
Efficient Handling of Protocol Stacks for Dynamic
Software Packet Processing

Dominik Scholz, Paul Emmerich, and Georg Carle
Chair of Network Architectures and Services

Department of Informatics
Technical University of Munich

{scholzd|emmericp|carle}@net.in.tum.de

Abstract—New standards for 40 and 100 Gbit/s and beyond
impose increasing demands for software packet processing frame-
works. Protocol stacks used in high-speed packet processing
frameworks are reduced to basic functionality to cope with the
performance requirements. Development of sophisticated applica-
tions require manifold functionality from the protocol stack, while
being flexible and extensible to allow support of newly developed
protocols. This becomes increasingly important as for instance
data-center operators apply more forms of packet encapsulation,
generating complex protocol stacks. Existing examples for high-
performance frameworks are not able to fulfill all these aspects
or have to make compromises.

We present the protocol stack of the libmoon framework,
a novel design for dynamic protocol stacks based on code
generation and JIT compilation. Defining the format of a new
protocol header is the only action that has to be performed
by a programmer. The desired protocol stack is generated
automatically from this information, allowing combination of
arbitrary headers. Thereby, a complex and full set of utility
functions is provided to the application developer. We evaluate
our protocol stacks using measurements in a VXLAN setup,
which also highlight how the new protocol stack API allows to
easily create applications in a flexible and intuitive manner.

I. INTRODUCTION

The continuous demand for increasing performance raises
the requirements for the soft- and hardware of networking
devices. With the standardization of 40 and 100 Gigabit
Ethernet in recent years [1], devices have to be capable
of managing multiples of this load. Several software packet
processing frameworks have been developed to meet these de-
mands [2], [3]. They utilize new and specialized techniques to
circumvent traditional bottlenecks of networking applications.
A common approach is to bypass the conventional network
stack of the operating system (OS) and do all packet related
operations themselves [4], [3]. While this results in a loss of
features provided by the OS, performance can be gained as all
unnecessary and inefficient processing steps can be removed
or replaced with optimized solutions.

However, in all these frameworks the core functionality is
processing packets at a low level. The protocol stack that
employs the protocols of the different levels of the ISO/OSI
model and allows to easily modify packets is important for
the developers experience and consequently the overall de-
ployment of the framework and application. A wide spread of
different protocols with unique usage scenarios and varying
complexity and requirements makes the implementation of

a proper protocol stack that fulfils the requirements for a
packet processing framework difficult, especially as the overall
performance is the key demand and must not be impeded.
Therefore, the protocol stack is usually reduced to basic
functionality or compromises are made in regards to utility,
flexibility and extensibility. This paper focuses on providing
a user-friendly programming interface to efficiently access
header fields in complex protocols. Implementations of high-
level protocol semantics beyond header validations are beyond
the scope of this paper.

libmoon is a packet processing framework based on
DPDK [5]. In previous work it was shown that libmoon can
be used to create applications for manifold networking tasks,
including the packet generator MoonGen. The downside of
working with packets in libmoon and MoonGen was that
packets had to be crafted by setting every byte of them
manually. While clearly this is fast, it is prone to errors, and
neither flexible nor reusable as, for instance, the programmer
has to take care of correct byte order and calculating all offsets
within the packet. For every new application, the complete
protocol stack has to be crafted again, resulting in a large
amount of duplicated code as protocols are reused and several
protocol fields usually are set to the same standardized value.

We present the high-performance flexible protocol stack that
we designed and implemented for libmoon. It is based on
dynamic code generation and JIT compilation. We show that
our dynamic concept of generating the protocol stack offers
maximum utility while allowing for easy extensibility to ac-
commodate future protocols. The effort for the programmer is
thereby reduced to a minimum. To verify that the implemented
solution fulfills the performance requirements, we evaluate the
performance of our generated code in a VXLAN encapsulation
task and compare it with a hand-coded version.

This paper is structured as follows. In Section II a survey of
existing protocol stacks in modern software packet processing
frameworks is presented. The architecture of libmoon and it’s
packet IO backend DPDK and their impact on the protocol
stack are discussed in Section II-B. Section III illustrates the
requirements, chosen architecture and actual implementation
of the developed protocol stack. The implemented protocol
stack is evaluated in terms of performance and flexibility while
also highlighting its usability in Section IV, using VXLAN as
example task. We conclude with a summary in Section V.

II. BACKGROUND

Frameworks, tools, and applications for software packet
processing at rates up to and beyond 10 GbE such as DPDK,
PF RING, or PFQ allow the user to modify packets in one
way or another.

A. Related work

The term protocol stack often refers to fully featured
implementations of protocol semantics. One example is the
networking stack found in operating systems, featuring a large
variety of supported stacks. The aforementioned frameworks
come without support for such a stack. Specialized userspace
stacks like mTCP [6] for DPDK exist that fill this gap.
However, such implementations are not our focus here, we
only discuss representing and addressing packet headers on a
lower level as provided by the framework.

DPDK comes with struct definitions and helper functions for
common protocols that can be used to build stacks manually.
Pktgen-DPDK [7], a packet generator, is an interesting case
study for the representation of protocol stacks. It supports
generating traffic with common protocols such as UDP, TCP,
ARP ,and ICMP. Moreover, it can generate traffic encapsulated
with the GRE (Generic Routing Encapsulation) tunneling
protocol, a feature requiring a more sophisticated approach
if implemented properly.

The utility functions per protocol are reduced to filling the
header based on a sequence object as shown in Listing 1.
This centralized object for the whole protocol stack contains
a list of keywords reflecting certain fields like the IP source
address field. Other header fields like the IP version are preset
and hard-coded to fixed values and cannot be customized.
Furthermore, Pktgen offers a scripting interface, which allows
to define streams of packets during runtime.
l o c a l s e q t a b l e = {

[” e t h d s t a d d r ”] = ” 0 0 1 1 : 4 4 5 5 : 6 6 7 7 ” ,
[” e t h s r c a d d r ”] = ” 0 0 1 1 : 1 2 3 4 : 5 6 7 8 ” ,
[” i p d s t a d d r ”] = ” 1 0 . 1 2 . 0 . 1 ” ,
[” i p s r c a d d r ”] = ” 1 0 . 1 2 . 0 . 1 / 1 6 ” ,
[” s p o r t ”] = 9 ,
[” d p o r t ”] = 10 ,
[” e thType ”] = ” ipv4 ” ,
[” i p P r o t o ”] = ” udp ” ,
[” v l a n i d ”] = 1 ,
[” p k t S i z e ”] = 128

} ;
pk tg en . s e q T a b l e (0 , ” a l l ” , s e q t a b l e) ;

Listing 1: Pktgen’s sequence table for central packet configu-
ration1

Generating a full protocol stack of for instance an ICMP
Echo request is only implemented by hard-coding the sequence
of the respective headers. This is even more cumbersome for
GRE as each type, based on either IP or Ethernet, is hard-
coded separately. Clearly, this approach does not scale well
when more protocols are added.

The PFQ [8] networking framework focuses on creating
applications that make use of “in-kernel functional processing
and packets steering across sockets/end-points” [8] using C,

1Excerpt taken from http://pktgen.readthedocs.org/en/latest/index.html

C++, Haskell or their own pfq-lang domain-specific language
(DSL). The C++ interface offers no support for packet headers,
e.g., the packet generator tool2 creates ICMP packets by
manually setting all bytes. The functional language intended
for packet processing allows to query, filter and modify the
properties of the packet, but is limited to simple stacks with
monotonically increasing layers, i.e., tunneling protocols are
not supported.

PF RING ZC [9] is a network socket intended for capturing,
filtering and analyzing packets in high-performance envi-
ronments. The sample packet generator application3 defines
its own header structures. These are then filled member by
member, all values are hand-crafted and no utility functions
are used, especially for instance for the calculation of the IP
checksum. Furthermore, the offsets and header sizes have to be
calculated manually when allocating the structures. However,
PF RING also supports to send packets from pcap files. The
suggested work-flow is to generate the traffic as a pcap with
another tool that allows for easy modification and crafting of
packets and then sending it with PF RING.

The netmap [10] kernel module designed for fast, but also
safe packet I/O uses standard system calls, making it easy to
modify existing raw socket or libpcap applications to work on
top of netmap [4]. The sample packet generator application4

shows that common C structures are used to build packets. No
further utility functions are provided.

The multi-platform traffic generator and analyzer Osti-
nato [11] is different compared to the previously introduced
frameworks as it focuses on providing a powerful graphical
interface for the protocol stack to craft, modify and analyze
packets. While Ostinato is able to directly send crafted packets,
the primary intent is to create or edit pcap files which can
then be replayed by a processing framework intended for
high-performance. The tool supports all common protocols, a
variety of tunneling protocols and also higher level, text-based
protocols like HTTP. Not only can these protocols be stacked
in any order, but also every header field can be set via the GUI
to user defined values. All fields are initially set to intelligent
defaults, values that for instance depend on the length of the
packet like the IP length field are automatically calculated,
but can be overwritten manually, too. The option to generate
streams of packets with a continuously changing member value
is also provided. This is a very useful implementation for a
packet generator frontend, but unsuitable for general-purpose
packet processing.

Snabb [12] is another project building on a userspace driver
to speed up packet processing. As with libmoon, it uses Lua
as programming language in combination with LuaJIT to offer
the user a simple, yet fast, scripting environment, easing the
development of applications. Snabb provides a protocol stack
lib.protocol that offers versatile utility functions to manipulate
headers and craft packets. In general, an unknown packet can

2https://github.com/pfq/PFQ/blob/master/user/tool/pfq-gen.cpp
3https://github.com/xtao/PF RING/blob/master/userland/examples/pfsend.c
4https://github.com/luigirizzo/netmap/blob/master/apps/pkt-gen/pkt-gen.c

be parsed, which as a result returns a list of the headers
representing the full protocol stack. Each header can then be
manipulated using setter and getter functions for the fields.
On the other hand, a full protocol stack even for a complex
(tunneling) packet can be crafted. Listing 2 shows how a
tunneling protocol stack is built and configured. However,
because of performance issues, these utility functions cannot
be used for performance critical parts of the program [13].
o . encap = {

i pv6 = ipv6 : new ({ n e x t h e a d e r = 47 , h o p l i m i t = 64 ,
s r c = con f . l o c a l v p n i p , d s t = con f . r emo te vpn ip }) ,

g r e = g r e : new ({ p r o t o c o l = 0x6558 ,
checksum = conf . checksum , key = con f . l a b e l })

o . encap . e t h e r = e t h e r n e t : new ({ s r c = con f . loca l mac ,
d s t = con f . remote mac or

e t h e r n e t : p ton (’ 0 2 : 0 0 : 0 0 : 0 0 : 0 0 : 0 0 ’) ,
t y p e = 0 x86dd })

}

Listing 2: Creating a GRE encapsulated packet with Snabb5

None of the introduced processing frameworks combines
the aspects of fast performance, flexibility, usability and ex-
tensibility in one protocol stack. This is either because the
tool is not focusing on packet modifications or a compromise
between performance and utility is being done favoring the
former. However, three interesting features that a protocol
stack should offer can be identified: Firstly, utility functions
for data types like IP addresses need to be provided. Secondly,
the usage of one centralized table-like structure that makes use
of labels to reference protocol fields provides high usability.
Within one structure, the complete configuration of a packet
should be done, which in combination with meaningful names,
constants, and default values makes it intuitive and easy to use.
Lastly, the protocol stack should not hinder the developer, i.e.,
total freedom should be granted to the extent that even illegal
packets should be able to be crafted.

B. The libmoon framework

libmoon is a framework for building packet processing ap-
plications in the scripting language Lua [14], [5]. It combines
the userspace packet processing framework DPDK [15] with
the Lua just-in-time (JIT) compiler LuaJIT [16]. Using a high-
level language allows for short development cycles of packet
processing applications. Lua code compiled with LuaJIT is as
fast as equivalent code written in C and can embed existing
C code. This is achieved by using low-level C structs instead
of the default Lua data structures in all performance-critical
paths. The disadvantage of this is that the usual safety features
of scripting language like memory-safety are not available
in these paths. However, the critical code is handled by the
framework, not by the user application.

Figure 1 shows a high-level overview of the architecture
of libmoon. The whole functionality is controlled by the
userscripts which consist of two main parts: setup and runtime.
It first configures all used network cards in the master task in
the setup phase and then starts several completely independent

5Excerpt taken from https://github.com/SnabbCo/snabbswitch/blob/master/
src/apps/vpn/vpws.lua

libmoon Core

DPDK

U
se

rs
cr

ip
t

lib
m

oo
n

H
W NIC NIC

Port

Q0 ... Qn

Port

Userscript

Lua VM

Userscript
spawn

Userscript
slave

Lua VM

Userscript
master

Lua VM

Config API Data API

Config API Data API

Figure 1: libmoon’s architecture (adapted from [5])

slave tasks that handle the packet processing tasks. Each
task separately has to allocate its required memory pools
for packet buffers. All buffers within one pool are initialized
with the same values as set by the user, allowing to define a
template of the desired packet, already before the application
starts processing packets. During the actual runtime of the
application, a prefilled packet buffer can be retrieved from
the pool and further modifications per packet can be applied.
All tasks have access to extensive utility libraries such as the
protocol stack described in this paper.

III. DYNAMIC PROTOCOL STACK

The protocol stacks of existing frameworks surveyed in Sec-
tion II are static, meaning that the specific required stack has to
be build by the programmer, in most cases from scratch. The
advantage is that they can easily be optimized by an ahead-
of-time compiler. However, the drawbacks are manifold, as
becomes apparent when looking at modern tunneling protocols
like VXLAN. Two different protocol stacks, one for each
en- and decapsulated packets, are required. With an inflexible
approach, both have to be hardcoded separately yielding code
duplication, although a large amount of structure and bytes,
the decapsulated packet, is shared by both stacks. Further, the
data of that part of packets does not have to be modified at
all, as merely headers are prepended. A related problem is
that higher layer protocols in the ISO/OSI model can be based
on different protocols underneath, a prominent example being
IPv4 and IPv6 on the network layer. In most of the frameworks
presented in Section II, if the user wants to create a UDP
packet once based on IPv4 and once on IPv6, he would be
required to implement both protocol stacks separately, for all
layers and from scratch. This duplication of code continues

even further when adding new protocols, generating more and
complex stacks that have many layers in common.

The requirements for the dynamic protocol stack of the
libmoon framework are as follows.
Req. 1 – Performance The protocol stack must not reduce

the processing performance of the framework, i.e., pack-
ets have to be processed potentially at line-rate of 10 GbE
or beyond. In other words, an equal performance level as
if the task would have been implemented with low level
operations has to be achieved.

Req. 2 – Flexibility While granting the user full customiz-
ability to create even malformed packets, the protocol
stack must be flexible to allow complex operations like
packet en- or decapsulation with few operations and low
computational overhead.

Req. 3 – Usability The API of the protocol stack must be
easy to understand and intuitive to work with. It must
offer functions providing utility to the user by obsoleting
repetitive tasks. This includes data type and byte-order
conversions, as well as generating complete, prefilled and
legal packets per default.

Req. 4 – Extensibility and composability The protocol
stack must be modular, i.e., every protocol header
is implemented by itself, allowing to easily add new
protocols in the future. Individual headers must be
combinable to complex stacks. At the same time, this
process should be easy and automated, requiring only
minimal developing effort whenever possible.

The survey of existing packet generators has shown that
especially <Req. 1> and <Req. 3> pose a challenge, leading
to a trade-off between performance and usability. The follow-
ing sections outline the concept and architecture of libmoon’s
protocol stack which not only unifies these contradictory
points, but moreover fulfills all listed requirements.

A. Conceptual overview

Not all functions need to be fast: functions used during the
setup phase are allowed to be slow. Only the startup time of the
application will be delayed, which is not a time-critical aspect.
In turn, these functions offer as much utility as possible during
this phase, generating templated packets with even one line of
code. During the actual runtime of the application, all called
functions are critical to the performance. All functions used
there primarily need to be fast.

The only actual implementation effort is defining the layout
of a concrete protocol, i.e., defining the syntactical structure
of the header. However, this has to be done only once, i.e.,
for protocols or headers that libmoon does not yet support.
The complete generation of a protocol stack is performed
automatically and dynamically through JIT compilation on
demand. Users can define their desired protocol stack by
defining which header should appear in what order. This
concept follows and is based on the ideas of the ISO/OSI
model. Each layer, in this case protocol, is independent and
self-contained from the next layer, wherefore each protocol
header can be implemented separately.

B. Statically implementing a new header

libmoon’s protocol stack requires only the minimum of
information about a protocol header, which has to be im-
plemented once. Primarily, this includes the structure of the
header, i.e., its members and their bit-size. In addition, seman-
tic information, including how, based on the data of the header,
for instance its own size or the next following header can be
determined. This process is automated as far as possible and
only requires further code changes through interaction with the
developer when using data types with additional semantics like
IP addresses. Three steps are necessary: defining the header
layout, generating wrapper functions for all members and
creating functions called on the header as a whole.

Header structure The format of a header is defined as if
it was a C struct object, consisting of the data types and names
for each member. In fact, libmoon creates an actual C structure
based on this information of the header using LuaJIT’s Foreign
Function Interface (FFI). Data types can be basic ones, or
specifically created as is the case for instance for MAC or IP
addresses. Members with variable size have to be implemented
as variable-length array members, the header is duplicated and
specialized for each distinct header length. Furthermore, the
name of such a member has to be marked as variably sized
in the headers Lua object. This allows for special treatment
within the complete protocol stack and to create concrete, fixed
sized instances of the header, depending on the current data
of a packet. All members have to be aligned correctly within
the header using the packed attribute; this C structure is later
used directly for packet data.

Wrapper for all members To prevent working with low-
level data types, wrapper setter and getter functions for all
members are created in Lua. These functions provide a first
level of utility as data type conversions, correct byte order
and other data type problems are taken care of. Internally,
libmoon creates a Lua metatable object for the underlying C
structure of the header and adds all functions to it based on
that information. This process is automated for standard data
types like integers. Only if the automatically generated utility
functions are not sufficient for instance because it is a custom
data type, the set and get function has to be manually defined
by overwriting the generated one.

As these functions are merely thin wrappers in Lua they
fulfill <Req. 1>. However, they already provide utility as
they take care of low-level interactions and consequently
also fulfill <Req. 3>. As a result, these functions are fast
while providing a minimum of usability and are therefore the
functions that should be used during the actual runtime of
libmoon to modify packets on a per packet basis.

Functions for the complete header When creating the
meta object for a new header, libmoon also adds several
templated functions, increasing the abstraction level from mere
bytes to not only basic setter and getter functions, but also to
functions that perform tasks on the complete header. Their
purpose is two-fold: Firstly, functions that provide utility for
the user in form of a set and get function for the complete

header. In the case of the set function, the passed argument is
a table of labels, each referencing a concrete member of this
header. Within the function, for each member the respective
set function is called and provided the passed argument or,
in case it was not specified, a default value defined once by
the developer. This way, using one function call, the complete
header is filled with standard default values, while each single
member can be customized.

Because of the usage of Lua tables, this function comes at
the cost of a significant performance loss. At this abstraction
level, performance is not the primary concern, instead, usabil-
ity on a broader range to fulfill <Req. 3> becomes important.
Hence, this function belongs to the group of methods that
should only be used before the runtime of libmoon to pre-
allocate packet buffers when initializing a templated memory
pool.

The second set of functions is used to provide semantical
information about the header in the context of a complete
protocol stack. This includes how to resolve the next following
header, how default parameters change (e.g., IPv4 protocol),
how the size of the variable member is determined (e.g.,
the size of the IPv4 options field depends on the Internal
Header Length member), or how the sub-protocol type can
be determined (e.g., Ethernet headers might have a VLAN
tag, TCP headers might have options, etc.). If one or multiple
of these case applies to the concrete protocol, the developer
has to overwrite the automatically generated empty function
to define the semantic information.

The end result of this step is that a new protocol, its
layout and required semantical information, is defined so that a
concrete instance of it can be used within a complete protocol
stack.

C. JIT-compiled protocol stack

The implemented protocols can be used by an application
developer to generate arbitrary protocol stacks dynamically on
demand. This is possible as the implemented header informa-
tion is sufficient to fully specify one layer of a protocol stack.
From the point of an application developer using the library
of available protocols, merely the order of protocols in the
concrete required stack has to be defined. Internally, libmoon
performs multiple steps to dynamically offer complex utility
functions for the whole stack, which will be explained in the
following.

Defining a protocol stack Creating a new proto-
col stack can be performed with one function call of
createStack(args), passing as argument a list of pro-
tocols using the simple and intuitive embedded DSL defined
in Listing 3.
<s t a c k> : : = <p r o t o c o l> | <p r o t o c o l >, <s t a c k>
<p r o t o c o l> : : = <header> | ”{” , <header >, [” , name=” <s t r >] ,

[” , subType =” <s t r >] , [” , l e n g t h =” <i n t >] , ”}”
<header> : : = ” e t h ” | ” i p 4 ” | ” i p 6 ” | ” udp ” | . . .

Listing 3: DSL to define a protocol stack

In the simplest case, it defines the order of required protocols,
starting with the lowest layer. Syntactic sugar is added by

allowing to specify a table instead, which allows for optional
arguments to cope with special scenarios. In case a protocol
is used multiple times within a stack it has to be uniquely
labeled, which can be done with the optional name attribute.
For protocols that may have different subtypes or protocol
layouts, e.g., Ethernet with and without a VLAN tag, the type
can specified with the subtype argument. Lastly, for headers
which can be variably sized, the length of the variably sized
member as defined when implementing the protocol can be
specified with length.

A concrete example for a realistic and complex protocol
stack as was observed in a data center environment is illus-
trated in Listing 4.
−− c r e a t e p r o t o c o l s t a c k
l o c a l a s F o o S t a c k = c r e a t e S t a c k (

{” e t h ” , subType =” v l a n ”} , ” i p 4 ” , ” udp ” , ” v x l a n ” ,
{” e t h ” , name=” i n n e r E t h ”} , {” i p 4 ” , name=” i n n e r I p 4 ”} ,
{” udp ” , name=” innerUdp ”} , {” s f l o w ” , subType = ” i p 4 ”}

)

−− c a s t b u f f e r t o p r o t o c o l s t a c k
l o c a l p k t = a s F o o S t a c k (mbuf)

Listing 4: Creating and using a new protocol stack

The end result for the application developer is that a function
to cast a packet buffer to the desired stack is returned.

Internal data structure Based on the defined sequence
of protocols using the DSL, internally a C structure for the
concrete protocol stack is automatically generated. This is
illustrated in Listing 5 for the already introduced example.
s t r u c t a t t r i b u t e ((packed)) s t a c k <sn ip> {

s t r u c t e t h v l a n h e a d e r e t h ;
s t r u c t i p 4 h e a d e r i p 4 ;
s t r u c t udp heade r udp ;
s t r u c t v x l a n h e a d e r v x l a n ;
s t r u c t e t h d e f a u l t h e a d e r i n n e r E t h ;
s t r u c t i p 4 h e a d e r i n n e r I p 4 ;
s t r u c t udp heade r innerUdp ;
s t r u c t s f l o w i p 4 h e a d e r s f l o w ;
un ion p a y l o a d t p a y l o a d ;

} ;

Listing 5: Dynamically generated and JIT-compiled C structure

The struct’s members are the C structures of the respective
defined protocols. Unless specifically labeled by the name
argument, the member is named like the protocol. Depending
on the subtype or length, respective structures are dynamically
defined and loaded once by the JIT compiler.

Casting a packet buffer to this structure allows to interpret
the array of bytes as defined by the structure of the stack and
its protocol members. The C object is extended with a Lua
metatable to define utility functions for the complete protocol
stack. As a Lua metatable object exists for each member of the
stack, the respective utility functions per protocol are available
at this abstraction level too. The payload struct is added as final
member of each protocol stack. Payload is a union consisting
of C99 flexible array members of differently sized integers,
this allows to access arbitrary bytes beyond the last specified
header.

Generated utility functions Functions operating on the
complete protocol stack can be grouped into three categories.
First, helper functions only used for internal processes. The

second set of functions are again setter and getter, operating
on the complete stack. In this case, the set function calls for
each included header its respective set function and passes
the complete table of labels. To uniquely reference members
of different headers, which could even appear multiple times
within the stack, the name of the concrete header is prepended
to each label for its members, as is demonstrated in Listing 6.
p k t : f i l l {

−− member o f t h e o u t e r E t h e r n e t h e a d e r
e t h S r c = ” 0 1 : 0 2 : 0 3 : 0 4 : 0 5 : 0 6 ” ,
−− member o f t h e i n n e r E t h e r n e t h e a d e r
i n n e r E t h S r c = ”0 a : 0 b : 0 c : 0 d : 0 e : 0 f ”

}

Listing 6: Referencing stack members

As default values of a header member can change depending
on the context of the complete stack, as is the case for instance
for the ether_type field of the Ethernet header, default
values for undefined labels are replaced using the logic imple-
mented per header. This can be based, for instance, on the next
following header or the accumulated length of the preceding
headers. This information is available at the abstraction level of
the complete stack. As a result, even when calling the set func-
tion without setting any labels manually, a legitimate packet
is always created. Similar, the getter functions per header,
in combination with the semantic information how the next
following header is detected per protocol, are used to parse
and recursively resolve even completely unknown packets as
far as possible. Furthermore, the packet can be dumped in
a tcpdump-like format. These functions, however, are slow
because of the use of Lua tables or recursive operations, while
providing high utility, and should only be used to generate
templates or for debugging.

The last group of automatically generated utility functions
for the complete stack are performance critical functions to be
used during the actual runtime. This includes the calculation
of all contained checksums or only the checksum of a specific
header in software6, or setting all attributes that depend on
the size of the complete packet. In this case, the code for the
function that is optimized for performance, i.e., does not use
Lua tables to iterate all members of the stack, is generated as
string and loaded dynamically through JIT compilation during
runtime.

Handling of variably sized headers Headers with vari-
able size complicate the generation of a complete stack im-
mensely, as the C structures of the respective protocol cannot
be increased on demand. Using an undefined size results in
wrong alignment of the following header. Therefore, the only
solution is to create a completely new stack for each different
size. While this increases the amount of generated stacks it
has no negative impact on the application as recasting the
packet buffer to another stack costs virtually no performance as
demonstrated in the next section. Furthermore, the new stack is
comprised of the same utility functions, only slightly adjusted
to accommodate the new size.

6Whenever possible the offloading features of the NIC should be utilized
to gain performance

Creating a new protocol stack is a CPU-intensive task
because of the described internal processing. However, for
most applications, the protocol stacks of interest are known
in advance and can therefore be generated during the setup
phase, or new protocol stacks appear seldom during runtime.
This dynamic protocol stack meets all requirements. Maximum
utility is provided when generating packet templates during the
setup phase. At all times, a minimum amount of utility is guar-
anteed through offering thin Lua wrappers per member of the
underlying C structure, fulfilling <Req. 1> and <Req. 3>.
Thereby, single protocol members can be accessed directly
on a per-packet basis. For example, Listing 7 shows an IPv6
packet generator with varying IP addresses and TCP ports
implement on libmoon. Utility functions for 128 bit arithmetic
allow varying the address on a per-packet basis.
l o c a l b a s e I P = p a r s e I P A d d r e s s (” 2 0 0 1 : db8 : : 1 ”)
l o c a l c o u n t e r I P , c o u n t e r P o r t = 0
w h i l e lm . r u n n i n g () do

−−minimum s i z e f o r e t h / i p 6 / t c p i s 74 b y t e s
b u f s : a l l o c (7 0)
f o r i , buf i n i p a i r s (b u f s) do

l o c a l p k t = buf : g e t T c p 6 P a c k e t ()
−−i n c r e m e n t IP
p k t . i p 6 . s r c : s e t (b a s e I P)
p k t . i p 6 . s r c : add (c o u n t e r I P)
−−i n c r e m e n t p o r t
p k t . t c p : s e t S r c (b a s e P o r t + c o u n t e r P o r t)
c o u n t e r I P = incAndWrap (c o u n t e r I P , numIPs)
c o u n t e r P o r t =

incAndWrap (c o u n t e r P o r t , numPor ts)
end
−− [. . .]
queue : send (b u f s)

end

Listing 7: Accessing and modifying a packet member on a per
packet basis

Additional utility functions for common data types used in
network applications provide for instance optimized arithmetic
operations. Because of the modular approach, implementing
each header completely separate, and large effort to automate
even this process, the protocol stack can easily be extended
with further protocols, meeting <Req. 4>. As the protocol
stack allows for maximum customization, generating even
complex stacks with few lines of code through the use of an
intuitive DSL, the flexibility requirement <Req. 2> is real-
ized. All these aspects will be demonstrated in the evaluation
in the next section.

IV. EVALUATION

We use measurements to verify that the JIT-compiled pro-
tocol stack retains the required performance level of libmoon.
As sample application the Virtual Extensible LAN (VXLAN)
protocol is used, as it demonstrates common tasks for modern
tunneling protocols. One host is used as Virtual Tunnel End-
point (VTEP), encapsulating incoming packets by prepending
an Ethernet, IPv4, UDP, and VXLAN header. This requires
flexible handling of multiple protocol stacks, as well as utility
functions to fill in the header information. The host running the
VTEP runs Linux kernel 3.7. It is equipped with an Intel Xeon
E3-1230 v2 at 3.3 GHz and 8 MB L3 cache7 and a 82599ES

7http://ark.intel.com/products/65732

10-Gigabit SFI/SFP+ Network Connection8 NIC. The script
implementing the task of the VTEP used for the measurements
is accessible in our git repository9. Excerpts of it are illustrated
in the next section, demonstrating the usage of the dynamic
protocol stack. A second, directly connected host is generating
and sinking traffic using the MoonGen [17] packet generator.

A. Encapsulation sample script

As illustrated in Listing 8, the encapsulation of packets
using VXLAN is straight forward. Before actually processing
packets, the required protocol stacks are defined and a template
of the encapsulating headers is created. This is being done with
one function call during which all members that have to be
modified are set using labels.

During runtime, every single received packet is looked at
as raw data. Only its total size is required to copy all data
as payload to the created encapsulating protocol stack. The
remaining tasks are to update the size of the buffer and setting
the length members of the IPv4 and UDP headers. The latter
can be done with only one function call. All used functions are
dynamically generated and optimized for the protocol stack.
As last step, the NIC is instructed to calculate the checksums
before transmitting the packet.
−− c r e a t e s t a c k
l o c a l asRawPacket = c r e a t e S t a c k ()
l o c a l a s V x l a n P a c k e t =

c r e a t e S t a c k (” e t h ” , ” i p 4 ” , ” udp ” , ” v x l a n ”)
−− c r e a t i o n o f p a c k e t t e m p l a t e
l o c a l mem = memory . createMemPool (f u n c t i o n (buf)

a s V x l a n P a c k e t (buf) : f i l l {
−− t h e e n c a p s u l a t i n g h e a d e r s
−− d e f i n e t h e VXLAN t u n n e l
e t h S r c =” aa : bb : cc : dd : ee : f f ” ,
e t h D s t = ” 0 0 : 1 1 : 2 2 : 3 3 : 4 4 : 5 5 ” ,
i p 4 S r c = ” 1 9 2 . 0 . 2 . 1 ” ,
i p 4 D s t = ” 1 9 2 . 0 . 2 . 2 5 4 ” ,
vxlanVNI =1234 ,

}
end)
l o c a l t x B u f s = mem: b u f A r r a y ()
−− [. . .]
w h i l e l ibmoon . r u n n i n g () do

l o c a l rx = rxQ : t r y R e c v (rxBufs , 0)
t x B u f s : a l l o c N (rx)
f o r i = 1 , rx do

−− c a s t t o g e n e r i c p a c k e t
l o c a l r x P k t = asRawPacket (rx Buf s [i])
−− g e t s i z e o f t h e p a c k e t
l o c a l s i z e = rxB uf s [i] : g e t S i z e ()
−− c a s t t x t e m p l a t e t o VXLAN p a c k e t
l o c a l t x P k t = a s V x l a n P a c k e t (t x B u f s [i])
−− copy rx raw p a y l o a d t o t x p a c k e t p a y l o a d
f f i . copy (t x P k t . pay load , r x P k t . pay load , s i z e)
−− add l e n g t h o f added h e a d e r s t o s i z e
l o c a l t o t a l S i z e = 46 + s i z e
−− a d j u s t b u f f e r s i z e
t x B u f s [i] : s e t S i z e (t o t a l S i z e)
−− s e t t h e IP /UDP l e n g t h members
t x P k t : s e t L e n g t h (t o t a l S i z e)

end
−− o f f l o a d checksums
t x B u f s : o f f l oadChecksums ()
−− send e n c a p s u l a t e d p a c k e t
txQ : send (t x B u f s)

end

Listing 8: Excerpts from the encapsulation task

8http://ark.intel.com/products/32207
9https://github.com/emmericp/MoonGen/commit/

b05a5eac8c08cb98b3064fcc1bf3ebe7899b4874

Performing these operations without utility functions is
error prone and cumbersome. It requires knowledge about the
header offsets within the complete stack to copy the data to the
correct position. While the copy operation itself remains the
same, setting the bytes of the encapsulating headers, including
addresses, ports and length members, byte by byte is time
consuming, prone to errors and requires drastically more lines
of code.

B. Encapsulation performance comparison

This first measurement analyzes the maximum throughput
and packet rate when encapsulating minimum sized 64 byte
packets at line-rate. To have a baseline comparison that allows
to better judge the results, the performance of the developed
libmoon task is compared to the VXLAN implementation
of Open vSwitch (OvS) [18]. This comparison is however
not representative of the performance of OvS as it performs
significantly more operations compared to the encapsulation
task in Figure 8, including matching of packets and looking
up and applying respective actions.

Because of the nature of the VXLAN scenario, the size
of received and transmitted packets by the VTEP differ,
wherefore both packet rate and throughput are displayed in
Figure 2.

libmoon is able to process all incoming packets already
at a CPU frequency of 2.8 GHz. The transmitted packets are
encapsulated and therefore larger, resulting in not reaching the
maximum packet rate of 14.88 Mpps, as the link capacity of
10 Gbit/s is reached first. Before this point the throughput and
packet rate increase linearly with the configured frequency.
As comparison, OvS, for which the configuration consists of
installing one rule specifying the tunnel endpoint, reaches a
throughput below 0.5 Mpps. Considering the expensive oper-
ations performed, this is consistent with other performance
measurements that recorded a maximum rate below 2 Mpps for
the simple switching of packets [19]. A final comparison not
illustrated in Figure 2 can be made with the packet generator
MoonGen, which is based on libmoon and uses the same
protocol stack. It is able to saturate a 10 Gbit/s link with
minimum sized packets, of which every single one can be
customized, already at 1.5 GHz on comparable hardware [5].

C. Exploiting sequential memory locality

The JIT-compiled utility functions are optimized and pro-
duce no new performance overhead, which is demonstrated
in the next measurements. In fact, more important is the
location of the data within the packet that is being read or
modified. Figure 3 illustrates the achieved packet rate at a
CPU frequency of 1.6 GHz when encapsulating packets with
increasing size, meaning the only difference for the application
is the amount of data that has to be copied to the TX buffer.

When copying zero bytes, the performance equals the result
of the previous Section, however, it does not decline linearly
with increasing packet size and therefore amount of copied
bytes. Instead, multiple continuous performance levels can
be identified. Within one level, the maximum achieved rate

1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2
0

5

10

15

CPU Frequency [GHz]

P
a
c
k
e
t
R
a
te

[M
p
p
s]

(a) Packet Rate

1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2
0

2

4

6

8

10

CPU Frequency [GHz]

T
h
ro

u
g
h
p
u
t
[G

b
it
/
s]

RX rate

TX rate libmoon

TX rate OvS

(b) Throughput

Figure 2: Peak performance when encapsulating Ethernet frames

0 20 40 60 80 100 120 140 160 180 200
0

5

10

15

Copied Bytes [B]

P
a
c
k
e
t
R
a
te

[M
p
p
s] RX rate

TX rate

64 64

Figure 3: Performance when copying different amounts of
consecutive bytes.

decreases only marginally by about 0.1 Mpps. At the end of
a level, however, a significant performance loss of roughly
0.5 Mpps can be observed. As indicated in Figure 3 the levels
have a size of 64 byte, indicating a correlation with the cache
line size. Packet data is an array of sequential bytes, which the
dynamically generated protocol stack only casts to a different
structure, retaining memory locality. A huge performance loss
therefore only appears when accessing data in a different
cache line, generating a cache miss. Actual data manipulation
within that line only costs cycles depending on the performed
operation.

D. Low-level byte access vs. JIT-compiled utility functions

The last measurement compares the performance when
performing a typical operation on the packet using the new
protocol stack API and its dynamically generated and JIT-
compiled utility functions to the old one, which required
setting the bytes of the packet manually. The concrete task is
to set the source IP address of the packet. For both APIs the
packet has to be cast, once as an array of bytes and once as an
IP packet type, using the generated IP stack. Then the address
is set: all four bytes manually, or, when using the dynamically
generated protocol stack via the set utility function of the
header’s member.

The measurement displayed in Figure 4 is performed for
different CPU frequencies when offering the application mini-
mum sized packets at line rate. It not only shows that the total
performance loss with less than 0.2 Mpps for this operation is
very small and can be explained with the results of the previous
section, but also that the new dynamically generated API using

1.8 2 2.2 2.4 2.6
6

7

8

9

CPU Frequency [GHz]

P
a
c
k
e
t
R
a
te

[M
p
p
s]

No operation

JIT-compiled API

Byte by byte access

Figure 4: Performance of the old versus the new API when
setting the IP address of a packet

wrapper functions yields better results. While a repetition
of this experiment yielded the same result, the performed
operations on the packets are basic and not complex. Still,
it demonstrates that the implemented protocol stack does not
affect the performance and provides utility to a developer. The
explanation for this result is that the new API can be optimized
by the LuaJIT compiler, compared to low-level operations
performed byte by byte.

Even for complex applications and operations performed
for instance for a TCP SYN proxy based on the libmoon
framework10, the LuaJIT compiler is able to cope and optimize
the code of the protocol stack and its utility functions.

V. CONCLUSION

We presented the dynamic protocol stack of the libmoon
framework. It provides high level utility functions to perform
packet modifications by accessing header fields, while main-
taining the performance of direct low level byte operations.
The user-friendliness and flexibility is achieved through au-
tomatically created and JIT-compiled code. The API of the
protocol stack in combination with the Lua scripting language
lowers hurdles for developers creating new software-based
networking applications.

The library of existing protocols can be extended with
minimal effort: utility functions are generated automatically
and newly implemented protocols can be integrated with
provided headers. The structure and low-level semantics of
each protocol header is implemented completely separately,
ensuring modularity. New headers are available immediately

10https://github.com/scholzd/MoonCookie

to be used in a custom made protocol stack, which can be
defined using a DSL. Because of its flexibility, this allows the
creation of even complex stacks with multiple layers, including
tunneling and other encapsulating protocols, as presented in
this paper.

We have shown that in comparison to the state of the
art, a wide-ranging set of utility functions, which are even
automatically generated without the need for tedious manual
implementation, can be provided, without generating overhead
when processing packets. In fact, the JIT compiler is able
to optimize the dynamically generated code such that even
complex operations are performed as if manual low-level byte
by byte manipulations were used instead.

REFERENCES

[1] D. J. Law, A. Healey, P. Anslow, S. B. Carlson, and V. Maguire, “IEEE
802.3bm-2015,” 2015.

[2] J. L. Garcia-Dorado, F. Mata, J. Ramos, P. M. S. del Rio, V. Moreno,
and J. Aracil, “High-Performance Network Traffic Processing Systems
Using Commodity Hardware.” Springer Verlag, 2013, pp. 3–27.

[3] S. Gallenmller, P. Emmerich, F. Wohlfart, D. Raumer, and G. Carle,
“Comparison of frameworks for high-performance packet io,”
in ACM/IEEE Symposium on Architectures for Networking and
Communications Systems (ANCS 2015), Oakland, CA, USA, may
2015, http://www.net.in.tum.de/fileadmin/bibtex/publications/papers/
gallenmueller ancs2015.pdf.

[4] L. Rizzo, “netmap: A Novel Framework for Fast Packet I/O,” in USENIX
Annual Technical Conference, 2012, pp. 101–112.

[5] P. Emmerich, S. Gallenmüller, D. Raumer, F. Wohlfart, and G. Carle,
“MoonGen: A Scriptable High-Speed Packet Generator,” Accepted at
IMC 2015, 2015.

[6] E. Jeong, S. Wood, M. Jamshed, H. Jeong, S. Ihm, D. Han,
and K. Park, “mTCP: a Highly Scalable User-level TCP Stack
for Multicore Systems,” in 11th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 14). Seattle, WA: USENIX
Association, 2014, pp. 489–502. [Online]. Available: https://www.
usenix.org/conference/nsdi14/technical-sessions/presentation/jeong

[7] K. Wiles, “The Pktgen Application,” http://pktgen.readthedocs.org/en/
latest/index.html, last visited 2016-2-24.

[8] N. Bonelli, “PFQ i/o,” http://www.pfq.io/, last visited 2016-02-15.
[9] Ntop, “PF RING,” http://www.ntop.org/products/packet-capture/pf

ring/, last visited 2016-02-28.
[10] L. Rizzo, “The netmap project,” http://info.iet.unipi.it/∼luigi/netmap/,

last visited 2015-11-04.
[11] P. Srivats, “Ostinato – packet traffic generator and analyzer,” http:

//ostinato.org/, last visited 2016-02-27.
[12] L. Gorrie, “Snabb switch,” https://github.com/SnabbCo/snabbswitch, last

visited 2016-02-28.
[13] G. Luke, “Packet copies: Expensive or cheap?” https://github.com/

snabbco/snabb/issues/648, last visited 2017-01-18.
[14] P. Emmerich, “libmoon,” https://github.com/libmoon/libmoon, Technis-

che Universität München.
[15] “Intel DPDK: Data Plane Development Kit,” http://dpdk.org/, Intel

Corporation, last visited: 2015-11-04.
[16] M. Pall, “The luajit project,” http://luajit.org/, last visited 2016-2-29.
[17] P. Emmerich, “MoonGen,” https://github.com/emmericp/MoonGen,

Technische Universität München.
[18] “Open vswitcht,” http://openvswitch.org/, last visited 2016-2-29.
[19] P. Emmerich, D. Raumer, F. Wohlfart, and G. Carle, “Performance

characteristics of virtual switching,” in 2014 IEEE 3rd International
Conference on Cloud Networking (CloudNet14), Luxembourg, oct 2014.

