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ABSTRACT
In 2016, field tests by Google, Facebook, and Mozilla re-
vealed compatibility issues with the new TLS 1.3 protocol.
The issues arose from HTTPS interception middleboxes un-
able to cope with the new TLS handshake. While most
interception systems have benevolent intent, research has
shown that they can negatively impact connection security.

In this paper, we present a system to passively detect
HTTPS interceptions on live traffic and analyze the impact
on connection security. We design and implement a compo-
nent to continuously learn new browser versions and cipher
suites. Our analysis on one month of HTTPS connections
to a popular website shows that on average, 4.2% of all ob-
served connections are intercepted. We could classify those
interceptions into 577 unique patterns.

1. INTRODUCTION
HTTPS is one of the important building blocks of a se-

cure Web. Its security layer, TLS, not only provides en-
cryption, authentication, and integrity protection, but also
prevents man-in-the-middle attacks through the use of cer-
tificates. These are issued and signed by Certificate Au-
thorities (CAs). Trusted CA certificates are then included
in a browser’s root store which allows it to check whether a
certificate was issued by a trusted CA.
HTTPS Interception: While this system effectively pre-
vents man-in-the-middle attacks with forged certificates, it
also blocks legitimate inspection of traffic, e.g. from an-
tivirus software. To solve this such software generates a new
root certificate and installs it locally at the client. When
the client connects to a web site over HTTPS, a new certifi-
cate for the requested domain is dynamically generated and
signed by the installed root CA. This way, the client is fooled
to trust the forged certificate. The interception device or
software can then inspect the cleartext traffic for malicious
or unwanted communication. Previous work shows that such
interceptions can occur anywhere from less than 1% up to
over 10% of observed connections [1, 2, 3].
TLS Fingerprinting: When establishing an HTTPS con-
nection, client and server need to negotiate parameters for
the underlying TLS connection. This includes the selection
of a so called cipher suite to be used for encryption, integrity
checking, and authentication. A client advertises its prefer-
ence in the first handshake message of a TLS connection,
namely the ClientHello message. Since these settings af-
fect user security, most clients use the same parameters in
every ClientHello message. We can use this information to
create a unique TLS fingerprint for each client [1].
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Figure 1: Data collection architecture.

2. DATA COLLECTION
In the following we describe our data collection setup (see

Figure 1). We embed an iframe on an existing web site
which points to a subdomain served by a dedicated server
with its own certificate. On this server we log every request
in detail.

On the same machine we use Bro [5] for collecting TLS
handshakes. We develop a Bro script that records all fields
available in the ClientHello message of every HTTPS con-
nection. We ensure to collect only information from newly
established connections which are used to transfer data.

Finally, we combine web server logs and Bro logs by match-
ing timestamp, remote IP address, and port and feed this
information into our detection and analysis framework.

This architecture requires only minimal changes to exist-
ing infrastructure with production traffic and operates com-
pletely isolated from it.
Ethical Considerations: We follow measurement best prac-
tices [4] and do not store user identifiable information.

3. DETECTION AND LEARNING
Our detection approach builds upon prior work from Du-

rumeric et al. [1]. They use a mismatch between a client’s
user agent (UA) and its TLS handshake fingerprint as an
indicator for interception. We extend this approach to per-
form live detection, add a learning component for finger-
prints, and analyze found interceptions in-depth.
Fingerprint Variants: Initially, we do not know whether
the TLS fingerprint of a client is legitimate or is altered due
to interception. Therefore, we collect all fingerprints of each
client, which we call fingerprint variants. We periodically
re-evaluate which variant is trusted and may therefore be
used for detection.
Evaluating Trust: Our approach is based on the assump-
tion that the majority of clients is not intercepted. There-



fore, we record the number of distinct IP subnets observed
for every fingerprint variant, which we call subnet diversity.
If a variant surpasses a threshold for subnet diversity, we
regard this variant as trusted. Our experiments show that
a variant can be trusted if it appears in 15% or more of all
observed subnets, but in at least 3 subnets. We perform this
check at regular intervals for each fingerprint and count the
number of trusted variants. Interception detection can only
be performed if a single variant is trusted. Cases where no
variant is trusted indicate that the fingerprint is observed
from few clients with low subnet diversity. Multiple trusted
variants indicate that the parameters for this client’s finger-
print are not stable (e.g. random cipher suite ordering) and
need manual investigation.
Processing Connections: For every observed connection,
we look up the corresponding fingerprint variants by its UA
and distinguish the following three cases. First, if the ob-
served fingerprint matches the single trusted variant, the
connection is categorized as not intercepted. Second, if we
match any other variant except the single trusted one, the
connection is categorized as intercepted. Third, in any other
case no conclusive decision can be made.

4. INTERCEPTION ANALYSIS
In addition to live interception detection, we propose sev-

eral analyses to asses the security impact of HTTPS inter-
ception. We perform these analyses on the sever as well on
the client, the latter by delivering JavaScript in the iframe.
Identifying the Intercepting System: To identify the
intercepting system we compare its TLS fingerprint against
publicly available databases [1]. In addition, we plan to use
nmap and inspect HTTP headers for identification purposes.
Certificate Validation: Intercepting middleboxes need to
validate the certificates presented by web servers. Therefore
we create a set of unique test domains, each with a certificate
that has a unique flaw (e.g. domain name mismatch). We
instruct clients to test connectivity to those domains. Any
successful connection indicates a failure of the middlebox in
validating server certificates.
Content Modification: We use the approach proposed by
Reis et al. [6] to detect web content modification by inter-
cepting middleboxes. Therefore, we embed the test script
in the iframe and add content to the downloaded web page
which can be checked for modification.

5. FIRST RESULTS
Our results are based on measurements performed be-

tween December 12, 2017 and March 2, 2018. We observed
2.17M HTTPS connections from 5749 unique browser ver-
sions with 9488 different variants in total. By inspecting the
UA, we found that 65.5% of all connections were made by
mobile devices and 34.5% by desktop clients.

From all connections, we find that 4.2% are intercepted
and are 9.3% undecided. For mobile devices, we observe
significantly lower interception rates (0.8%), while desktop
clients tend to be affected more (10.6%). Figure 2 shows a
time series of rates of intercepted and undecidable clients.
For each point in the diagram we aggregated the number
of intercepted and undecidable connections within 24 hours.
In total, we could classify 577 unique interceptions.
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Figure 2: Time series of the interception rates for
all clients, mobile clients, and desktop clients.

6. CONCLUSION AND FUTURE WORK
In this paper we presented an approach to perform live

HTTPS interception. We created a dynamic fingerprint
learning component, which eliminates the need for manually
assembling a database of trusted fingerprints. Furthermore,
we designed our approach to be simple to deploy and it can
be integrated into multiple web pages at once and therefore
eases the process of acquiring data. In the future, we plan
to perform a long term study of HTTPS interception and to
implement in-depth analysis of intercepted clients.
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