
sKnock: Port-Knocking for Masses
Daniel Sel, Sree Harsha Totakura, Georg Carle

Chair of Network Architectures and Services
Technical University of Munich

Email: {sel, totakura, carle}@in.tum.de

Abstract—Port-knocking is the concept of hiding remote ser-
vices behind a firewall which allows access to the services’
listening ports only after the client has successfully authenticated
to the firewall. This helps in preventing scanners from learning
what services are currently available on a host and also serves
as a defense against zero-day attacks. Existing port-knocking
implementations are not scalable in service provider deployments
due to their usage of shared secrets. In this paper we introduce
an implementation of port-knocking based on x509 certificates
aimed towards being highly scalable.

Index Terms—Port-knocking, dynamic firewall, x509

I. INTRODUCTION

PORT-KNOCKING is the concept of hiding remote ser-
vices behind a firewall which drops all incoming connec-

tions to the services by default, but allows them only after
the client has authenticated to the firewall. This can be seen
as an additional layer of security which provides protection
from port scans and exploits on the services from unauthorized
clients.

There exists many implementations of port-knocking as of
today and most of them employ authentication based on shared
secrets. In these implementations the firewall is configured
to authenticate a client based on its corresponding secret.
While this approach is simple and efficient for a small number
of clients, it quickly becomes unmanageable for a service
provider with a large and dynamically changing client base.

Another problem with authentication based on secrets is that
it is common for service providers to offer multiple servers to
a common pool of clients for reasons of providing redundancy
and load-balancing. In such a setup, the servers or the firewalls
protecting the services have to synchronise the port-knocking
secrets shared with each client. Furthermore, when a service
provider uses a cloud provider for service delivery, the secrets
have to be configured in the cloud provider’s infrastructure
which may give away the size of the client base of the service
provider to the cloud provider.

To our knowledge there exists no implementation of port-
knocking which demonstrates scalability on-par with what
is required for a service provider using cloud computing
infrastructure. To overcome the scalability barrier, we propose
sKnock (named after ‘scalable Knock’), our approach towards
port-knocking using public-key cryptography to address scala-
bility. Here, we choose to use the X509 [1] certificate standard
due to its popularity. The motivation behind using certificates
is that a certificate’s validity can be checked by having the

certificate of the signer; while adhering to x509 allows us to
encode authentication information as x509 extensions and be
able to use renowned libraries such as OpenSSL to parse the
certificates. This, albeit a lookup in the revocation database
which is usually small, aids in improving the scalability of
authentication. Moreover, this approach is not subjected to the
problem of synchronising the secrets among different servers
and mitigates the privacy problem of knowing the size of client
base as the firewall now only requires the certificate of the
certification authority (CA) to authenticate the clients.

Our contributions to this paper are a one-way communi-
cation protocol to authenticate clients to the port-knocked
firewall, an implementation of this protocol in a client and a
server component. The client component provides a C library
which allows applications to integrate port-knocking function-
ality. The server component integrates with the firewall and
dynamically configures it to allow authenticated clients to
communicate with the services behind the firewall.

The text in this paper is organised as following: the next
section introduces an attacker model. We use it to evaluate
some of the existing port-knocking approaches and their
authentication process in detail to highlight the differences
with our approach in Section III. Section IV introduces sKnock
describing the authentication protocol and the design decisions
we took to overcome common pitfalls. Section V describes
our evaluations of an implementation of sKnock in Python. Its
limitations are then presented in Section VI. Finally, as part of
conclusion we describe the pros and cons of sKnock compared
to others and suggest some future work in Section VII.

II. ATTACKER MODEL

For an attacker interested in attacking the services protected
by port-knocked firewall, he has to either pose as a valid
client of the service or defeat the port-knocking protection. For
public services, an attacker can easily become a valid client.
Therefore, we consider an attacker model where the attacker
is interested in attacking the port-knocked firewall.

In this model, we consider the following capabilities to
model different types of attackers:

A1 Record any number of IP packets between a given source
and destination and replay them from own IP address.

A2 Modify, and suppress any number of IP packets from a
given source and destination.

A3 Send IP packets from any IP address and receive packets
destined to any IP address.This is a pre-print version of the paper submitted to WMCSP 2016.



Capability A1 can be acquired by an attacker by snooping
anywhere on the network route between source and destina-
tion. Additionally, if the attacker can position himself as a
hop anywhere in the route, he gains capability A2. A3 can
be acquired by positioning himself in the link connecting the
firewall to the Internet.

In addition to this, we also consider a valid client to be an
attacker if the client’s validity is revoked due to some reason
and the client then tries to exploit the port-knocked firewall.
Therefore, we assign the following properties:
B1 Attacker knows that the firewall uses port-knocking.
B2 Attacker may have previously port-knocked successfully

as a valid client.
Notice that capabilities B1 and B2 are easier to acquire than

A1, A2, and A3. B1 is even easier as it is possible to learn the
existence of port-knocked firewall if that information is public
(if it is advertised by the service provider).

In the rest of the text, we refer to attackers with a combi-
nation of these capabilities using the set notation: an attacker
with capabilities A1 and B1 is termed as {A1, B1} attacker. If
an attacker has a single capability, we will ignore the braces,
i.e. A1, B1 attackers mean two type of attackers each with a
capability, but not both capabilities.

Finally we assume that attackers cannot decrypt encrypted
content and cannot forge signatures for arbitrary parties with-
out the knowledge of their keys. This can be ensured in
practice by proper usage of cryptography.

III. RELATED WORK

Port-knocking is historically done by sending packets to
different ports in a predefined static sequence. The sequence
is kept secret and is shared with authorised clients. The firewall
monitors the incoming packets and opens the corresponding
port for a remote service for a client if the destination port
numbers of a sequence of packets coming from that client
match the its corresponding predefined sequence. An A1
attacker can observe this sequence and later replay it to defeat
port-knocking.

Variants of port-knocking which use multiple packets to
convey authenticating information to the firewall are termed
under Hybrid Port-Knocking. To defend against A1 attackers,
the sequence can be made dynamic with the usage of cryptog-
raphy, e.g. by deriving the sequence from a time based one-
time password (TOTP) [2]. However it is vulnerable to {A1,
A2} attackers because the attacker can suppress a suspected
sequence of packets from reaching the firewall and replay it
from his host.

To defend against {A1, A2} attackers the IP address of the
client needs to be encoded into the authenticating information
in a way that that the firewall can retrieve it to open the port
in the firewall for that client. If the client’s IP address is in
cleartext, then the authenticating information should contain a
message authentication code (MAC), e.g. through HMAC [3],
so that the attacker cannot rewrite it with his IP address.

However, encoding the client IP address in authentication
information causes problems for clients behind NAT. Such

clients are required to know their NAT’s public IP address to
be able to successfully knock the firewall. This may, however,
lead to NAT-Knocking attacks [4] as the NAT’s IP address is
shared by other clients in the network and one of them could
be an attacker. Aycock et. al. [5] proposed an approach based
on challenge-response to solve this problem. This approach
requires a three-way handshake where the client initiates by
sending a request to the firewall. The request contains an
identifier and the client’s IP address. The firewall then sends a
challenge containing the IP address it observed as the request’s
source IP, the IP address present in the request, and a random
nonce, together with a MAC over these fields. The client
then responds to this challenge by presenting a MAC over
these fields with its pre-shared secret with the firewall. Since
the handshake messages are authenticated with MAC, this
approach is immune to {A1, A2} attackers.

A practical problem with hybrid port-knocking variants is
that they fail when packets are delivered out-of-order to the
firewall. To address this, the authenticating information could
be sent as a single packet. This variant of port-knocking is
termed as Single Packet Authorisation and is first documented
to be used in Doorman [6]. Doorman authenticates clients
based on a HMAC derived from the shared secret, port number
to open for the client, username, and a random number. The
random number is used to provide protection against A1
attackers as the firewall rejects a request with a number already
seen. Since it does not include the client IP address, it is
susceptible to {A1, A2} attackers.

Furthermore, there are variants which perform stealthy port-
knocking by encoding the authenticating information into
seemingly random looking fields of known protocols, e.g. the
initial sequence number field of TCP, and the source port
number. The advantage of these variants is that they make it
difficult for an attacker to suspect port-knocking mechanisms
just by observing the traffic. Among these are SilentKnock
from Vasserman et. al. [7] and Knock from Kirsch et. al. [8].

SilentKnock encodes authentication token into the TCP
header fields of the TCP SYN packet sent by the client. The
firewall intercepts this packet from the kernel and extracts
the token. The server then verifies the token and opens the
corresponding port if the token is valid. The token is generated
with keyed MAC with counters to prevent replay attacks from
A1 attackers.

Similar to SilentKnock, the stealth property in Knock is
achieved encoding the authentication token into the TCP
header fields. Additionally, Knock allows for the client and
the server to derive a session key which is then used to
authenticate application data, thus preventing an {A1, A2,
A3} attacker to take over the connection after successful port-
knocking.

While the concept of stealthy port-knocking can be applied
to any operating system, the current state of implementations
for SilentKnock and Knock are limited to the Linux kernel.
This poses a deployment barrier for service providers as they
have to require their consumers to run complying software
setup on their hosts.



IV. SKNOCK

In all of the approaches presented earlier, the client and the
firewall depend on a shared secret to authenticate and gain
defence against A1, A2 attackers. In the case of B2 attackers,
these approaches require the shared secret to be invalidated at
the firewall. This brings in the inconvenience and scalability
problems discussed in Section I.

sKnock addresses the scalability problem by using certifi-
cates: each client gets a certificate which it uses to encrypt
and sign the authentication information; the firewall requires
the CA certificate to authenticate the client. B2 attackers are
defended by limiting the certificate validity to an expiry date
and having a certificate revocation list to invalidate certificates
before their expiry.

In the reminder of this section we describe sKnock’s authen-
tication protocol and give a brief description of its prototype
implementation in Python.

A. Protocol

The one-way authentication protocol of sKnock requires
the client to send an authentication packet before opening
a connection to the remote services behind the firewall. The
authentication packet is a UDP packet containing the client’s
certificate and the port number of the remote service it wants
to communicate with on the server. Additionally, it contains
the client’s IP and timestamp to provide protection against
A1, A2 attackers. The format of the packet is shown in
Fig. 1. To protect the privacy of the client, this information
in the packet is encrypted with an ephemeral key which is
derived from the server’s public key using Elliptic Curve
Diffie-Hellman (ECDH). The ephemeral key is freshly chosen
for every authentication packet sent by the client. The client’s
Diffie-Hellman share required for generating the ephemeral
key at the server is also included in the packet.

Since we want to keep the overhead of port-knocking low
and also reduce the number of packets involved in the authen-
tication to perform well under packet loss, it is important to fit
this payload in one UDP packet. The limiting factors here are
the network MTU sizes and the size of the client certificate. A
common network MTU of 1500 bytes has eliminated the use
of RSA and DSA public keys of lengths 2048 bits and above
in the certificates. Fortunately, we were able to use Elliptic
Curve Cryptography (ECC) public keys of lengths up to 256
bits offering security equivalent to that of 128 bit AES or
3072 bit RSA keys [9] resulting in a packet size of about 800
bytes. While ECC certificates are not as common as RSA or
DSA certificates, this was the only option which gave us the
possibility to keep the payload size lower while using x509
certificates.

Reliability against packet loss is achieved by retrying the
authentication protocol. For connections to TCP services, the
server could be configured to reject connections to closed
ports by sending a TCP RST such that a failed authentication
protocol will immediately result in TCP connection failure at
the client which can then immediately retry. Whereas for UDP,
the application requires its own protocol for determining the

failure or, alternatively a timeout. The optimal value for the
timeout would the sum of round-trip time (RTT) to the firewall,
delay for processing the authentication packet and, delay for
opening the corresponding port in the firewall.

B. sKnock Certificates

sKnock uses x509v3 certificates with the requirement that
the certificates’ public and private keys should be 256 bits
long and generated using Elliptic Curve Cryptography. The
certificates are used only by the clients of a service provider to
port-knock the provider’s servers. The service provider could
either act as a Certificate Authority (CA) for signing these
certificates or rely on another party; it is only important to
have the same CA certificate configured on the servers.

In addition to authenticating the client, the client certificates
also carry authorisation information specifying the protocol,
port pairs the client is authorised to connect to. This infor-
mation is encoded in the certificates using x509v3 extensions
under object identifier for Technical University of Munich,
1.3.6.1.4.1.19518 as Other Name in the Subject Alternative
Name (SAN) extension.

C. sKnock Server

Our prototype implementation of sKnock is developed in
Python and works with the Linux iptables2 firewall. The
firewall is dynamically configured to allow traffic from port-
knocked connections after the clients are authenticated, while
the rest of the traffic is dropped by the firewall, including
the sKnock authentication packets. To read the authentication
packets we used a raw socket, which in Linux is not subjected
to the firewall rules and hence can receive all the traffic
reaching the host. As the raw socket receives all the traffic
reaching the host, an efficient filtering process is required to
filter out valid authentication packets from the rest. This is
done by discarding packets which do not meet the following
criteria in the order listed:

1) Packet’s IPv4 or IPv6 header is valid
2) Packet is UDP and its header is valid
3) Decryption of the packet succeeded
4) Packet has valid sKnock header

• Byte 32 is 0
• Timestamp within allowed interval
• Client IP matches packets source IP

5) Timestamp is within the allowed period
6) Client certificate is valid and not in the revocation list
7) Client certificate authorised for opening requested port
8) Client signature is valid

If the authentication packet passes all of the above checks, the
requested port is opened in the firewall for the client sending
it.

D. sKnock Client

sKnock client is an implementation of the sKnock protocol
for client side applications. The client implementation is
available as a library in Python and C. Applications can use



Si
gn

ed
w

ith
C

lie
nt

C
er

tifi
ca

te
E

ncrypted
w

ith
A

E
S

using
a

sym
-

m
entric

K
ey

derived
from

E
C

D
H

IP Header UDP Header Knock Header

0 Protocol Port No. Client IP Timestamp

Client Certificate

Client Signature Padding

Ephemeral Public Key

0 20 28 32

32 33 34 36 52 56

56 710

710 782 783

783 816

Fig. 1. Packet format of the sKnock authentication packet starting with a IPv4 header. The fields for Protocol and Port No. provide the port number to be
opened in the firewall for the given protocol (TCP or UDP). The Ephemeral Public Key contains the public key used by the client and is required for the
server to determine the AES key using Elliptic Curve Diffie-Hellman (ECDH).

the libraries to perform port-knocking at a sKnock firewall.
The libraries contain the following functions:

• knock new (timeout, retires, verify, server certificate,
client certificate, client certificate password): creates a
new handle with the given certificates. The fields retries
and timeout specify how many times sKnock should retry
port-knocking and how long it should wait before deter-
mining a failure; applies to TCP connections. The verify
flag specifies whether the library should test whether
the port has been successfully opened or not; applies to
TCP connections. server certificate and client certificate
specify the paths to the server and the client certificates.
client cert passwd is the field containing the password
for the client certificate. This function returns a handle
which is required by the next function.

• knock knock (handle, host, port, protocol): perform port-
knocking by sending the authentication packet to the
host. handle is the value returned from knock new(). port
and protocol specify which port should be opened in the
firewall after successful port-knocking.

Applications can port-knock a sKnock firewall by using
these two functions before they open a connection to a remote
service behind the firewall.

In addition to this, the sKnock client implementation con-
tains a command-line helper program to port-knock the server.

V. EVALUATIONS

Since sKnock is intended as the scalable port-knocking
solution, we evaluated its scalability and performance using a
variety of tests. As part of this we evaluated the performance
of the iptables2 firewall software, our filtering processes for
filtering valid authentication packets, and the latency over-
head incurred during connection establishment due to port-
knocking.

All evaluations were performed on DELL OptiPlex 9020M
machines equipped with a quad-core Intel(R) Core(TM) i5-

0 2 4 6 8 10 12

Number of rules in Knock chain #104

0

50

100

150

T
im

e 
fo

r 
si

ng
le

 p
or

t-
op

en
 o

pe
ra

tio
n 

[m
s]

Linear regression

Fig. 2. Delay in adding new rules to the firewall. Rules are added sequentially
to open 131070 (65535 TCP + 65535 UDP) for an IPv4 client.

4590T CPU @ 2.00GHz and 16GB of memory. The operating
system running on the machine was Ubuntu Linux 12.04.5
LTS. The underlying cryptographic routines were provided
by OpenSSL-1.0.1 and the firewall was iptables2-1.4.12. The
machines were connected with a 1 Gbps Ethernet cable when
required to form a network.

A. Firewall

We evaluated the scalability limitations of using iptables2
firewall by measuring the time taken to open 131072 ports
(65535 TCP + 65535 UDP) for an IPv4 client. The test adds
a rule in the firewall to open a port for the given client and
measures the time taken for the firewall to add this rule. This
is repeated sequentially for each port until all of them are open
for the given client. The evaluation data is shown in Fig. 2.



The results show that the delay in adding new rules is linearly
proportional to the number of rules present in the firewall.

B. Packet Processing

Since sKnock uses a raw socket, it has to filter valid
authentication packets from the rest of the traffic reaching the
host. For this we defined a filtering process in Section IV-C.
In this evaluation we measured the performance limitation of
this filtering process with a static test by pre-generating some
valid authentication packets together with some TCP and UDP
packets complete with an Ethernet header and random payload.
The pre-generated packets are read from a static list, therefore
the delay incurred by raw sockets is not accounted.

In our test environment, we decided to run two different
measurements: one synthetic worst-case scenario, which simu-
lates that all incoming packets are valid authentication packets
and a realistic scenario with 1% of port-knocking traffic while
the rest of the packets are irrelevant to sKnock. Additionally
the test data for the second scenario contains 5% of packets
bigger than the configured minimum authentication packet
size. Among these packets the TCP to UDP ratio is set at
5:1 in order to resemble the Internets’ traffic patterns as close
as possible [10].

The test-run performed to evaluate the worst-case process-
ing power of our implementation yielded a result of roughly
5300 pps (packets per second), which translates to a processing
time of less than 0.19ms per packet for valid authentication
requests.

Our second test case, which is a closer approximation for
real-world operation, yielded even higher processing capabil-
ities with an average throughput of over 6100 pps. Here our
implementation achieved processing times of about 0.16ms per
packet.

C. Connection Overhead

In this evaluation we measured the latency incurred while
opening connections when using sKnock’s port-knocking. We
used a simple protocol based on timestamps to measure this
latency: the client sends its timestamp to the server as the first
packet after port-knocking; the server then responds with its
timestamp to the client. The server observes one-way latency
while the client observes round-trip latency. The clocks of the
client and the server are kept in sync using Precision Time
Protocol (PTP) [11].

Since sKnock server requires some processing time to
validate a port-knocking request and to add a new rule in the
firewall to open the requested port, attempts to connect to a
port may fail if the connection packets immediately follow
the port-knocking request. Moreover, out-of-order delivery
further increases the risk of such failures. To determine the
optimal wait period between the authentication packet and
the subsequent connection packet, we developed a calibration
script. The script tries to open connections with a wait period
derived from a start value and retries successful connections
with shorter wait periods until a tiny (configurable) fraction
of connection open requests fail.

Fig. 3. Latency overhead caused by sKnock (UDP)

TABLE I
LATENCY DUE TO CONNECTION OVERHEAD

TCP UDP
Without port-knocking 1.97 ms 0.74 ms
With port-knocking 18.25 ms 17.37 ms
Port-knocking overhead 16.27 ms 16.63 ms

In this evaluation the calibration script yielded an optimal
value of 11 ms for the wait period allowing for a failure rate
of 0.2% with an accuracy of 99%. To remove noise from the
underlying network, we repeated the simple timestamp-based
protocol number of times.

The observed latency for UDP run of the simple protocol
with an without port-knocking protection can be seen in Fig. 3.
The evaluation is also repeated for TCP and the results are
summarized in TABLE I.

VI. LIMITATIONS

A major limitation of sKnock lies in the amount of overhead
caused by the authentication packet. This is far greater than
what is required by other implementations. However, if the
connection is long-lived, this overhead will be tiny and since
only one packet is used, the delay for port-knocking is kept
to a minimum.

The other limitations of sKnock which we are aware of are
as following:

A. Incompatibility with NAT

Since the current protocol requires the client to include its
IP address into the authentication information, clients using
NAT gateways cannot successfully port-knock the firewall.

Deployments seeking compatibility with NAT could ignore
the client IP check, but they will then be susceptible to A2
attackers.



B. Vulnerability to Attacks

Any port-knocking scheme employing encryption is further
subjected to the DoS-Knocking attack [4] where an attacker
carries out a DoS attack by sending many legitimately-looking
invalid port-knocking requests to keep the firewall busy while
legitimate traffic is left in starvation. We agree that this will
be also be the case with sKnock, but due to the usage of raw
sockets, only new valid legitimate port-knocking requests are
denied service as they are to be processed by sKnock which
is kept busy with the DoS requests. Since sKnock’s current
implementation in Python cannot not occupy all of existing
processor cores due to the presence of a global interpreter
lock any already opened connections are not starved in this
case because the firewall is not processing the port-knocking
requests and it has already been configured to allow traffic
from previously port-knocked clients.

sKnock is susceptible to replay attacks by {A1, A2, A3, B1}
attackers. Such an attacker could wait for the port-knocking to
succeed and then take over the connection by masquerading as
the client. These attackers can be defended by authenticating
the connection data which follows port-knocking as done by
Knock [8]. This defence is not yet implemented in sKnock.

C. Performance

The current Python implementation of sKnock has lim-
itations in terms of operational efficiency due to Python
interpreter being single threaded. While this implicitly gives
partial defence towards DoS-Knocking attacks when run on a
system with a processor having more than a single core, the
throughput could be improved by parallelising request filtering
and validation.

Another implementation specific problem with ECC keys
is that ECC is relatively new and OpenSSL supports only a
limited number of well known curves. Moreover, due to their
novel state, there exists no hardware implementation as of this
writing to significantly speed up their processing, thus limiting
the performance of our implementation.

D. Trust in NIST Curves

sKnock relies on OpenSSL for providing PKI support. As
of this writing, OpenSSL does not yet support any of the curve
determined as SafeCurves [12] providing 256 bit keys. This
led us to use NIST-P 256 curve whose usage may not be
secure [12] and hence should be replaced when the required
support is available in OpenSSL.

VII. CONCLUSION & FUTURE WORK

When compared to other port-knocking implementations
sKnock has high overhead in terms of payload and process-
ing requirements. Furthermore, stealthy port-knocking with
sKnock is not possible. As an advantage, sKnock provides easy
deployability to service providers as it can be readily integrated
into their PKI infrastructure and as it does not require changes
to the client’s operating system.

The overhead incurred due to using x509 certificates could
be reduced by implementing a custom format for encoding the

certificates into the authentication information. This will how-
ever deny us the usage of well-audited PKI libraries, increase
development costs and induce security issues. Alternatively,
usage of other formats such as OpenSSH certificates could be
explored.

During our evaluations we found that the lack of native
parallelism in Python severely limited the performance. Addi-
tionally, there was also some overhead involved in converting
data structures between the underlying cryptographic libraries
and the firewall interface, which were available as C libraries.
Therefore, we believe that on a multi-core system the perfor-
mance of sKnock could be improved by implementing it in a
system programming language such as C or Rust.

Another improvement could be made to improve support for
UDP data streams. The current prototype requires the client
to keep sending authentication packets periodically as long as
the application is using the UDP stream to avoid the firewall
from timing out the connection and closing the corresponding
port. This could be improved by adding application level UDP
connection tracking at the server, where the remote service can
close the firewall when the connection is no longer required.

ACKNOWLEDGMENT

This work was carried out under the scope of the SafeCloud
EU research project funded through EU grant agreement
653884.

REFERENCES

[1] I. ITU, “Information technology–open systems interconnection–the di-
rectory: Publickey and attribute certificate frameworks,” Suı́ça, Genebra,
ago, 2005.

[2] D. M’Raihi, S. Machani, M. Pei, and J. Rydell, “Totp: Time-based
one-time password algorithm,” Internet Requests for Comments, RFC
Editor, RFC 6238, May 2011, http://www.rfc-editor.org/rfc/rfc6238.txt.
[Online]. Available: http://www.rfc-editor.org/rfc/rfc6238.txt

[3] H. Krawczyk, M. Bellare, and R. Canetti, “Hmac: Keyed-hashing for
message authentication,” Internet Requests for Comments, RFC Editor,
RFC 2104, February 1997, http://www.rfc-editor.org/rfc/rfc2104.txt.
[Online]. Available: http://www.rfc-editor.org/rfc/rfc2104.txt

[4] A. I. Manzanares, J. T. Márquez, J. M. Estevez-Tapiador, and J. C. H.
Castro, “Attacks on port knocking authentication mechanism,” in In-
ternational Conference on Computational Science and Its Applications.
Springer, 2005, pp. 1292–1300.

[5] J. Aycock, M. Jacobson et al., “Improved port knocking with strong
authentication,” in 21st Annual Computer Security Applications Confer-
ence (ACSAC’05). IEEE, 2005, pp. 10–pp.

[6] M. Krzywinski, “Port knocking from the inside out,” SysAdmin Maga-
zine, vol. 12, no. 6, pp. 12–17, 2003.

[7] E. Y. Vasserman, N. Hopper, and J. Tyra, “Silentknock: practical, prov-
ably undetectable authentication,” International Journal of Information
Security, vol. 8, no. 2, pp. 121–135, 2009.

[8] J. Kirsch and C. Grothoff, “Knock: Practical and secure stealthy servers,”
2014.

[9] E. Barker, W. Barker, W. Burr, W. Polk, and M. Smid, “Nist special
publication 800-57,” NIST Special Publication, vol. 800, no. 57, pp.
1–142, 2007.

[10] M. Zhang, M. Dusi, W. John, and C. Chen, “Analysis of udp traffic
usage on internet backbone links,” in Applications and the Internet,
2009. SAINT’09. Ninth Annual International Symposium on. IEEE,
2009, pp. 280–281.

[11] H. Weibel, “High precision clock synchronization according to ieee 1588
implementation and performance issues,” Proc. Embedded World 2005,
2005.

[12] D. J. Bernstein and T. Lange, “Safecurves: choosing safe curves for
elliptic-curve cryptography,” URL: http://safecurves. cr. yp. to, 2013.


