

Push Away Your Privacy: Precise User Tracking Based on TLS Client Certificate Authentication

Matthias Wachs, Quirin Scheitle, and Georg Carle TMA'17, Dublin, June 21, 2017

Tun Vhrenturm

TLS 1.2 handshake does not encrypt certificates

Known for a long time...

Figure: TLS 1.2 handshake, Unencrypted Data, [Encrypted Data]

Server Certificates

• Eavesdroppers can learn the specific websites that a user visits (not just the server's IP address)

Client Certificates

- Used by VPNs, governments, . . .
- Person names, company names, . . . → private data!

TLS 1.2 Client Certificate Authentication (CCA)

Where is CCA used?

Network authentication: 802.1x EAP

VPN: OpenVPN, F5 EdgeConnect, . . .

• Web: HTTPS

• IoT: MQTT

• Remote device management, for example MobileIron

Apple Push Notification Service (APNs)

Apple Statistics:

- 1 billion active devices (2016)
- 800 million iTunes accounts (2014)

Push Notification Services

Figure: Push Service Architecture: Messages brokered to Apps through the Push Notification Service.

Resource efficient notification of (mobile) applications:

Apple's APNs: OS, MacOs, iTunes

• Google's FCM: Android, Chrome

Microsoft's WNS: Windows, Windows Phone

Paradigms:

- Tightly integrated with operating system
- · Always connected to backend

Apple Push Notification Service (APNs)

Maybe the biggest user of TLS CCA?

APNs integral part of iOS and macOS – "always on" APNs uses Client Certificates for login:

- Generated at device setup
- Unique cryptographic material (CN, public key, fingerprint)
- CN different for mobile and desktop devices

```
Serial Number: ab:12:34:56:78:9a:bc:de:f0:12
Issuer: C=US, O=Apple Inc., OU=Apple iPhone, CN=Apple iPhone Device CA
Validity Not Before: Apr 8 12:34:56 2015 GMT
Validity Not After: Apr 8 12:34:56 2016 GMT
Subject: CN=12345678-1234-1234-1234-123456789ABC
Key ...
(all data redacted)
```


Precise User¹ Tracking in APNs

Several appearances of same device easily linkable

2 of 4 Attacker Types Considered in this Work

- Apple or someone infiltrating Apple: better means available
- Local adversary: Can use MAC addresses and more
- Regional adversary: Access to one or several large networks
- Global adversary: Access to several core networks

Regional Adversary – Validation at Internet Uplink

Can a regional adversary track users?

Global Adversary – Validation through Global Path Measurements

How well can a global adversary leverage APNs to track users?

^{1:} APNs CCA certificates are bound to devices. However, these devices are typically private and carried by a user at most times, which allows inferences into user tracking.

Passive Capturing

Methodology

Analysis of > 2 weeks of TLS CCA traffic at Internet uplink:

- APNs TCP ports (443, 5223, 2195, 2196)
- pcap Filter on certificate handshake

Stored information:

- Timestamp
- Connection 5-tupel (Source & Destination IP address, Port, Protocol TCP)
- Certificates & TLS Extensions

Working with Human Subjects

Ethical Considerations

Strict regulations by IRB:

- Documented measurement process
- Isolated measurement infrastructure
- Access only for permitted staff
- Raw data must not leave infrastructure

Our self-restrictions:

- No attempt to identify users
- No publication of identifiable data

APNs by far the biggest user of CCA

#Certs	Issuer Distinguished Name			
56128	/C=US/O=Apple Inc./OU=Apple iPhone/CN=Apple iPhone Device CA			
334	/CN=Layer Client CA/C=US/L=San Francisco/O=Layer, Inc/ST=CA			
221	/CN=AnyDesk Client			
76	/C=KR/ST=Kyunggido/L=Suwon/O=Samsung Electronics (redacted)			
52	/CN=Ricoh Remote Service (redacted)			

Case Study - how well can we track a single user?

Informed Consent

Note: We are tracking a device. As mobile devices are typically closely carried, they allow conclusions about users.

Quirin Scheitle (TUM) | Push Away Your Privacy: Precise User Tracking Based on TLS CCA

What % of certificates is traceable?

Can we derive device types from certificate data?

Is global tracking feasible?

Methodology

Research Question: How many networks does an attacker have to eavesdrop on to observe a significant share of APNs logins?

- We identify APNs backend infrastructure and conduct distributed traceroute measurements towards it
- Measurements confirm that clients resolve one of [1-50]-courier.push.apple.com
- We globally resolve [1-50]-courier.push.apple.com using 1000 RIPE Atlas probes each
- We find 69 /24 subnets and pick one random observed IP address in each of the 69 subnets
- Using 1000 RIPE Atlas probes per measurement, we conduct traceroute measurements towards all 69 IP addresses
- We map transit router's IP addresses to ISPs and IXPs
- We count what % of routes traverses a certain ISP or IXP

Is global tracking feasible?

Eavesdropping capabilities on just 10 networks allows to follow APNs messages of over 80% of users globally or nationally

Rank	Global		Germany	
	IXP/AS	Σ% Paths	IXP/AS	Σ % Paths
1	AS3356 (L3)	25%	IXP DE-CIX	30%
2	AS1299 (Telia)	40%	AS3320 (DTAG)	52%
3	AS174 (Cogent)	54%	IXP E-CIX	61%
4	AS7922 (Comcast)	61%	AS6830 (Liberty)	69%
5	AS12322 (Free)	67%	AS31334 (VF/Kabel D)	75%
6	AS6830 (Liberty)	71%	AS1273 (C&W)	78%
7	AS4637 (Telstra)	75%	AS3356 (L3)	81%
8	AS6453 (Tata)	78%	AS34419 (VF Group)	84%
9	AS2828 (XO)	81%	AS680 (DFN)	86%
10	AS3320 (DTAG)	84%	AS6805 (Telefonica)	88%

Note: % is based on RIPE Atlas probe distribution as a proxy for APNs user distribution.

Responsible Disclosure

We informed Apple's product security team before publication:

- Contact with OpenPGP secured mail
- Very quick response
- Several phone calls, continuous contact
- Several engineers in calls and working on resolution

Impact:

- MacOS & iOS fixed with January 2017 security patches
- APNs Backend patched
- iTunes on Windows patched a bit later (SChannel is complicated . . .)

Discussion: The Value of Internet Measurements

It has been known and criticized for a while that TLS1.2 does not encrypt certificates, which may have specific adverse impact for client certificates. Anyhow ...

- Discussions eroded . . .
- Draft RFCs expired . . .
- Apple decided to use CCA for APNs . . .

Lack of taking the issue seriously?

We believe that Internet measurements can overcome inertia in security improvements by ...

- Quantifying impact and scale of a problem with hard evidence
- Benefitting issue prioritization
- Providing means to track patching progress

What now?

Push TLS 1.3 standardization which encrypts certificates

Figure: TLS 1.3 handshake, Unencrypted Data, [Encrypted Data]

But: ClientHello Extensions still unencrypted:

- Server Name Indication (SNI)
- Application-specific data

Reproducibility...

We aim for repeatability, replicability, and reproducibility¹

Repeatability — same team, same experimental setup

Packing of "Reproducibility Bundle" along with camera-ready version requires detailed repetition of paper creation.

Replicability — different team, same experimental setup

We provide "artifacts" (scripts, data, documentation) so any other team can easily replicate our work.

Reproducibility — different team, different experimental setup

We provide a detailed documentation of our approach (*which pcap filter was set? what precise traceroute parameters were set?*) so other teams can reproduce our work without using our artifacts.

We ran an exercise² at the TMA PhD school that followed the research question and methodology of this paper. This resulted in a partial mix of replication, reproduction, and extension of our work.

^{1:} Terms as defined by ACM: http://www.acm.org/publications/policies/artifact-review-badging

^{2:} https://github.com/quirins/tma17-ripeatlas-lab-participants/

How to deal with Reproducibility and Private Data?

Much of the data in this work contains private and sensitive data

Passively Captured TLS handshakes and certificates

- No publication of raw data
- Cut open of analysis pipeline (for example, "not valid before" attribute of certificate)
- Anonymize output of database query with documented script
- Feed the anonymized data into analysis pipeline, published figures in paper clickable:

https://github.com/tumi8/cca-privacy/blob/master/userstudy/userstudy.ipynb

Active Measurement of APNs backend and traceroutes

- Public data RIPE Atlas measurements per default public, for example https://atlas.ripe.net/measurements/5719601/
- Publish everything: Measurement scripts, RIPE Atlas IDs, raw data, analysis tools

Future Work

- Measuring uptake of APNs patch
- In-depth analysis of APNs backend infrastructure
- Controlling for AS population vs. RIPE Atlas probe count bias

Key Messages, Data, and Code

- TLS-CCA sends certificates unencrypted
- In an "always-on" mobile scenario, this can cause serious privacy issues
- We quantified this issue in the Apple Push Notification Service (APNs), Apple fixed promptly

Data and Code:

https://github.com/tumi8/cca-privacy

Matthias Wachs, <u>Quirin Scheitle</u>, and Georg Carle
Chair of Network Architectures and Services — https://net.in.tum.de
Technical University of Munich (TUM)