

HLOC: Hints-Based Geolocation Leveraging Multiple Measurement Frameworks

Quirin Scheitle, Oliver Gasser, Patrick Sattler, Georg Carle

TMA'17, Dublin June 22, 2017

Chair of Network Architectures and Services Department of Informatics Technical University of Munich

Geolocating IP Addresses

Geolocation focuses:

- Human-centric, e.g. for businesses
- Structural mapping, e.g. of Internet routers

Geolocation approaches:

- Commercial databases
- Measurement-based algorithms

Geolocating IP Addresses

ТШ

Geolocation focuses:

- Human-centric, e.g. for businesses
- Structural mapping, e.g. of Internet routers

Geolocation approaches:

- Commercial databases
- Measurement-based algorithms

Our goals:

- · Combine ease-of-use of databases with accuracy of measurement-based approaches
- Focus on Internet routers

Related Work

Measurement-based:

- Large body of related work using latency, TTL, link-level topology, etc. for geolocation [6, 11, 12, 8, 4, 14, 13, 5, 9, 1]
- High barrier of entry through complex setup and calibration phase

DNS-based:

- RFC 1876: Store latitude and longitude in DNS [2] \rightarrow rarely used
- DRoP [7]: Good results for ground-truth domains, no ready-to-use solution

Database-based:

• Questionable accuracy of geolocation databases [3, 10]

- · Geolocation based on hints in domain names
- Validation of geolocation hints using latency measurements
- Multi-level measurements
 - High-bandwidth scans
 - Globally distributed scans using RIPE Atlas
- Accuracy of dozens to hundreds of km \rightarrow country-level
- Ready-to-use

ТШ

Challenges

- Fast search of location hints in domains
- Reduce number of unlikely matches
- Tailor to measurement limits

- Fast search of location hints in domains \rightarrow Trie
- Reduce number of unlikely matches \rightarrow Blacklisting
- Tailor to measurement limits \rightarrow Use multiple frameworks

7

 \rightarrow Very fast lookup

ТЛП

Certain words in domains do not include a location

• Unnecessary increase of measurement duration

ТШ

Certain words in domains do not include a location

• Unnecessary increase of measurement duration

Example:

ae-0.facebook.amstnl02.nl.bb.gin.ntt.net

ТШ

Certain words in domains do not include a location

• Unnecessary increase of measurement duration

Example:

ae-0.facebook.amstnl02.nl.bb.gin.ntt.net

π

Certain words in domains do not include a location

Unnecessary increase of measurement duration

Example:

ae-0.<u>facebook</u>.amstnl02.nl.bb.gin.ntt.net

- ams (IATA): Amsterdam, Netherlands (2.3 ms)
- face (ICAO): Ceres, South Africa
- ace (IATA): Lanzarote, Spain
- ceb (IATA): Lapu-Lapu City, Philippines

• ...

ТШ

Certain words in domains do not include a location

Unnecessary increase of measurement duration

Example:

ae-0.<u>facebook</u>.amstnl02.nl.bb.gin.ntt.net

- ams (IATA): Amsterdam, Netherlands (2.3 ms)
- face (ICAO): Ceres, South Africa
- ace (IATA): Lanzarote, Spain
- ceb (IATA): Lapu-Lapu City, Philippines

• ...

Publicly available blacklists on Github

Crowdsourcing blacklists further improves measurement performance

Use Multiple Measurement Frameworks

Limitations in frameworks

- Parallel running measurements
- Requests per second

пΠ

Use Multiple Measurement Frameworks

Limitations in frameworks

- Parallel running measurements
- Requests per second

Multi-level approach

- 1. Measure from high bandwidth servers in few locations
 - Pin-point hemisphere of location
 - e.g., dedicated servers with ZMap

Use Multiple Measurement Frameworks

Limitations in frameworks

- Parallel running measurements
- Requests per second

Multi-level approach

- 1. Measure from high bandwidth servers in few locations
 - Pin-point hemisphere of location
 - e.g., dedicated servers with ZMap
- 2. Measure from low bandwidth probes in many locations
 - · Measurement close to hinted location
 - e.g., RIPE Atlas

(1)

- Pick possible location match from right to left label
- Pick suitable probe dist(probe, location) < x
- Check validation threshold:

$$RTT(probe, host) < a + \frac{2 \cdot dist(probe, location)}{c \cdot c_0}$$

- a is the maximal buffer time
- $c \cdot c_0$ is the propagation speed in fiber optics
- If fulfilled, stop else repeat for the other location matches
- Our maximum error margin is 2900 km (a = 9ms; x = 1000km)

cr-01.0v-00-04.anx32.nyc.us.anexia-it.com

- cr-01.0v-00-04.anx32.nyc.us.anexia-it.com
 - nyc (IATA): New York City, USA

- or-01.0v-00-04.anx32.nyc.us.anexia-it.com
 - nyc (IATA): New York City, USA
 - anx (IATA): Andenes, Norway

- cr-01.0v-00-04.anx32.nyc.us.anexia-it.com
 - nyc (IATA): New York City, USA
 - anx (IATA): Andenes, Norway
- Select probe near suspected location

- cr-01.0v-00-04.anx32.nyc.us.anexia-it.com
 - nyc (IATA): New York City, USA
 - anx (IATA): Andenes, Norway
- Select probe near suspected location
 - New York (Probe ID: 17736; distance: 0.84 km)

ТЛП

- cr-01.0v-00-04.anx32.nyc.us.anexia-it.com
 - nyc (IATA): New York City, USA
 - anx (IATA): Andenes, Norway
- Select probe near suspected location
 - New York (Probe ID: 17736; distance: 0.84 km)
- Measure RTT from probe

- cr-01.0v-00-04.anx32.nyc.us.anexia-it.com
 - nyc (IATA): New York City, USA \rightarrow 1.3 ms
 - anx (IATA): Andenes, Norway
- Select probe near suspected location
 - New York (Probe ID: 17736; distance: 0.84 km)
- Measure RTT from probe
 - RTT(Probe(17736), "2001:2000:3080:c44::2") = 1.3 ms

- cr-01.0v-00-04.anx32.nyc.us.anexia-it.com
 - nyc (IATA): New York City, USA \rightarrow 1.3 ms
 - anx (IATA): Andenes, Norway
- Select probe near suspected location
 - New York (Probe ID: 17736; distance: 0.84 km)
- Measure RTT from probe
 - RTT(Probe(17736), "2001:2000:3080:c44::2") = 1.3 ms
- Eliminate impossible hints

- cr-01.0v-00-04.anx32.nyc.us.anexia-it.com
 - nyc (IATA): New York City, USA → 1.3 ms
 - anx (IATA): Andenes, Norway
- Select probe near suspected location
 - New York (Probe ID: 17736; distance: 0.84 km)
- Measure RTT from probe
 - RTT(Probe(17736), "2001:2000:3080:c44::2") = 1.3 ms
- Eliminate impossible hints

- cr-01.0v-00-04.anx32.nyc.us.anexia-it.com
 - nyc (IATA): New York City, USA → 1.3 ms
 - anx (IATA): Andenes, Norway
- Select probe near suspected location
 - New York (Probe ID: 17736; distance: 0.84 km)
- Measure RTT from probe
 - RTT(Probe(17736), "2001:2000:3080:c44::2") = 1.3 ms
- Eliminate impossible hints
- Validate RTT measurements using threshold

(2)

- or-01.0v-00-04.anx32.nyc.us.anexia-it.com
 - nyc (IATA): New York City, USA \rightarrow 1.3 ms
 - anx (IATA): Andenes, Norway
- Select probe near suspected location
 - New York (Probe ID: 17736; distance: 0.84 km)
- Measure RTT from probe
 - RTT(Probe(17736), "2001:2000:3080:c44::2") = 1.3 ms
- Eliminate impossible hints
- Validate RTT measurements using threshold

$$\mathsf{RTT}(\mathsf{probe}, \mathsf{host}) < a + \frac{2 \cdot \mathsf{dist}(\mathsf{probe}, \mathsf{location})}{c \cdot c_0}$$

Measurement Example

- cr-01.0v-00-04.anx32.nyc.us.anexia-it.com
 - nyc (IATA): New York City, USA → 1.3 ms
 - anx (IATA): Andenes, Norway
- Select probe near suspected location
 - New York (Probe ID: 17736; distance: 0.84 km)
- Measure RTT from probe
 - RTT(Probe(17736), "2001:2000:3080:c44::2") = 1.3 ms
- Eliminate impossible hints
- Validate RTT measurements using threshold

$$1.3ms < 9ms + \frac{2 \cdot 0.84km}{200\frac{km}{ms}}$$

(2)

Measurement Example

- cr-01.0v-00-04.anx32.nyc.us.anexia-it.com
 - nyc (IATA): New York City, USA → 1.3 ms
 - anx (IATA): Andenes, Norway
- Select probe near suspected location
 - New York (Probe ID: 17736; distance: 0.84 km)
- Measure RTT from probe
 - RTT(Probe(17736), "2001:2000:3080:c44::2") = 1.3 ms
- Eliminate impossible hints
- Validate RTT measurements using threshold

$$1.3ms < 9ms + rac{2 \cdot 0.84km}{200rac{km}{ms}}$$

(2)

Location confirmed √

Conducted large-scale measurements to geolocate IPv4 and IPv6 routers

Q. Scheitle, O. Gasser, P. Sattler, G. Carle — HLOC: Hints-Based Geolocation Leveraging Multiple Measurement Frameworks 12

Conducted large-scale measurements to geolocate IPv4 and IPv6 routers

# IP addresses	IPv4	IPv6
Routers	2.5M	190k
– No Match	–1.0M	–7.2k
– Timeout	–431k	–151k
Responsive	961k (100%)	29k (100%)
All hints falsified	417k (43.4%)	7k (22.9%)
Hint verified	45k (4.7%)	5k (17.6%)
No hint verified	500k (52.0%)	17k (59.5%)

Conducted large-scale measurements to geolocate IPv4 and IPv6 routers

# IP addresses	IPv4	IPv6
Routers	2.5M	190k
– No Match	–1.0M	–7.2k
– Timeout	–431k	–151k
Responsive	961k (100%)	29k (100%)
All hints falsified	417k (43.4%)	7k (22.9%)
Hint verified	45k (4.7%)	5k (17.6%)
No hint verified	500k (52.0%)	17k (59.5%)

· Many falsified hints

Conducted large-scale measurements to geolocate IPv4 and IPv6 routers

# IP addresses	IPv4	IPv6
Routers	2.5M	190k
– No Match	–1.0M	–7.2k
– Timeout	–431k	–151k
Responsive	961k (100%)	29k (100%)
All hints falsified	417k (43.4%)	7k (22.9%)
Hint verified	45k (4.7%)	5k (17.6%)
No hint verified	500k (52.0%)	17k (59.5%)

- Many falsified hints
- About 50k verified hints

RIPE Atlas Probe Coverage

RIPE Atlas Probe Coverage

- Good coverage of Europe and USA
- Less coverage in Asia, Africa, and some parts of South America

IPv4 Locations of Validated Domains

IPv4 Locations of Validated Domains

© Google Maps

• Similar coverage as RIPE Atlas probes

Goal: Compare our results with DRoP

- Goal: Compare our results with DRoP
 - Reproduce the hint generator using DRoP rules
 - Evaluation on DRoP ground truth domains

- Goal: Compare our results with DRoP
 - Reproduce the hint generator using DRoP rules
 - Evaluation on DRoP ground truth domains
- cogentco.com:

- Goal: Compare our results with DRoP
 - Reproduce the hint generator using DRoP rules
 - Evaluation on DRoP ground truth domains
- cogentco.com:
 - 26% validated DRoP hints
 - 7% falsified DRoP hints

- Goal: Compare our results with DRoP
 - Reproduce the hint generator using DRoP rules
 - Evaluation on DRoP ground truth domains
- cogentco.com:
 - 26% validated DRoP hints
 - 7% falsified DRoP hints
- ntt.net:

- Goal: Compare our results with DRoP
 - Reproduce the hint generator using DRoP rules
 - Evaluation on DRoP ground truth domains
- cogentco.com:
 - 26% validated DRoP hints
 - 7% falsified DRoP hints
- ntt.net:
 - DRoP claims 96% of domains with location hint
 - Reproduction has 54% HLOC 99%
 - NTT uses custom CLLI location hints (e.g., londen)

- Goal: Compare our results with DRoP
 - Reproduce the hint generator using DRoP rules
 - Evaluation on DRoP ground truth domains
- cogentco.com:
 - 26% validated DRoP hints
 - 7% falsified DRoP hints
- ntt.net:
 - DRoP claims 96% of domains with location hint
 - Reproduction has 54% HLOC 99%
 - NTT uses custom CLLI location hints (e.g., londen)
- xe2-0-2-0-grtfraix4.ip6.tiws.net
 - Validated in Frankfurt using HLOC
 - Complex pattern where DRoP would not match

· How well do commercial databases work on geolocating routers?

· How well do commercial databases work on geolocating routers?

	Same	Possible	Wrong	No Data
GeoLite	40.4%	15.6%	44%	-
ip2location	76.6%	11.3%	12.1%	-
DRoP	7.8%	0.1%	8.4%	83.7%

• How well do commercial databases work on geolocating routers?

	Same	Possible	Wrong	No Data
GeoLite	40.4%	15.6%	44%	-
ip2location	76.6%	11.3%	12.1%	-
DRoP	7.8%	0.1%	8.4%	83.7%

Falsified almost half of locations by most popular geolocation database

Summarized

ТШ

Summarized

- HLOC finds more locations by leveraging complex pattern matching
- Commercial databases perform poorly on routers
- IP-encoded domain names contain less locations

ТШ

Summarized

- HLOC finds more locations by leveraging complex pattern matching
- Commercial databases perform poorly on routers
- IP-encoded domain names contain less locations
- Coming up

Summarized

- · HLOC finds more locations by leveraging complex pattern matching
- · Commercial databases perform poorly on routers
- IP-encoded domain names contain less locations

Coming up

- Improved probe selection
- Direct integration into RIPE Atlas
- Web service to geolocate hosts
- Integration of additional measurement frameworks (e.g. ProbeAPI)

Key Contributions

- Geolocation focused on routers
- Multi-level measurement framework
- Configurable accuracy and error margins
- Source code and data available

Key Contributions

- Geolocation focused on routers
- Multi-level measurement framework
- Configurable accuracy and error margins
- Source code and data available

Questions?

Source code, blacklist, and data set: https://github.com/tumi8/hloc

Bibliography

- M. Calder, X. Fan, Z. Hu, E. Katz-Bassett, J. Heidemann, and R. Govindan. Mapping the expansion of Google's serving infrastructure. In ACM SIGCOMM Conference on Internet Measurement, 2013.
- [2] C. Davis, P. Vixie, T. Goodwin, and I. Dickinson. A Means for Expressing Location Information in the Domain Name System. RFC 1876 (Experimental), Jan. 1996.
- [3] B. Gueye, S. Uhlig, and S. Fdida. Investigating the Imprecision of IP Block-Based Geolocation. In Passive and Active Measurement, 2007.
- [4] B. Gueye, A. Ziviani, M. Crovella, and S. Fdida. Constraint-Based Geolocation of Internet Hosts. IEEE/ACM Transactions On Networking, 2006.
- [5] C. Guo, Y. Liu, W. Shen, H. J. Wang, Q. Yu, and Y. Zhang. Mining the Web and the Internet for Accurate IP Address Geolocations. In INFOCOM, 2009.
- [6] Z. Hu, J. Heidemann, and Y. Pradkin. Towards Geolocation of Millions of IP Addresses. In <u>ACM SIGCOMM Conference on Internet Measurement</u>, 2012.
- [7] B. Huffaker, M. Fomenkov, and k. c. Claffy. DRoP: DNS-Based Router Positioning. ACM SIGCOMM Computer Communication Review, 2014.

Bibliography

- [8] E. Katz-Bassett et al. Towards IP Geolocation Using Delay and Topology Measurements. In <u>ACM SIGCOMM Conference on Internet Measurement</u>, 2006.
- [9] V. N. Padmanabhan and L. Subramanian. An Investigation of Geographic Mapping Techniques for Internet Hosts. In ACM SIGCOMM Computer Communication Review. ACM, 2001.
- [10] I. Poese, S. Uhlig, M. A. Kaafar, B. Donnet, and B. Gueye. IP Geolocation Databases: Unreliable? <u>ACM SIGCOMM Computer Communication Review</u>, 2011.
- [11] Y. Wang, D. Burgener, M. Flores, A. Kuzmanovic, and C. Huang. Towards Street-Level Client-Independent IP Geolocation. In <u>NSDI</u>, 2011.
- [12] B. Wong, I. Stoyanov, and E. G. Sirer. Octant: A Comprehensive Framework for the Geolocalization of Internet Hosts. In NSDI, 2007.
- [13] K. Yoshida et al. Inferring PoP-level ISP Topology through End-to-End Delay Measurement. In Passive and Active Measurement. 2009.
- [14] I. Youn, B. L. Mark, and D. Richards. Statistical Geolocation of Internet Hosts. In International Conference on Computer Communications and Networks. IEEE, 2009.

ТШТ

Which Code Sources are Valuable?

· Evaluate verified locations based on used location code source

Category	IATA	ICAO	FAA	UN/LO	GeoNames	CLLI
# Codes	8k	13k	20k	77k	32k	31k
Hints Verified Verified (%)	4.5M 32k .7%	209k 122 < .0%	472k 413 .1%	59k 120 < .0%	215k 13k 5.9%	167k 5k 2.8%

- IATA, GeoNames and CLLI provide 99% of verified hints
- UN/Locode gives largest number of codes but negligible number of verified locations

Locations without RIPE Atlas Probe

IPv6 Locations of Validated Domains

ТШ

Backup Slides

Verified: Error Margin Analysis

- 80% of distances under 25 km
- Used latency buffer and possible error increase linearly

ТШ

Backup Slides

Not Verified: Sensitivity Analysis

Excessive latency rises linearly

Domains with Encoded IP Addresses

- Encoded IP addresses in domain name
 - · Point to automatically generated domain names
 - Assumption: Lower likelihood of included location in domain name
 - Goal: Find encoded IP addresses in domain names
- Deutsche Telekom domain name
 - p4FE3C4A8.dip0.t-ipconnect.de
 - 79.227.196.168
 - Hexadecimally encoded IPv4 address
- Telus IPv6 domain name
 - node-1w7jr9qi52esshkbkmpnz14yh.ipv6.telus.net
 - 2001:569:71d6:2fff:4e8b:30ff:fe48:9e59
 - Alphanumerically encoded IPv6 address
- Location match likelihood for IP-encoded domains
 - IPv4: Twice as low
 - IPv6: Ten times lower
- Pre-filter IP-encoded domains