
Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

Active TLS Stack Fingerprinting:
Characterizing TLS Server Deployments at Scale

Markus Sosnowski*, Johannes Zirngibl*, Patrick Sattler*,Georg Carle*,
Claas Grohnfeld**, Michele Russo**, Daniele Sgandurra**

*Chair of Network Architectures and Services, Technical University of Munich, Germany
*AI4Sec, Huawei Technologies Munich, Germany

Introduction

Three facts about the TLS:

1. It is currently the de facto standard for encrypted communication on the Internet1

2. It is old, and it has grown to a complex ecosystem due to its continuous development2

3. Thus, during the handshake the client and server capabilities must be exchanged.

→ This meta-data allows to fingerprint the TLS stack (config, implementations, and hardware)

1
C. Labovitz, „Internet Traffic 2009-2019,“ in Proc. Asia Pacific Regional Internet Conf. Operational Technologies, 2019.

2
P. Kotzias, A. Razaghpanah, J. Amann u. a., „Coming of Age: A Longitudinal Study of TLS Deployment,“ in Proc. ACM Int. Measurement Conference (IMC), 2018.

Sosnowski et al. — Active TLS Stack Fingerprinting 2

Background

TLS Fingerprinting

• Collecting TLS characteristics (⇒ represented as fingerprint)
• Build a database mapping fingerprints with not directly related data, e.g.:

Fingerprint Indicates

771_1301_... IETF webserver
771_1302_... Nginx docker image
770_cf_... TrickBot CnC server

Sosnowski et al. — Active TLS Stack Fingerprinting 3

Background

Example TLS 1.3 handshake

Client Server

Client Hello (CH) [ver., session info., Cipher Suites, _, Extensions {versions, ALPNs, ...}]

Server Hello (SH) [ver., session info., Cipher Suite, _, Extensions {version, ALPN, ...}]

Change Cipher Spec

Encrypted Extensions, Certificate, Certificate Verify, ..., Finished, [Application Data]

Changed Cipher Spec

..., Finished, [Application Data]

Application Data

Legend: fingerprintable server data, encrypted data

Sosnowski et al. — Active TLS Stack Fingerprinting 4

Motivation

Future Applications:

1. Enhance existing Intrusion Detection Systems
Servers from network flows are fingerprinted on-demand and results compared with known malicious ones

2. Internet-wide measurements
Security researchers use fingerprinting to find previously unknown threats

3. Monitoring of own Servers
Deviations from a fingerprints baseline can indicate an unintended software change or a malware infection

Sosnowski et al. — Active TLS Stack Fingerprinting 5

Goals

Problem: Early fingerprints with default CHs were not distinctive enough

This was due to the question-answer design of TLS, e.g.:

TLS_AES_256_GCM_SHA384
TLS_CHACHA20_POLY1305_SHA256
TLS_AES_128_GCM_SHA256
TLS_AES_128_CCM_8_SHA256
TLS_AES_128_CCM_SHA256
...

CH

TLS_AES_128_GCM_SHA256

SH

→ use unusual CHs that trigger distinguishable behaviors

→ find multiple CHs to increase the learned data

→ find a trade–off between learned data and scan costs (time and impact)

Sosnowski et al. — Active TLS Stack Fingerprinting 6

Methodology

Research Questions

1. How can we relate similar TLS server deployments?

2. How can we improve the effectiveness of our CHs?

3. What is the performance of actual fingerprinting use-cases?

Sosnowski et al. — Active TLS Stack Fingerprinting 7

Methodology

Constructing Fingerprints

Extract data such that similar deployments have the same fingerprint

• A handshake is represented textually, e.g.,

771

Version

_

Cipher

1301 _ 43.AwQ-51.23

Server Hello Extensions

_

Encrypted Extensions

0.-10.AAo... ___ 18.

Certificate Extensions

Alerts

<40 .

• The final TLS fingerprint is a combination of multiple handshakes, e.g.,

771_1301..., 771_1302..., 770_fa. . . , ...

Sosnowski et al. — Active TLS Stack Fingerprinting 8

Effective Scanning Configurations

Research Questions

1. How can we relate similar TLS server deployments?

2. How can we improve the effectiveness of our CHs?

3. What is the performance of actual fingerprinting use-cases?

Sosnowski et al. — Active TLS Stack Fingerprinting 9

Effective Scanning Configurations

Challenge: Without knowledge about the implementation of every TLS server, it is impossible to select the ideal CHs for
fingerprinting.

→ However, we can optimize the effectiveness of the CHs

We propose and empiric design of CHs:

1. Measure the effectiveness with a metric (e.g., distinct fingerprints)

2. Perform measurement with a large amount of randomly generated candidates

3. Select the CHs that maximize the metric

This way we generated the 10 general-purpose CHs used in the following analyses

Sosnowski et al. — Active TLS Stack Fingerprinting 10

Fingerprinting Use Cases

Research Questions

1. How can we relate similar TLS server deployments?

2. How can we improve the effectiveness of our CHs?

3. What is the performance of actual fingerprinting use-cases?

Sosnowski et al. — Active TLS Stack Fingerprinting 11

Fingerprinting Use Cases

Overview

Long-running study over 30 weeks with weekly measurements

Toplists
• Alexa Top 1 Million
• The Majestic Million

Blocklists

• abuse.ch Feodo Tracker
• abuse.ch SSL Blacklist

→ In total, we collected 104 Million fingerprints

Sosnowski et al. — Active TLS Stack Fingerprinting 12

Fingerprinting Use Cases

CDN Server Detection

CDNs enable us to evaluate the approach because

• they are a single actor deploying TLS servers on a large-scale (large amount of data samples)
• their servers can be verified (AS, HTTP headers, and x509 certificates) to get a ground-truth

→ Evaluated a CDN detection based on past observations per week

Metrics:

• Precision
(

TP
TP+FP

)
: „correct classifications“

• Recall
(

TP
TP+FN

)
: „detected CDN servers“

Sosnowski et al. — Active TLS Stack Fingerprinting 13

Fingerprinting Use Cases

CDN Server Detection

80%

90%

100%
Akamai Alibaba

2021-08

2021-09

2021-10

2021-11

2021-12

2022-01

2022-02

Measurement Date

80%

90%

100%
Cloudflare

2021-08

2021-09

2021-10

2021-11

2021-12

2022-01

2022-02

Measurement Date

Fastly

Precision
Recall

Note: The approach enabled us to detect off-net CDN servers in sometimes unexpected ASs

Sosnowski et al. — Active TLS Stack Fingerprinting 14

Fingerprinting Use Cases

CnC Server Detection

Fingerprinting allows to detect potentially malicious servers

• We analyzed new additions to the lists based on past information
• We considered how often a fingerprint is observed from CnC servers vs. from toplist servers
• This results in a score ∈ [0, 1] how certain we are that we found a CnC server
• If the score was above a tune-able threshold, the server is classified as CnC server

Sosnowski et al. — Active TLS Stack Fingerprinting 15

Fingerprinting Use Cases

CnC Server Detection
Precision
Recall

0% 20% 40% 60% 80% 100%
Threshold

0%

50%

100%

TLS Fingerprint (10 CHs)

0% 20% 40% 60% 80% 100%
Threshold

0%

50%

100%

HTTP Data (Server Header)

0% 20% 40% 60% 80% 100%
Threshold

0%

50%

100%

Combined (10 CHs + HTTP Data)

→ Fingerprints work great if combined with additional indicators

Sosnowski et al. — Active TLS Stack Fingerprinting 16

Conclusion

https://active-tls-fingerprinting.github.io

• Proposed a selection of TLS handshake features and their encoding
as fingerprint to relate servers

• Provided a methodology for finding effective CHs and 10 general-
purpose CHs that maximize information extraction from servers

• Demonstrated the potential of Active TLS Stack Fingerprinting based
on detecting CDN and CnC servers

• The approach resulted in more effective fingerprinting compared to
related work JARM3

• Open-sourced our data and code

3
J. Althouse, A. Smart, R. Nunnally Jr. u. a., Easily Identify Malicious Servers on the Internet with JARM, 17. Nov. 2020. Adresse: https://engineering.salesforce.com/easily-identify-malicious-servers-on-the-internet-with-jarm-

e095edac525a.

Sosnowski et al. — Active TLS Stack Fingerprinting 17

https://active-tls-fingerprinting.github.io
https://engineering.salesforce.com/easily-identify-malicious-servers-on-the-internet-with-jarm-e095edac525a
https://engineering.salesforce.com/easily-identify-malicious-servers-on-the-internet-with-jarm-e095edac525a

	Introduction
	Background
	Motivation
	Goals
	Methodology
	Effective Scanning Configurations
	Fingerprinting Use Cases
	Conclusion

