Chair of Network Architectures and Services & Chair of Connected Mobility Department of Computer Engineering TUM School of Computation, Information, and Technology Technical University of Munich

TSN Experiments Using Commodity Off-The-Shelf Hardware and Open-Source Software: Lessons Learned

Authors: Filip Rezabek, Marcin Bosk, Georg Carle, Jörg Ott

Presenters:

Filip Rezabek, <u>rezabek@net.in.tum.de</u> Marcin Bosk, <u>bosk@in.tum.de</u>

Introduction Motivation ПШ

Intra-vehicular networks

Smart Manufacturing

Aerospace

High bandwidth, mixed traffic, lower cost \rightarrow shift towards Ethernet

Time Sensitive Networking (TSN)

- Deterministic latency & bounded jitter
- Low packet loss
- Coexistence of high and low priority traffic

TSN Experiments Using Commodity Off-The-Shelf Hardware and Open-Source Software: Lessons Learned | PerFail 2023 Workshop

Introduction **Motivation**

Structured approach to assessing the capabilities of networks with TSN

- In a **reproducible** manner ٠
- Compare different **architectures** and their implications ٠

METHODS

IEEE

What do we use for Experimentation? **COTS Hardware and Open-Source Software**

Hardware

12 PCs 3 Servers Intel 1210 Intel 1225 Intel 1350 Intel X552 LIDAR Livoxtech Cameras Mid 40 Reolink Full HD

Software

Linux OS

Linux TC Qdiscs

> Traffic generation

Monitoring & Processing tools

Focus on Time-Sensitive Networking Supported TSN standards by *tc*

TSN Experiments Using Commodity Off-The-Shelf Hardware and Open-Source Software: Lessons Learned | PerFail 2023 Workshop

Observation 1 Coexistence challenge of TAPRIO and PTP

TAPRIO

Works as time division multiplexing

Uses gate opening and closing for traffic policing

Assigns traffic classes to respective transmission windows

PTP

Allows network clock synchronization with high accuracy

Can achieve nanosecond accuracy if HW supports hardware timestamping

Organizes the clocks in master-slave hierarchy in a tree form

Grand master clock serves as a ground truth

Observation 1 Coexistence challenge of TAPRIO and PTP

Without proper synchronization, challenges for synchronous TSN standards

 \rightarrow PTP does not synchronize when TAPRIO used on same interfaces

Possible to map PTP to higher priority classes

- Limited number of HW queues
- Introduces additional overhead for other high priority traffic

Defined several requirements

- PTP Precision
- Number of connections
- Processing overhead

Observation 1 Coexistence challenge of TAPRIO and PTP

Comparison of different solutions

ТШП

Observation 1 Coexistence challenge of TAPRIO and PTP

Comparison of different solutions

ТШП

Observation 1 Coexistence challenge of TAPRIO and PTP

Comparison of different solutions

TSN Experiments Using Commodity Off-The-Shelf Hardware and Open-Source Software: Lessons Learned | PerFail 2023 Workshop

Observation 2 ETF in offload mode

П

Earliest TxTime First (ETF) dequeues packets at a TxTime TxTime is specified in the socket buffer (*skb*) of a given packet Used NICs (Intel I210, I225), support ETF offload feature

- \rightarrow Configuration parameter **delta** accounts for a delay in networking stack
- → delta is highly system dependent!

Observation 2 ETF in offload mode

Earliest TxTime First (ETF) dequeues packets at a TxTime TxTime is specified in the socket buffer (*skb*) of a given packet Used NICs (Intel I210, I225), support ETF offload feature

- \rightarrow Configuration parameter **delta** accounts for a delay in networking stack
- → delta is highly system dependent!

Observation 3 CBS dependency on the NICs

Credit-Based Shaper

Bandwidth allocation for traffic classes

Enforcement using a credit mechanism

Provides soft delay and jitter guarantees for time-sensitive systems

Challenges for TSN applications

- \rightarrow Settings depend on the NIC parameters
- \rightarrow Settings need to match expected traffic

How do we find those settings?

Observation 3 CBS dependency on the NICs

Comparing configurations for different NICs – 1Gbps (Intel I210) and 10Gbps (Intel X552)

 \rightarrow F1 and F2 Include CBS policed traffic on highest and second-highest priority

Discrepancy between expected and actual end-to-end delay distribution for 10 Gbps NIC

- \rightarrow Indicates some misconfiguration
- \rightarrow Needs in-depth understanding of the NIC

Summary Open Challenges

- 1. Open-source implementations of PTP and TAPRIO do not work well together
- 2. ETF parameters depend on hardware and need to be defined for each system
- 3. CBS parameters heavily depend on used hardware and require good understanding of the NIC
- \rightarrow Available tools, but needs to be verified carefully
- \rightarrow Initial phases of adoption limited available COTS HW and less documentation for SW

Open challenges:

- Multiple flows in one class for CBS and TAPRIO
- Creation of TAPRIO schedule
- Combination of various qdiscs
- Quantification and validation of system artifacts
- Missing/Partial artifact collection
- High throughput networking 10Gbps and above

Experience with Simulation and hardware deployments?

Thank You!

Are those issues because the area is too new?

Would be better with Commercial deployments?

Common challenges in other areas?

EnGINE Framework Filip

rezabek@in.tum.de

Marcin

m @bosk-m

bosk@in.tum.de