
Continuous Integration for Networks Supporting
Low-Latency Using Hybrid Network Emulation

Florian Wiedner, Dominik Kreutzer, Jonas Andre, Georg Carle
Department of Computer Engineering

Technical University of Munich
Garching by Munich, Germany

{florian.wiedner, dominik.kreutzer, jonas.andre, carle}@tum.de

Abstract—Enabling continuous integration (CI) cycles for net-
work protocols and services poses a significant challenge due
to the necessity of building complete and complex networks for
testing and verification. This process demands robust simulation,
emulation, or a variety of hardware resources.

For non-latency, throughput-sensitive services that deal with
best-effort traffic, tools like Mininet or ns3 can be utilized effec-
tively. However, latency-sensitive applications require verification
in circumstances that closely resemble real-world environments.
Tools such as ns3 operate at an abstraction level that is too high
to accurately reflect reality, while original Mininet, by relying on
virtual Ethernet pairs, tends to lack realistic latency.

To address this challenge, we propose using Mininet as a
standard and reproducible API, enhanced with Single-Root-IO-
Virtualization (SR-IOV)-based connections when stability and
lower latencies are paramount. This approach enables us to
test and verify working configurations in a straightforward, non-
hardware-supported environment, allowing the final stages of our
CI process to progress towards more stable products without the
necessity to adapt scripts or configurations due to reusing the
same API for different underlying technologies. Our findings
demonstrate that incorporating SR-IOV into network emulation
can potentially double the usable bandwidth and significantly
enhance both stability and latency.

Index Terms—low-latency, throughput, single-root-io-
virtualization, emulation

2025 36th International Teletraffic Congress (ITC 36)

I. INTRODUCTION

Continuous Integration (CI) offers significant advantages
towards developing, extending, and improving tools using test-
ing and verification to identify problems early [1]. Adapting
network protocols and services is even more challenging as
failures can impact other devices and services in the network.

The complex nature of networks causes challenges when
analyzing protocols and services in CIs as the inter-working of
components such as routers and firewalls must be considered.
This complexity results in a limited testing coverage performed
in today’s networks. Digital Twin Network (DTN) provides the
opportunity to utilize a digital replicate of the actual network
to perform tests and verification without disturbing the original
network, similar to other research areas [2].

Several tools provide a DTN based on either mathematical
models [3]–[6], simulations [7], [8], or emulations [9], [10].
DTNs based on mathematical models provide, similar to
simulations, an abstraction of the network addressing specific
aspects of the real network based on their use case without

the ability to test or verify application code directly. However,
network emulations such as Mininet using Linux on-board
tools allow to rapidly build an entire network to test and
verify services and protocols automatically without a physical
network [9]. Especially towards latency, Wiedner et. al. [11]
compared in a previous work Mininet to a virtual machine
(VM)-based approach with links based on Single-Root-IO-
Virtualization (SR-IOV), which extends the PCI specification
enabling splitting one NIC into multiple lightweight PCI
devices, showing that the results are neither realistic nor stable.

This paper analyze a hybrid network emulation tool based
on Mininet with SR-IOV and VMs. We aim to perform a
controlled comparison using an external measurement infras-
tructure to provide insights towards analyzing latency-stable
and high throughput environments. We provide:

1) A extended Mininet framework with SR-IOV and VMs.
2) An extended performance analysis.
3) Performance enhancements for sensitive network tests.
4) Recommendations on using the different types in com-

mon scenarios such as CI or DTN.
The paper is structured as follows: Section II provides back-
ground information and the current state of the art, followed by
challenges when using CIs for low-latency network services
in Section III. We outline our methodology to extended the
Mininet framework in Section IV. Followed by the measure-
ment setup in Section V and the evaluation in Section VI.
We finalize the paper with limitations, recommendations,
reproducibility, and conclusion in Sections VII to X.

II. BACKGROUND AND RELATED WORK

This section presents an analysis of relevant literature in the
fields of network simulation and emulation, DTN, and CI.

A. Network Simulation and Emulation

One important aspect of network simulation and emulation
is the opportunity to test and verify network behavior in
a closed, controlled environment, allowing rapid testing at
different abstraction levels. It gives the flexibility of rebuilding
arbitrary network topologies, including complex network com-
ponents and their inter-working [12]. Simulation uses mathe-
matical models, whereas emulation uses abstraction tools to
represent the physical network.



Several tools providing general-purpose network simulation
and emulation facilities are available, such as, e.g., OMNet++,
NS3, or Mininet [13]–[15] providing a rich range of features.
Wiedner et al. [11] show that Mininet is not designed for
realistic tail-latency and throughput. They propose using ca-
bled SR-IOV interfaces to replace virtual links with highly
optimized VMs as network nodes and show that they can
achieve realistic low and stable latencies but did not integrate
it in an automatable framework needed in CI. Furthermore,
simulation tools such as OMNet++ [13] and NS3 [14] are
based on abstract mathematical models of the real world to
describe the network in discrete events.

Mininet [15] uses Linux on-board features and a Python
API to built a network by isolating different nodes using Linux
namespaces, and using virtual Ethernet pairs (veth) as links.
This emulation architecture allows using Linux standard net-
work applications in real-time. Furthermore, Yan and Jin [16]
are overcoming the challenge of reduced bandwidth capa-
bilities in Mininet when the experiment load is higher than
the host’s physical resources by adding a virtual time to the
nodes improving the results’ realism. However, it improves
tail-latency far over reality as it does not consider the time-
wise correlation of events on different nodes. Containernet, a
Mininet fork, provides Docker containers as network nodes
and features such as CPU or memory isolation using the
Mininet API [17]. With Containernet 2.0 Peuster et. al. [18]
added support for integrating VMs into Mininet, using veths
as connections based on Containernets API. As VMs allow to
use applications requiring kernel access, our focus in this paper
lies on extending the approach of Containernet 2.0 by adding
VMs and hardware-based connections to reuse the existing
API for tail-latency analysis.

B. Single-Root Input/Output Virtualization

One extension to utilize the flexibility of providing arbitrary
topologies without the requirement of cabling and supporting
processing packets on real-hardware to improve performance
is SR-IOV. SR-IOV extends the PCI specification, enabling
the splitting of one physical function (PF) into multiple
virtual functions (VF)—lightweight PCI devices. Each VF
has a separate send and receive queue distinct from the PF
queues to reduce overhead and involvement of the OS in
packet processing [19]. Liu [20] and Dong et al. [19] have
both demonstrated that SR-IOV is improving both bandwidth
utilization and latency in comparison to drivers such as virtio
to distribute the packets from one physical link into multiple
virtual devices. Using SR-IOV, it is possible to achieve line
rate in each node without the need to pass through one physical
network interface card (NIC) per node. Similar to [11] are we
utilizing SR-IOV in combination with VLAN-IDs to provide
traffic of multiple link connections over one cable.

C. Digital Twin Network

Network emulation can be the basis for DTNs providing
a virtual twin of the physical infrastructure to analyze and
optimize operations and behaviors [2]. DTNs can be further

built using graph-neural networks [5], simulation, or AI [4]
Tang et. al. [21] outline in their research the need for delay-
sensitive traffic within DTNs as several potentially analyzed
service-level agreements require this. Our approach allows to
use Mininet as latency-sensitive DTNs.

D. Continuous Integration

CI is the central concept to allow automatic testing and
verification of systems before deployment coming from the
Extreme Programming development process [1]. CI is an
automated process executed on each commit in a software
repository, providing a direct feedback loop to the developers.
It improves code quality through testing and enforces code
styling [22]. CI includes automatic build and test software
before new features or bugfixes are deployed into production,
reducing the human effort in testing the software and reduce
the error rate of deployed software.

Vucnik et al. [23] describe the use of CI for wireless
communication as challenging due to their complex nature. A
unique system is needed integrating web technologies and OS
virtualization in existing 5G testbeds to enable CI for wireless
communication. DigSiNet [24] is an example for a container-
based DTN used for CI in a testbed infrastructure to predict
failures in network configurations. Our paper supports the idea
of network CI with a framework for automated testing of low-
latency and high throughput services.

E. Low-latency in Virtualized Systems

Virtualization enables resource sharing and flexible, on-
demand provisioning of resources, especially in the context of
DTN and CI this is a requirement due to their fast-changing
and adapting nature. Two commonly used architectures for
virtualization are hypervisor- and container-based. VMs are
Hypervisor-based virtualizations isolating the complete OS,
including the kernel. Whereas containers are called lightweight
virtualizations using a shared kernel [25]. Several studies
such as [20], [26]–[29] analyzed latency in both containers
and VMs providing valuable insights into the differences
between both techniques. Daichendt et. al. [30] analyze the
influence of multiple containers on each other, showing that
the influence of the nodes, especially towards latency, is
significant. Wiedner et al. [11] showed that using several OS-
level optimized VMs and SR-IOV improves the end-to-end
latency and stability significantly [11]. We extend Mininet with
technologies proposed by [11] to improve latency stability.

III. CONTINUOUS INTEGRATION AND LOW-LATENCY OF
NETWORK SERVICES

CI provides a long list of advantages towards continuous
feature development in software systems [1]. However, when
analyzing networks and their services, and the communication
structure, it is a challenge to integrate a CI in a near-to-reality
environment [17]. Emulations allowing rapid prototyping in
entire networks are needed to analyze network services and
protocols in a DTN enabling the use of Linux networking
software directly. This design improves the possibility of



0 50 90 99 99.9 99.99 99.999 99.9999
100

101

102

103

104

105

106

107

Percentiles [%]

L
at

en
cy

[µ
s]

50 300 500

700 900 1000

Figure 1: Latency HDR diagram across various rates
(kpackets/s) send through original Mininet.

testing services that require different parts distributed within
the network. To allow executing software requiring kernel
access, Peuster et al. [18] extend Mininet with the opportunity
to use VMs as Mininet nodes. Mininet’s flexibility allows for
the rapid building of general-purpose networks automatically.

To illustrate current latency and throughput issues, we per-
form measurements with constant-bitrate (CBR) traffic from
an external load generator with a packet size of 84B and
a seven nodes line-topology with nodes directly connected
to each other without switches in Mininet using a vanilla
Debian Bookworm OS. The maximum stable packet rate in
our setup on Mininet is 270 kpackets/s. With rates below
270 kpackets/s, we achieve a stable packet rate processed
through Mininet. Figure 1 shows the latency results at different
rates from 50 kpackets/s until 1000 kpackets/s in a high
dynamic range (HDR) diagram with both axes logarithmic.
The x-axis presents the percentiles of the latency shown on
the y-axis. Similar to previous results such as [11] is the
average and tail-latency reaching over 80ms in comparison
to experiments using real cabled connections. Additionally we
observe 20% packet loss with 500 kpackets/s in this scenario
and as the packet loss increases, the worst-case latency stays
mostly stable due to dropped packets reducing the load on
the memory-based links. This already shows the importance
of improving the potentials of Mininet.

This is especially problematic when analyzing latency-
sensitive networking services and applications as the latency
values are mainly caused by high load, not the analyzed appli-
cation. When network services have strict requirements on the
traffic such as low-tail-latencies or deterministic bandwidth,
then virtualization is a challenge as Gallenmüller et al. [27]
outline. They show that most latency outliers in virtualized
systems are caused by interrupts due to the higher cost of
interrupting virtualization. Typically, such systems require a
strict latency until the 99.9999th percentile; rare outliers in
higher percentiles are not considered [27]. Especially when
using namespaces for isolation the influence of the core on
which the process is running and the interrupt affinity is
significant compared to bare-metal systems [30].

Stable latencies are essential to model the differences be-
tween emulated and real networks, analyze the latencies, and
confirm that the processing delay in combination with the
network traffic, for example, holds the requirements defined
for the protocol or application. Based on the results shown
in Figure 1, the paper aims to analyze the potentials of
using a defined API such as Mininet and the potential to
rapidly build networks and allow rapid prototyping and testing
of network applications in combination with state-of-the-art
optimizations to allow analyzing low-latency, deterministic
network applications, services, and protocols. Our motiva-
tion example in Figure 1 shows that currently, the latency
in Mininet is reaching much earlier than realistic network
appliances an overload and therefore having higher packet loss
and a high gap between lower and higher percentile latencies
making it unrealistic to be used in CI automation for low-
latency network services such as Time Sensitive Networking
algorithms to be tested. Identifying if it is possible to achieve
both flexibility and low latencies is the main target of this
paper, concluding that finding a way to utilize a standard API
to support easy integration of CI automation and optimizing
towards deterministic and reliable latency is essential.

IV. METHODOLOGY

We present our methodology to extend Mininet towards
more reliable but still rapid prototyping when low-latency or
deterministic bandwidth are required. We extend Mininet with
VMs similar as done previously in Containernet 2.0 [18].
Additionally, we utilize SR-IOV as hardware connections
based on Wiedner et al. [11] to provide hybrid emulation of
topologies. Furthermore, we use a small set of optimizations
on the hypervisor as their usage depend on the control over
the hypervisor and corresponding bootparameter are those not
integrated into the extended Mininet version.

With extending Mininet, we aim to provide a realistic
CI environment for low-latency or deterministic bandwidth
network services and protocols. Additionally, we show that
using our approach, we achieve a flexible and scalable solu-
tion to emulate complex topologies and provide performance
benchmarks of network services as part of DTNs or CIs
that can be extended towards a development or measurement
platform.

Using VMs, the range of available network services and
protocols is extended as kernel access is available as required
in some applications. Carefully optimized VMs show similar
performance towards bandwidth and tail-latency as Linux
containers but require more overhead in resource usage as
examined by Wiedner et al [26]. Figure 2 shows all four vari-
ants analyzed in this paper. The abstract architecture neglects
the Mininet python API and the hypervisor. In Figure 2a, the
traditional Mininet approach with namespaces and veth links
is presented as baseline for our extended Mininet framework.
Our methodology includes the following variations: combining
VMs with veth based links or replacing the links with SR-IOV-
based VFs using Virtual LAN (VLAN) IDs in both variants
as shown in Figures 2b and 2d to distinguish the links on the



Node 2Node 1 Node 3

NIC A NIC B

(a) Namespace with veth

Node 2Node 1 Node 3

NIC A NIC B

402 403 402 403

(b) Namespace with SR-IOV VF

VM 2VM 1 VM 3

NIC A NIC B

(c) VM with veth

VM 2VM 1 VM 3

NIC A NIC B

402 403 402 403

(d) VM with SR-IOV VF

Figure 2: Node-link type combinations analyzed—link label
representing VLAN IDs.

shared cable. Using this approach, we can use switches within
Mininet, and the connections are working for both multicast
and unicast connections as explained by Wiedner et al. [11].

To abstract the node type from the user in our approach, we
added a new node type VMNodeMixin as basis extended to-
wards switches or hosts. This class translates between QEMU,
a generic engine virtualizing machines, and Mininet API.
In our methodology, QEMU, combined with kernel virtual
machines (KVM), utilized as hypervisor for VMs. This allow
us to use the same Mininet scripts for VMs and namespace
nodes as well as the flexible change between node types. To
enable adding interfaces in Mininet, they are added after the
node is booted, using a hot-pluggable PCI Express to PCI
bridge. Interfaces are either added directly in passthrough
mode or using MACVTAP devices as intermediate if direct
passthroughs are not supported. VM-based nodes expose mul-
tiple configuration options to let the user configure the number
of CPUs, memory, the path to the kernel, initrd and file-system
images, and CPU pinning to allow optimizations [27]. The
communication between Mininet and the VM node is solved
using a Unix socket passed to the guest. A Mininet shell is
spawned inside the VM connected over the virtual console to
the Mininet process on the hypervisor. Adding a new node
type makes the usage simple and extensible.

To improve the performance, we want to support hardware
interfaces, in our case, SR-IOV VFs, by defining the interface
on which VFs are available. The corresponding number of
VFs per interface and pair-wise VLAN IDs must be config-
ured before. This approach reduces the needed adoptions in
Mininet when the hardware changes, as the configuration mask
including spawning of VFs is vendor-specific. Hardware links
are added as a new link type HwPair expecting a pair of
already existing interfaces connected directly or, for example,
using SR-IOV and VLAN-IDs for separation. To simplify this
process, a global list can be provided to Mininet with pairs
of interfaces each representing a possible direct connection.
Access to the code is described in Section IX.

Our methodology can be used with most Mininet forks.
We implemented our prototype using the original Mininet
as the feature set is more condensed than forks such as

Table I: Latency optimized boot parameters for Host OS.

Parameter Value Description

irqaffinity 0 Interrupts on specific core
idle poll Poll mode when core idle
tsc reliable Rely on TSC without check
mce ignore ce Ignore corrected errors
audit 0 Disable audit messages
nmi watchdog 0 Disable NMI watchdog
skew tick 1 No simultaneous ticks for locks
nosoftlookup Disables logging of backtraces
nosmt Disables hyperthreading

LoadGen DuTMininet

Timestamper

▶
◀

▶
◀

▶
◀

▲ ▲

Figure 3: Measurement-setup derived from Wiedner et al. [26].

Containernet. Therefore, adding extensions such as SR-IOV
and VMs is more straightforward. Moreover, mixing different
types of nodes and links in one experiment is possible by
using different node and link classes for the definition of the
topology. The following section outlines how our measurement
setup enables to precisely evaluate the performance of Mininet
and our extensions and reduces the influence of the load
generation and measurement onto the results.

V. MEASUREMENT SETUP

As outlined in Section II, interrupts, among other features
like the sleep state of the CPUs and memory copies, are
the highest influence factor on forwarding latency within
one machine. With building an entire network topology on
one machine, the influence is even higher. In several studies
such as [26], [27], [31] network latency optimizations are
explained, and the lowest latencies are achieved when using a
combination of OS-level optimizations, user-space networking,
and direct access to the NIC. In our setup, we use a base-
line of optimizations such as isolation techniques, disabling
watchdogs, and a list of additional optimizations to reduce
the impact of audition and sleep states of the CPU on our
measurements [26]. The selected parameters are shown in
Table I. These optimizations include disabling energy-saving
mechanisms, moving the interrupt affinity to a specific core,
and turning off audit messages. Interrupts affinity can be set
to a specific core, and logging of backtraces can be reduced to
improve latency. For the VM, we analyze two different modes,
a non-optimized with only the baseline optimizations and an
optimized version with pinned and isolated cores to reduce the
influence of interrupts on the latency for reducing the overhead
caused by using full virtualization.

To allow for precise measurements without influencing the
Device-under-Test (DuT) running Mininet with the measure-
ment process itself, we use a three hardware-machine-based
setup as proposed by Wiedner et al. [26]. Figure 3 depicts the
structure based on a load-generator (LoadGen), a timestamping



machine (timestamper), and the DuT running the software to
analyze. The LoadGen uses an Intel Xeon Silver 4116 CPU,
192 GB RAM, and a dual-port Intel 82599ES 10-Gigabit SFP+
NIC connected to the DuT using optical fibers. We use the sec-
ond machine as timestamper connected to the fibers between
DuT and LoadGen with passive optical terminal access points
(TAPs) to ensure high precision measurements per packet at
line rate. These TAPs add the same constant delay on both
sides, which can be neglected as it is automatically removed
in the latency calculation consisting of the time between the
two measured timestamps. The timestamper is equipped with
an AMD EPYC 7542 32-Core Processor, 128Gbit of RAM
and a dual-port Intel E810-XXV 25Gbit/s NIC flashed to
10Gbit/s. The hardware timestamping of the Intel E810 NIC
offers a precision of 1.25 ns [32].

The DuT is equipped with an AMD EPYC 7551P 32-Core
Processor, 128 GB RAM, and 2 × Intel X710 10GbE SFP+
NICs with one port of each NIC is linked to the LoadGen.
The other two ports are linked together and used as a loop
cable for the two setups with SR-IOV-based links as shown
in Figures 2b and 2d.

The setup shown in Figure 3 allows a precise analysis
of packet processing tail-latency to focus on comparing the
different configurations with each other instead of the different
measurement execution influences. We use MoonSniff [33] of
MoonGen on the LoadGen and timestamper to transmit and
record minimally sized packets with 84B. The size of 84B
is the minimum packet size, allowing a large enough ID to
transmit each packet as part of the payload. If not otherwise
specified, we are using CBR traffic in all experiments.

We further use Debian Bookworm 11 (kernel 6.1) as both
hypervisor and VM OS to utilize stable software library ver-
sions on a currently available OS version. Our Mininet version
and QEMU are running inside the DuT, processing packets
arriving from the LoadGen and sending them back to the
LoadGen after traversing through the topology deployed with
Mininet. The QEMU API and emulator is used for executing
KVM VMs. For a deeper understanding of the scripts and code
executed, we redirect readers towards Section IX.

VI. EVALUATION

To assess the proposed extended Mininet methodology, we
first present the scenario used for our evaluation, conduct
baseline measurements, and analyze this scenario’s potential
usable bandwidth and latency. Following this, we compare
an optimized version with an unoptimized version based on
VM measurements. We conclude our evaluation by analyzing
a scenario with burstiness in traffic and its influence on the
variants. The results obtained are used to offer the reader
tailored recommendations for various usage scenarios.

A. Scenario

To evaluate the Mininet topology, we select a configuration
that is both straightforward and capable of stressing the system
using CBR traffic. Additionally, the scenario is designed to

0 20 40 60 80 100
0

200

400

600

800

Measurement time [s]

Pa
ck

et
ra

te
[k
p
k
t/
s]

veth/namespace

SR-IOV/namespace

veth/VM

SR-IOV/VM

Figure 4: Packet rate over time after passing through
Mininet—LoadGen transmit CBR traffic with 700 kpackets/s.

illustrate the interactions among multiple nodes within the
same system.

We utilize a line topology comprising seven nodes, labeled
h1 through h7, where h1 is responsible for receiving traffic
from the LoadGen, and h7 transmits the traffic back to the
LoadGen. No further nodes are involved, the nodes are directly
connected to each other reducing the complexity for simpler
understandability of the results.

To facilitate traffic forwarding among the different nodes,
all hosts employ Linux routing and forwarding capabilities,
routing traffic based on their respective routing tables to
the next hop in line. This scenario effectively stresses the
application with high packet rates and yields valuable insights.

We investigate a selected range of packet rates—50, 300,
500, 700, 900 and 1000 kpackets/s—across all four variants
depicted in Figure 2. Our aim is to analyze how the different
variations respond to varying packet rates in relation to latency,
as well as to identify the maximum packet rate that each
variation in the same scenario can effectively process.

B. Baseline measurement

To understand the changes identified in the evaluation of the
newly added variants using SR-IOV and/or VMs in Mininet,
we first evaluate a baseline with the original, not adapted
Mininet. For identifying the bandwidth bottleneck, the packet
rate is displayed in Figure 4 over the time that was received
after transmission through Mininet with CBR traffic. We
selected 700 kpackets/s as rate to present in the diagram
over time after analyzing the data in Figure 4 as blue line.
700 kpackets/s is higher than Mininet can handle the traffic
in real-time showing clearly the achievable packet rate. The
maximum packet rate that can be handled without packet loss
is 270 kpackets/s. We aim to overcome this limitation by
adding SR-IOV and VMs to enable higher packet rates without
packet loss.

Another important metric, as shown in our motivating
example in Figure 1, is latency, especially tail-latency. We
present an HDR diagram with the latencies of all analyzed



traffic rates in Figure 1 showing that the differences between
packet rates are significant, ranging in worst case from 688 µs
until 4 s. The latencies of 50 kpackets/s are showing a mean
of 68 µs rising towards more than 303 µs in worst-case with
a standard deviation (STD) of 18.7 µs and a worst-case jitter
of 44 µs showing low-latencies before packet loss occurs with
a high jitter derivation. Lastly, the packet rates higher than
270 kpackets/s with significant packet loss have a tail latency
above 70ms due to memory overhead. Resulting in general
latency fluctuations before packet loss occurs, latencies with
rates causing packet loss, and, therefore, changed network
behavior are behaving in general as expected. In summary,
when deterministic latency and high throughput are required,
we showed that another rapid prototyping and CI tool is
needed compared to traditional Mininet.

C. Throughput

One of the targets of this paper is to highlight the differences
towards deterministic and high bandwidth utilization between
the original and extended Mininet version. The previous
subsection shows that the original Mininet version has a
bandwidth bottleneck at 270 kpackets/s. We perform the same
comparisons for all other variants to identify their bottleneck
bandwidth and throughput possibilities. The received rate after
each variant when sending 700 kpackets/s from the LoadGen
is shown in Figure 4 compared to the original Mininet variant
in blue.

When changing the node type from namespaces towards
VMs while still utilizing veths as links, the maximum packet
rate achievable decreases dramatically to a maximum of
145 kpackets/s instead of 270 kpackets/s. This decreasing
maximum loss-less rate is resulting from the additional added
memory copies and overhead due to adding a virtual interface
to a VM instead of utilizing direct memory access (DMA)
and IOMMU translations as possible when using a PCI device
instead. Based on these results only changing the node type
as done in Containernet 2.0 [18] is not achieving our target of
deterministic and high throughput.

As we added in our approach one additional change op-
portunity, we analyze the impact of adapting the link type
from veth to SR-IOV while using namespaces as node types
to make it comparable to the original Mininet. Changing the
link type from a memory copy-based virtual interface to a
hardware-based interface achieves a high increase of stable
throughput. With this combination we can achieve a stable rate
of 680 kpackets/s in our measurements, which is an increase
of 410 kpackets/s. This increased capabilities clearly show
that veths as Linux implementation of virtual interfaces used
in Mininet are providing the highest bottleneck due to both,
the nodes and the traffic on the link, requiring capacity from
CPU, memory, and system buses.

When utilizing both VMs as nodes and SR-IOV VFs as link
endpoints with DMA and direct passthrough, we can achieve a
even higher throughput without packet loss at 720 kpackets/s
resulting due to the higher isolation of VMs compared to
namespaces. This clearly shows that for experiments requiring

0 50 90 99 99.9 99.99 99.999 99.9999
100

101

102

103

104

105

106

107

Percentiles [%]

L
at

en
cy

[µ
s]

Rate link/node

050 500 veth/namespace SR-IOV/namespace

300 700 veth/VM SR-IOV/VM

Figure 5: Latency HDR diagram for rates without packet loss
for all node-link variants.

high and deterministic as well as stable throughput capabilities,
changing the link type to a hardware supported, less CPU and
memory intense interface is necessary. Adding the additional
overhead and higher resource demand of VMs in comparison
is improving the results slightly, but the resource consumption
is increasing dramatically in comparison.

D. Latency

After analyzing the maximum possible throughput without
packet loss on each variant, we want to see if we can achieve a
stable and low latency on each variant analyzed in this paper.
Figure 1 is showing the baseline for these measurements.
We consider for our further analysis only those rates without
packet loss for each variant as latencies in overload scenarios
are not deterministic as shown by Gallenmüller et al. [34].
Figure 5 is presenting one HDR diagram containing the laten-
cies for all four variants for rates without packet loss. When
analyzing all variants at 50 kpackets/s, we see a tail-latency
for the original Mininet at 303 µs (mean 68 µs, STD 18.7 µs,
worst-case jitter 44 µs), VM with namespaces at 9211 µs (mean
420 µs, STD 173 µs, worst-case jitter 60 µs), VM with SR-IOV
1596 µs (mean 196 µs, STD 371 µs, worst-case jitter 37 µs),
and namespaces with SR-IOV 455 µs (mean 148 µs, STD
93 µs, worst-case jitter 37 µs) showing that in the case of no
packet loss or memory overload, the original Mininet shows
a nearly stable behavior with minor adaptions based on the
lowest overhead due to direct memory copies and light-weight
isolation, whereas both variants with SR-IOV are showing an
improved jitter behavior over seven nodes. For higher packet
rates, we can only analyses the two variants with SR-IOV
based links as the variants with veths are causing packet loss
with rates higher than 270 kpackets/s. The raise in tail-latency
between the 99th and the 99.9th percentile for VMs is similar
to results from previous works such as Wiedner et al. [26]
when using partly optimized VMs. In this case, the VMs are
not pinned to specific cores, and the corresponding cores are
not isolated.

For the highest packet rate supporting both namespaces
and VMs in combination with SR-IOV (500 kpackets/s), the



0 50 90 99 99.9 99.99 99.999 99.9999
100

101

102

103

104

105

106

107

Percentiles [%]

L
at

en
cy

[µ
s]

300 500 700

Figure 6: Latency HDR diagram on selected rates
(kpackets/s) with SR-IOV VFs and optimized VMs

latency of the namespace is rising towards 1399 µs (mean
271 µs, STD 108 µs, worst-case jitter 19 µs) and for VMs
towards 23 399 µs (mean 228 µs, STD 341 µs, worst-case jitter
741 µs). The reduced jitter and similar stability in latency are
caused by the change from interrupt to polling-based mode
in the Linux NAPI driver. As expected, the latency is rising
for both variants but showing that we can achieve a latency
distribution similar to previous works such as [11]. This shows
that when higher packet rates and stable latency are required,
namespaces with SR-IOV are the best choice, whereas VMs
require further optimizations to retrieve similar latency ranges.

E. Optimizations

Optimizing the VMs additional with pinning the virtual
cores of the VM to physical cores of the hypervisor on the
NUMA node the interface providing the VFs for this node
is attached to. Moreover, we isolate those cores from the
host kernel to reduce the impact of interrupts onto forwarding
latency [27]. The downside of pinning VMs to host cores is
that no load-balancing or over-provisioning of the specified
cores is possible resulting in increased resource consumption
and decreased flexibility. When analyzing the optimized VM
in comparison to the non-optimized VM with using veth
interfaces, the optimization has no influence on the maximum
achievable packet rate due to the needed kernel operations
which are moved to other cores. Furthermore, the maxi-
mum achievable throughput using SR-IOV links on optimized
VMs in our seven-node scenario is 850 kpackets/s compared
to 720 kpackets/s without optimizations. This improvement
means optimizing the VMs and isolating the cores is important
to achieve high throughput with Mininet, VM nodes, and SR-
IOV-based links if needed.

The improvement in tail-latency shown in Figure 6 for the
three highest measured and achievable rates is similar to the
increase of the maximum achievable loss-less packet rate.
For 500 kpackets/s are we achieving a worst-case latency
of 4667 µs (mean 262 µs, STD 71 µs, worst-case jitter 14 µs)
which are higher latencies than the variant with namespaces
due to additional overhead but the lowest statistical derivations

0 50 90 99 99.9 99.99 99.999 99.9999
100

101

102

103

104

105

106

107

Percentiles [%]

L
at

en
cy

[µ
s]

SR-IOV/CBR
SR-IOV/bursty

veth/bursty

Figure 7: Latency HDR diagram comparing CBR traffic vs.
bursts of 100 packets with namespaces—Rate 300 kpackets/s
for CBR and traffic with bursts

showing stable behavior of the latency and similar behavior
for all rates. In our discussion on VM optimizations, we
demonstrated through our evaluations that utilizing SR-IOV or
hardware interfaces instead of veth in Mininet enhances both
throughput and latency performance. While VMs generally do
not introduce significant overhead, they might not yield the
highest revenue. Therefore, it is advisable to use this resource
overhead when an entire operating system is necessary.

F. Bursty Traffic

Moreover, in addition to our analysis of CBR traffic, we
analyzed the behavior of the different variants with bursty
traffic ranging between 50 to 200 packets per burst. We
want to analyze whether the previous results hold with bursty
traffic. We have analyzed for namespaces the latency for
300 kpackets/s in Figure 7 in comparison to SR-IOV with
CBR traffic. Due to the processing of packets in a burst,
this rate does not cause packet loss for the original Mininet
compared to CBR traffic before. For SR-IOV with namespaces
is the tail-latency at 1040 µs with bursty traffic which is slightly
lower than for CBR traffic, whereas as expected the mean rises
significantly to 223 µs (STD 36 µs, worst-case jitter 59 µs) as
shown in Figure 7.

In Figure 8 is the same showing for VMs with a rate of
700 kpackets/s comparing between non-optimized and opti-
mized VM with bursty and CBR traffic. For the non-optimized
VM, slight variations are visible in a small range. In contrast,
the optimized VM differs only in that the jump to higher
latencies after the 99.9th percentile is slightly higher for bursty
traffic. This analysis shows that with our extended Mininet,
we are able to handle bursty traffic at a high throughput rate,
especially when using SR-IOV in combination with optimized
VMs or namespaces.

VII. LIMITATIONS

In addition to the benefits we show in our measurements,
the results are limited to simple packet processing and a sim-
ple topology. Adding computations to the packet processing



0 50 90 99 99.9 99.99 99.999 99.9999
100

101

102

103

104

105

106

107

Percentiles [%]

L
at

en
cy

[µ
s]

VM/CBR VM/bursty
VM optimized/CBR VM optimized/bursty

Figure 8: Latency HDR diagram comparing CBR traffic vs.
bursts of 100 packets with VMs—Rate 700 kpackets/s for
CBR and traffic with bursts

reduces the available CPU time and increases the latency,
whereas the throughput might not even be affected. We can
interpret the analyzed highest achievable packet rate as upper
bound of potential achievable packet rates. Similar, our ana-
lyzed simple line topology shows the performance differences,
which can widely differ in more complex scenarios, but the
simple topology already shows the potential benefits for more
complex topologies due to significantly lower latencies.

Moreover, our measurement setup is used to reduce the
measurement impact of an external load generator to retrieve
high and constant bit rates. Due to limited time and space, we
leave an analysis of the impact of packet generation within
Mininet on our results for future work.

Furthermore, using SR-IOV to provide links in Mininet
limits the number of available links to the number of VFs the
used NIC allows. The hardware enforces this limitation due
to the limited number of registers for the different separated
features of VFs with the same PF. This number can be
increased by using multiple pairs of NICs.

VIII. RECOMMENDATIONS

Depending on the specific requirements of the experiment,
CI, or DTN conducted with our extended version of Mininet,
one of the four variants illustrated in Figure 2 can be chosen.

If resource constraints are a critical concern and neither
throughput nor latency needs to be prioritized in the mea-
surements, we recommend using the original Mininet or our
extended variant that employs namespaces and veth-based
links. These options have the lowest impact on resources,
though they come with a slight trade-off in performance
regarding packet loss.

In scenarios where an entire operating system is necessary
on each node, and throughput or latency considerations are
not applicable, the best approach is to utilize VMs as nodes
along with veth links. While this option may result in the
worst overall performance, it does not require additional NIC
and mainboard support.

Table II: Summarized Recommendations

Technology Latency Throughput Resources

Namespace
veth × ×× ✓✓
SR-IOV ✓✓ ✓ ✓

VM
veth ×× ×× ×
SR-IOV ✓ ✓✓ ××

When an entire operating system is needed on each node
along with high throughput or low latency, using VMs in
combination with SR-IOV on Mininet can offer significant
benefits. If resources allow, we recommend dedicating time to
optimize both the VMs and the hypervisor, as this can lead to
significantly improved performance.

For all other situations, we suggest using namespaces com-
bined with SR-IOV-based links. This configuration provides
low and stable latency, as well as a significant enhancement
in the maximum packet rate achievable with zero packet loss.

We summarize our recommendations in Table II.

IX. REPRODUCIBILITY

We published the extended Mininet version as CIMininet1.
Furthermore all instructions and scripts to reproduce our
results, additional measurements and raw data are available
on the accompanying website2. The raw data are available on
mediaTUM3.

X. CONCLUSION AND FUTURE WORK

Continuous Integration and Digital Twins are current and
future technologies enabling the automation of deployment
and configuration processes. As networks are complex and
multiple devices are involved, realistically, emulating networks
to use them in CI or DTNs is challenging. This paper analyzes
the possibilities of extending the network emulator Mininet
to provide high, deterministic usable bandwidth and deter-
ministic, low tail latency. Mininet uses Linux namespaces to
isolate different nodes from each other and veths to provide
virtual links on the current node. Due to shared usage of
memory, system buses, and CPU, multiple potential non-
network-induced bottlenecks result.

By extending Mininet to support VMs as nodes and SR-
IOV-based links, we show that significant improvement of
both bandwidth and latency is possible simultaneously. With
our measurements on a seven-node line topology using an
external timestamper and load generator, we show that using
hardware-supported interfaces and cabled connections im-
proves the highest zero loss packet rate from 270 kpackets/s
to 850 kpackets/s. It provides as well a significantly lower
and more stable latencies. To conclude, using our prototype
to verify and test latency-sensitive or high throughput appli-
cations, services, or protocols is possible using the standard

1https://github.com/tumi8/CIMininet
2https://tumi8.github.io/mininet-vm-sriov
3https://doi.org/10.14459/2025mp1773238



Mininet API. This allows testing scripts and automating the
integration of network applications in CI processes to improve
the quality of software, services, and tools in networks.

Further, we plan to analyze the influence of complex sce-
narios, computation-heavy applications, and Docker containers
as nodes together with SR-IOV in the future to improve the
possibilities of network emulation for latency and throughput-
sensitive applications. We further plan to use our published
data to provide over time modeling and analyze our data’s
predictability.

ACKNOWLEDGMENTS

This work was supported by the EU’s Horizon 2020 pro-
gramme as part of the projects SLICES-PP (10107977) and
GreenDIGIT (4101131207), by the German Federal Ministry
of Education and Research (BMBF) under the projects 6G-
life (16KISK002) and 6G-ANNA (16KISK107), and by the
German Research Foundation (HyperNIC, CA595/13-1).

REFERENCES

[1] M. Fowler and M. Foemmel, “Continuous integration,” 2006.
[2] Y. Wu, K. Zhang, and Y. Zhang, “Digital twin networks: A survey,” IEEE

Internet of Things Journal, vol. 8, no. 18, pp. 13 789–13 804, 2021.
[3] P. Almasan, M. Ferriol-Galmes, J. Paillisse, and J. Suárez-Varela,

“Digital Twin Network: Opportunities and Challenges,” Jan 2022.
[Online]. Available: https://arxiv.org/pdf/2201.01144

[4] A. Mozo, A. Karamchandani, S. Gómez-Canaval, M. Sanz, J. I. Moreno,
and A. Pastor, “B5gemini: AI-Driven Network Digital Twin,” Sensors,
vol. 22, no. 11, p. 4106, 2022.

[5] H. Wang, Y. Wu, G. Min, and W. Miao, “A graph neural network-based
digital twin for network slicing management,” IEEE Transactions on
Industrial Informatics, vol. 18, no. 2, p. 1367–1376, 2022.

[6] M. Saravanan, P. S. Kumar, and A. R. Kumar, “Enabling network digital
twin to improve QoS performance in communication networks,” IEEE
Transactions on Industrial Informatics, 2022.

[7] G. Electric, “The Digital Twin: Compressing Time to Value for Digital
Industrial Companies,” General Electric, 2018.

[8] R. Söderberg, K. Wärmefjord, J. S. Carlson, and L. Lindkvist, “Toward
a Digital Twin for real-time geometry assurance in individualized
production,” CIRP annals, vol. 66, no. 1, pp. 137–140, 2017.

[9] U. Muslim and S. Recker, “Emulation Platform to Build Digital Twins
of Edge Computing Environments,” in 2024 IEEE/ACM Symposium on
Edge Computing (SEC). IEEE, 2024, pp. 512–514.

[10] Y. Zheng, S. Yang, and H. Cheng, “An application framework of digital
twin and its case study,” Journal of Ambient Intelligence and Humanized
Computing, vol. 10, pp. 1141–1153, 2019.

[11] F. Wiedner, M. Helm, S. Gallenmüller, and G. Carle, “HVNet:
Hardware-Assisted Virtual Networking on a Single Physical Host,” in
IEEE INFOCOM 2022 - IEEE Conference on Computer Communica-
tions Workshops, INFOCOM 2022 - Workshops, New York, NY, USA,
May 2-5, 2022. IEEE, 2022, pp. 1–6.

[12] R. M. Fujimoto, K. S. Perumalla, and G. F. Riley, Network simulation.
Springer Nature, 2022.

[13] A. Varga, “OMNeT++,” in Modeling and tools for network simulation.
Springer, 2010, pp. 35–59.

[14] A. K. Saluja, S. A. Dargad, and K. Mistry, “A Detailed Analogy of
Network Simulators—NS1, NS2, NS3 and NS4,” Int. J. Future Revolut.
Comput. Sci. Commun. Eng, vol. 3, pp. 291–295, 2017.

[15] K. Kaur, J. Singh, and N. S. Ghumman, “Mininet as software defined
networking testing platform,” in International conference on communi-
cation, computing & systems (ICCCS). IEEE, 2014, pp. 139–42.

[16] J. Yan and D. Jin, “Vt-mininet: Virtual-time-enabled mininet for scalable
and accurate software-define network emulation,” in Proceedings of
the 1st ACM SIGCOMM Symposium on Software Defined Networking
Research, 2015, pp. 1–7.

[17] M. Peuster, H. Karl, and S. van Rossem, “MeDICINE: Rapid prototyping
of production-ready network services in multi-PoP environments,” in
2016 IEEE Conference on Network Function Virtualization and Software
Defined Networks (NFV-SDN), Nov 2016, pp. 148–153.

[18] M. Peuster, J. Kampmeyer, and H. Karl, “Containernet 2.0: A Rapid
Prototyping Platform for Hybrid Service Function Chains,” in 2018 4th
IEEE Conference on Network Softwarization and Workshops (NetSoft),
2018, pp. 335–337.

[19] Y. Dong, X. Yang, X. Li, J. Li, K. Tian, and H. Guan, “High performance
network virtualization with SR-IOV,” in HPCA - 16 2010 The Sixteenth
International Symposium on High-Performance Computer Architecture,
2010, pp. 1–10.

[20] J. Liu, “Evaluating standard-based self-virtualizing devices: A perfor-
mance study on 10 GbE NICs with SR-IOV support,” in 2010 IEEE
International Symposium on Parallel Distributed Processing (IPDPS),
Apr. 2010, pp. 1–12.

[21] Z. Tang, D. Chen, T. Sun, L. Zhang, M. Qi, and X. Wang, “Intelligent
Awareness of Delay-Sensitive Internet Traffic in Digital Twin Network,”
IEEE Journal of Radio Frequency Identification, vol. 6, pp. 891–895,
2022.

[22] E. Soares, G. Sizilio, J. Santos, D. A. Da Costa, and U. Kulesza, “The
effects of continuous integration on software development: a systematic
literature review,” Empirical Software Engineering, vol. 27, no. 3, p. 78,
2022.

[23] M. Vucnik, T. Solc, U. Gregorc, A. Hrovat, K. Bregar, M. Smolnikar,
M. Mohorcic, and C. Fortuna, “Continuous Integration in Wireless
Technology Development,” IEEE Communications Magazine, vol. 56,
no. 12, pp. 74–81, 2018.

[24] S. Rieger, L.-N. Lux, J. Schmitt, and M. Stiemerling, “DigSiNet: Using
Multiple Digital Twins to Provide Rhythmic Network Consistency,” in
NOMS 2024-2024 IEEE Network Operations and Management Sympo-
sium, 2024, pp. 1–5.

[25] Z. Li, M. Kihl, Q. Lu, and J. A. Andersson, “Performance Overhead
Comparison between Hypervisor and Container Based Virtualization,”
in 2017 IEEE 31st International Conference on Advanced Information
Networking and Applications (AINA), 2017, pp. 955–962.

[26] F. Wiedner, M. Helm, A. Daichendt, J. Andre, and G. Carle, “Perfor-
mance evaluation of containers for low-latency packet processing in
virtualized network environments,” Perform. Eval., vol. 166, no. C, Jan.
2025.

[27] S. Gallenmüller, J. Naab, I. Adam, and G. Carle, “5G QoS: Impact of
Security Functions on Latency,” in NOMS 2020 - IEEE/IFIP Network
Operations and Management Symposium, Budapest, Hungary, April 20-
24, 2020. IEEE, 2020, pp. 1–9.

[28] T. Zhang, L. Linguaglossa, J. Roberts, L. Iannone, M. Gallo, and
P. Giaccone, “A benchmarking methodology for evaluating software
switch performance for NFV,” in 2019 IEEE Conference on Network
Softwarization (NetSoft), Jun. 2019, pp. 251–253.

[29] G. K. Lockwood, M. Tatineni, and R. Wagner, “SR-IOV: Performance
Benefits for Virtualized Interconnects,” in Annual Conference of the
Extreme Science and Engineering Discovery Environment, XSEDE ’14,
Atlanta, GA, USA - July 13 - 18, 2014, S. A. Lathrop and J. Alameda,
Eds. ACM, 2014, pp. 47:1–47:7.

[30] A. Daichendt, F. Wiedner, J. Andre, and G. Carle, “Applicability of
Hardware-Supported Containers in Low-Latency Networking,” in 2024
20th International Conference on Network and Service Management
(CNSM). IEEE, 2024, pp. 1–7.

[31] AMD, “Performance Tuning Guidelines for Low Latency Response
on AMD EPYC-Based Servers Application Note,” Jun. 2018, URL:
https://www.amd.com/content/dam/amd/en/documents/epyc-technical-
docs/tuning-guides/56263-EPYC-performance-tuning-app-note.pdf,
Last accessed: Jan 10, 2025.

[32] Intel Corporation, “E810 datasheet rev2.5,” URL: https://cdrdv2-
public.intel.com/613875/613875 E810 Datasheet Rev2.5.pdf, Last Ac-
cessed: Jan 10, 2025.

[33] P. Emmerich, S. Gallenmüller, D. Raumer, F. Wohlfart, and G. Carle,
“MoonGen: A Scriptable High-Speed Packet Generator,” in Proceedings
of the 2015 ACM Internet Measurement Conference, IMC 2015, Tokyo,
Japan, October 28-30, 2015, K. Cho, K. Fukuda, V. S. Pai, and
N. Spring, Eds. ACM, 2015, pp. 275–287.

[34] S. Gallenmüller, F. Wiedner, J. Naab, and G. Carle, “Ducked tails:
trimming the tail latency of (f) packet processing systems,” in 2021 17th
International Conference on Network and Service Management (CNSM).
IEEE, 2021, pp. 537–543.


