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Abstract—The Linux kernel is continuously developing, and
the development teams constantly add new versions of libraries
with additional features. The cgroups feature of the Linux
kernel was recently updated. It is widely used by lightweight
virtualization technologies such as Docker or LXC for resource
isolation. cgroups underwent a significant revamp from version
1 (v1) to version 2 (v2). Researching the performance difference
between these two versions regarding network latencies and
throughput enables the usage of containers in time-critical
applications for Network Function Virtualization (NFV). Previous
work does not consider cgroups as a potential source of latency
in NFV in their evaluations. In this paper, we use commodity
hard- and software to measure the difference between v1 and v2
in isolation. Our experiments show that the two versions achieve
the same degree of isolation. However, the tail latencies of v1
are higher than v2, which can be explained by a more efficient,
2.4% less instruction-consuming implementation of v2. Based on
our findings, we recommend using v2 for low-latency, lightweight
virtualization network deployments wherever possible.

Index Terms—low latency, container, virtualization, cgroups,
network function virtualization

I. INTRODUCTION

From inter-vehicle communication in self-driving cars to
the coordination of assembly lines, critical applications require
technology to operate at peak performance. In such scenarios,
even short delays can result in catastrophic consequences. That
is why low latencies enable the interaction and coordination of
time-sensitive applications over shared networks. To achieve
the lowest and most stable network latencies, investing in high-
quality networking equipment and thoroughly reviewing the
entire software stack is crucial. This investment can enable
the migration of existing network applications towards real-
time applications.

A common way of handling increasing complexity is to
compartmentalize different software components into smaller
pieces and run them in isolated environments. This splitting
can be achieved through virtualization, using either heavy-
weight virtual machines (VMs) or lightweight containers.
To achieve optimal low-latency networking, a comprehensive
grasp of the chosen virtualization technique is necessary. This
understanding becomes particularly crucial when time-critical
traffic needs to pass through networking functions, e.g. fire-
walls or intrusion detection systems. These networking func-
tions are increasingly virtualized and interconnected in chains,
making a deeper comprehension of their inner workings more
important. Consequently, demand for virtualization solutions

with low resource requirements but high isolation and perfor-
mance features enabling real-time applications emerges. Two
essential features to enable such optimizations are namespaces
and control groups (cgroups).

Namespaces allow processes to have isolated and indepen-
dent views of the system resources, such as the network,
filesystem, or process IDs. cgroups provide a way to limit,
allocate, and prioritize system resources among processes or
groups of processes. Initially, cgroups were released in
2007 in kernel 2.6.24 [1] as version 1 (v1). They received
an exhaustive revamp [2] with a second version (v2) released
in kernel 4.5 with a reduced feature set.

This paper analyzes the latency and throughput performance
differences for cgroups v1 and v2 towards their imple-
mented features. For network operators and researchers, the
paper recommends updating the cgroups version particularly
when NFV infrastructure is serving real-time traffic. This
paper provides the following:

1) A methodology to systematically analyze latency perfor-
mance differences for containerized systems

2) A detailed evaluation of cgroups in container
3) A recommendation for the usage of cgroup versions in

NFV
The paper is structured as follows: Section II presents the

state-of-the-art with a extra focus on cgroups in Section III.
Section IV presents the used methodology. Section V discusses
the results, followed by Section VI providing the limitations
of our used methodology and provided results. Section VII
is showing condensed recommendations for further usage of
containerized solutions with cgroups. Finally, we provide
information about the reproducibility of our results in Sec-
tion VIII, summarize our findings in Section IX, and propose
future work.

II. BACKGROUND AND RELATED WORK

Utilizing NFV is an essential step towards enhancing flex-
ibility in network resource usage and planning, leading to
more efficient resource usage overall. Presenting a compre-
hensive review of prior research on virtualization, network
performance, and NFV establishes the foundation for this
performance evaluation. Understanding the significance of
cgroups as a vital feature for analysis is facilitated through
this background information.



A. Network Function Virtualization

In recent years, the increasing adoption of virtualization
techniques has led to the migration of appliances traditionally
bind to dedicated hardware such as low-latency packet filtering
into virtual environments [3]. This step towards virtualization
supports, for example, slicing in 5G networks or on-demand,
feature provisioning. Additionally, updating or replacing a sys-
tem on-the-fly is easier. With specialized hardware instances,
this was a complicated and costly procedure. NFV allows
leveraging general-purpose commercial-off-the-shelf hardware
to accomplish highly specialized networking objectives. This
revolutionary approach is made possible through virtualization,
enabling the utilization of current off-the-shelf hardware for a
diverse range of networking tasks [3].

Each network function is packed as a Virtual Network
Function (VNF) or Container Network Function (CNF) into
an isolated, virtualized environment. On the one side, this
approach requires a good positioning of VNFs to each other in
a Service Function Chain (SFC) to have a high performance
in traversing through the different functions in a pre-defined
order. This positioning was analyzed in different related works
such as [4]–[6]. On the other hand, especially for real-time
traffic, challenging requirements towards the network traffic
performance exists, analyzed in different related publications
such as [7], [8]. Kourtis et al. [7] have analyzed the per-
formance exploiting user-space networking using the Data-
Plane Development Kit (DPDK). DPDK provides a significant
performance improvement, as used in our measurements to
mitigate the impact of external factors on the analyzed fea-
tures.

B. Virtualization Techniques

The basis of CNFs, and VNFs is the ability to isolate
applications from each other and the host system residing on
the same hardware machine providing tailored services. Two
commonly used architectures are available for virtualization:
hypervisor- or container-based. Hypervisor-based virtualiza-
tions are known as VMs because the complete OS, including
the kernel, is virtualized. Container-based virtualization is
called lightweight virtualization because only parts of the OS
are virtualized. In this case, the kernel is shared between the
host OS and container, and mainly processes, files, and re-
source access are isolated [9]. In Figure 1, the base presents the
hardware running the host OS and the top the different types of
virtualization available; on the left side, the containerization,
including the container engine used to manage the containers;
Furthermore, on the right side, a VM shows the additional
overhead of the guest OS residing within each system.

Throughput analysis of virtualization techniques is a com-
mon area of research. Barham et al. [10] studied the impact of
CPU resources on XEN-based VMs, focusing on time-slices
on the CPU-induced variations. Tran and Kim [11] found
out that CPU core assignment and reservation of cores for
specific containers within the system is crucial for improving
throughput. Morabito et al. [12] draw a line towards con-
tainer challenging traditional systems in resource usage and
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Figure 1. Comparison between container (left) and VMs (right) [9]

performance. In conclusion, extensive research is conducted
on throughput and optimization, particularly concerning CNF
deployments.

C. Linux Containers

LXC [13] is a low-level container runtime. It provides a
minimalistic feature set to remain lightweight. LXC can be
controlled using user tools, a C, or Python API. One downside
of LXC is that convenience features such as layered images
or orchestration are missing entirely. Conversely, this reduces
additional overhead.The currently available version on Debian
10 is 4.0 [13].

Previous studies analyzed the performance overhead be-
tween different container solutions such as Docker and LXC,
concluding that LXC performs best with a minimal overhead.
However, the lack of additional features introduces overhead
for the administrator in terms of work, orchestration, and man-
agement [14], [15]. Putri et al. [16] analyzed the performance
differences between LXC, and Docker, concluding that, in
general, LXC outperforms Docker containers. In the measured
scenarios, the LXC container showed the best IO performance
on heavy load. Based on that analysis, we use LXC to compare
the performance differences using different cgroup versions on
network performance metrics.

D. Performance of NFV inside container

Gedia et al. [8] analyzed the performance impact of
software-defined networking applications on VNFs. Concern-
ing networking, they focused on throughput comparing VMs
and containers. Their results show that the throughput on
containers was significantly higher than the throughput they
could reach with VMs using the same setup otherwise. More-
over, Kourtis et al. [7] showed that the most significant
improvement on network performance with CNFs could be
made using DPDK in combination with direct hardware access
to the network interface card (NIC). In conclusion, the kernel



Listing 1. cgroups v1 hierarchy [17]
/ s y s / f s / cg roup

c p u s e t
cgroup0

c p u s e t . cpus
c p u s e t . mems

cgroup1
c p u s e t . cpus

memory
cgroup0
memory . l i m i t i n b y t e s

Listing 2. cgroups v2 hierarchy [2]
/ s y s / f s / cg roup

cgroup0
c p u s e t . cpus
c p u s e t . mems
memory . max

cgroup1
c p u s e t . cpus

networking stack remains the bottleneck. Subsequently, using
CNFs with user-space networking and hardware access to the
NIC significantly improves the latency. Additionally, using
containers instead of VMs enhances the performance. This
analysis justifies deploying container in conjunction with a
directly accessed NIC and user-space networking to evaluate
cgroup versions induced latency.

III. CGROUPS

cgroup is a Linux kernel feature that controls CPU
time, memory, and I/O between processes. Resources can
be assigned, limited, prioritized, and isolated enabling fine-
grained control for administrators, such as enabling only
critical processes to access specific resources. For example,
a background job should not compete for resources with a
web server and potentially negatively affect the latency. With
cgroups, the administrator can prevent resource contention
by guaranteeing resources to the webserver and limiting non-
critical processes.

Linux mounts both major cgroup versions in the same
location, /sys/fs/cgroup, but their hierarchical structure
differs. Listing 1 shows the hierarchy for v1. Each resource
controller (controller) is represented by a separate mount point,
and cgroups must be created per controller. In contrast,
Listing 2 depicts the same hierarchy for v2. A unified, hier-
archical structure represented by a single mount point of type
cgroup2 holding all controllers and groups. Each group can
then hold any number of enabled controllers.

In v2, it is no longer possible to assign a process to an
internal node of the tree hierarchy [18]. These properties can
be verified on any modern Linux-based system by inspecting
the output of systemctl status. The ”no inner process”
node clears up the hierarchy and makes it easier to understand.

In addition, several inconsistencies have been addressed in
cgroups v2, leading to a higher degree of standardization.
For instance, the renaming of memory.limit_in_bytes
to memory.max is evident in Listing 1 and 2. These stan-
dardizations have been applied to all thresholds, resulting in a
more uniform and consistent naming scheme.

Scheduler load balancing is a feature where a process
may be migrated to a different core to balance the load
equally in a multicore system, leading to latency spikes in
critical application [19]. In v1 this behavior can be turned off
by modifying the file cpuset.sched_load_balance.
However, in v2, this option was initially removed, added only
into recent kernels (≥ 6.1) [20] again, which are not yet part
of Debian 10 used in our experiments. We disable the feature
for v1 and compare it to v2 with enabled load balancing.

Finally, in v1, each process thread could be assigned to
a different cgroup, not possible in v2 due to its confusing
nature [18]. Several container solutions use these cgroups
for their isolation, such as Docker and Linux Container
(LXC). Therefore, analyzing performance in combination
with cgroups is commonly performed for different aspects.
Zhuang et al. [21] analyzed the pitfalls of memory isolation
in situations with a high memory demand, Xavier et al. [22]
analyzed the performance of disk usage when limited using
cgroups showing good isolation not interfering with each
other, and Liu and Guitart [23] analyzed the latency per-
formance of cgroups in Ethernet and Infiniband networks
resulting in good usability for high-performance low-latency
applications.

IV. MEASUREMENT METHODOLOGY AND SETUP

The tail-latency behavior for all packets is relevant for
analyzing differences in low-latency areas, especially towards
using NFV in 5G profiles such as Ultra Reliable Low-Latency-
Communications. Moreover, precisely measuring the latency
behavior of every packet requires additional effort. We derive
our measurement methodology from Gallenmüller et al. [24].
They analyzed the tail-latency behavior for every packet
traversing through a VM performing basic packet processing
tasks. This was done to analyze the system itself and its
surroundings, not the application. We utilize this to support
tail-latency analysis of cgroup versions.

Figure 2 provides an overview of the three hardware hosts
involved in the experiment: the Device under Test (DuT),
the Timestamper, and the LoadGen. To generate packets on
the LoadGen, we utilize MoonGen [25], a flexible high-
performance packet generator based on DPDK capable of
producing load at line rate with one CPU core. The Times-
tamper is connected to the ingress and egress lines via passive
optical terminal access points, which add a negligible, constant
delay on both sides. The DuT runs a single LXC version 4.0
container with direct access to the interfaces utilizing a mini-
mal DPDK-based, libmoon [25] L2 forwarding application to
measure performance differences caused by cgroup versions
rather than the application.
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Figure 2. Experiment setup derived from [24]

The hardware specifications are as follows: The LoadGen
features an Intel Xeon Silver 4116, 192 GB RAM, and a dual-
port Intel 82599ES 10-Gigabit SFP+ NIC connected to the
DuT with optical fibers. The DuT has an AMD EPYC 7551P,
128 GB RAM, and a dual-port Intel X710 10Gbe SFP+ NIC.
The Timestamper is outfitted with an AMD EPYC 7542, 512
GB RAM, and an Intel E810-XXVDA4 25-Gigabit NIC with
SFP flashed to 10Gbit/s providing 1.25 ns precision.

We use the plain orchestration service (pos) by Gal-
lenmüller et al. [26] to automate and make the measurements
reproducible. Using pos enables us to reproduce the results
as all experiments perform on a live system using individual
scripts.

For evaluating the packets and correlating them between
ingress and egress of the DuT, each packet carries a unique
identifier to precisely evaluate its network latency. The NIC
on the Timestamper adds a hardware timestamp to each
packet, which are then matched on ingress and egress to
measure latency. This methodology enables us to measure the
latency without additional jitter in the measurement process.
Subsequently, we evaluate the results for further parameters
such as packet rates.

In our measurements, we utilize minimal-sized packets of
64B as the processing cost of a single packet remains constant,
irrespective of its size [25]. Therefore, the number of packets,
not their size, is the predominant factor in processing delays.
We measure with a packet rate of 1.52Mpkt/s corresponding
to 825Mbit/s, and 6.24Mpkt/s corresponding to 3.39Gbit/s
without overloading the network over a time of 45 s. On the
DuT, we use Debian 10 with a real-time kernel version 5.10
and utilize the same optimizations described in [24] for VMs.

Using this measurement methodology, we can precisely
obtain the latency induced in the network with a precision of
1.25 ns [27]. Analyzing more advanced setups, such as having
a CNF application in the container is possible without further
adoptions.

V. EVALUATION

Each experiment evaluated in this Section is repeated mul-
tiple times; the result with the highest tail-latency is used as
rare outliers are included. Figure 3 shows the packet rates
before and after traversing through the container on the DuT
over measurement time. As can be seen and verified by
analyzing the raw data, even with the highest measured speed
of 6.24Mpkt/s, no packets are dropped. Consequently, further
investigations into throughput are unnecessary, allowing us to
shift our focus towards analyzing latency differences.

The latency of both cgroups versions with a packet rate
of 1.52Mpkt/s are shown in Figure 4. Both versions exhibit a
nearly identical latency trend, with a slight difference emerging
between the 99th and 99.9th percentiles. Specifically, the
latency with v1 at the 99.9th percentile is slightly higher than
with v2. However, towards the 99.99th percentile, the network
latencies of both versions are similar again. When using
1500B sized packets, we can reach a maximum packet rate of
only 0.82Mpkt/s due to the cable capacity of 10Gbit/s. In
Figure 5 the differences are outlined showing that even with
higher packet sizes v2 outperforms v1. As fewer packets could
be captured, outliers are more significant here.

Figure 6 presents the result of the experiment with a slightly
higher packet rate of 6.24Mpkt/s. The same trend as before
is visible, albeit the spike in tail latency occurs slightly
earlier. In Figure 7 the corresponding jitter is showing visible
improvements from v1 to v2 with higher number of lower
jitter values. We expected this behavior as the packet rate was
four times higher than in the previous experiment. Likewise,
v1 exhibits higher worst-case network latencies.

To further analyze the differences between both versions,
we looked into the 5000 worst latencies over time, shown in
Figure 8. As the HDR diagram suggested, they are similarly
distributed for both versions, with slightly more outliers for v1,
indicating that more packets are affected by higher delays. Our
remaining measurement data suggests that extreme outliers,
like those seen for v1 at the 18th second of measurement
time, are more prevalent for v1 and less rare.

We verify the claim that cgroups v2 has a more efficient
implementation by measuring the number of instructions ex-
ecuted with the Linux performance analysis tool perf [28].
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Figure 5. HDR diagram with packet rate of 0.82Mpkt/s and 1500B sized
packets.
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The measurement includes the container startup, 60 s of packet
forwarding at 1.52Mpkt/s, and the teardown. We present the
corresponding data in Table I representing the averages of
three runs. We observe that for cgroups v1, the number
of instructions executed is about 2.4% higher, and about
2.2% more conditional branches are executed compared. The
difference in CPU migrations of 148 in v2 and 297 in v1 is
noteworthy. Given that we turned off scheduler load balancing
only in v1, this finding is unexpected based on the feature
descriptions of cgroups. Using additional measurements, it

Table I
INSTRUCTION AND BRANCH USAGE ANALYSIS OF CGROUP VERSIONS.

cgroup version instructions branches migrations

v1 674× 109 98× 109 297
std 4× 109 6× 108 24
v2 659× 109 96× 109 148
std 6× 108 1× 108 26
difference -2.3% -2.1% -100.7%

could be verified that the difference in CPU migrations is
caused by the startup and teardown of the container itself,
not during runtime.

While these differences are minor, we must note that our
recorded difference in latencies only occurs at the 99.9th

percentile concerning a fraction of all packets.

VI. LIMITATIONS

We analyzed the performance of a single container with
a basic forwarding application passing through the hardware
NIC. Some limitations arise from this, affecting the results.
We did not analyze concurrent containers or SFCs.

Moreover, analyzing more advanced packet processing ap-
plications using these measurements as a baseline are required
to further enhance the development of CNFs. To extract limita-
tions of cgroups, measuring without a particular application
with additional workload was needed.

VII. RECOMMENDATIONS

Our results show that v2 is more efficient, uses fewer
resources, reduces the number of instructions. The latencies
when using NVFs on containers are lower for v2. This results
in the recommendation to use v2 whenever possible, espe-
cially for ultra-low-latency targets. In specific applications,
when features are required which are not yet implemented
in cgroups v2, we suggest to use the older version. Beware
that v1 is deprecated and might not receive the same amount
of support as v2. The difference is not significant, but showing
that the work done for refactoring cgroups was successful
especially towards number of migrations performed.

VIII. REPRODUCIBILITY

We provide the raw data of our experiments, the scripts used
to generate them, instructions how to use them, and additional
results in a website and repository1.

IX. CONCLUSION

The Linux kernel constantly evolves, with bug fixing
and continuing feature expansion. However, with these rapid
changes, there is no extensive research available to evaluate the
changes. Stability and tail-latency behavior are essential, es-
pecially for time-sensitive applications in the networking area
moved to virtualization. This research is furthermore essential,
for example, for self-driving cars or airplanes, as safety is a
major concern; detailed studies are necessary to ensure their

1https://wiednerf.github.io/cgroups-nfv/



reliability and safety. In this paper, we have demonstrated that
cgroups v2 is a superior choice for low-latency networking
in general. While the latency behavior is identical to cgroups
v1 up to the 99th percentile, v1 performs worse with more
packets having higher latency. Additionally, we showed that
v2 is less prone to latency spikes and exhibits lower latencies
and resource usage. V1 consumes 2.4% more instructions for
the same workload as the implementation is less efficient. It
is worth noting, however, that v2 needs to include some of
the features of v1, and upgrading to a modern kernel may
only sometimes be possible. Production systems often utilize
operating systems with long release cycles, especially in the
networking area, as updates are often not feasible.

As part of our future work, we aim to analyze container and
their latency behavior in concurrent situations and in trusted
execution environments to enhance the safety of CNFs. More-
over, we want to analyze the concurrent usage of containers
and VMs as part of SFC to combine their advantages as well
as differences between CPUs from different vendors.
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