
Humidity [1], [10]
Vibration, water/air pressure [1]
Sound None

For example, a server performing complex computations will
increase the clock of its CPUs. High computational load affects
a device’s power intake and thermal emission, influencing
cooling. In the following sections, we describe the features
of both, state types and the means to monitor them.

a) Data center devices: In addition to IT equipment like
servers, routers, and switches, DCs host additional hardware
for their operation. Power supply units, power distribution
units, switchgear, electrical panels, and generators ensure
constant power provisioning for hosted devices. DCs also
contain complex cooling systems consisting of chillers, cool-
ing towers, and air conditioning units to manage the climate.
Finally, to automate its operation, DCs often use automation
systems for managing their building infrastructure. To address
emergencies, DCs also have fire systems in place. [1]

DCs have two layers: A device layer consisting of IT
equipment for computational and data storage capabilities, and
a physical layer for managing the environment for the device
layer. To ensure an efficient and optimal operation of DCs,
operators constantly monitor and manage both layers.

b) Device Level Monitoring and Management: To mon-
itor and manage IT equipment, operators use tools to monitor
and change the state of devices. While most tools rely on
data collected within a host OS, there are additional tools that
work without a running OS. Tools running on top of an OS
can monitor all sorts of information on a node, e.g., processor
load, memory consumption, etc. There are various tools to
monitor the state of machines on the cyber level. Within a
running OS, tools like check mk [11] or Nagios [12] enable
data collection of device state on individual hosts. They can
collect information about the workload, used memory, and
running processes. Operators also collect information about
data flow between hosted nodes. Tools like Tivoli Netcool and
OMNIbus, or Grafana [13] accumulate the collected data and
present a holistic overview of a DC’s state [14].

Operators also have the capabilities to manage devices
without physical interaction. IPMI [2] or iDRAC [15] provide
API-like access over the network. These enable operators to
access devices and request information, even when they are
shut down or have no running OS.

c) Physical Level Monitoring and Management: Phys-
ical level monitoring and management address the physical
properties of DCIM. These include the management of power
supply and climate control. Distributed sensors collect the
required information throughout DCs. For power management,
power meters in distribution devices measure the power intake.
Hardware vendors also provide tools for remote management

Fig. 1. Log power spectrogram of a recording in our DC. The ellipsis marks
a beep that is emitted by a booting server. The rectangles mark the fans of a
server spinning up during its startup.

of power supply. A DC’s climate control ensures optimal
room conditions for hosted hardware. To prevent devices from
overheating, IT equipment has onboard cooling like fans.
There are additional devices for climate control to handle
the heat generated by the many devices in DCs. These are
additional air conditioning units, cooling towers, and airflow
management units between devices. Via distributed sensors lo-
cated on devices and throughout infrastructure, DCIM collects
information about temperature and humidity. It then uses this
information to adjust and optimize the climate. Further, it is
possible to enhance DCIM with a variety of small sensors to
collect additional data, e.g., the vibration of a cabinet [1].

DCIM encompasses a variety of tools that collect informa-
tion at several levels to reflect a DC’s state.

IV. ACOUSTIC DCIM

To effectively use acoustic channels for DCIM, our method
needs to extract and identify single device behavior from a
mixed signal. Due to noisy background, single devices do not
stick out in an analysis of a signal’s amplitude and loudness.

To identify single device behavior, our method consists of
two steps. First (IV-A), we manually perform spectral analysis
to find relevant frequencies and limit the frequency band.
Second (IV-B), our method automatically extracts the time
frame during which an activity takes place.

A. Spectral Analysis

While most physical operations emit noise, sounds do not
affect all frequencies of a spectrum. CPUs typically emit noise
at high frequencies during processing [16], buzzers or fans
emit sound on other frequencies.

To identify relevant frequencies, we perform spectral analy-
sis. A power spectrogram shows the amount of energy carried
by a frequency in a time frame. Figure 1 shows the full
spectrogram of a recording from our DC. A visual inspection
of the figure shows distinct frequencies constantly carrying
high energy, while others carry low energy. Spinning fans emit
noise on the high energy frequencies. Analyzing a spectrogram
over a time frame enables the identification of energy changes



on specific frequencies. The recording in Figure 1 contains
the startup of a server. At around 6 s a buzzer emits a short
high-pitched beep at 2500Hz. The traces starting at 6.5 s show
the acceleration of the server’s fans to their normal operating
speed until 7.2 s. Since multiple identical servers run in the
background, the traces end in significant frequencies. The
ellipsis in Figure 1 marks the beep in the spectrogram; the
squares mark the accelerating fans.

There are two types of device behavior: (1) single-frequency
events and (2) multi-frequency events. After identifying the
relevant frequencies on the spectrum, we apply a band-pass
filter to remove non-relevant frequencies for the next step.

B. Time Frame Extraction

The second step identifies the time frame of events in a
signal. Since uptime is a primary objective for DCs, devices
are constantly running. State changes only occur due to
failing equipment, scheduled events (e.g., maintenance), or
unscheduled events (e.g., reboot due to software failures).

The design of DCs aims at minimum physical presence of
humans. This results in a constant soundscape and spectrogram
that only changes if devices alter their physical state.

In noisy DC environments, it is impossible to use spectral
flatness (SF) [17] to determine the beginning or end of events.
SF indicates how tone-alike a signal is by value in [0, 1]. The
closer SF is to 1, the more tone-alike the signal is. Due to
the high amount of background noise, DC recordings have a
low SF. The SF throughout the recording in Figure 1 does
not exceed 0.0005. The use of SF is only possible in quiet
environments where monitored events start and end in silence,
which is not the case for DCs.

Due to the constant background noise, we can detect spec-
trographic changes by calculating the root mean square (RMS)
energy. The RMS energy indicates the total energy a sample
carries across all frequencies. Changes in device behavior
cause changes in the RMS energy. To identify trends in the
noisy signal, we smooth the RMS energy curve using a moving
average. While smoothing helps to identify general trends,
it hides short-lived spikes or gaps. Therefore, smoothing
depends on the type of the searched event and the number
of RMS energy frequencies. The final step extracts the start
and end of activities from the smoothed curve. Our approach
automatically determines begin and end of an event through a
threshold-based method. RMS energy exceeding a pre-defined
threshold ts in a given time window ws, marks the beginning
of an event. Analog, we detect the ending if the RMS energy
falls below a threshold te in a window we.

This pre-processing can then help identify relevant sub-
sequences from measurements for further processing. For
example, image recognition on spectrograms can identify the
type of an event [18].

V. EXPERIMENTS

We conduct several measurements in a DC to evaluate
the feasibility of our approach. Initially, we demonstrate the
soundscape during normal operation, afterward, we apply

Fig. 2. A server spinning up its fans during boot. The top part shows the
log power spectrogram of the filtered signal. The middle plot shows the RMS
energy for the spectrogram. The bottom plot shows the smoothed RMS energy.
The dotted and dashed line mark start and end of the identified event.

our methods to failure detection. The air-conditioned DC
consists of 45 servers and 7 actively cooled switches. We
conducted our measurements during regular operation with
normal background noise. For our measurements, we set up a
Blue Yeti X [19] microphone and recorded the audio signal at
a distance of approx. 1.5m.

a) Normal operation: In our first experiment, we in-
structed single devices to execute commands that physically
alter their behavior, e.g., power-off, power-on, or reboot. For
each operation, we created an audio side-channel recording.
To analyze recordings, we implemented the proposed approach
with the librosa python library [20].

Figure 1 shows the spectrogram of our first experiment. The
recording has a length of 12 s and contains a short, single-
frequency event and a longer multi-frequency event. At the
6 s mark, a server performs a startup. After booting, the server
remains turned on and is available to users.

We aim to identify the time frame during which the server
accelerates its fans and preceding beep. The accelerating fans
cause energy traces between 256Hz and 512Hz, 512Hz and
1024Hz, and 1300Hz and 1600Hz while the beep occurs at
2450Hz. Since multiple devices of the same type are running
in the background, the noise traces merge with significant
frequencies in the background noise. To detect the accelerating
fans, we limit the frequency band to 256Hz–1700Hz, which
covers all frequencies affected by the fans. The upper part of
Figure 2 shows the limited frequency band used for calculating
the RMS energy. The middle part of the figure shows the
calculated RMS energy of the filtered signal and the smoothed
RMS energy in the lower part. Since we calculate the RMS
energy for a wide frequency band, the smoothing considers
30 neighboring samples. The RMS energy remains constant,
until it increases during the server’s startup. The RMS energy
stays constant after the fans reach operational speed. By
using our method, we can automatically identify the period
of the server’s physical startup. The dotted and dashed lines
in Figure 2 show the detected duration of the startup.

Our experiment implicates that the number of running



Fig. 3. Detection of a short single-frequency event in our first experiment

devices affects the total RMS energy. However, we have
not investigated if it is possible to infer the number of
running devices from the RMS yet. To identify short single-
frequency events, we limit the frequency band to the relevant
frequency, in case of the beep, 2400Hz–2500Hz, and reduce
the smoothing. Since we consider fewer frequencies for single-
frequency event detection, the calculated RMS energy is less
noisy. Figure 3 visualizes this part of the experiment. We can
detect this type of event through minor adjustments to the
thresholds ts and te and window sizes ws and we.

b) Failure detection: After demonstrating acoustic chan-
nel analysis during normal operation, we apply our method
to identify erroneous server states reflected by a beep code.
We unplugged a server’s fan such that it gets detected as
faulty. As a result, the manipulated server emits a series of
beeps to indicate the issue. Each beep has a length of roughly
1 s at 5150Hz. To detect such short-time events we reduce
the smoothing similar to the first experiment. Since the event
occurs at 5150Hz, we limit the frequency band to 5100Hz–
5200Hz. Figure 4 shows the results of the second experiment.
The lower plots show that the RMS energy spikes during the
server’s buzzer activity. Each beep gets automatically detected
by our method (dotted and dashed lines). This shows that we
could reliably extract the error code from the audio signal.

Our evaluation shows that acoustic side channels are ap-
plicable to detect events in DCIM, despite noisy background.

c) Discussion: We conducted two experiments address-
ing two important use cases to show the potential and rel-
evancy of our approach for DCIM. A server’s fan activity
can give insights into its state and indicate potential issues.
The early detection of a failing fan can help prevent further
hardware damage, e.g., by overheating. The detection of fan
activity requires monitoring a wide frequency band, which is
potentially noise-prone. However, our experiments show that
we can successfully identify such an event from a noisy signal
without OS-level information or external tools like IPMI. Our
second experiment revolves around the detection of beep codes
emitted by buzzers. Devices can emit beeps when booting.
However, they also use beeps to indicate the presence and
type of errors, e.g., faulty RAM or failing fans. Since buzzers

Fig. 4. Error code emitted by a server’s buzzer due to a faulty fan

emit noise at distinct frequencies, we can limit the monitored
spectrum to these frequencies to detect activity. Reducing the
analyzed frequency band also reduces the background noise,
making it easier to detect relevant events. Our experiments
show that we can identify error codes purely by analyzing
audio without additional tools on devices.

VI. CONCLUSION

This paper presented an approach to use acoustic channels
for DCIM. Despite the challenging environment—analyzing a
blended information channel and noisy signal—we success-
fully derived the behavior of single devices. Using sound for
DCIM has several advantages: it is inexpensive and easy to
set up thanks to widespread usage in consumer hardware.
Sound can be recorded with high granularity and accuracy,
and its measurement is non-intrusive. Our measurements have
shown that we can identify the sounds emitted by a server
during normal operation, such as fan noise or beeps. More
importantly, we applied our methodology to detect failing
equipment in a DC. Our automatic detection mechanism
identified a server’s beep error codes without additional tools.
We demonstrated the feasibility of acoustic channel DCIM,
motivating the cause to consider them as source for DCIM.

In the future, we will evaluate the robustness of our ap-
proach with regards to the number of devices, concurrent
failures, and how this affects our approach’s accuracy. We plan
to extend and refine our approach to identify actions executed
by DC devices. We will explore how this can improve error
detection capabilities, e.g., the reliable detection of a board’s
beep code due to faulty RAM. Further, we will correlate
acoustic information with management traffic to verify a single
device’s behavior and detect anomalies. Our approach can
also be extended by using multiple microphones, enabling the
localization of faulty devices. Finally, we will further explore
how our approach complements existing DCIM solutions.
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