
BFT-Blocks: The Case for Analyzing Networking in

Byzantine Fault Tolerant Consensus

Richard von Seck, Filip Rezabek, Benedikt Jaeger, Sebastian Gallenmüller and Georg Carle
Chair of Network Architectures and Services, Technical University of Munich

{seck, rezabek, jaeger, gallenmu, carle}@net.in.tum.de

Abstract

Construction of robust and distributed systems is possible via the state-machine
replication (SMR) approach. Architectures, featuring byzantine fault tolerance
(BFT), offer additional robustness. Still, after more than 40 years of research,
limitations on performance and scalability for practical systems remain. A large
corpus of existing work improves on consensus complexity, performance and intro-
duces a multitude of optimization techniques. The state-of-the-art is complex. On
the other hand, many protocols designed for practical deployments are built on
strong, common assumptions about underlying communication and authentication
primitives. To fulfill these assumptions, often, commodity tools and libraries are
employed without further analysis and caution for negative interplay.

Instead of contributing to the existing complexity, we choose a different ap-
proach. In this paper, we outline the feasibility and potential impact of the opti-
mization of common building blocks of BFT-SMR systems. We systemize existing
work in terms of common model assumptions and identify optimization potential.
Finally, we choose the building block of networking transport as a representative
example and analyze its optimization space, both in context of general BFT-SMR
systems and a case study of the HotStuff protocol. We describe behavior, challenges,
and desired configuration of network transports for use in byzantine agreement, and
identify lossy links as the main catalyst for significant performance differences be-
tween protocols and configurations.

1 Introduction

Roughly 40 years ago, Lamport, Shostak, and Pease published their seminal papers on
agreement in the presence of faults [1, 2]. The authors modeled behavior and solvability
limitations for arbitrary behaving – byzantine – faulty processes, and provided basic solu-
tions to consensus with Byzantine Fault Tolerance (BFT). The State Machine Replication
(SMR) paradigm [3] allows building resilient distributed systems by introducing redun-
dancy, masking a predefined number of f faults. A computational process, is redundantly
executed on n independent nodes, we call replicas. By enforcing a total order on the
inputs to the replica state machines, e.g., via (BFT) consensus, all (n− f) non-faulty or
honest replicas will exhibit the same behavior. Aggregating the final replica results allows
masking faults of a minority of faulty replicas. However, SMR and BFT consensus come
at a price. Replica execution needs to be synchronized, and the necessary protocols incur
a significant communication and processing overhead. Consequently, a plethora of work
has been dedicated to the optimization of SMR and BFT systems.

Despite these activities, limitations for practical use remain. Hence there is poten-
tial for further optimization. In fact, the limitations are so significant that even mod-
ern systems, focused on scalability, struggle to maintain performance beyond hundreds
of replicas [4–7]. The theoretical bounds for communication complexity depend on the
model assumptions, but modern systems are typically in the order of O(n2) [5]. Besides
limitations from performance and scalability constraints, Chondros et al. [8] identified a

1

lack of usability of existing approaches, opaque performance overhead for target use cases,
and significant engineering effort as an obstacle for practical deployment. Kotla et al. [9]
identified system and configuration complexity as a hindrance of practical adoption, as a
sensible choice in the parameter space is increasingly hard.

Even though many publications aim for construction of practical systems, a majority
of BFT-SMR optimization research is focused on the study of conceptual modifications to
agreement algorithm or model assumptions [10]. Problems with this approach have been
identified on multiple accounts. As outlined by the authors of Zyzzyva [9]: “Why another
BFT protocol? The state of the art for BFT state machine replication is distressingly
complex.”. This statement is underlined by a detailed survey of total order broadcast
algorithms and their complexity as early as 2004 by Défago et al. [11]. Guerraoui et
al. [10] assess BFT-SMR systems to be “notoriously difficult to develop, test and prove”.
Singh et al. [12] suggest that algorithm-level optimization is mostly subject to tradeoffs
and even go so far as to state that “one-size-fits-all protocols may be hard if not impossible
to design in practice”.

Our Approach Instead of contributing to the existing complexity and introducing –
possibly breaking – changes to protocols with already proven safety properties, we argue
for a different approach. As we show in §2, a majority of practical systems shares a
common subset of model assumptions. These also result in common building blocks, used
across implementations. By optimizing a necessary building block, safe improvements
can be achieved that apply to a large number of systems. Furthermore, we argue that
design and optimization of practical BFT-SMR systems require revisiting some of the
established assumptions. We agree with recent research on longest chain consensus [13,14]
that a mismatch between the established, idealized network model and the challenges of
practical BFT-SMR systems exists. Therefore, we focus on analysis and optimization
of the underlying networking layer. We study the effects of different transport protocol
behavior on BFT-SMR systems in general and conduct a case study on an exemplary
state-of-the-art protocol, HotStuff [5].

Key Contributions

KC1 Outline feasibility and impact of building block optimization in BFT-SMR systems

KC2 Systematization of practical BFT-SMR systems in terms of networking architecture

KC3 Optimization space analysis of the network transport building block for BFT-SMR
systems, including a case study of HotStuff

As many systems share network transport building blocks, our findings are generally
applicable to all related BFT-SMR protocols. The rest of the paper is organized as
follows: In §2 we argue for optimization of building blocks in BFT-SMR systems as a
high-impact approach (KC1, KC2). For this paper, we choose the building block of
network transport for further study and analysis. We discuss related work in §3. In §4
we introduce HotStuff, an exemplary, state-of-the-art BFT-SMR system. We conduct
a network impact case study on HotStuff in §5, identifying bottlenecks and discussing
message loss (KC3). In §6 we explore the optimization space of the network transport
layer for BFT-SMR protocols in general (KC3). We conclude our paper in §7.

2

2 Building Block Optimization

To make our case for the impact of optimizing BFT-SMR building blocks and select
suitable targets, we outline common model assumptions and techniques, used in existing
systems. A diverse set of optimization approaches for BFT-SMR protocols has been
developed. However, even for fundamentally different systems, a common subset of core
assumptions emerges:

I. Reliable communication [4–7,15–24]

II. Point-to-point interconnections between all nodes [4–7,10,15–19,21–28]

III. Authenticated messages [4–7,9, 10,15–29]

From a BFT-SMR protocol perspective, these assumptions offer a more relaxed design
space. They help to mask network-related transmission failures (I.), abstract possible
underlying network topology as well as influence on transmission by malicious nodes (II.)
and reduce the required number of replicas (e.g., assuming synchronous communication)
to achieve consensus (III.). To approximate these assumptions in real deployments, ad-
ditional overhead from underlying technology is introduced. Assumptions I. and II. are
typically realized using TCP/IP connections between replicas [4–7, 15, 16, 26, 28]. As-
sumption II. is typically not satisfied through direct hardware interconnections (consider
deployment in large scale Wide Area Network (WAN) setups [7]) but only emulated by
logical connections between each possible pair of nodes. On a network level, the exchanged
data is then still routed across a (TCP/)IP network. In addition to BFT-SMR protocol
message authentication (e.g., via cryptographic signatures) from Assumption III., some
systems employ generalized secure channel implementations such as TLS as part of their
networking stack [4–7, 15]. Consequently, optimization of the transport protocol or net-
working stack directly improves performance of all protocols, that employ the respective
building block.

3 Related Work

A plethora of approaches, optimizing BFT-SMR systems has been published so far (§2).
We are aware of approaches that leverage special networking hardware [30–32] or commu-
nication primitives like Remote Direct Memory Access (RDMA) [33,34] for performance
improvements. However, these specialized requirements limit the applicability to e.g.,
data center deployments. As we focus on general network transport optimization, we
consider this work only slightly related. For brevity, we discuss only the most closely re-
lated approaches, theoretically investigating usage and modification of standard network
transport in BFT-SMR systems. Secondly, we discuss works with general or network
bottleneck analysis.

Study of Network Transport Clement et al. proposed the BFT protocol Aardvark
[35], focused on more robust and performant operation under actual byzantine behavior
in the network. The authors studied the performance of a selection of BFT protocols,
as well as their response to flooding with TCP and UDP traffic. Resulting performance
degradation with either transport protocol is attributed to the implementation, not the
general protocol design. Chondros et al. [8] discuss the usage of UDP in PBFT and outline
its possible robustness and performance limitations in case of packet loss. The authors
conclude, that in a practical setup, unreliable communication has a significant impact

3

on performance and robustness. Lorünser et al. [36] conducted a probabilistic study
of the impact of TCP and UDP usage on PBFT. The authors propose an optimistic
usage of UDP-based communication, combined with forward error-correcting codes to
address possible packet loss. Validation of the model is conducted using simulations with
OMNeT++. Packet loss of up to 30% is studied, for which the authors assess significant
performance differences.

Recently, more research has started to question and extend the prevalent networking
assumptions (§2) to address the gap between model and real-world implementation. This
work mostly applies to the permissionless case of webscale Blockchain systems. Motivated
by spamming attacks on longest chain Proof-of-Stake (PoS) consensus, Neu et al. [13]
introduce an extended networking model to capture bandwidth constraints. They propose
modified download rules for which they prove security in bandwidth-constrained networks.
Another contribution to longest chain PoS consensus is presented by Corretti et al. [14].
The authors propose a byzantine-resilient gossip protocol, designed to impede resource-
restricted attackers.

Bottleneck Analysis in Literature Previous work identified several causes for per-
formance limitations in BFT-SMR systems. For single-leader-based protocols, the leader
is consistently identified as a system bottleneck node [7, 9, 19, 32, 37–39]. However, in
a more detailed analysis of the underlying bottleneck, the literature provides varying
reasoning for different systems and environments. In high-performance-low-latency envi-
ronments [32,33,39] as well as massively scaled scenarios [4,7] the processing overhead of
network communication is identified as bottleneck. Wang et al. [33], as well as Dang et
al. [32] identify OS kernel processing to be the main source of overhead. Stathakopoulou
et al. [7] assume leader bandwidth to be the first, and client authentication to be the
second bottleneck.

Older protocols, which use asymmetric cryptography for signing replica votes, identify
cryptographic processing cost as main overhead [40,41]. But also newer works, which em-
ploy MAC-based authentication [9, 25], modern BFT-SMR optimization techniques such
as batching, multiple leaders or threshold signatures [5,19,26,42] argue for cryptography
processing to be the main bottleneck. Other publications just identify a general CPU
bottleneck, without further distinguishing a cause [37, 43, 44]. To summarize, except for
the leader node in single-leader protocols, a “general” bottleneck is not consistently iden-
tified, as it depends on the system environment, protocol and configuration. Previous
work has assessed a tendency towards increased network overhead in large WANs and
high-performance-low-latency networks. Additionally, the choice of protocol parameters
influences the shift of the major overhead source. As already outlined by Stathakopoulou
et al. [7], a smaller payload size per request shifts the bottleneck towards a CPU and
verification load, while larger payload sizes may result in bandwidth limitations.

4 HotStuff

HotStuff [5] is a leader-based BFT-SMR protocol, designed for the partial synchrony
model, and is used as base for the design of the Libra Blockchain project [45]. HotStuff
assumes authenticated, reliable, and point-to-point connections; realized in the author
implementation through a combination of TCP/TLS channels and elliptic curve signatures
on votes.

4

Client Client

R1

R2

R3

R4

R1

R2

R3

R4

voteMsg

R1

R2

R3

R4

R1

R2

R3

R4

voteMsg

R1

R2

R3

R4

R1

R2

R3

R4

voteMsg

R1

R2

R3

R4

R1

R2

R3

R4

PREPARE

Phase
PRE-COMMIT

Phase
COMMIT

Phase
DECIDE

Phase

CMD-REQ CMD-ANSPREPARE

proposalMsg

PRE-COMMIT

proposalMsg

COMMIT

proposalMsg

DECIDE

Figure 1: Communication pattern in basic HotStuff [5]

Basic Communication Communication in a practical HotStuff deployment comprises
two main categories. (1) Communication between a client and the replicas, and (2)
communication of replicas with each other. Each replication or view starts with a client,
sending a command request to all replicas. After the replicas have reached agreement on
request order, each replica sends back a response to the client. The client waits for at
least (f +1) matching responses from the replicas to register the issued command request
as committed. Communication between replicas is conducted in a broadcast-vote pattern,
as displayed in Fig. 1. Except for fetching missing state, replicas are not communicating
between each other, but only with the current leader. The leader broadcasts a voting
request to all replicas which verify the message and respond with a vote. The leader
collects the votes and, given (n − f) votes, forms a Quorum Certificate (QC) from the
signatures of all correct replies. This QC is then used to justify the next step in the
agreement protocol. Note that a leader replica both broadcasts to itself, as well as votes
for its own broadcasts.

In more detail, one view is organized into three core phases, namely PREPARE,
PRE-COMMIT, and COMMIT. In the PREPARE phase the current leader collects (n − f)
NEW-VIEW messages, legitimatizing his current reign and carrying the latest valid QC,
known to the replicas. Using this knowledge, the leader forms a proposal for the next
unprocessed client request (batch), justified by the most recent, valid QC. Following the
same, basic communication pattern, in the PRE-COMMIT and COMMIT phases the leader
asks the replicas by broadcast to advance to the next phase, collects replica votes and
forms another QC. After receiving (n − f) COMMIT votes, the leader executes the final
DECIDE phase, in which this COMMIT QC is wrapped into a DECIDE message and sent to
the replicas. Upon receiving this notification, the replicas execute the requested command
and answer the client. Replicas persist their operation state, including decision, opera-
tion hashes and QCs in a block, which is appended to the local replicated data store, the
“Blockchain”.

Pipelining As an optimization to the basic protocol described above, where each deci-
sion on one (batch of) client commands requires to pass through multiple phases, HotStuff
introduced pipelining of views. Since all phases are very similar in their basic commu-
nication pattern of broadcast-vote, a single QC can be used in parallel in different view
executions to justify progress. The similarity of the executed phases is also translated
into notation, where no distinction between phases is made, and only GENERIC phases

5

Client

CMD-REQ

Leader

Replica

Replica

Replica

(a) (F1)

Client

NEW-VIEW

voteMsg Leader

Replica

Replica

Replica

(b) (F2)

Client

proposalMsg

Leader

Replica

Replica

Replica

(c) (F3)

Client

CMD-ANS

Leader

Replica

Replica

Replica

(d) (F4)

Figure 2: Regular communication flows in HotStuff

and GENERIC-QCs exist (Algorithm 3, [5])

5 Network Impact Case-Study

We study network effects on HotStuff as exemplary, leader-based BFT-SMR system. This
includes a flow analysis to identify bottlenecks, and a discussion of message loss impact.
The case study serves as reference model for our optimization analysis of network trans-
ports in general BFT-SMR (§6).

5.1 Flow Analysis

We analyze frequency and payload size of transmissions during a typical protocol run.
To simplify the model, we assume n = 4, a single client issuing requests and no lost
command requests from client to replicas. As outlined in §4, HotStuff features two dom-
inant communication patterns. One between client and replicas and the second between
the replicas themselves. Differentiating by transmission direction, we end up with four
general types of data flows between nodes, pictured in Fig. 2. We enumerate these four
flows as Flow 1 (F1) to Flow 4 (F4). Flows in Fig. 2 consist of a certain set of messages,
which we take into account for our analysis. We adopt the message names where defined
in the original HotStuff paper. F1 comprises only the client to send a command request
(CMD-REQ) to all available replicas. F2 describes communication from the replicas to the
current leader, such as NEW-VIEW messages and votes (voteMsg) for received proposals.
F3 contains new proposal messages from the current leader to other replicas. Finally, F4

6

describes replicas, sending command answers (CMD-ANS) back to the client, after commit
of the respective requested operation.

5.1.1 Payload Analysis

Assume that peer P has outgoing (→) communication in flow ϕ. Then we denote this
flow as P→ϕ and the size of the transmitted payload as |P→ϕ |. Incoming communication
is denoted by (←) respectively. The payload size of a certain message m is denoted by
|m|. Following this notation, we now analyze the payload size of the roles of Client (C),
Replica (R) and Leader (L) for the flows and message names defined in Fig. 2. Note that
leader and replica are handled as separate roles in the following discussion, but in practice
one physical node fulfills both roles at the same time, incurring the total overhead of both
roles.

|C→1 | = n · |CMD-REQ| (1)

|R←1 | = |CMD-REQ| (2)

In F1, the client sends out one command request to each registered replica, which receives
exactly this request.

|R→2 | = |NEW-VIEW| (3)

|R→2 | = |vote(GENERIC)| (4)

|L←2 | = n · |R→2 | = n · |NEW-VIEW| (5)

|L←2 | = n · |R→2 | = n · |vote(GENERIC)| (6)

In F2, replicas either send NEW-VIEWmessages to the new leader (3), or vote for the current
proposal (4). Since the available codebase implements the pipelined HotStuff variant,
votes and proposals are of type GENERIC. Conversely, the respective leader receives at
least (n− f) ∈ O(n) messages in either case. While the HotStuff code only considers the
first (n − f) valid votes for further cryptographic processing (e.g., creation of QCs), the
incoming messages are still rudimentary processed before this decision. For our model
we assume a scenario in which all replicas participate in this step (fault-free execution,
maximum possible load). Thus, we model the payload strain with n responses.

|L→3 | = n · |proposal(GENERIC)| (7)

|R←3 | = |proposal(GENERIC)| (8)

In F3, the leader transmits the next proposal to all replicas, which receive this message
once.

|R→4 | = |CMD-ANS| (9)

|C←4 | = n · |CMD-ANS| (10)

In final flow F4, all replicas answer the client request. While the client only requires (f+1)
matching CMD-ANS messages in theory, excess messages are still received and interpreted
by both networking stack and HotStuff client code. We therefore model the payload strain
in (10) with n responses.

Independent of the actual payload size, we can directly identify two potential bottle-
necks in this communication structure. As outlined in previous literature (§3), the single
leader is subject to high transmission and processing volumes, scaling with the number
of replicas n. However, considering a single client setup, also the client is subjected to

7

considerable transmission and processing load, scaling with the number of replicas n. The
operation of multiple parallel clients, requesting independent operations, affects both F1
and F4. Denoting the number of clients as c, we find

|C→1 |′ = n · |CMD-REQ| (11)

|R←1 |′ = c · |CMD-REQ| (12)

|R→4 |′ = c · |CMD-ANS| (13)

|C←4 |′ = n · |CMD-ANS| (14)

As we see, an increasing number of clients results in more strain on the replicas (cf. (12),
(13)), potentially shifting the bottleneck towards the replicas. The general strain on the
client becomes more pronounced, when command batching is active. While agreement
protocol messages between replicas (F2 and F3) only contain a batch of hashes of client
commands to execute, client requests (F1) and responses (F4) directly contain batches
of the full payload1. In other words, the message size of |CMD-REQ| and |CMD-ANS| scales
multiplicatively with both batch size and payload size. As CMD-ANS messages in F4 are
sent by a majority of the n replicas at roughly the same time, the client strain in this
scenario is considerable.

5.2 Effect of message loss

If not masked by the underlying transport protocol, packet loss may significantly impact
operation and performance of the BFT-SMR protocol. In the following we analyze this
impact on HotStuff flows (Fig. 2) and argue for the necessity of reliable communication
for safety and liveness.

F1 In F1, loss of CMD-REQ messages can cause instability of the protocol execution.
In HotStuff, consensus decisions over a client command are formed via communication of
command hashes, not the actual command payloads. In the HotStuff implementation, the
commands to execute are only transmitted via CMD-REQ messages from client to replica.
While the replicas can request missing “blocks” (§4) from other replicas, if they receive a
proposal with an unknown block hash, these transmitted blocks do not contain the actual
payloads to execute. Furthermore, replicas do not check if they received a CMD-REQ mes-
sage from the client before voting on proposals. Hence, if transmission of a CMD-REQ fails,
the replica is not able to obtain (and finally execute) the missing commands, except if
the agreement fails and the commands are resent by the client. At the same time, these
replicas will not send a CMD-ANS message to the client in F4, even if the agreement on
the hashes succeeded. Thus, either replicas, missing the commands, will fall behind the
state of other replicas, or the client will not receive enough (f+1) responses to accept the
committed decision. If the transmission of CMD-REQ to the leader fails, it will not create
a proposal for these commands and a new leader is elected. If a client waits indefinitely
for some answer to its issued CMD-REQ messages, the whole process might get stuck for
subsequent transmission failures to leaders, as the number of CMD-REQ messages in flight
is limited in the HotStuff implementation.

F2 Loss of a voteMsg does not necessarily result in a failed agreement, as long as the
leader still receives (n− f) other valid votes from which he can form a QC. If the leader
makes progress, the next successful proposal message will allow the replica to catch up.

1The HotStuff codebase allows independent configuration of request/response payload size, we assume
equal payload sizes for our paper.

8

If the leader receives less than (n − f) valid votes, the current view cannot continue
and a new leader will be elected. Leader election in HotStuff is realized by the replicas
sending NEW-VIEW messages to the new leader. Once the new leader has collected (n− f)
NEW-VIEW messages, he can create a new valid proposal. Otherwise the leader will never
create a proposal for this view and execution will stall until the next NEW-VIEW interrupt.

F3 In case a proposalMsg is lost, the affected replica r can not participate in the current
voting round. Additionally, r will not transition its view state, as it is missing the QC
and block from the proposal. However, the current leader and other replicas that received
the proposal can indeed make progress, assuming there are enough correct replicas left
to form a quorum. If the other replicas make progress, r cannot directly participate in
the next view and first needs to catch up to the current block using BLOCK-REQ messages.
Due to this delay, r could potentially lag behind, preventing progress.

F4 Loss of CMD-ANS messages mainly affects the client in his assumption of the replica
state. If (f + 1) valid and equal responses are received, the BFT-SMR protocol can
continue regularly. However, if the replicas accepted and executed a client command c,
but the client does not receive enough responses, the client view and the actual state of the
system diverge. This is a problem if e.g., c is not an idempotent operation on the replica
state. The client assumes that execution of c failed and might schedule a request of c for
a second time. The exact implications of this behavior is dependent on the application,
that is to be replicated.

6 Network Transport Analysis

In this section we analyze transport protocol characteristics, configuration space, conges-
tion control and their interaction with BFT-SMR systems in general. We choose UDP,
TCP, and SCTP [46–48] as representative transport protocols for our discussion. Where
suitable, we provide context from our HotStuff case study (§5) for clarification.

6.1 Reliable transmission

As established in §2, the main task of the transport protocol is to provide the abstraction
of a reliable, point-to-point connection between peers. Therefore, we focus our discussion
to two situations, operation without and operation with packet loss. We deem dedicated
attacks on transport-layer level (e.g., TCP SYN Flood) out of the scope of this paper
and refer to the respective literature for performance impact and defense strategies. Care
should be taken to avoid IP fragmentation by choice of protocol or configuration param-
eters, as it bears potential for both performance reduction and security concerns [49,50].
Either the transport protocol or the above application (layer) should ensure that trans-
mitted payloads do not violate the path Maximum Transmission Unit (MTU).

Operation without loss If the BFT-SMR protocol is executed in an environment
without loss, masking of omission failures does not need to be handled by the transport
protocol. Devoted resources to this problem are unnecessary overhead.
We first discuss UDP. Due to its connectionless nature, no initial setup between communi-
cation partners is necessary. UDP thus avoids the small delay caused by initial handshake
round trips. The average delay impact of the connection setup becomes negligible, the

9

longer the connection actively persists. For operation modes with strict low-latency re-
quirements or modes where requests are sent in high-throughput bursts, with considerable
pause between two bursts, the impact may be higher. No additional state is saved for
transmitted or received packets. If no IP fragmentation takes place, possible reordering
of packets during transmission does not affect plain UDP throughput. Reordering needs
to be handled by the consuming application/layer, if necessary at all. Without omission
failures, UDP thus provides small initial delay and reduced processing and state overhead
during transmission.

For TCP, a three-way-handshake (> 1 Round-trip Time (RTT)) is necessary before
sending any data. This extra delay must be taken into account for low-latency require-
ments or burst sending operation. One of the core features of TCP is its abstraction of an
ordered byte-stream communication interface. Without omission failures, logic and state
keeping for retransmission of lost packets is unnecessary overhead. So is the logic for
ordered delivery, in case ordering is not required. Additionally, TCP features mechanisms
for Congestion Control (CC), which may contribute to but also interfere with performant
BFT-SMR protocol operation (§6.3). Adequate scaling of transmitted BFT-SMR pay-
loads to prevent MTU exceeding is helpful to achieve good performance. However, TCP
is also able to autonomously split submitted data, if the size of the payload, the con-
figuration, and a suitably negotiated Maximum Segment Size (MSS) [47] allow. A more
detailed discussion of protocol configuration is provided in §6.2.

Consequently, without omission failures, TCP usage results in state and processing
overhead. More so, if the upper layer does not require strictly ordered transmission.
Initial connection setup delay might be detrimental to low-latency request and burst
transmission operation.

Finally, we analyze SCTP. A four-way-handshake (≥ 2 RTT) is required before trans-
mission of payloads can proceed. Akin to TCP, this might negatively affect low-latency
requirements or burst sending operation. Without omission failures, SCTP's retransmis-
sion logic and state are unnecessary. Ordered delivery for messages can be deactivated,
providing more flexibility. Like TCP, SCTP provides CC mechanisms. SCTP additionally
provides path MTU discovery and user data fragmentation [48]. Thus, without omission
failures, SCTP involves more overhead than TCP, considering a costlier initial handshake,
as well as retransmission and CC logic overhead.

Operation with loss During the operation of BFT-SMR systems, especially in setups
without Quality of Service (QoS) guarantees, packet loss can occur. In order to prevent
such omission failures to be interpreted as faulty replicas by the consensus protocol,
typically reliable connections are assumed (§2). If these omission failures are not masked,
they potentially trigger expensive slow-path fallback routines in optimistic protocols [6,9,
51] or a leader-change in leader-based protocols. If the number of omission failures exceeds
the expected number of faults f , progress can be prevented completely. Depending on the
employed transport protocol in a practical setup, the effects of packet loss on performance
and general system behavior may differ.

In case of UDP, no reliability and no additional state logic is provided. UDP does
not track if a packet is lost and does not take any further action. No state is changed.
Thus omission failure handling responsibility is directly transferred to the higher layer.
The effects on the BFT-SMR protocol are immediate. Our analysis of omission failure
impact on HotStuff (§5.2) demonstrates, that state desynchronization is possible when
using plain UDP on client ↔ replica links. Safety impact on other BFT-SMR protocols
may vary, although unhandled omission failures will likely reduce performance.

TCP provides explicit logic for handling retransmission of lost segments, as well as con-

10

gestion and flow control. TCP can detect loss of segments by keeping track of sequence
numbers, following the amount of transmitted bytes. The receiver sends Acknowledg-
ments (ACKs) to the sender, stating the sequence number of the next expected byte. As
reordering of segments during transmission can occur, not every out-of-order reception is
caused by loss. To detect loss, modern TCP employs two techniques: A Retransmission
Timeout (RTO) [47] and Duplicate Acknowledgments (DupAcks) [52]. The sender ex-
pects a (cumulative) ACK for each byte transmitted. If no ACK is received for a certain
time, a retransmission is triggered. The actual timeout (RTO) is calculated as a bounded,
smoothed and delayed estimation of the current RTT [47]. If a retransmission is triggered
because the RTO expired, the current RTO is doubled, resulting in an exponential “back
off” behavior [53]. In modern versions of the Linux kernel (e.g., v4.19.194), the lower
and upper bounds for TCP RTO are defined as 200ms and 120 s, respectively, assuming
a kernel timer interrupt frequency of 1000Hz. However, usually the delay between two
successively sent segments is much smaller than the configured TCP RTO MIN value. If
a segment is lost during transmission, the receiver might receive data out-of-order. In
this case, the receiver sends an immediate DupAck to inform the sender of the originally
expected data. Since TCP masks omission failures by retransmission, the BFT-SMR pro-
tocol is affected in terms of performance. Besides the overhead due to retransmission
logic, suboptimal choice of timeout values (e.g., RTO) and omission faults interpreted as
network congestion can reduce the available transport protocol throughput [54].

In a similar fashion to TCP, SCTP provides reliable transmission as well as CC and
Flow Control (FC). In order to realize reliable transmission, SCTP employs sequence
numbers. However, as SCTP also allows for unordered transmission, network transmis-
sion sequence and sequence of delivery to the higher-level application are kept logically
separate. In other words, SCTP accepts and caches incoming datagrams, even if the
contained data chunks are out-of-order. Instead of exclusively cumulative ACKs as in
TCP, SCTP also uses Selective Acknowledgements (SACKs), which acknowledge certain
ranges of received data chunks, using explicit Gap Ack specifications [48]. To detect loss,
SCTP employs two techniques: Explicit gap specification in SACKs and an RTO. The
calculation of SCTP RTO is very similar to the calculation performed by TCP, including
the exponential back-off behavior described before. The recommended values for SCTP
RTO configuration [48] are slightly differing from the TCP defaults with RTO.Min = 1 s
and RTO.Max = 60 s. SCTP also provides CC. The basic algorithms used by SCTP are
also based on TCP CC, as defined in RFC 2581 [52]. Differences mainly emerge for multi-
homing setups. As SCTP masks omission failures by retransmission, again the upper layer
BFT-SMR protocol is affected in terms of performance. While suboptimal configuration
of protocol parameters (e.g., RTO) can have a negative impact, configuration is easier for
SCTP due to its accessible socket option interface.

6.2 Impact of Protocol Configuration

While a complete analysis of all options is out-of-scope, we discuss parameters with po-
tential impact upon execution of a BFT-SMR protocol. We begin with an analysis of
general protocol options and discuss details of CC afterwards. We limit our discussion of
general transport protocol options to network stack implementations for a recent Linux
Kernel (i. e., v4.19.194). Configuration is generally possible through three interfaces, the
proc filesystem, socket options and modification of kernel parameters or code. Most con-
figuration options are provided by the TCP stack, SCTP does not offer configuration via
procfs and the number of relevant UDP configuration options is negligible. Relevant
options can be categorized along two classes: (I) Delay and coalescence of small writes

11

Option Layer Effect

tcp autocorking procfs Merge socket writes in the same flow, if at least one
packet in Queuing Discipline (qdisc) or device transmit
flow

TCP CORK Socket Queue small submitted writes until a full frame can be
sent, this option is removed or 200ms elapsed

TCP NODELAY/
SCTP NODELAY

Socket Nagle's Algorithm off, segments are sent out as early as
possible

TCP QUICKACK Socket Toggle Quick ACK mode. If active, ACKs are sent im-
mediately. Non-permanent, overridden by kernel.

TCP DELACK MIN/
TCP DELACK MAX

Kernel Configure min and max delay time if delayed ACKs are
active

Table 1: Delay and Coalescence behavior parameters

and (II) retransmission behavior. Documentation of available procfs and socket options
is provided in the Linux Programmer's Manual pages for UDP, TCP, and SCTP [55–57].

Delay and Coalescence of Writes In certain scenarios, deliberate delay and merge
of many small writes to a socket can be advantageous. From a protocol efficiency perspec-
tive, sending a large number of packets with a small payload results in bandwidth and
processing overhead. A number of related options is given in Table 1. TCP offers mul-
tiple parameters to coalesce socket writes. If tcp autocorking is enabled, small socket
writes are buffered and coalesced, if at least one packet from the same flow is currently in
a qdisc or device transmit flow. Thus, latency of a single segment might increase in case of
many small, subsequent writes to the same target. In the context of typical HotStuff oper-
ation, this situation can only occur in client-replica communication (F1, F4), if the client
sends multiple small CMD-REQ messages to a replica and the replica answers with multiple
small CMD-ANS messages after a successful commit. In all other flows (§5.1), write calls to
the same target depend on previous input (e.g., the next leader / replica message). This
request-response communication structure is also present in other BFT-SMR protocols.
While a small payload increases relative protocol payload overhead, minimizing latency
for CMD-REQ and CMD-ANS messages (or their equivalents in other BFT-SMR protocols)
should be prioritized, if the additional delay of coalescing writes exceeds the processing
and transmission time for the protocol overhead.

The TCP CORK option buffers writes until a full frame can be sent, the option is removed
or 200ms have elapsed. While activation conditions are different in that manual corking
is possible, usage implications are analogous to tcp autocorking. Both TCP and SCTP
offer a respective NODELAY option which disables Nagle's Algorithm [58]. The write-merge
behavior for Nagle's Algorithm mainly depends on the size of the issued writes. If both
data size of the planned write and window size are large enough, the full segment is sent
immediately. Partial segments are only sent without buffering and merging, if there is
no unacknowledged data in flight. Hence the general behavior and implications upon
BFT-SMR protocols are similar to the previous options and are mainly affecting client-
replica communication, since the request-response pattern allows for piggybacked ACK
in replica-replica communication. TCP also allows to delay and coalesce explicit, non-
piggybacked ACKs under special circumstances, involving the receipt of non-full segments
and mostly unidirectional communication. While this delay should not be big enough to
trigger an RTO, delayed ACKs can interact badly with some configurations. For example,
delayed ACKs on receiver side interact badly with active Nagle's algorithm on sender side,

12

Option Layer Effect

tcp frto /
tcp frto response

procfs Configure forward RTO discovery to prevent unneces-
sary retransmissions upon spurious RTO

SCTP RTOINFO Socket Configure initial, min and max RTO

TCP RTO MIN / MAX Kernel Configure min and max RTO value

Table 2: Retransmission behavior parameters

where the sender delays writes until an ACK is received, but the receiver delays ACKs
in expectation of more incoming writes. For applications that require timely ACKs for
mostly unidirectional data sent, but do not fill a segment with a single write, delayed ACKs
can reduce performance. Reducing the ACK delay may counter this behavior. Delayed
ACKs also affects CC behavior (and thus the performance) of the protocol (§6.3). The
TCP ACK delay behavior can be configured through multiple configuration parameters.
We focus our discussion on three central options here. The socket option TCP QUICKACK

allows to toggle Quick ACK mode, in which ACKs are sent immediately. However, this
option is not permanent and Quick ACK mode can be left and entered by the kernel,
depending on TCP protocol state. Thus, manual steering of Quick ACK mode is non-
trivial as it requires knowledge of internal TCP processing state, might interact badly
with CC, and requires frequent re-activation. If not operating in Quick ACK mode,
TCP delays ACKs to reduce protocol overhead. The effective delay is bounded by the
TCP DELACK MIN/MAX parameters, which are defined to have a minimum value of 40ms and
a maximum value of 200ms for a kernel interrupt frequency of 1000Hz per default. In
context of BFT-SMR protocols, delayed ACKs do not negatively influence most flows
due to their message exchange structure. For practical choices of batch and payload size,
no flow from Fig. 2 holds a scenario in which a party issues many writes, smaller than
segment size, and requires timely explicit ACKs to continue sending. For small payloads
and deactivated batching, ACK delay might need to be optimized to prevent stalling in
F1, if the BFT-SMR client limits the number of requests in flight (e.g., as in HotStuff)
too aggressively.

Retransmission Behavior Reliable transport protocols typically offer a range of op-
tions to configure retransmission behavior. A selection of relevant options is given in
Table 2. As outlined in §6.1, TCP uses a combination of DupAck and RTO to trigger
retransmissions. However, due to sporadic network delay or misconfiguration, the RTO
can expire even though a segment arrives. This spurious RTO causes unnecessary retrans-
missions and interacts poorly with TCP congestion control. To counteract this behavior,
modern TCP implements Forward RTO-Recovery (F-RTO) [59]. The algorithm tries to
detect spurious RTOs based on information from incoming ACKs. If detected, the typical
slow start behavior is avoided and operation continues, based on old timeout values and
windows. The tcp frto option allows for configuration if and which F-RTO algorithm
should be active. If a spurious RTO is detected, the respective response behavior can be
configured through the tcp frto response option. Modern Linux TCP implementations
(e.g., Kernel v4.19.194) offer three possible reactions, which halve the congestion window
and slow-start threshold after one RTT (0), immediately (1) or not at all (2). Results
by Sarolahti [60] suggest that the overall performance of the chosen method depends on
the available link bandwidth, where more conservative behavior (0) performs better for
low-bandwidth links and aggressive restoration (2) results in more throughput on high-
bandwidth links. Hence, configuration for BFT-SMR systems should include F-RTO and
be conducted accordingly.

13

As outlined by Allman et al. [61], configuration of e.g., RTO provides a powerful tool
to trade response latency against the risk of premature timeouts and thus unnecessary
retransmissions. Both TCP and SCTP offer options to adjust RTO variables. For SCTP,
configuration is possible on socket level using the SCTP RTOINFO option. It allows to
configure the initial, minimum and maximum RTO value. For TCP, dynamic configu-
ration is not easily possible, since the TCP RTO MIN / MAX values are hardcoded in the
Linux kernel code (§6.1). In context of BFT-SMR systems, the RTO value calculation
is mostly relevant in case of message loss. Consensus decision latency in e.g., HotStuff
is significantly smaller than the minimum RTO in both SCTP and TCP (cf. measured
latencies between 10 and 30ms for HS3-p1024 [5]). Multiple subsequent omission failures
can trigger a RTO and cause a multiple of typical consensus latency in delay. Following
the observation from [61], reduction of the minimum RTO reduces latency if omission
failures occur and network congestion is less likely in the target network.

6.3 Congestion Control

To prevent overloading of network resources, both TCP and SCTP implement CC. In this
section, we briefly analyze the impact and implications of CC on BFT-SMR operation.
Since CC in SCTP closely follows algorithms and rationale from TCP, we limit our explicit
discussion to TCP here. First we generally discuss CC algorithms in the context of BFT-
SMR algorithms and afterward analyze a representative CC algorithm in operation with
HotStuff.

General Discussion The response to network congestion is typically a reduction of
throughput on the strained links. While load reduction in response to an actual conges-
tion event is helpful (i.e., in order to prevent congestive collapse [62]), performance degra-
dation due to negative interaction with typical BFT-SMR operation should be avoided.
Detection of congestion events and response are defined by the CC algorithm in effect.
The approaches mainly differ in terms of congestion detection method and target network
scenario. As outlined by Afanasyev et al. [63], optimization of CC revolves around balanc-
ing (1) throughput against network load and (2) loss recovery latency against unnecessary
retransmissions. As concrete constraints vary with the target environment, there is no
one-size-fits-all algorithm that performs best in all scenarios. The main difference be-
tween CC in context of general BFT-SMR operation and CC in commodity use cases,
are assumptions on the expected behavior of participating peers. In BFT-SMR scenarios,
malicious participants are explicitly part of the model. In the design process of transport
protocols, basic security concerns are usually addressed (e.g., defense against sequence
number attacks [64] or SYN flooding [65] in TCP) but protection against stronger ad-
versaries is typically assumed to be handled by another layer. For example, the SCTP
specification suggests employing IPSec [66] to provide extended confidentiality and in-
tegrity guarantees [48].

Hence, CC in a BFT-SMR setting is potentially subject to stronger adversarial behav-
ior and may require additional protective measures. We consider a detailed evaluation of
the ecosystem of CC algorithms in BFT-SMR context to be out of the scope of this paper
and defer this task to future work.

HotStuff Case-Study In §5.1.1 we identified client and leader nodes as bottleneck
peers. Hence, impact of changes to CC state is most relevant on these nodes. Inde-
pendent of the physical interconnections between replicas and clients, links and network
segments of bottleneck nodes are expected to experience most strain and contribute most

14

to potential network congestion. Generally, CC measures are employed on a flow base
between two communicating nodes. The CC variables are influenced by (1) underlying
network events and (2) communication partner behavior, which may include the same
events but for different reasons (e.g., compromise).

As outlined in §2, the conceptual end-to-end connections between all nodes are usually
not reflected in hardware. Thus, due to the physical network architecture, a third party
could theoretically influence the CC state of two communication partners. For the case
study, we choose TCP Cubic [67] in Linux v4.19.194 as representative CC algorithm, since
it is the default used by the Linux Kernel since version 2.6.19 (2006) [68] and by Windows
10 since 2017 [69]. TCP Cubic modifies the CC variables based on a cubic function of
the elapsed time since the last congestion event. The detection of a ”congestion event”
is based on packet loss. The sender enters the loss state if sent data is acknowledged too
late or not at all. Note that this loss detection is also subject to F-RTO (§6.2).

As actual network congestion should always trigger a congestion event eventually, we
discuss if regular BFT-SMR operation can also trigger “spurious” congestion events and
thus reduce performance. First consider ACKs that arrive too late. A TCP receiver
can piggyback ACKs for received data onto its own replies with payloads. As long as
bidirectional data is regularly and successfully delivered, ACKs can be attached to this
communication. A significant amount of communication in HotStuff involves an alter-
nating request-response pattern, as given through flows F2 and F3. If communication
is mostly unidirectional (e.g., the receiver does not directly send back reply payloads,
such as in F1), explicit ACKs are generated. RFC5681 [70] specifies that ACKs should
be generated for at least every second full-sized segment and ACKs must be generated
within 500ms of the arrival of the first unacknowledged packet. In any case, as long as an
ACK arrives before the RTO is triggered, no congestion event is detected and through-
put is not reduced. Now consider cases where ACKs are received out-of-order or not at
all. Both cases are not caused by regular BFT-SMR protocol operation but by either (1)
underlying network effects or (2) malicious activity. To reduce the congestion window of
another node an attacker would need to modify or drop traffic between two target victim
nodes on hardware links. While integrity protection of transport layer information could
be realized by employing a secure channel (e.g., IPSec [66]) on Layer 3, this step adds
even more bandwidth and processing overhead.

7 Conclusion and Future Work

We studied the impact of network transport protocols on BFT-SMR systems in general
and HotStuff, in particular. Due to the prevalence of TCP as underlying networking
transport stack, our results also bear applicability to all BFT-SMR setups with the same
building blocks. In our theoretical study of HotStuff communication, we identified leader
and client nodes as potential operation bottlenecks. We demonstrate that unmasked mes-
sage loss potentially violates protocol safety, but at least incurs performance overhead.
In our analysis of the transport protocol configuration space, we identify a set of prefer-
able configuration options for operation of BFT-SMR systems. Further optimization of
parameters is possible and dependent on the target networking environment. We identify
no general negative reciprocity between CC and BFT-SMR algorithms in general, and
HotStuff and TCPCubic in particular. In future work we aim to validate the presented
results by implementation and measurement under realistic conditions. Furthermore, we
aim to investigate optimization of other BFT-SMR building blocks such as message au-
thentication mechanisms. We note that further study of the extended attacker model of
byzantine behavior in context of CC algorithms for use in BFT-SMR setups may yield

15

helpful results for the implementation of practical systems.

References

[1] M. Pease, R. Shostak, and L. Lamport, “Reaching Agreement in the Presence of
Faults,” Journal of the ACM (JACM), vol. 27, no. 2, pp. 228–234, 1980.

[2] L. Lamport, R. Shostak, and M. Pease, “The Byzantine Generals Problem,” ACM
Transactions on Programming Languages and Systems (TOPLAS), vol. 4, no. 3, pp.
382–401, 1982.

[3] F. B. Schneider, “Implementing Fault-Tolerant Services Using the State Machine
Approach: A tutorial,” ACM Computing Surveys (CSUR), vol. 22, no. 4, pp. 299–
319, 1990.

[4] A. Miller, Y. Xia, K. Croman, E. Shi, and D. Song, “The Honey Badger of BFT
Protocols,” in Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, 2016, pp. 31–42.

[5] M. Yin, D. Malkhi, M. K. Reiter, G. G. Gueta, and I. Abraham, “HotStuff: BFT
Consensus with Linearity and Responsiveness,” in Proceedings of the 2019 ACM
Symposium on Principles of Distributed Computing. ACM, 2019, pp. 347–356.

[6] G. G. Gueta, I. Abraham, S. Grossman, D. Malkhi, B. Pinkas, M. Reiter, D.-A.
Seredinschi, O. Tamir, and A. Tomescu, “SBFT: A Scalable and Decentralized Trust
Infrastructure,” in 2019 49th Annual IEEE/IFIP international conference on depend-
able systems and networks (DSN). IEEE, 2019, pp. 568–580.

[7] C. Stathakopoulou, D. Tudor, M. Pavlovic, and M. Vukolić, “Mir-BFT: Scalable and
Robust BFT for Decentralized Networks,” Journal of Systems Research, vol. 2, no. 1,
2022.

[8] N. Chondros, K. Kokordelis, and M. Roussopoulos, “On the Practicality of ’Practical’
Byzantine Fault Tolerance,” in ACM/IFIP/USENIX International Conference on
Distributed Systems Platforms and Open Distributed Processing. Springer, 2012,
pp. 436–455.

[9] R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and E. Wong, “Zyzzyva: Speculative
Byzantine Fault Tolerance,” in Proceedings of twenty-first ACM SIGOPS symposium
on Operating systems principles, 2007, pp. 45–58.

[10] R. Guerraoui, N. Knežević, V. Quéma, and M. Vukolić, “The Next 700 BFT Proto-
cols,” in Proceedings of the 5th European conference on Computer systems, 2010, pp.
363–376.

[11] X. Défago, A. Schiper, and P. Urbán, “Total Order Broadcast and Multicast Algo-
rithms: Taxonomy and Survey,” ACM Computing Surveys (CSUR), vol. 36, no. 4,
pp. 372–421, 2004.

[12] A. Singh, T. Das, P. Maniatis, P. Druschel, and T. Roscoe, “BFT Protocols Under
Fire.” in NSDI, vol. 8, 2008, pp. 189–204.

16

[13] J. Neu, S. Sridhar, L. Yang, D. Tse, and M. Alizadeh, “Longest Chain
Consensus Under Bandwidth Constraint,” Cryptology ePrint Archive, Paper
2021/1545, 2021, https://eprint.iacr.org/2021/1545. [Online]. Available: https:
//eprint.iacr.org/2021/1545

[14] S. Coretti, A. Kiayias, C. Moore, and A. Russell, “The Generals’ Scuttlebutt:
Byzantine-Resilient Gossip Protocols,” Cryptology ePrint Archive, 2022.

[15] G. S. Veronese, M. Correia, A. N. Bessani, and L. C. Lung, “Spin One’s Wheels?
Byzantine Fault Tolerance with a Spinning Primary,” in 2009 28th IEEE Interna-
tional Symposium on Reliable Distributed Systems. IEEE, 2009, pp. 135–144.

[16] A. Bessani, J. Sousa, and E. E. Alchieri, “State Machine Replication for the Masses
with BFT-SMART,” in 2014 44th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks. IEEE, 2014, pp. 355–362.

[17] I. Abraham, G. Gueta, D. Malkhi, and J.-P. Martin, “Revisiting Fast Prac-
tical Byzantine Fault Tolerance: Thelma, Velma, and Zelma,” arXiv preprint
arXiv:1801.10022, 2018.

[18] I. Abraham, D. Malkhi, K. Nayak, L. Ren, and M. Yin, “Sync Hotstuff: Simple
and Practical Synchronous State Machine Replication,” in 2020 IEEE Symposium
on Security and Privacy (SP). IEEE, 2020, pp. 106–118.

[19] Z. Avarikioti, L. Heimbach, R. Schmid, and R. Wattenhofer, “FnF-BFT: Exploring
Performance Limits of BFT Protocols,” arXiv preprint arXiv:2009.02235, 2020.

[20] B. Y. Chan and E. Shi, “Streamlet: Textbook Streamlined Blockchains,” in Proceed-
ings of the 2nd ACM Conference on Advances in Financial Technologies, 2020, pp.
1–11.

[21] S. Gupta, S. Rahnama, and M. Sadoghi, “Permissioned Blockchain Through the
Looking Glass: Architectural and Implementation Lessons Learned,” in 2020 IEEE
40th International Conference on Distributed Computing Systems (ICDCS). IEEE,
2020, pp. 754–764.

[22] J. Niu and C. Feng, “Leaderless Byzantine Fault Tolerant Consensus,” arXiv preprint
arXiv:2012.01636, 2020.

[23] O. Naor and I. Keidar, “Expected Linear Round Synchronization: The Missing Link
for Linear Byzantine SMR,” in 34th International Symposium on Distributed Com-
puting, 2020.

[24] P. Kuznetsov, A. Tonkikh, and Y. X. Zhang, “Revisiting Optimal Resilience of Fast
Byzantine Consensus,” in Proceedings of the 2021 ACM Symposium on Principles of
Distributed Computing, 2021, pp. 343–353.

[25] M. Castro, B. Liskov et al., “Practical Byzantine Fault Tolerance,” in OSDI, vol. 99,
no. 1999, 1999, pp. 173–186.

[26] P.-L. Aublin, S. B. Mokhtar, and V. Quéma, “RBFT: Redundant Byzantine Fault
Tolerance,” in 2013 IEEE 33rd International Conference on Distributed Computing
Systems. IEEE, 2013, pp. 297–306.

17

https://eprint.iacr.org/2021/1545
https://eprint.iacr.org/2021/1545
https://eprint.iacr.org/2021/1545

[27] J.-P. Martin and L. Alvisi, “Fast Byzantine Consensus,” IEEE Transactions on De-
pendable and Secure Computing, vol. 3, no. 3, pp. 202–215, 2006.

[28] S. Alqahtani and M. Demirbas, “BigBFT: A Multileader Byzantine Fault Tolerance
Protocol for High Throughput,” in 2021 IEEE International Performance, Comput-
ing, and Communications Conference (IPCCC). IEEE, 2021, pp. 1–10.

[29] A. Clement, M. Kapritsos, S. Lee, Y. Wang, L. Alvisi, M. Dahlin, and T. Riche,
“UpRight Cluster Services,” in Proceedings of the ACM SIGOPS 22nd symposium
on Operating systems principles, 2009, pp. 277–290.

[30] X. Jin, X. Li, H. Zhang, N. Foster, J. Lee, R. Soulé, C. Kim, and I. Stoica, “NetChain:
Scale-Free Sub-RTT Coordination,” in 15th USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI 18), 2018, pp. 35–49.

[31] M. Liu, T. Cui, H. Schuh, A. Krishnamurthy, S. Peter, and K. Gupta, “Offloading
Distributed Applications onto SmartNICs using iPipe,” in Proceedings of the ACM
Special Interest Group on Data Communication, 2019, pp. 318–333.

[32] H. T. Dang, P. Bressana, H. Wang, K. S. Lee, N. Zilberman, H. Weatherspoon,
M. Canini, F. Pedone, and R. Soulé, “P4xos: Consensus as a Network Service,”
IEEE/ACM Transactions on Networking, vol. 28, no. 4, pp. 1726–1738, 2020.

[33] C. Wang, J. Jiang, X. Chen, N. Yi, and H. Cui, “APUS: Fast and Scalable PAXOS
on RDMA,” in Proceedings of the 2017 Symposium on Cloud Computing. ACM,
2017, pp. 94–107.

[34] S. Rüsch, I. Messadi, and R. Kapitza, “Towards Low-Latency Byzantine Agreement
Protocols Using RDMA,” in 2018 48th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks Workshops (DSN-W). IEEE, 2018, pp. 146–
151.

[35] A. Clement, E. L. Wong, L. Alvisi, M. Dahlin, and M. Marchetti, “Making Byzantine
Fault Tolerant Systems Tolerate Byzantine Faults,” in NSDI, vol. 9, 2009, pp. 153–
168.

[36] T. Lorünser, B. Rainer, and F. Wohner, “Towards a Performance Model for Byzantine
Fault Tolerant Services,” in CLOSER, 2022, pp. 178–189.

[37] I. Moraru, D. G. Andersen, and M. Kaminsky, “There Is More Consensus in Egali-
tarian Parliaments,” in Proceedings of the Twenty-Fourth ACM Symposium on Op-
erating Systems Principles, 2013, pp. 358–372.

[38] M. Bravo, Z. István, and M.-K. Sit, “Towards Improving the Performance of BFT
Consensus For Future Permissioned Blockchains,” arXiv preprint arXiv:2007.12637,
2020.

[39] M. K. Aguilera, N. Ben-David, R. Guerraoui, V. J. Marathe, A. Xygkis, and
I. Zablotchi, “Microsecond Consensus for Microsecond Applications,” in 14th
{USENIX} Symposium on Operating Systems Design and Implementation ({OSDI}
20), 2020, pp. 599–616.

[40] M. K. Reiter, “Secure Agreement Protocols: Reliable and Atomic Group Multicast
in Rampart,” in Proceedings of the 2nd ACM Conference on Computer and Commu-
nications Security, 1994, pp. 68–80.

18

[41] D. Malkhi and M. Reiter, “A High-Throughput Secure Reliable Multicast Protocol,”
Journal of Computer Security, vol. 5, no. 2, pp. 113–127, 1997.

[42] T. Rocket, M. Yin, K. Sekniqi, R. van Renesse, and E. G. Sirer, “Scalable and
Probabilistic Leaderless BFT Consensus through Metastability,” arXiv preprint
arXiv:1906.08936, 2019.

[43] M. Castro and B. Liskov, “Practical Byzantine Fault Tolerance and Proactive Recov-
ery,” ACM Transactions on Computer Systems (TOCS), vol. 20, no. 4, pp. 398–461,
2002.

[44] S. Alqahtani and M. Demirbas, “Bottlenecks in Blockchain Consensus Protocols,” in
2021 IEEE International Conference on Omni-Layer Intelligent Systems (COINS).
IEEE, 2021, pp. 1–8.

[45] M. Baudet, A. Ching, A. Chursin, G. Danezis, F. Garillot, Z. Li, D. Malkhi, O. Naor,
D. Perelman, and A. Sonnino, “State Machine Replication in the Libra Blockchain,”
The Libra Assn., Tech. Rep, 2019.

[46] J. Postel, “User Datagram Protocol,” RFC 768 (INTERNET STANDARD),
Internet Engineering Task Force, Aug. 1980. [Online]. Available: http:
//www.ietf.org/rfc/rfc768.txt

[47] ——, “Transmission Control Protocol,” RFC 793 (INTERNET STANDARD),
Internet Engineering Task Force, Sep. 1981, updated by RFCs 1122, 3168, 6093,
6528. [Online]. Available: http://www.ietf.org/rfc/rfc793.txt

[48] R. Stewart, “Stream Control Transmission Protocol,” RFC 4960 (Proposed
Standard), Internet Engineering Task Force, Sep. 2007, updated by RFCs 6096,
6335. [Online]. Available: http://www.ietf.org/rfc/rfc4960.txt

[49] C. A. Kent and J. C. Mogul, “Fragmentation Considered Harmful,” ACM SIGCOMM
Computer Communication Review, vol. 25, no. 1, pp. 75–87, 1995.

[50] J. C. Mogul and C. A. Kantarjiev, “Retrospective on Fragmentation Considered
Harmful,” ACM SIGCOMM Computer Communication Review, vol. 49, no. 5, pp.
41–43, 2019.

[51] K. Kursawe and V. Shoup, “Optimistic Asynchronous Atomic Broadcast,” in Inter-
national Colloquium on Automata, Languages, and Programming. Springer, 2005,
pp. 204–215.

[52] M. Allman, V. Paxson, and W. Stevens, “TCP Congestion Control,” IETF, RFC
2581, Apr. 1999. [Online]. Available: http://tools.ietf.org/rfc/rfc2581.txt

[53] V. Paxson, M. Allman, J. Chu, and M. Sargent, “Computing TCP’s
Retransmission Timer,” IETF, RFC 6298, Jun. 2011. [Online]. Available:
http://tools.ietf.org/rfc/rfc6298.txt

[54] P. P. Mishra, D. Sanghi, and S. K. Tripathi, “TCP Flow Control in Lossy Networks:
Analysis and Enhancement,” in NETWORKS. Citeseer, 1992, pp. 181–192.

[55] UDP(7), Linux Programmer’s Manual, 5th ed., 03 2021.

[56] TCP(7), Linux Programmer’s Manual, 5th ed., 03 2021.

19

http://www.ietf.org/rfc/rfc768.txt
http://www.ietf.org/rfc/rfc768.txt
http://www.ietf.org/rfc/rfc793.txt
http://www.ietf.org/rfc/rfc4960.txt
http://tools.ietf.org/rfc/rfc2581.txt
http://tools.ietf.org/rfc/rfc6298.txt

[57] S. Samudrala, SCTP(7), Linux Programmer’s Manual, 10 2005.

[58] J. Nagle, “Congestion Control in IP/TCP Internetworks,” IETF, RFC 896, Jan.
1984. [Online]. Available: http://tools.ietf.org/rfc/rfc0896.txt

[59] P. Sarolahti, M. Kojo, K. Yamamoto, and M. Hata, “Forward RTO-Recovery (F-
RTO): An Algorithm for Detecting Spurious Retransmission Timeouts with TCP,”
IETF, RFC 5682, Sep. 2009. [Online]. Available: http://tools.ietf.org/rfc/rfc5682.txt

[60] P. Sarolahti, “Congestion Control on Spurious TCP Retransmission Timeouts,”
in GLOBECOM’03. IEEE Global Telecommunications Conference (IEEE Cat. No.
03CH37489), vol. 2. IEEE, 2003, pp. 682–686.

[61] M. Allman and V. Paxson, “On Estimating End-to-End Network Path Properties,”
ACM SIGCOMM Computer Communication Review, vol. 29, no. 4, pp. 263–274,
1999.

[62] M. Gerla and L. Kleinrock, “Flow Control: A Comparative Survey,” IEEE Transac-
tions on Communications, vol. 28, no. 4, pp. 553–574, 1980.

[63] A. Afanasyev, N. Tilley, P. Reiher, and L. Kleinrock, “Host-to-Host Congestion Con-
trol for TCP,” IEEE Communications surveys & tutorials, vol. 12, no. 3, pp. 304–342,
2010.

[64] F. Gont and S. Bellovin, “Defending against Sequence Number Attacks,” IETF,
RFC 6528, Feb. 2012. [Online]. Available: http://tools.ietf.org/rfc/rfc6528.txt

[65] W. Eddy, “TCP SYN Flooding Attacks and Common Mitigations,” IETF, RFC
4987, Aug. 2007. [Online]. Available: http://tools.ietf.org/rfc/rfc4987.txt

[66] S. Kent and K. Seo, “Security Architecture for the Internet Protocol,” IETF, RFC
4301, Dec. 2005. [Online]. Available: http://tools.ietf.org/rfc/rfc4301.txt

[67] S. Ha, I. Rhee, and L. Xu, “CUBIC: A New TCP-Friendly High-Speed TCP Variant,”
ACM SIGOPS operating systems review, vol. 42, no. 5, pp. 64–74, 2008.

[68] S. Hemminger and D. Miller, “[TCP]: make cubic the default,” https://github.com/
torvalds/linux/commit/597811ec167fa01c926a0957a91d9e39baa30e64, 2006.

[69] P. Balasubramanian, “Updates on Windows TCP,” https://datatracker.ietf.
org/meeting/100/materials/slides-100-tcpm-updates-on-windows-tcp, 2017, last-
accessed: 2022-06-20.

[70] M. Allman, V. Paxson, and E. Blanton, “TCP Congestion Control,” IETF, RFC
5681, Sep. 2009. [Online]. Available: http://tools.ietf.org/rfc/rfc5681.txt

20

http://tools.ietf.org/rfc/rfc0896.txt
http://tools.ietf.org/rfc/rfc5682.txt
http://tools.ietf.org/rfc/rfc6528.txt
http://tools.ietf.org/rfc/rfc4987.txt
http://tools.ietf.org/rfc/rfc4301.txt
https://github.com/torvalds/linux/commit/597811ec167fa01c926a0957a91d9e39baa30e64
https://github.com/torvalds/linux/commit/597811ec167fa01c926a0957a91d9e39baa30e64
https://datatracker.ietf.org/meeting/100/materials/slides-100-tcpm-updates-on-windows-tcp
https://datatracker.ietf.org/meeting/100/materials/slides-100-tcpm-updates-on-windows-tcp
http://tools.ietf.org/rfc/rfc5681.txt

	Introduction
	Building Block Optimization
	Related Work
	HotStuff
	Network Impact Case-Study
	Flow Analysis
	Payload Analysis

	Effect of message loss

	Network Transport Analysis
	Reliable transmission
	Impact of Protocol Configuration
	Congestion Control

	Conclusion and Future Work

