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ABSTRACT
State Machine Replication (SMR) allows implementation of fault-
tolerant systems and secure critical infrastructure. The advent of
cryptocurrencies has increased research toward more efficient and
performant consensus and SMR systems. Still, current performance
is not satisfactory for all envisioned use cases. We focus on hetero-
geneous SMR deployments, that cannot benefit from e.g., Remote
Direct Memory Access (RDMA) in pure data center setups, but
offer more predictable network conditions than a set of globally
distributed virtual machines. In this space, tuning of network trans-
port protocols allows for optimization. In this paper, we analyze
secure channel and network stack interdependencies in context of
leader-based consensus. We experimentally quantify the impact
of four transport protocols and two secure channel implementa-
tions on a HotStuff deployment. Our results show, that delays of
a single processing layer often impact all layers above, and typi-
cal optimizations such as command batching or pipelining act as
amplifiers. Except for edge cases, TCP performs best but offers fur-
ther optimization potential through configuration of retransmission
behavior in lossy scenarios. For large loss probabilities above 2%,
transport protocol configuration is not sufficient to confine signifi-
cant replication performance penalties. We demonstrate that tuning
of the transport protocol building block opens a novel optimization
space to a class of leader-based consensus algorithm deployments.

CCS CONCEPTS
• Computer systems organization→ Dependable and fault-
tolerant systems and networks; • Networks → Transport proto-
cols; Network measurement; Network performance analysis.
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1 INTRODUCTION
Over the last decade, optimization efforts towards fault-tolerant sys-
tems have increased significantly. The advent of cryptocurrencies
sparked new research interest in the areas of both permissionless
and permissioned systems. Still, current performance properties are
not satisfactory for all envisioned use cases. Systemswith Byzantine
Fault Tolerance (BFT) can tolerate arbitrary behavior of a certain
number of nodes. This renders BFT a valuable attribute, especially
for secure critical infrastructure. Using the State Machine Replica-
tion (SMR) approach [45], more robust systems can be constructed
by redundantly executing operations on a set of replicas. For a total
number of 𝑛 replicas in a BFT-SMR system we distinguish between
𝑓 faulty and (𝑛 − 𝑓 ) honest nodes. A node is honest if it behaves
according to protocol; faulty otherwise. To preserve correctness
and operation order, request execution needs to be coordinated us-
ing (BFT) consensus. This agreement typically involves significant
processing and communication overhead. Recent works focus on
the optimization of complexity characteristics [21, 37, 58] scaling
properties [18, 29, 34, 50], and better robustness or recovery times in
case of occurring faults [5, 18, 26]. Proposals of new BFT-SMR sys-
tems or components often include implementations, measurements,
or simulations [13, 18, 21, 46, 49], additional to simple specification
and formalization. This increasingly practical orientation also shifts
the research focus towards the underlying network and transmis-
sion [13, 18, 20, 31, 46]. Sit et al. [47] identify network processing as
a relevant source of overhead for leader-based protocols in domain-
optimized setups and propose leveraging hardware acceleration
to support both network processing and Transport Layer Security
(TLS), as a possible replacement for BFT-SMR protocol authentica-
tors. Ailijiang et al. [3] identify message processing in the leader
of Paxos setups as a bottleneck. Von Seck et al. [56] argue for the
optimization of BFT-SMR building blocks, such as the underlying
networking layer, due to widespread strong assumptions on avail-
able communication guarantees. Malkhi and Yin [32] confirm the
potential performance gains by optimization of consensus build-
ing blocks and system considerations, unrelated to fundamental
changes to the consensus protocol itself. The authors recommend
a systematic study of isolated components for both performance
gains and more precise system comparison.

We emphasize the importance of network stack optimization
for SMR systems. For practical systems, consideration of network
impact becomes inevitable, eventually. Either due to safety consid-
erations [35] or simply due to scaling requirements on components
[10]. Most importantly, optimization of an abstract building block
bears the potential to improve all systems, using that component.
Real-world deployments are typically subject to unreliable network
conditions. While this uncertainty is represented through models
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Figure 1: Basic HotStuff communication pattern from [56]

such as partial synchrony [15], performance and robustness implica-
tions of the underlying network stack are typically not considered.
Hence, a thorough analysis of interrelation, secure channel dynam-
ics, and practical evaluation are required to better understand the
impact of network optimization on SMR systems in general.

In this paper, we extend the model of [56] and validate the results
via measurements. We study the impact of network transport pro-
tocols on leader-based consensus communication. In this context,
we analyze the theoretical and practical impact of (D)TLS secure
channels. We construct a representative measurement setup and
experimentally quantify the impact of transport protocol changes
and configuration. We choose HotStuff, an exemplary, state-of-the-
art BFT-SMR system, as a base for our work. HotStuff is subject to a
significant amount of ongoing research [13, 17, 18, 21, 46, 48, 49, 59]
and, as suggested by Spiegelmann et al. [48], it is claimed to be used
as foundation for practical systems, such as Cypherium [12], Diem
[6], and Flow [7]. The leader-based HotStuff design employs many
recent optimization approaches (batching, pipelining, ...) that are
present in other systems. HotStuff also shares the prevalent core
networking assumptions (reliable and authenticated Point-to-Point
(PTP) connections) of BFT-SMR [56], which typically serve as an
abstract and not further specified interface. The performance or
robustness differences presented in this paper will vary between
employed consensus algorithms and deployments. However, the
lockstep broadcast-vote, 1-to-n communication structure of leader-
based consensus (§2) is a central component of many systems
[32], either offering Crash Fault Tolerance (CFT) [27, 38] or BFT
[21, 23, 58]. Optimization of a common building block can improve
all depending systems. Hence, we conjecture that our core insights
and their optimization potential (e.g., retransmission behavior dur-
ing quorum votes) also apply to other algorithms and deployments.

Our key contributions can be summarized as follows:
KC1 Analysis of secure channel and network stack interdepen-

dencies in context of BFT-SMR
KC2 Demonstration of transport protocols as novel performance

optimization space for leader-based consensus
KC3 Experimental performance quantification of four transport

protocols and two secure channel implementations for a
representative BFT-SMR system

2 HOTSTUFF
HotStuff [57, 58] is a leader-based BFT-SMR protocol, designed for
partial synchrony [15]. Its general communication is visualized
in Figure 1. We distinguish between two types of connections, (1)

Client↔Replica and (2) Replica↔Replica. The client starts repli-
cating a command by broadcasting its request to all replicas. Once
the replicas have agreed on the request order and committed their
operations, confirmations are sent to the client. After receiving at
least (𝑓 + 1) matching responses, the client considers a request to
be successful. One decision process over a request is called a view.

Each view involves multiple, similar communication phases be-
tween replicas and the current leader in a broadcast-vote pattern.
The leader creates a proposalMsg for the current phase and broad-
casts it to all replicas. Replicas in turn verify the proposal and
respond with a signed voteMsg. Note that the leader also votes for
its proposals. If the incumbent leader receives (𝑛 − 𝑓 ) valid votes,
it creates a Quorum Certificate (QC), which contains the current
protocol state as well as aggregated vote signature material. A valid
QC serves as justification for advancing to the next phase and is
included in the next proposalMsg. After successfully progressing
through three core phases, PREPARE, PRE-COMMIT, and COMMIT, the
leader broadcasts the final decision to the replicas, which answer
the client. Leadership for a view is justified by (𝑛−𝑓 ) NEW-VIEWmes-
sages, collected by the respective leader in the PREPARE phase. This
allows the leader to learn the latest QC from earlier decisions. If
the incumbent leader does not progress for some time, replicas will
send NEW-VIEW messages to elect a new leader. Additionally, opti-
mization techniques are proposed. Instead of replicating only one
command per view, the current leader caches incoming requests
and proposes a command batch. Only client requests and responses
carry a (configurable) payload to prevent increased transmission
volume. The actual consensus and QCs only reference hashes. Due
to the similarity of the protocol phases, the original authors pro-
pose a pipelined HotStuff variant, Chained HotStuff, in which only
a GENERIC phase exists and a single QC serves as justification for
multiple, parallel views at once (Algorithm 3, [57]). Finally, the au-
thors propose the usage of threshold signatures for QCs, allowing
for signature aggregation. The available open-source implementa-
tion of HotStuff (§6), includes all of the above mechanisms, except
for threshold signatures. Instead of a single aggregated signature,
vectors of secp256k1 [9] non-threshold signatures are employed.

3 SECURE CHANNELS
To implement or complement the assumption of authenticated mes-
sages between nodes, some BFT-SMR systems [34, 50, 55, 58] rely
on secure channels such as TLS [41]. TLS aims to provide confi-
dentiality, authenticity, and integrity as an abstract layer. A core
requirement of TLS is an underlying reliable and in-order transport
(e.g., provided by the Transmission Control Protocol (TCP)). Af-
ter an initial handshake for mutual authentication as well as key
and option negotiation, parties can exchange data securely. TLS
involves the exchange of typed records. Application payloads are
split up into suitably sized blocks and are protected, according to
negotiated options. Assuming an underlying, ordered data stream,
TLS requires strict in-order processing of incoming records. As an
alternative to TLS, the Datagram Transport Layer Security (DTLS)
[42] aims to provide comparable security while (1) omitting strict
order and replay protection and (2) allowing operation over unreli-
able and datagram-based transports (e.g., User Datagram Protocol
(UDP)). DTLS does not implement reliable transport for application
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payloads, either. Record format and operation are similar to TLS,
while DTLS adds additional fields and explicit sequence number
information. A more detailed discussion is provided in §5.3.

4 RELATEDWORK
Due to the plethora of research on BFT-SMR optimization in general,
we restrict our scope to network stack analysis and optimization.We
are aware of works that seek improvements using special (network)
hardware [14, 30, 47] or primitives like Remote Direct Memory Ac-
cess (RDMA) [1, 2, 44]. However, these systems introduce require-
ments typically only fulfilled in data center environments. Similar
to [56], we aim for improvements through common network stack
modification and hence consider the above works only partially
related. We can roughly divide existing related work into three cat-
egories: (1) Work with general relation to network / transport layer
analysis, (2) work that leverages new communication primitives
without special hardware requirements, and (3) work that directly
aims at the optimization of network and transport protocols.

In category (1), Ailijiang et al. [3] present analytical models of
Paxos variants using queueing theory. The dedicated Paxi evalu-
ation platform is later used to compare model-based simulation
results against real-world measurements. Gai et al. [17] conduct
a general analysis of pipelined BFT-SMR protocols, using queue-
ing theory. Established latency models are compared against mea-
surements of several BFT-SMR protocols, including HotStuff, im-
plemented in a newly developed evaluation framework. While a
large set of experimental parameters is varied, no dedicated anal-
ysis of characteristics or impact of and on the transport proto-
col is given. Shahsavari et al. [46] likewise created a theoretical
model of HotStuff to predict performance. The model is simulated
in OMNeT++[54] and results are not compared to practical measure-
ments. The authors consider loss as a parameter, however, possible
impacts on the underlying network stack are not discussed, since
the simulated packet loss is implemented as an application-level
drop. Giridharan et al. [23] address the negative liveness impact
of asynchrony or equivocation in leader-based BFT-SMR proto-
cols with pipelining. They propose a new protocol with continuous
leader rotation, which allows for commit, even if the 𝑘 required QCs
are not formed consecutively. Camaioni et al. [10] work towards
more efficient batching of client transaction payloads in BFT-SMR,
applied by independent broker nodes before submitting the batches
to replicas. For their large-scale experiments, the authors employed
a modified, reliable UDP variant for client-broker connections, to
bypass the significant connection setup and state overhead of ex-
cessive amounts of short-lived TCP connections.

In category (2), a selection of works proposes a separation of
transaction distribution from consensus via a shared mempool ab-
straction [13, 18, 48], addressing communication overhead in leader-
based protocols. In practice, the implementations again rely on a
reliable transport such as TCP per default. The interplay between
transport and memory pool implementation is not analyzed.

Related work in category (3) includes a theoretical analysis and
performance model by Lorünser et al. [31]. The authors discuss the
characteristics and applicability of TCP and UDP as transport pro-
tocols for PBFT, with and without loss. They propose optimistic us-
age of UDP-based communication, using forward error-correcting

codes. Model verification is conducted against simulation in OM-
NeT++ and a Python implementation, running multiple nodes on a
single machine. A discussion of interrelation with other network
layers or secure channel implementation is not provided. The au-
thors attest to significant performance differences for configurable
packet loss of up to 30 %. Ohba et al. [36] propose a content proxim-
ity distribution platform over IEEE 802.11s wireless mesh networks.
The authors use Hyperledger Sawtooth Proof-of-Elapsed-Time con-
sensus for decentralized storage of keying material, employed for
access control on encrypted content. Differences between TCP and
UDPwere practically studied for content distribution, but not agree-
ment. Measurements were conducted on a single machine, using a
dockerized Python implementation over emulated 802.11 protocols
via ns-3 [43]. Finally, von Seck et al. [56] argue for the optimiza-
tion of building blocks in BFT-SMR systems, identifying potential
improvements on the network layer. The authors conduct a the-
oretical analysis of transport protocol and configuration impact
on BFT-SMR, using HotStuff as an exemplary system. However,
neither formal nor practical validation of the claims is provided,
and secure channel impact is not addressed.

Our work is an extension of the efforts of von Seck et al. To the
best of our knowledge, our work is the first to (i) analyze inter-
dependencies of commodity network stack, secure channels and
leader-based consensus in detail, (ii) practically demonstrate opti-
mization potential and (iii) experimentally quantify performance
of network transport optimization on state-of-the-art BFT-SMR.

5 ANALYSIS
We now discuss performance-relevant processes and interdepen-
dencies on the network stack in an exemplary HotStuff deployment.
We collect and discuss potential impacts through consensus proto-
col structure, network, configuration, and secure channel. Then we
summarize and outline the expected system behavior.

5.1 Communication and Dependencies
The original HotStuff paper evaluates End-to-End (E2E) latency
and throughput from the client’s perspective. We adopt this ap-
proach. As outlined by [56], unmasked message loss between client
and replicas (a violation of the common assumption of reliable
transport between nodes) may lead to safety and performance re-
duction in the HotStuff concept implementation by the original
authors. Hence, we limit the discussion of network stack changes
to inter-replica links. Revisiting basic HotStuff (Figure 1), we see
that E2E latency describes the time from sending a CMD-REQ to the
receipt of (𝑓 + 1) matching replica CMD-ANS responses at the client.
Thus, we measure the time for a single decision process on a (batch
of) requested operations. This process includes more than three
subsequent iterations of the broadcast-vote pattern.

Since the execution of the next phase, 𝑝𝑛+1 depends on a cor-
rect majority in the current phase 𝑝𝑛 , delays of 𝑝𝑛 may directly
carry over to 𝑝𝑛+1. This depends on the role of the sending node.
Bottleneck nodes such as client and leader amplify the impact of
message corruption, delay, or loss. If a single vote is lost, the in-
cumbent leader might be able to drive progress with other votes.
Hence, the effect may be limited to the same phase. However, if
a proposal message is lost, the receiver replica might lag behind
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multiple phases, before catching up to the current state. This carry-
over not only affects the current (batch of) commands but also
the pipeline state. Since a single QC can serve in different phases
simultaneously in HotStuff (§2), delay of a single QC decision may
affect 𝑏 · 𝑙 operations for batch size 𝑏 and 𝑙 layers of pipelining.
Finally, due to the nature of exchanged messages, transmitted data
volumes vary significantly between message types and roles. While
vote messages are smaller and constant in size, proposal messages
scale with the batch size and contain additional metadata. While
the sizes of CMD-REQ and CMD-ANSmessages are freely configurable
in the codebase, they may grow considerably for some use cases.

5.2 Network Stack
We briefly summarize key points of the analysis of [56] for gen-
eral protocol and configuration space impact and add details about
transport retransmission behavior. While Internet Protocol (IP)
datagrams support a total size of up to 216 B, the effective size
of transmitted packets is determined by the Maximum Transmis-
sion Unit (MTU), which is typically smaller (1500 B). If a datagram
exceeds the MTU, the IP layer fragments the data over multiple
packets, incurring processing overhead. Assuming a uniform loss
probability per packet, larger datagrams have a higher chance of
suffering a lost fragment. The reassembled datagram is handed to
the next layer for processing if all fragments are available.

Both TCP and the Stream Control Transmission Protocol (SCTP)
avoid IP fragmentation by splitting payloads themselves, TCP into
segments, SCTP into chunks. TCP can often benefit from hardware
offloading support such as TCP Segmentation Offloading (TSO)
[52]. UDP does not offer comparable segmentation logic on its own.
For scenarios without loss, UDP offers lower header, protocol pro-
cessing, and handshake overhead in comparison to TCP and SCTP.
However, this advantage quickly amortizes for longer connections
and larger payloads. In lossy scenarios, plain UDP is not suited
for use in a HotStuff setup due to missing reliability. While both
TCP and SCTP provide reliable transmission, they differ in features
and overhead. TCP has a slightly smaller header and typically prof-
its from TSO. While TCP supports Selective Acknowledgements
(SACKs) [33], information transmitted in SACK options is only
advisory. That is, non-SACKed segments do not need to be retrans-
mitted, but to trigger a retransmission either the Retransmission
Timeout (RTO) [16] must expire, or the sender receives the third
Duplicate Acknowledgment (DupAck) [4]. Operation of purely cu-
mulative Acknowledgments (ACKs), may result in unnecessary
retransmission of already received data [33]. SCTP is built around
the usage of SACKs and gap specifications with different semantics
than TCP. SCTP specifies the generation of a SACK for each re-
ceived, valid data chunk [51]; SACKs are thus generated in higher
frequency. Ordered transmission is optional, and configuration of
protocol behavior is easy through a powerful socket-level API.

Configuration of core transport protocol behavior is possible
along at least two dimensions: (1) Delay and coalescence of writes
and (2) retransmission behavior [56]. For (1), to preserve latency,
corking options as well as Nagle’s algorithm should be avoided - es-
pecially with Delayed Acknowledgements (DelACKs). Optimization
of DelACK times may benefit edge cases with large, unidirectional
streams of small payloads. For (2), Forward RTO-Recovery (F-RTO)

Table 1: Selection of Delay Elements

Layer Delay / Blocking conditions

SMR User Layer Receival of ≥ (𝑓 + 1) matching CMD-ANS to commit

Consensus Layer

Receival of current proposal in order to vote

Receival of enough votes to progress / propose

Receival of enough CMD-REQ to form proposal

Pipelining: Delay of single QC affects multiple batches

Application Layer
Record completely delivered for processing

(TLS only) 𝑟𝑖 processed, before 𝑟𝑖+1 considered

Transport Layer
(TCP / SCTP only) All segments/chunks present

(TCP / SCTP only) ACK / RTO dynamics

Network Layer All fragments present before delivery

should allow fast congestion window restoration after spurious
retransmissions. Optimization of RTO was identified as a possible
way to reduce latency in case of lossy links.

5.3 Secure Channel
Usage of a secure channel implementation such as TLS or DTLS
introduces security features but also complexity as well as channel
en- / decoding overhead. We briefly discuss the properties of (D)TLS
along the dimensions of protocol overhead, fragmentation, order-
ing, and reliability. TLS requires a three-phase handshake, initiated
by the client. The typical header overhead for a single Application
Data type record is 5 B. Record payload sizes in TLS are limited to a
maximum size of 214 + 1 B. Hence, TLS records can exceed the MTU
and must be fragmented accordingly. While explicit record size
limitation negotiation is standardized using TLS extensions [53],
this must be implemented by the calling application. TLS requires
absolute ordered processing of records. A record 𝑟𝑖 should be pro-
cessed completely before record 𝑟𝑖+1 is accepted. In case a fragment
𝜙 of 𝑟𝑖 is lost during transmission, processing of further record data
(or other complete records 𝑟 𝑗 , 𝑗 > 𝑖) of the same connection cannot
continue. Hence, 𝜙 must be retransmitted first to resolve the lock.

DTLS reuses the TLS structure, with additional fields for hand-
shake reliability, fragmentation, and ordering control. The typical
header overhead for a single Application Data type DTLS record
is 13 B, due to additional fields for explicit sequence and epoch
numbers. With a maximum record size of 214 B, DTLS records can
also exceed MTU and need to be fragmented. Record size limit
extensions apply. Since UDP does not offer payload segmentation,
fragmentation is conducted on the network layer. As DTLS does not
require ordering between records, complete records of the same con-
nection can be processed independently. If fragments are missing,
the affected record cannot be processed until retransmission.

5.4 BFT-SMR Impact
We now provide an overview of introduced elements with relevant
impact on latency or the potential to stall execution in Table 1.
Generally, conditions from lower layers are required to process con-
ditions of higher layers. We see, that the final E2E latency of a client
request to a BFT-SMR system is influenced by many factors. To
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outline interdependencies between layers, we discuss the behavior
of a HotStuff setup in the face of lost packets for two scenarios.

5.4.1 TCP / TLS. First, we consider HotStuff, using TCP / TLS
connections between replicas. Now assume that we lose a single
packet, that is part of a leader-sent proposalMsg. On the network
layer, no fragmentation occurs since our stack operates using TCP.
The proposalMsg is already segmented to respect the MTU. On
the transport layer, TCP ensures that all segments eventually ar-
rive at the replica. Since TCP offers a byte-stream abstraction, a
lost packet stalls data delivery to upper layers until retransmission.
Retransmission is either triggered by receipt of the third DupAck
by the replica (fast-retransmit) or RTO expiry. If subsequent packet
exchanges take place without (too much) loss, the leader continues
sending, until it receives the third DupAck from the replica and then
retransmits the missing data. If some of the subsequent packets are
also lost, the sender might not receive enough DupAcks to trigger
a fast retransmission and hence waits for the RTO to expire. This
is costly in terms of latency since the RTO is typically a multiple
of E2E consensus latency (cf. measured HotStuff latencies <40ms
[57]). The described behavior can be triggered if the sender stops
its transmission, and enough of the remaining DupAcks from the
receiver are lost. Reasons for the sending stop include unavailabil-
ity of further application data to transmit or exhaustion of either
congestion or receive window of the receiver.

On the application layer, TLS imposes two central restrictions:
(1) All segments of a record need to be available to begin processing
and (2) record 𝑟𝑖+1 is only considered once processing of current 𝑟𝑖 is
finished. Hence, even if segments ∉ 𝑟𝑖 or other whole records were
available, they would not be processed in parallel. On the consensus
layer, a delayed proposalMsg prevents the replica from voting on
the current and future proposals, until it has caught up. Delayed
votes do not delay overall consensus, as long as the leader receives
(𝑛 − 𝑓 ) votes from other replicas in time. However, this means
that at most 𝑓 votes can be concurrently delayed, without adding
latency. Additionally, if the progress of a single view is disturbed,
this directly impacts both (1) the current batch of requests and (2)
the complete HotStuff decision pipeline. This pipeline stalling is
addressed in newer protocols [23] by allowing for commits, even if
the required 𝑘 QCs are not contiguous. From the client perspective,
the added latency of all layers below affects the E2E latency, if at
least one of the first (𝑓 + 1) CMD-ANS messages received is affected.

5.4.2 SCTP / TLS. Second, we consider the same scenario, but in-
stead using SCTP / TLS replica connections. As SCTP implements
payload splitting, the network layer implications remain the same.
On transport layer, SCTP offers reliable transmission of data chunks
and configurable ordered delivery. However, even if enabled, SCTP
behaves slightly differently in the face of a lost datagram. SCTP
continues to transmit planned chunks, keeps track of gaps through
frequent SACKs, and retransmits missing data with three miss-
indications. The RTO is reset for every received SACK, which ac-
knowledges the next ACK-outstanding data chunk [51], but not for
received out-of-order SACKs with gap specifications. Retransmis-
sion is either triggered by enough incoming miss-indications or
expiry of the RTO. Due to the higher SACK generation frequency
in SCTP, the first case is more probable. However, if a sufficient

amount of SACKs is lost, sender RTO expiry is inevitable. The
implications for higher levels remain the same as with TCP / TLS.

6 EXPERIMENT DESIGN & SETUP
To quantify the impact of transport protocols and configurations,
we implemented multiple variants of HotStuff using TCP [16], UDP
[40], and SCTP [51] as underlying transport for replica connections,
respectively. While plain UDP is an example of a protocol with a
low header and state processing overhead, a fair comparison be-
tween UDP and reliable protocols in lossy scenarios is hard. QUIC
[28] provides reliable transmission, parallel connections between
hosts, and allows for integrated TLS connection establishment in
its handshake. In a Web context, these features can reduce latency
and prevent Head-of-line (HOL) blocking. However, in a HotStuff
context, multiple parallel TLS connections between two replicas or
frequent TLS re-establishments are not expected. Adding more pro-
cessing logic in another network layer defeats the intent of studying
a simple protocol with a small overhead. Hence, we consciously
omit analysis and measurement of QUIC for our experiments.

Instead, we take an approach similar to Camaioni et al. [10].
We implement a simplistic, UDP-based transport variant, which
employs application-level retransmission logic in the HotStuff code.
We call our variant Robust UDP (RUDP). RUDP essentially mimics
standard TCP retransmission in terms of smoothed RTO calculation
[39]. In RUDP, the RTO values are based on implicitly measured
message latency between replicas. Upper and lower bounds on
RTO are chosen not to limit the current Round-trip Time (RTT)
estimation and no congestion control is implemented. Successive
HotStuff messages (e.g., a proposalMsg and voteMsg) serve as im-
plicit acknowledgments for previously received messages, s.t. loss
can be detected. Upon receipt of an erroneous message, an ex-
plicit NACK message is sent. Our implementation is based on the
freely available HotStuff C++ codebase by the original authors1.
A majority of the low-level network logic is implemented in the
salticidae2 network library. Our implementation required modifi-
cation of both projects (e.g., HotStuff code for RUDP timing). For
reproducible results, all measurements are automated, using the pos
framework [19]. The target application is automatically deployed,
executed, and measured on multiple physical machines, to allow
for fine-grained control over communication links and hardware.
All machines run on RAM disks, loading prebuilt images of Ubuntu
Jammy on Kernel v5.15.0-72. HotStuff is built using OpenSSL v1.1.1f-
1ubuntu2_amd64.deb. The machines are reset to a well-known state
between measurement series for experiment isolation.

For the experiments, we use up to 17 local machines of three
different specification types to introduce hardware diversity of a
practical BFT-SMR setup. In a heterogeneous setup, overall system
performance can be limited by the weakest hardware. In HotStuff,
leader and client are the primary bottlenecks in terms of band-
width and processing. Hence, to prevent side effects of hardware
diversity, leader and client roles are always appointed to the most
powerful nodes. The connection topology is shown in Figure 2.
We employ four machines of Group 1 (Intel Xeon Gold 6312U,
24×2.4GHz, 512GB RAM), four machines of Group 2 (AMD EPYC

1https://github.com/hot-stuff/libhotstuff
2https://github.com/Determinant/salticidae

https://github.com/hot-stuff/libhotstuff
https://github.com/Determinant/salticidae


BSCI:’24, July 2, 2024, Singapore, Singapore von Seck et al.

R1 R2 R3 R4

R5R6R7

C

R8 R9 R10 R11

R12

R16 R15 R14 R13

//

10 Gbit/s 1 Gbit/s Group 1 Group 2 Group 3

Figure 2: Testbed Hardware Topology

Client R1

R2

R3

R4
Leader node

plain TCP

variable
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7543, 32×3.8GHz, 512GB RAM), and nine machines of Group 3
(Intel Xeon D-1518, 4×2.2GHz, 32GB RAM). Machines of Group 1
and 2 are connected via Intel E810-XXV, Group 3 via Intel I350 NICs.
The nodes are connected via a series of switches. Client (C) and de-
fault leader (R1) are always designated to machines with a 10Gbit/s
link to prevent possible bandwidth bottlenecks. RTT between nodes
is consistently below 350 µs. The default MTU is 1500 B.

7 EVALUATION
Weanalyze the performance of our implementations in a series of ex-
periments. Akin to the original implementation, we employ (D)TLS
secure channels only between replicas, while the Client↔Replica
connections are not protected. The UDP-based implementations use
DTLS, while the TCP- and SCTP-based implementations employ
TLS. The logical BFT-SMR role configuration is displayed in Figure
3. In order to isolate the effects of the transport protocol choice and
configuration, the measurement setup includes a single client and a
single leader for replica numbers of 𝑛 = 3𝑓 +1, 𝑓 ∈ [1, 5], 𝑛 ∈ [4, 16]
per default. Replica↔Replica links, called variable links, are subject
to changes in transport protocol, secure channel, and configuration.
Communication on Client↔Replica links is always conducted over
plain TCP, to prevent safety and liveness issues with the HotStuff
concept implementation in case of unmasked packet loss [56].

7.1 Measurement Setup
Due to the large parameter space, we evaluate our implementations
with a focus on three categories: (1) impact of input request satura-
tion, (2) impact of transport protocol with and w/o secure channel,
and (3) impact of transport protocol under loss. For each category,
we execute a series of experiments, varying a set of typical BFT-
SMR parameters (e.g., batch size, payload size, replica number), as
conducted in the original HotStuff preprint [57]. To best cover the
parameter space and concisely visualize modification, we typically
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Figure 4: Saturation, Batches, TCP, noTLS, p=0B, n=4

fix all values to a baseline default, except one variable parameter.
For some experiments (§7.4) we choose parameter value combina-
tions deviating from the baseline default, to better highlight the
impact of e.g., transport protocol modification. As central metrics,
we measure the E2E latency for replication of a single command
(batch), analogous to the original paper. We also show the average
throughput in operations per second, calculated over the whole
experiment run. Each experiment is run for 60 s at maximum pos-
sible speed. In case of runs without loss, latencies are filtered for
outliers, discarding all values outside [𝑄1−1.5 · 𝐼𝑄𝑅,𝑄3 +1.5 · 𝐼𝑄𝑅],
where 𝑄1, 𝑄3, and 𝐼𝑄𝑅 refer to the first quartile, third quartile, and
interquartile range, respectively. For runs with loss, results are not
filtered for outliers since loss and retransmission may create latency
spikes which would disappear from visualization. For brevity, the
data set is averaged into a single data point.

7.2 Input Request Saturation
The performance of a BFT-SMR system depends on the applied
input load. To understand the saturation behavior of our setup,
we study system performance under a varying number of client
applications, running in parallel on our client machine. Bandwidth
limits of the client machine were not reached for any experiment. A
single HotStuff client application does not parallelize request send-
ing. Distribution of the client applications over multiple machines
is expected to yield comparable results, as long as the respective
bandwidth limits are not reached and CPU power is proportionate.

Figure 4 shows average latency (left) and cumulative through-
put (right) over all clients in relation to batch size and number of
client applications, for a baseline configuration with TCP, noTLS, a
payload size 𝑝 = 0 B and 𝑛 = 4. We observe from the throughput
values, that a single client suffices to saturate our setup for batches
of 25 up to nearly 50. Above, an increase in batch size does not
yield increased throughput. Hence, client command generation rate
becomes the bottleneck. Increasing the batch size above the cur-
rent saturation point causes a proportional latency increase since
the leader waits longer for a batch of commands to accumulate
before it can propose. In Figure 5, we show average latency (top)
and cumulative throughput (bottom) over all clients, in relation
to command payload size and number of client applications, for a
baseline configuration with TCP, noTLS, and 𝑛 = 4. From through-
put we observe that only a four-client setup is able to saturate our
system for larger payloads, and only for batches of 100. For fewer
clients and/or larger batch sizes a payload increase reduces TPS
and increases latency since the clients are unable to request enough
transactions of the required size and rate. The described trends are
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Figure 6: (D)TLS Performance, p=0B, n=7

amplified in setups with more replicas, since the clients send and
receive data from more replicas for each command (batch).

7.3 Transport Protocol and Secure Channel
Next, we investigate the impact of changes to transport protocol
and secure channel in lossless operation. These results also provide
a baseline for the interpretation of measurements in lossy scenarios.
To better isolate performance influences, we conduct the experi-
ments with one client. This allows us to observe system behavior
with (batch size ∼≤ 50) and without input request saturation.

Figure 6 shows a performance comparison of all investigated
protocols with and without active (D)TLS for different batch sizes.
The setup is fixed to 𝑛 = 7 replicas, and a payload size of 0 B. First,
we note the increased latency gain above batches of 50, due to
lacking input request saturation. From batch size 25 to 50 there
is still a slight latency increase since more command hashes are
included and processed in leader proposals. Without (D)TLS, the
performance differences between different transport protocols in
this setting are insignificant. With active secure channel, for DTLS-
based setups (UDP, RUDP) we observe a consistently increased
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Figure 7: (D)TLS Performance, p=0B, batch size = 50

latency in comparison to the TLS-based setups (TCP, SCTP). Com-
paring TCP and RUDP, for batches ≤ 50, we observe between 14%
to 32% increase, for larger batches between 10% up to 54%. This
can be attributed to increased DTLS protocol overhead on all com-
munication steps for a full HotStuff replication process. Generic
segmentation offloads are activated for all protocols, specific of-
floads are available and in effect for all protocols except SCTP.

Figure 7 displays performance of (de-)activated (D)TLS modes
for different replica numbers. The setup is fixed to a payload size of
0 B, and a batch size of 50. The results are similar to the batch size
variation in Figure 6. Inter-protocol differences without (D)TLS are
not significant, while DTLS-based setups consistently demonstrate
larger latencies in comparison to TLS-based setups. (D)TLS usage
generally incurs a small overhead. For example, activation of TLS
increased TCP latency between 6% and 16% (𝑛 = 16), growing with
increasing replica numbers. We attribute this to the cumulative
processing overhead of more TLS connections on the bottleneck
leader node. More replicas result in larger latencies in general, due
to increased communication and processing overhead in-between
replicas, and client (Figure 1). Note, that the leader can progress
as soon as ℎ(𝑓 ) = (𝑛 − 𝑓 ) = 3𝑓 + 1 − 𝑓 = 2𝑓 + 1 correct votes
arrive. The measured multiplicative latency growth for an increase
in replicas (∼ 1.74, 1.31, 1.29, 1.21, ...), follows the series of ratios
ℎ (𝑓 +1)
ℎ (𝑓 ) =

2(𝑓 +1)+1
2𝑓 +1 , 𝑓 ∈ [1, 2, ...] → (∼ 1.66, 1.4, 1.28, 1.22, ...) with

some variance for small replica numbers.

7.4 Impact of Loss
Loss is an expected variable in practical BFT-SMR systems, caused
by underlying infrastructure characteristics or byzantine behavior.
We study the practical performance impact of different transport
protocols and RTO configuration in lossy scenarios. For this study,
we assume uniformly distributed loss probabilities in the network.
This models an unpredictable network with increasingly bad Qual-
ity of Service (QoS). Since the location and timing of loss are un-
predictable, heuristics, or e.g., intelligent leader rotation, do not
suffice to alleviate loss impact. Hence, the effect of transport pro-
tocol choice and configuration are emphasized. While this impact
may be smaller for targeted loss scenarios (e.g., loss only on one or
current leader link), the underlying mechanics are the same.

We apply a range of uniform loss probabilities 𝑙 = 0.0025 ·2𝑘 , 𝑘 ∈
[0, 6] to all links of our setup (Figure 3). Each occurring packet
loss is independent. The loss behavior is implemented using traffic
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Figure 8: Loss Performance, p=0B, n=7, batch size = 50

control netem [24] of the Linux kernel, which drops a percentage
of outgoing packets before they are queued [25]. For the upcoming
evaluation, we recall that latency (and TPS) values are the result of
processing, spread over multiple nodes, and involving more than
four message roundtrips (Figure 1). Hence, loss always induces
variance, growing with larger loss probability. We recall, that all
loss results include outliers to prevent discarding loss-related spikes.

7.4.1 Transport Protocol Variation. Figure 8 shows latency (left)
and throughput (right) of different transport protocols under in-
creasing loss values. The setup is fixed to a payload size of 0 B, seven
replicas, and a batch size of 50 to ensure input request saturation.
For UDP, lacking retransmission logic, we observe worse results,
or even not a single completed quorum at all (8%, 16%). Except for
UDP, we observe roughly comparable performance for all protocols
up to and including 1% loss. In this range, SCTP performs generally
worse than TCP due to larger protocol overhead and larger mini-
mum RTO (§7.4.2). RUDP generally performs worse than TCP, due
to its naive retransmission implementation, whereupon loss of a
single fragment the whole payload must be retransmitted.

For loss above 1%, result variance and the number of outliers
increase fast and substantially, with the IQR of latency results span-
ning e.g., more than one order of magnitude for TCP with 4% and 8%
loss. For that specific measurement, we attribute the visible SCTP
outperforming TCP for 2% and 4% loss to a combination of (1) TCP
and SCTP retransmission differences (SCTP continues to transmit
planned chunks and remembers gaps with explicit SACKs; §5.4)
and (2) inconveniently occurring losses of TCP packets and respec-
tive DupAcks, resulting in a series of high-latency leader progress
stalls. Throughput values follow the latency analysis. Overall, in the
“stable” loss range ≤ 1%, TCP outperforms other reliable protocols
(e.g., SCTP by ∼ 17% for 0.25% loss). In general, the performance of
the system begins to degrade substantially above 0.5% loss and is
already slowed by roughly an order of magnitude for 2% loss.

Next, we vary the number of replicas and batch size. Figure 9
shows the latency of different transport protocols under increasing
replica numbers, grouped by different batch sizes. The setup is fixed
to a payload size of 0 B, and 0.5% loss. Except for the high-variance
latency of the non-reliable UDP transport, we observe two core
trends in this setup. First, increasing replica numbers results in
higher latencies and reduces latency differences between transport
protocols. This follows directly from the larger fault threshold of the
setup. More inconveniently placed packet losses need to occur at the
same time at the right links to e.g., prevent at least 𝑓 + 1 votes from
reaching the leader in time. For small replica numbers, protocol
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Table 2: SCTP configuration profiles, values in ms

Mode Init Min Max ACKdelay

Default 3,000 1,000 60,000 200
TCPmock 200 200 120,000 200
S100 100 100 100 100
S50 50 50 50 50

differences are significant, with RUDP outperforming SCTP by
up to ∼ 20%, due to smaller protocol overhead and RTO. Second,
increasing batch size reduces latency differences between transport
protocols. We see the already discussed (Figure 6) general latency
increase for setups without input request saturation (batch size
> 50), shadowing smaller latency differences. In summary, transport
protocol performance differences show consistent significance with
low variance in small replica setups for small loss probabilities.

7.4.2 RTO Variation. Inconveniently occurring packet loss can
cause omission of ACKs or retransmission requests, resulting in
an RTO (§5.4). Since RTO duration (e.g., 200ms TCP min RTO)
can exceed a regular HotStuff decision latency (e.g., ∼10ms for
TCP, noTLS, 𝑛 = 16, 𝑝 = 0, 𝑏 = 50) by an order of magnitude, we
study the impact of RTO modification on HotStuff performance.
We choose SCTP as transport protocol for these experiments, since
SCTP RTO configuration values can be comfortably modified on
socket level. Table 2 specifies four RTO configuration profiles, for
initial (Init), minimum (Min), and maximum (Max) RTO values,
as well as DelACK time (§5.2). All values are given in ms. Default
describes the default SCTP settings, TCPmock emulates the default
values of our used Linux TCP stack, and S100 and S50 apply a flat,
static configuration of 100ms and 50ms respectively.

Figure 10 shows latency (left) and throughput (right) of different
configuration profiles under increasing loss values. The setup is
fixed to a payload size of 0 B, seven replicas, and a batch size of 50
to ensure input request saturation. We observe that in the ”stable“
loss region (≤ 1% loss), smaller RTO values generally result in
increased performance. The S50 profile consistently performs best,
with e.g., up to ∼ 35% less latency than the default configuration
for 1% loss. For loss values > 1%, the variance of latency values
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Figure 10: Loss Performance, p=0B, n=7, batch size = 50
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increases drastically, with IQR ranges partially spanning more than
one order of magnitude (e.g., S100, 4% loss). Hence, the plotted
average values are subject to so much noise, that the effect of the
modified RTO is no longer visible. The large latency variations
are caused by occurrence (or non-occurrence) of inconveniently
placed packet losses that trigger large HotStuff implementation
default timeouts, skewing the average results. For example, during
the measurement of S50 with 4% loss, the transport layer failed
to successfully transmit and retransmit multiple relevant HotStuff
messages in time. A leader proposal was not correctly transmitted
to 𝑓 + 1 = 3 replicas, causing the replicas to start a block fetching
routine to acquire the missing block from other replicas. The fetch
routines were again subject to critical packet loss. Finally, this loss
triggered both a leader rotation as well as HotStuff code default
timeouts (fetch timeout, leader progress timeout, ...). For S50 this
occurred three times during the run, while a comparable event only
took place once during the run for the Default configuration.

Next, we study the effect of RTO modification over increasing
replica numbers. Figure 11 shows the latency of different RTO con-
figurations under increasing replica numbers, grouped by different
batch sizes. The setup is fixed to a payload size of 0 B, and 1% loss.
We observe that RTO optimization generally improves latency in
saturated setups (batch size ≤ 50), even for increasing replica num-
bers. For non-saturated setups (batch size > 50), improvements
are shadowed by the generally increasing latency values. Due to
the considerable 1% loss, bigger outliers are already visible, e.g.,
batchsize25-Default-n16 or batchsize100-S50-n4.

Finally, we demonstrate that performance improvements of RTO
modification are primarily governed by the minimum RTO value.
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Figure 12: Latency, 1% loss, p=0B, n=7, batch size = 50

Figure 12 shows scatter plots of E2E latencies of client requests
(Y-axis), sorted by the average performance (op/s, one-second gran-
ularity) that was achieved for the request (X-axis). Subfigure 12a
holds the data for the Default RTO profile, Subfigure 12b for the
S50 profile. The dot color visualizes latency, where blue signifies
the lowest and red the highest latency values of the dataset. The
measurement was conducted with 𝑛 = 7, 1% loss, a payload of 0 B,
and a batch size of 50. We see that the Default profile results in
more requests with lower op/s and clustered plateaus at latencies of
(1000 · 𝑘 + Λ)ms and (200 · 𝑘 + Λ)ms. Here, 𝑘 denotes the number
of RTOs in a single client request (batch), and Λ denotes the com-
mon processing latency without loss. In Figure 12, only plateaus
at 𝑘 = 1 are visible. For profile S50 we instead observe clusters
around (200 ·𝑘 +Λ)ms and (50 ·𝑘 +Λ)ms respectively. The cluster
positions are caused by the minimum RTO value of the Default
(1000ms) and S50 (50ms) profiles in our setup. The 200ms clusters
originate from RTOs on the Client↔Replica connection, which
is plain TCP (min RTO of 200ms) for all experiments (§7). These
visualized RTOs do not need to occur between the same replicas
to delay the overall progress but can be distributed over different
connections and HotStuff phases. In summary, RTO optimization
can improve performance under loss, if the system is not limited
by another bottleneck and effective RTT ≪ minimum RTO.

7.5 Summary
Summing up our findings, we emphasize five core insights.

1. Input request saturation affects both throughput and latency.
Let client request input rate be denoted as 𝜆𝐼 , replica decision rate
as 𝜆𝐷 , and batch size as 𝑏. In the optimal case, 𝜆𝐼 ∼ 𝑏 · 𝜆𝐷 . Over-
saturation (𝜆𝐼 > 𝑏 · 𝜆𝐷 ) introduces unnecessary latency and can
be addressed by increasing 𝑏, leading to an increase in through-
put. On the contrary, undersaturation (𝜆𝐼 < 𝑏 · 𝜆𝐷 ) forfeits poten-
tial throughput. In this case, expanding 𝜆𝐼 can directly increase
throughput, reducing 𝑏 can reduce latency. A “dynamic adjustment”
of batch size, built on decoupled, provable dissemination of e.g.,
block waves or bundles [32], can (i) contribute to improved system
saturation and (ii) aid latency reduction of command backlogs after
asynchronous phases, by committing entire backlogs at once [22].

2. Loss values ≥ 2% reduced performance by approximately an
order of magnitude. 1% loss already introduced considerable vari-
ance and performance loss. Hence, transport protocol configuration
is not sufficient to make BFT-SMR systems suitable for high-loss en-
vironments and additional techniques (e.g., forward error correcting
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codes [31]) need to be considered. In high-loss setups, high result
variance shadows the effects of transport protocol modification.

3. (D)TLS usage imposes a small performance overhead, grow-
ing for larger replica numbers, of up to ∼ 16% for TCP, 𝑛 = 16.
DTLS-based setups consistently perform worse than TLS, with e.g.,
a difference between ∼ 5% and ∼ 25%, between TCP / TLS and
UDP /DTLS for 𝑏 = 50. Generally, we assess the usage of TLS
as secure channel to be a practical solution to realize the typical
BFT-SMR assumption of authenticated communication links.

4. Apart from edge cases, we assess TCP to be the best default
choice among the studied protocols. TCP is well-studied and widely
available hardware offloading support (e.g., TSO) increases per-
formance in practice. We found transport protocol differences in
non-lossy scenarios to be not significant in our setup. In case of loss,
performance differences between protocols and configurations be-
come smaller for larger replica numbers. Setups with small replica
numbers benefit significantly from smaller protocol overhead (e.g.
(R)UDP) and configuration (e.g., RTO). Setups with large numbers
of connections between nodes may require other approaches to
connection management to alleviate the related overhead [10]. BFT-
SMR protocols with multiplexed connections between nodes may
benefit from the usage of QUIC to prevent HOL blocking, preva-
lent in TCP streams. To defend against targeted attacks on BFT-
SMR protocols, agreement-level efforts for increased robustness or
proactive-recovery [8, 11, 22, 26] should be considered.

5. Modification of the minimum RTO (𝑚𝑖𝑛𝑅𝑇𝑂 ) value of a reliable
transport protocol allows for performance improvements of leader-
based consensus communication, if (1) RTOs occur and𝑚𝑖𝑛𝑅𝑇𝑂 ≫
𝑅𝑇𝑇 , and (2) performance is not governed by other, application-
specific behavior (e.g., large HotStuff implementation default time-
outs in face of significant packet loss). Tuning of these timeout
values is expedient. In the best case𝑚𝑖𝑛𝑅𝑇𝑂 =𝑚𝑖𝑛(𝑅𝑇𝑇 ) + 𝜀, 𝜀 > 0.
The actual performance improvement varies and depends on e.g.,
target network RTT, loss probabilities, and default timeout values.

8 CONCLUSION & FUTUREWORK
We conducted an analysis of secure channel and network stack
interrelation for leader-based consensus communication. We show
that delays of a single processing layer often impact all above layers,
and typical optimizations such as batching or pipelining act as fur-
ther amplifiers. We implemented four transport protocols and two
secure channel configurations for an exemplary BFT-SMR setup,
based on the well-known HotStuff protocol. Through experiments,
we quantify the impact in lossy and lossless scenarios. Our results
show that transport and secure channel configuration impacts BFT-
SMR operation, already for small replica numbers and little loss.
The results indicate that it is functional to (1) adjust the command
batch size according to current input request frequency, (2) con-
sider additional robustness measures for execution in high-loss
environments, (3) if possible, employ TCP as the default protocol
except for edge-cases (§7.5), (4) prefer TLS over DTLS secure chan-
nels if used, and (5) adjust both transport protocol (e.g., min RTO)
and consensus algorithm timeouts to match actual system timing
(e.g., RTT) as close as possible. Summing up, transport protocol
optimization opens a novel optimization space for leader-based
consensus and SMR systems. For future work, we aim to study

the optimization potential of other BFT-SMR building blocks, as
well as the impact of different congestion control algorithms on
performance and robustness of BFT-SMR systems for lossy and
adversarial environments.
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