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Abstract

The rise of user space packet processing frameworks like
DPDK and netmap makes low-level code more acces-
sible to developers and researchers. Previously, driver
code was hidden in the kernel and rarely modified—or
even looked at-by developers working at higher layers.
These barriers are gone nowadays, yet developers still
treat user space drivers as black-boxes magically accel-
erating applications. We want to change this: every
researcher building network applications should under-
stand the intricacies of the underlying drivers, especially
if they impact performance. We present ixy, a user space
network driver designed for simplicity and educational
purposes. Ixy focuses on the bare essentials of user
space packet processing: a packet forwarder including
the whole NIC driver uses less than 1000 lines of C code.
We discuss how ixy implements drivers for both the
Intel 82599 family and for virtual VirtIO NICs. The for-
mer allows us to reason about driver and framework per-
formance on a stripped-down implementation to assess
individual optimizations in isolation. VirtlO support en-
sures that everyone can run it in a virtual machine. Our
code is available as free and open source under the BSD
license at https://github.com/emmericp/ixy.

1 Introduction

Low-level packet processing on top of traditional socket
APIs is too slow for modern requirements and was there-
fore often done in the kernel in the past. Two exam-
ples for packet forwarders utilizing kernel components
are Open vSwitch [36] and the Click modular router [33]].
Writing kernel code is not only a relatively cumbersome
process with slow turn-around times, it also proved to be
too slow for specialized applications. Open vSwitch was
since extended to include DPDK [7]] as an optional alter-
native backend to improve performance [35]. Click was
ported to both netmap [40] and DPDK for the same rea-

sons [2]]. Other projects also moved kernel-based code to
specialized user space code [27}42].

Developers and researchers still often treat DPDK as
a black-box that magically increases speed. One reason
for this is that DPDK - unlike netmap and others — does
not come from an academic background. It was first de-
veloped by Intel and then moved to the Linux Foundation
in 2017 [30]. This means that there is no academic pa-
per describing its architecture or implementation. The
netmap paper [40] is often used as surrogate to explain
how user space packet IO frameworks work in general.
However, DPDK is based on a completely different ar-
chitecture than seemingly similar frameworks.

We present ixy, a user space packet framework that
is architecturally similar to DPDK [7]] and Snabb [17]].
Both use full user space drivers, unlike netmap [40], PF_-
RING [34]], pfq [4] or similar frameworks that rely on a
kernel driver. Ixy is designed for educational use only,
i.e., you are meant to use it to understand how user space
packet frameworks and drivers work, not to use it in a
production setting. Our whole architecture aims at sim-
plicity and is trimmed down to the bare minimum. We
currently support the Intel ixgbe family of NICs and vir-
tual VirtIO NICs. A packet forwarding application is less
than 1000 lines of code including the whole driver. It is
possible to read and understand drivers found in other
frameworks, but ixy’s driver is at least an order of mag-
nitude simpler than other implementations. For example,
DPDK’s implementation of the 82599 driver needs 5400
lines of code just to handle receiving and sending pack-
ets in a highly optimized way. Ixy’s receive and transmit
path for the same driver is only 127 lines of code.

It is not our goal to support every conceivable sce-
nario, hardware feature, or optimization. We aim to pro-
vide an educational platform for experimentation with
driver-level features or optimizations. Ixy is available
under the BSD license for this purpose [8]. Further, we
publish all scripts used for our evaluation [10].

The remainder of this paper is structured as follows.
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We first discuss background and related work, i.e., the
basics of other user space packet IO frameworks and the
differences between them. We then look at ixy’s design
at a high level in Section 3] before diving into implemen-
tation (@) and performance (5) of our ixgbe driver. Sec-
tion [6]discusses our VirtIO driver before concluding with
an explanation on reproducing our results and running
ixy in a virtual machine in Section 7}

2 Background and Related Work

A multitude of packet IO frameworks have been built
over the past years, each focusing on different aspects.
They can be broadly categorized into two categories:
those relying on a driver running in the kernel and those
that re-implement the whole driver in user space.

Examples for the former category are netmap [40],
PF_RING ZC [34], pfq [4], OpenOnload [43], and
XDP [26]. They all use the default driver (sometimes
with small custom patches) and an additional kernel
component that provides a fast interface based on mem-
ory mapping for the user space application. Packet IO is
still handled by the normal driver here, but the driver is
attached to the application directly instead of to the nor-
mal kernel datapath. This has the advantage that integrat-
ing existing kernel components or forwarding packets to
the default network stack is relatively simple with these
frameworks. By default, these applications still provide
an application with exclusive access to the NIC. Parts of
the NIC can often still be controlled with standard tools
like ethtool to configure packet filtering or queue sizes.
However, offloading features are often poorly supported,
e.g., netmap supports no hardware checksums or tunnel
en-/decapsulation features at all [13].

In particular, netmap [40] and XDP [26] are good ex-
amples of integrating kernel components with special-
ized applications. netmap (a standard component in
FreeBSD and also available on Linux) offers interfaces
to pass packets between the kernel network stack and
a user space app, it can even make use of the kernel’s
TCP/IP stack with StackMap [46]]. Further, netmap sup-
ports using a NIC with both netmap and the kernel si-
multaneously by using hardware filters to steer packets
to receive queues either managed by netmap or the ker-
nel [3]. XDP is technically not a user space framework:
the code is compiled to eBPF which is run by a JIT in
the kernel, this restricts the choice of programming lan-
guage to those that can target eBPF bytecode (typically
a restricted subset of C is used). It is a default part of the
Linux kernel nowadays and hence very well integrated.
It is well-suited to implement firewalls that need to pass
on traffic to the network stack [16]]. However, it is cur-
rently not feasible to use as a foundation for more com-
plex applications due to limited functionality and restric-

tions imposed by running as eBPF code in the kernel.
Despite being part of the kernel, XDP does not yet work
with all drivers as it requires a new memory model for all
supported drivers. At the time of writing, XDP in kernel
4.15 supports fewer drivers than DPDK [25] |5]].

DPDK [[7] and Snabb [17] implement the driver com-
pletely in user space. DPDK still uses a small kernel
module with some drivers, but it does not contain driver
logic and is only used during initialization. A main ad-
vantage of the full user space approach is that the ap-
plication has full control over the driver leading to a far
better integration of the application with the driver and
hardware. DPDK features the largest selection of of-
floading and filtering features of all investigated frame-
works [6]. The downside is the poor integration with the
kernel, DPDK’s KNI (kernel network interface) needs to
copy packets to pass them to the kernel unlike XDP or
netmap which can just pass a pointer. Other advantages
of DPDK are its support in the industry, mature code
base, and large community. DPDK supports virtually all
NICs commonly found in servers [5], far more than any
other framework we investigated here.

Ixy’s architecture is based on ideas from both DPDK
and Snabb. The initialization and operation without load-
ing a driver is inspired by Snabb, the API based on ex-
plicit memory management, batching, and abstraction
from the driver is similar to DPDK.

3  Design

The language of choice is C as the lowest common de-
nominator of systems programming languages.
Our design goals for ixy are:

e Simplicity. A forwarding application including a
driver should be less than 1,000 lines of C code.

e No dependencies. One self-contained project in-
cluding the application and driver.

e Usability. Provide a simple-to-use interface for ap-
plications built on it.

e Speed. It should be reasonable fast without com-
promising simplicity, find the right trade-off.

It should be noted that the Snabb project [17]] has sim-
ilar design goals; ixy tries to be one order of magni-
tude simpler. For example, Snabb targets 10,000 lines of
code [28]], we target 1,000 lines of code and Snabb builds
on Lua with LuaJIT instead of C limiting accessibility.

3.1 Architecture

Ixy only features one abstraction level: it decouples the
used driver from the user’s application. Applications call
into ixy to initialize a network device by its PCI address,



ixy choses the appropriate driver automatically and re-
turns a struct containing function pointers for driver-
specific implementations. We currently expose packet
reception, transmission, and device statistics to the ap-
plication. Packet APIs are based on explicit allocation of
buffers from specialized memory pool data structures.
Applications include the driver directly, ensuring a
quick turn-around time when modifying the driver. This
means that the driver logic is only a single function call
away from the application logic, allowing the user to read
the code from a top-down level without jumping between
complex abstraction interfaces or even system calls.

3.2 NIC Selection

Ixy is based on custom user space re-implementation of
the Intel ixgbe driver and the VirtIO virtio-net driver cut
down to their bare essentials. We’ve tested our ixgbe
driver on Intel X550, X540, and 82599ES (aka X520)
NICs, virtio-net on gemu with and without vhost and on
VirtualBox. All other frameworks except DPDK are also
restricted to very few NIC models (typically 3 or fewer
families) and ixgbe is (except for OpenOnload only sup-
porting their own NICs) always supported.

We chose ixgbe for ixy because Intel releases exten-
sive datasheets and the ixgbe NICs are commonly found
in commodity servers. These NICs are also interesting
because they expose a relatively low-level interface to
the drivers. Other NICs like the newer Intel XL710 se-
ries or Mellanox ConnectX-4/5 follow a more firmware-
driven design: a lot of functionality is hidden behind a
black-box firmware running on the NIC and the driver
merely communicates via a message interface with the
firmware which does the hard work. This approach has
obvious advantages such as abstracting hardware details
of different NICs allowing for a simpler more generic
driver. However, our goal with ixy is understanding the
full stack — a black-box firmware is counterproductive
here and we have no plans to add support for such NICs.

VirtlO was selected as second driver to ensure that ev-
eryone can run the code without hardware dependencies.
A second interesting characteristic of VirtlO is that it’s
based on PCI instead of PCle, requiring a different ap-
proach to implement the driver in user space.

3.3 User Space Drivers in Linux

All function names in the following sections are clickable
hyperlinks to our source code on GitHub.

Linux exposes all necessary interfaces to write full
user space drivers via the sysfs pseudo filesystem.
These file-based APIs give us full access to the device
without needing to write any kernel code. Ixy unloads
any kernel driver for the given PCI device to prevent

conflicts, i.e., there is no driver configured for the NIC
while ixy is running. The only capability that is missing
is handling interrupts which could be done by using the
uio_pci_generic driver for the NIC. Ixy only supports
poll-mode at the moment to keep the code simple.

One needs to understand how a driver communicates
with a device to understand how a driver can be written in
user space. This overview skips details but is sufficient
to understand how ixy or similar frameworks work. A
driver can communicate via two ways with a PCle de-
vice: The driver can initiate an access to the device’s
Base Address Registers (BARs) or the device can initi-
ate a direct memory access (DMA) to access arbitrary
main memory locations. BARs are used by the device to
expose configuration and control registers to the drivers.
These registers are available either via memory mapped
10 MMIO) or via x86 10 ports depending on the device,
the latter way of exposing them is deprecated in PCle.

3.3.1 Accessing Device Registers

MMIO maps a memory area to device IO, i.e., reading
from or writing to this memory area receives/sends data
from/to the device. Linux exposes all BARs in the sysfs
pseudo filesystem, a privileged process can simply mmap
them into its address space. Devices commonly expose
their configuration registers via this interface where nor-
mal reads and writes can be used to access the regis-
ter. For example, ixgbe NICs expose all configuration,
statistics, and debugging registers via the BARO address
space. The datasheet [22]] lists all registers as offsets in
this memory area. Our implementation of this mapping
can be found in pci_map_resource () inpci.cl

VirtlO (in the version we are implementing) is unfor-
tunately based on PCI and not on PCle and its BAR is
an IO port resource that must be accessed with the ar-
chaic IN and OUT x86 instructions requiring IO privi-
leges. Linux can grant processes the necessary privileges
via ioperm(2) [18], DPDK uses this approach for their
VirtlO driver. We found it too cumbersome to initialize
and use as it requires either parsing the PCle configura-
tion space or text files in procfs and sysfs. Linux also
exposes 10 port BARs via sys as files that, unlike their
MMIO counterparts, cannot be mmaped. These files can
be opened and accessed via normal read and write calls
that are then translated to the appropriate IO port com-
mands by the kernel. We found this easier to use and
understand but slower due to the required syscall. See
pci_open_resource() in pci.c|and read/write_-—
i0X () in/device.h for the implementation.
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3.3.2 DMA in User Space

DMA is initiated by the PCI device and allows it to
read/write arbitrary physical addresses. This is used to
read/write packet data and to transfer the DMA descrip-
tors (pointers to packet data and offloading information)
between driver and NIC. DMA needs to be explicitly en-
abled for a device via the PCI configuration space, our
implementation is in lenable_dma()|in pci.c. The user
space driver hence needs to be able to translate its vir-
tual addresses to physical addresses, this is possible via
the procfs file /proc/self/pagemap, the translation
logic is implemented in virt_to_phys ()|in memory.c.

Memory used for DMA transfer must stay resident in
physical memory. mlock(2) [29]] can be used to dis-
able swapping. However, this only guarantees that the
page stays backed by memory, it does not guarantee that
the physical address of the allocated memory stays the
same. The linux page migration mechanism can change
the physical address of any page allocated by the user
space at any time, e.g., to implement transparent huge
pages and NUMA optimizations [31]]. Linux does not
implement page migration of explicitly allocated huge
pages (2MiB or 1GiB pages on x86). Ixy therefore
uses huge pages which also simplify allocating physi-
cally contiguous chunks of memory. Huge pages allo-
cated in user space are used by all investigated full user
space drivers, but they are often passed off as a mere per-
formance improvement [21,!41]] despite being crucial for
reliable allocation of DMA memory. If Linux ever starts
moving explicitly allocated huge pages in physical mem-
ory, a new memory allocation method is required for all
full user space driver frameworks. The uio framework
with its uio_pci_generic driver is one candidate.

3.4 Memory Management

Ixy builds on an API with explicit memory allocation
similar to DPDK which is a very different approach from
netmap [40]] that exposes a replica of the NIC’s ring
buffer to the application. Memory allocation for pack-
ets was cited as one of the main reasons why netmap is
faster than traditional in-kernel processing [40]. Hence,
netmap exposes replicas of the ring buffer to the appli-
cation, and it is then up to the application to handle mem-
ory. Many forwarding cases can then be implemented by
simply swapping pointers in the rings. However, more
complex scenarios where packets are not forwarded im-
mediately to a NIC (e.g., because they are passed to a dif-
ferent core in a pipeline setting) do not map well to this
API and require adding manual memory management on

Not the actual ring buffers to prevent the user-space application
from crashing the kernel with invalid pointers.

top of this APIL. Further, a ring-based API is very cum-
bersome to use compared to one with memory allocation.

It is true that memory allocation for packets is a sig-
nificant overhead in the Linux kernel, we have measured
a per-packet overhead of 100 cyclef] when forwarding
packets with Open vSwitch on Linux for allocating and
freeing packet memory (measured with perf). This
overhead is almost completely due to (re-)initialization
of the kernel sk_buff struct — a large data structure with
a lot of metadata fields targeted at a general-purpose
network stack. Memory allocation in ixy with mini-
mum metadata required only adds an overhead of 30 cy-
cles/packet, a price that we are willing to pay for the
gained simplicity in the user-facing APIL.

Ixy’s API is the same as DPDK’s API when it comes
to sending and receiving packets and managing memory.
It can best be explained by reading the example appli-
cations ixy-fwd.c|and ixy-pktgen.c. The transmit-
only example ixy-pktgen.c creates a memory pool, a
fixed-size collection of fixed-size packet buffers and pre-
fills them with packet data. It then allocates a batch of
packets from this pool, adds a sequence number to the
packet, and passes them to the transmit function. The
transmit function is asynchronous: it enqueues pointers
to these packets, the NIC fetches and sends them later.
Previously sent packets are freed asynchronously in the
transmit function by checking the queue for sent packets
and returning them to the pool. This means that a packet
buffer cannot be re-used immediately, the ixy-pktgen
example looks therefore quite different from a packet
generator built on a classic socket APL

The forward example ixy-fwd.c| can avoid explicit
handling of memory pools in the application: the driver
allocates a memory pool for each receive ring and au-
tomatically allocates packets. Allocation is done by the
packet reception function, freeing is either handled in the
transmit function as before or by dropping the packet ex-
plicitly if the output link is full.

3.5 Memory Pools and Multi-Threading

Packets may be passed to different threads, for example,
a service function chaining application might run differ-
ent network functions on different CPU cores and pass
packets between them. Allocating and freeing packets
will happen in different threads in this case as memory
management is handled in the receive and transmit func-
tions. Packets must be returned to the memory pool they
were allocated from (they keep a reference to the pool)
to prevent starving or overflowing pools when forward-
ing unidirectionally. Therefore, memory pools must be
thread-safe for such an application. Memory pools in ixy

2Forwarding 10 Gbit/s with minimum-sized packets on a single
3.0 GHz CPU core leaves a budget of 200 cycles/packet.
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are currently not thread-safe; they are based on a free list
kept in a stack, making bulk operations on the pools triv-
ial and fast. Lock-free stacks or queues could be used,
but these data structures are complicated [44]. We do not
want the memory pool to be the most complex and hard
to understand part of ixy — we therefore do not support
passing packets between threads at the moment.

Choosing the right data structure for memory manage-
ment also affects performance beyond the efficiency of
the data structure itself. A stack is better than a queue:
it improves temporal cache locality because it recycles
packets immediately. DPDK is an interesting case study
as they offer thread-safe memory pools. Free buffers are
kept in a lock-free queue and each thread keeps a thread-
local stack as a cache: an unsynchronized local stack is
faster than a lock-free data structure. This works well
if multiple threads share a memory pool but do not pass
packets between each other. But the cache does not help
if the “producers” and “consumers” are separate threads
because they exhaust their cache and effectively fall back
to the queue. DPDK added a memory pool backed by a
stack protected with a spin-lock specifically for such ap-
plications because effective cache usage is more impor-
tant than a lock-free data structure in practice [[20].

3.6 Security Considerations

Applications built with ixy require root access to ac-
cess the hardware, the same is true for virtually all other
packet processing frameworks. The only noteworthy
exception here is netmap which can grant unprivileged
users access and performs checks on user-provided data
in the kernel interfaces. Despite the need for root ac-
cess, the other frameworks are still an improvement over
the previous solution: custom kernel modules running C
code. The user space solutions can use safer languages,
for example, the Snabb drivers are written in Lu [L7].
It is possible to drop all privileges using seccomp (2)
once the PCle memory regions have been opened or
mmaped and all necessary DMA memory has been allo-
cated. We have implemented this in ixy on a branch [39]].
However, this is still insecure — the device is under full
control of the application and it has full access via DMA
to the whole memory. Modern CPUs offer a solution:
the IO memory management unit (IOMMU) allows us-
ing virtual addresses, translation, and protection for PCle
devices. IOMMU s are available on CPUs offering hard-
ware virtualization features as it was designed to pass
PCle devices (or parts of them via SR-IOV) directly
into VMs in a secure manner. Linux abstracts differ-
ent IOMMU implementations via the vfio framework
which is specifically designed for “safe non-privileged

3However, they make extensive use of memory-unsafe operations
with LuaJIT for performance reasons

userspace drivers” [32] beside virtual machines. This,
combined with dropping privileges after initialization (or
delegating initialization to a separate process), allows
implementing a secure user space driver that requires no
privileged access during operation.

4 ixgbe Implementation

All line numbers referenced in this Section are for com-
mit df 1cddb of ixy. All page numbers and section num-
bers for the Intel datasheet refer to revision 3.3 (March
2016) of the 82599ES datasheet [22]. Function names
and line numbers are hyperlinked to the implementation.
ixgbe devices expose all configuration, statistics, and
debugging registers via the BARO MMIO region. The
datasheet [22]] lists all registers as offsets in this configu-
ration space. We use ixgbe_type.h from Intel’s driver
as machine-readable version of the datasheetﬂ it contains
defines for all register names and offsets for bit fields.

4.1 NIC Ring API

NICs expose multiple circular buffers called queues or
rings to transfer packets. The simplest setup uses only
one receive and one transmit queue. Multiple transmit
queues are merged on the NIC, incoming traffic is split
according to filters or a hashing algorithm if multiple re-
ceive queues are configured. Both receive and transmit
rings work in a similar way: the driver programs a phys-
ical base address and the size of the ring. It then fills
the memory area with DMA descriptors, i.e., pointers to
physical addresses where the packet data is stored with
some metadata. Sending and receiving packets is done
by passing ownership of the DMA descriptors between
driver and hardware via a head and tail pointer. The
driver controls the tail, hardware the head. Both point-
ers are stored in device registers accessible via MMIO.
The initialization code is in ixgbe . c starting from line
124 for receive queues and from line 179 for transmit
queues. Further details are in the datasheet in Section
7.1.9 and in the datasheet sections mentioned in the code.

4.1.1 Receiving Packets

The driver fills up the ring buffer with physical pointers
to packet buffers in start_rx_queue ()|on startup. Each
time a packet is received, the corresponding buffer is re-
turned to the application and we allocate a new packet
buffer and store its physical address in the DMA descrip-
tor and reset the ready flag. We also need a way to trans-

“4This is technically a violation of both our goal about dependencies
and lines of code, but we only effectively use less than 100 lines that
are just defines and simple structs. There is nothing to be gained from
copy & pasting offsets and names from the datasheet or this file.
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late the physical addresses in the DMA descriptor found
in the ring back to its virtual counterpart on packet recep-
tion. This is done by keeping a second copy of the ring
populated with virtual instead of physical addresses, this
is then used as a lookup table for the translation.

Figure [I]illustrates the memory layout: the DMA de-
scriptors in the ring to the left contain physical pointers
to packet buffers stored in a separate location in a mem-
ory pool. The packet buffers in the memory pool con-
tain their physical address in a metadata field. Figure [2]
shows the RDH (head) and RDT (tail) registers control-
ling the ring buffer on the right side, and the local copy
containing the virtual addresses to translate the physical
addresses in the descriptors in the ring back for the appli-
cation. |ixgbe_rx_batch() in ixgbe.c implements the
receive logic as described by Sections 1.8.2 and 7.1 of the
datasheet. It operates on batches of packets to increase
performance. A naive way to check if packets have been
received is reading the head register from the NIC in-
curring a PCle round trip. The hardware also sets a flag
in the descriptor via DMA which is far cheaper to read
as the DMA write is handled by the last-level cache on
modern CPUs. This is effectively the difference between
an LLC cache miss and hit for every received packet.

4.1.2 Transmitting Packets

Transmitting packets follows the same concept and API
as receiving them, but the function is more complicated
because the interface between NIC and driver is asyn-
chronous. Placing a packet into the ring does not imme-
diately transfer it and blocking to wait for the transfer
is infeasible. Hence, the ixgbe_tx_batch()| function
in ixgbe.c consists of two parts: freeing packets from
previous calls that were sent out by the NIC followed
by placing the current packets into the ring. The first
part is often called cleaning and works similar to receiv-
ing packets: the driver checks a flag that is set by the
hardware after the packet associated with the descriptor
is sent out. Sent packet buffers can then be free’d, mak-
ing space in the ring. Afterwards, the pointers of the
packets to be sent are stored in the DMA descriptors and
the tail pointer is updated accordingly.

Checking for transmitted packets can be a bottleneck
due to cache thrashing as both the device and driver ac-
cess the same memory locations [22]]. The 82599 hard-
ware implements two methods to combat this: marking
transmitted packets in memory occurs either automati-
cally in configurable batches on device side, this can
also avoid unnecessary PCle transfers. We tried differ-
ent configurations (code in init_tx()) and found that
the defaults from Intel’s driver work best. The NIC can
also write its current position in the transmit ring back
to memory periodically (called head pointer write back)
as explained in Section 7.2.3.5.2 of the datasheet. How-
ever, no other driver implements this feature despite the
datasheet referring to the normal marking mechanism
as “legacy”. We implemented support for head pointer
write back on a branch [38]] but found no measurable per-
formance improvements or effects on cache contention.

4.1.3 Batching

Each successful transmit or receive operation involves an
update to the NIC’s tail pointer register (RDT and TDT
for receive/transmit), a slow operation. This is one of the
reasons why batching is so important for performance.
Both the receive and transmit function are batched in ixy,
updating the register only once per batch.

4.14 Offloading Features

Ixy currently only enables CRC checksum offloading.
Unfortunately, packet IO frameworks (e.g., netmap) are
often restricted to this bare minimum of offloading fea-
tures. DPDK is the exception here as it supports almost
all offloading features offered by the hardware. However,
as explained earlier its receive and transmit functions pay
the price for these features in the form of complexity.


https://github.com/emmericp/ixy/blob/df1cddbbf5d0889f5cbd0085a1c5969ffffcec24/src/driver/ixgbe.c#L355
https://github.com/emmericp/ixy/blob/df1cddbbf5d0889f5cbd0085a1c5969ffffcec24/src/driver/ixgbe.c#L408
https://github.com/emmericp/ixy/blob/df1cddbbf5d0889f5cbd0085a1c5969ffffcec24/src/driver/ixgbe.c#L192
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Figure 3: Bidirectional single-core forwarding perfor-
mance with varying CPU speed, batch size 32.

We will try to find a balance and showcase selected
simple offloading features in ixy in the future. These of-
floading features can be implemented in the receive and
transmit functions, see comments in the code. This is
simple for some features like VLAN tag offloading and
more involved for more complex features requiring an
additional descriptor containing metadata information.

5 Performance Evaluation

We run the ixy-fwd example under a full bidirectional
load of 29.76 million packets per second (Mpps), line
rate with minimum-sized packets at 2x 10 Gbit/s, and
compare it to a custom DPDK forwarder implementing
the same features. Both forwarders modify a byte in the
packet to ensure that the packet data is fetched into the
L1 cache to simulate a somewhat realistic workload.

5.1 Throughput

To quantify the baseline performance and identify bot-
tlenecks, we run the forwarding example while increas-
ing the CPU’s clock frequency from 1.2 GHz to 2.4 GHz.
Figure [3] compares the throughput of our forwarder on
ixy and on DPDK when forwarding across the two ports
of a dual-port NIC and when using two separate NICs.
The better performance of both ixy and DPDK when us-
ing two separate NICs over one dual-port NIC indicates
a hardware limit (likely at the PCle level). We run this
test on Intel X520 (82599-based) and Intel X540 NICs
with identical results. Ixy requires 96 CPU cycles to for-
ward a packet, DPDK only 61. The high performance
of DPDK can be attributed to its vector transmit path
utilizing SIMD instructions to handle batches even bet-
ter than ixy. This transmit path of DPDK is only used
if no offloading features are enabled at device config-
uration time, i.e., it offers a similar feature set to ixy.
Disabling the vector TX path in the DPDK configuration
increases the CPU cycles per packet to 91 cycles packet,

Line Rhte

w
=)
\

b

Packet Rate [Mpps]
= [\
o o

o

L L
1 2 4 8 16 32 64 128 256
Batch Size

—e— Ixy 1.2 GHz —a—Ixy 2.4 GHz
DPDK 1.2 GHz - - DPDK 2.4 GHz

Figure 4: Bidirectional single-core forwarding perfor-
mance with varying batch size.

App/Function RX TX Forwarding Memory Mgmt.
ixy-fwd 448 147 12.3 30.4
ixy-fwd-inline 57.0 28.3 12.5 7™
DPDK I2fwd 354 204 6.1 7™

*Memory operations inlined, separate profiling not possible.
TDPDK’s driver explicitly prefetches packet data on RX, so this is
faster despite performing the same action of changing one byte.

Table 1: Processing time in cycles per packet.

still slightly faster than ixy despite doing more (check-
ing for more offloading flags). Overall, we consider ixy
fast enough for our purposes. For comparison, we have
previously studied the performance of older versions of
DPDK, PF_RING, and netmap and measured a perfor-
mance of ~ 100 cycles/packet for DPDK and PF_RING
and ~ 120 cycles/packet for netmap [14].

5.2 Batching

Batching is one of the main drivers for performance.
DPDK even requires a minimum batch size of 4 when
using the SIMD transmit path. Receiving or sending
a packet involves an access to the queue index regis-
ters, invoking a costly PCle round-trip. Figure [ shows
how the performance increases as the batch size is in-
creased in the bidirectional forwarding scenario with
two NICs. Increasing batch sizes have diminishing re-
turns: this is especially visible when the CPU is only
clocked at 1.2 GHz. Reading the performance counters
for all caches shows that the number of L1 cache misses
per packet increases as the performance gains drop off.
Too large batches thrash the L1 cache, possibly evicting
lookup data structures in a real application. Therefore,
batch sizes should not be chosen too large. Latency is
also impacted by the batch size, but the effect is negligi-
ble compared to other buffers (e.g., NIC ring sizes are an
order of magnitude larger than the batch size).
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5.3 Profiling

We run perf on ixy-fwd running under full bidirec-
tional load at 1.2 GHz with two different NICs using the
default batch size of 32 to ensure that CPU is the only
bottleneck. perf allows profiling with the minimum
possible effect on the performance: throughput drops by
only =~ 5% while perf is running. Table[I]shows where
CPU time is spent on average per forwarded packet and
compares it to DPDK. Receiving is slower because the
receive logic performs the initial fetch, the following
functions operate on the L1 cache. Ixy’s receive function
still leaves room for improvements, it is less optimized
than the transmit function. There are several places in the
receive function where DPDK avoids memory accesses
by batching compared to ixy. However, these optimiza-
tions were not applied for simplicity in ixy: DPDK’s re-
ceive function is quite complex.

Overhead for memory management is significant (but
still low compared to 100 cycles/packet in the Linux ker-
nel). 59% of the time is spent in non-batched memory
operations and none of the calls are inlined. Inlining
these functions increases throughput by 6.5% but takes
away our ability to account time spent in them. Over-
all, the overhead of memory management is larger than
we initially expected, but we still think explicit memory
management for the sake of a usable API is a worthwhile
trade-off. This is especially true for ixy aiming at sim-
plicity, but also for other frameworks targeting complex
applications. Simple forwarding can easily be done on
an exposed ring interface, but anything more complex
that does not sent out packets immediately (e.g., because
they are processed further on a different core) requires
memory management in the user’s application. More-
over, 30 cycles per packet that could be saved is still a
tiny improvement compared to other architectural deci-
sions like batch processing that reduces per-packet pro-
cessing costs by 300 cycles when going from no batching
to a batch size of 32.

Ring sizes Load Median 99th perc. 99.9th perc.

64 15 Mpps 7.7 us 8.8 us 9.6 us
512 15 Mpps 7.7 us 8.9 us 9.9 us
4096 15 Mpps 79 us 9.2 us 11.1 us
64 *29Mpps  10.7 us 11.5us 13.0 us
512 *29Mpps 533 us 54.7 us 56.7 us
4096 *29Mpps 427.1us 4354 pus 444.5 us

*Device under test overloaded, packets were lost
Table 2: Forwarding latency by ring size and load.

5.4 Queue Sizes

Our driver supports descriptor ring sizes in power-of-two
increments between 64 and 4096, the hardware supports
more sizes but the restriction to powers of two simplify
wrap-around handling. Linux defaults to a ring size of
256 for this NIC, DPDK’s example applications config-
ure different sizes; the 12fwd forwarder sets 128/512
RX/TX descriptors. Larger ring sizes such as 8192 are
sometimes recommended to increase performance [1]]
(source refers to the size as kB when it is actually number
of packets). Figure [5] shows the throughput of ixy with
various ring size combinations. There is no measurable
impact on the maximum throughput for ring sizes larger
than 64. Scenarios where a larger ring size can still be
beneficial might exist: for example, an application pro-
ducing a large burst of packets significantly faster than
the NIC can handle for a very short time.

The second performance factor that is impacted by
ring sizes is the overall latency caused by unnecessary
buffering. Table [2| shows the latency (measured with
MoonGen hardware timestamping [[11]) of the ixy for-
warder with different ring sizes. The results show a lin-
ear dependency between ring size and latency when the
system is overloaded, but the effect under lower loads are
negligible. Full or near full buffers are no exception on
systems forwarding Internet traffic due to protocols like
TCP that try to fill up buffers completely [15]. We con-
clude that tuning tipps like setting a ring size to 8192 [1]]
are detrimental for latency and likely do not help with
throughput. Ixy uses a default ring size of 512 at the mo-
ment as a trade-off between providing some buffer and
avoiding high worst-case latencies.

5.5 Page Sizes

It is not possible to allocate DMA memory on small
pages from user space in Linux in a reliable manner as
described in Section [3.3.2] Despite this, we have imple-
mented an allocator that performs a brute-force search
for physically contiguous normal-sized pages from user
space. We run this code on a system without NUMA and
with transparent huge pages and page-merging disabled
to avoid unexpected page migrations. The code for these
benchmarks is not available in the main repo but on a
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Figure 6: Single-core forwarding performance with and
without huge pages and their effect on the TLB.

branch [37]] due to its unsafe nature on some systems.
Benchmarks varying the page size are interesting despite
these problems: kernel drivers (and user space packet IO
frameworks using them) often only support normal-sized
pages. Existing performance claims about huge pages in
drivers are vague and unsubstantiated [21}41]].

Figure[6]shows that the impact on performance of huge
pages in the driver is small. The performance differ-
ence is 5.5% with the maximum ring size, more realis-
tic ring sizes only differ by 1-3%. This is not entirely
unexpected: the largest queue size of 4096 entries is
only 16 kiB large storing pointers to up to 16 MiB packet
buffers. Huge pages are designed for, and usually used
with, large data structures, e.g., big lookup tables for for-
warding. The effect measured here is likely larger when
a real forwarding application puts additional pressure on
the TLB due to its other internal data structures. One
should still use huge pages for other data structures in a
packet processing application, but a driver not support-
ing them (e.g., netmap) is not as bad as one might expect
when reading claims about their importance from authors
of drivers supporting them.

5.6 NUMA Considerations

Non-uniform memory access (NUMA) architectures
found on multi-CPU servers present additional chal-
lenges. Modern systems integrate cache, memory con-
troller, and PCle root complex in the CPU itself instead
of using a separate IO hub. This means that a PCle de-
vice is attached to only one CPU in a multi-CPU sys-
tem, access from or to other CPUs needs to pass over
the CPU interconnect (QPI on our system). At the same
time, the tight integration of these components allows the
PCle controller to transparently write DMA data into the
cache instead of main memory. This works even when
DCA (direct cache access) is not used (DCA is only sup-
ported by the kernel driver, none of the full user space
drivers implement it). Intel DDIO (Data Direct 1/O) is
another further optimization to prevent memory accesses

Ingress* Egress* CPU' Memory* Throughput
Node0 NodeO NodeO  NodeO 10.8 Mpps
Node0 NodeO NodeO  Nodel 10.8Mpps
Node 0 Node O Node 1 Node 0 7.6 Mpps
Node 0 Node O Node 1 Node 1 6.6 Mpps
Node 0 Nodel Node O Node 0 7.9 Mpps
Node 0 Node 1 Node 0 Node 1  10.0 Mpps
Node 0 Node 1 Nodel Node 0 8.6 Mpps
Node 0 Node 1 Node 1 Node 1 8.1 Mpps

“NUMA node connected to the NIC
"Thread pinned to this NUMA node
*Memory pinned to this NUMA node

Table 3: Unidirectional forwarding on a NUMA system,
CPU at 1.2 GHz

by DMA [23]. However, we found by reading perfor-
mance counters that even CPUs not supporting DDIO
do not perform memory accesses in a typical packet for-
warding scenario. DDIO is poorly documented and ex-
poses no performance counters, its exact effect on mod-
ern systems is unclear. All recent (since 2012) CPUs
supporting multi-CPU systems also support DDIO. Our
NUMA benchmarks where obtained on a different sys-
tem than the previous results because we wanted to avoid
potential problems with NUMA for the other setups.

A multi-CPU system consists of multiple NUMA
nodes, each has its own CPU, memory, and PCle de-
vices. Our test system has one dual-port NIC attached to
NUMA node 0 and a second to NUMA node 1. Both the
forwarding process and the memory used for the DMA
descriptors and packet buffers can be explicitly pinned
to a NUMA node. This gives us 8 possible scenar-
ios for unidirectional packet forwarding by varying the
packet path and pinning. Table [3] shows the throughput
at 1.2 GHz. Forwarding from and to a NIC at the same
node shows one unexpected result: pinning memory, but
not the process itself, to the wrong NUMA node does
not reduce performance. The explanation for this is that
the DMA transfer is still handled by the correct NUMA
node to which the NIC is attached, the CPU then caches
this data while informing the other node. However, the
CPU at the other node never accesses this data and there
is hence no performance penalty. Forwarding between
two different nodes is fastest when the the memory is
pinned to the egress nodes and CPU to the ingress node
and slowest when both are pinned to the ingress node.
Real forwarding applications often cannot know the des-
tination of packets at the time they are received, the best
guess is therefore to pin the thread to the node local to
the ingress NIC and distribute packet buffer across the
nodes. Latency was also impacted by poor NUMA map-
ping, we measured an additional 1.7 us when unneces-
sarily crossing the NUMA boundary when forwarding
between two ports on one NUMA node. Latency com-
parisons between forwarding within one node vs. for-
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Figure 7: Overview of a Virtqueue. Descriptor table con-
tains physical addresses, the queues indices into the de-
scriptor table.

warding between two nodes where not possible in a fair
manner in this system as the NICs use different physical
layers with different latencies: the 10GBASE-T NIC has
more than 2 us additional latency.

6 VirtIlO Implementation

All line numbers referenced in this Section are for com-
mit df 1cddb of ixy. All section numbers for the spec-
ification refer to version 1.0 of the VirtlO specifica-
tion [22]]. Function names are hyperlinked to the imple-
mentation on GitHub containing further references to the
relevant specification sections.

VirtlO defines different types of operational modes for
emulated network cards: legacy, modern, and transitional
devices. gemu implements all three modes, the default
being transitional devices supporting both the legacy and
modern interface after feature negotiation. Supporting
devices operating only in modern mode would be the
simplest implementation in ixy because they work with
MMIO. Both legacy and transitional devices require sup-
port for PCI IO port resources making the device access
different from the ixgbe driver. Modern-only devices are
rare because they are relatively new (2016).

We chose to implement the legacy variant because Vir-
tualBox only supports the legacy operation mode. Virtu-
alBox is an important target for ixy as it is the only hy-
pervisor supporting VirtlO that is available on all com-
mon operating systems. Moreover, it is very well inte-
grated with Vagrant [19] allowing us to offer a full self-
contained setup to run ixy on any platform [9].

6.1 Device Initialization and Virtqueues

virtio_legacy_init ()|resets and configures a VirtlO
device. It negotiates the VirtlO version and features to
use, we do not try to negotiate any advanced features
but the support for checksum-free transfer of packets be-
tween VMs. See specification Section 5.1.3 and 5.1.5 for
the available feature flags and initialization steps.
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VirtlO supports three different types of queues called
Virtqueues: receive, transmit, and command queues. The
queue sizes are controlled by the device and are fixed to
256 entries for legacy devices. Setup works the same as
in the ixgbe driver: DMA memory for shared structures
is allocated and passed to the device via a control regis-
ter. Contrary to queues in ixgbe, a Virtqueue internally
consists of a descriptor table and two rings: the avail-
able and used rings. While the table holds the complete
descriptors with pointers to the physical addresses and
length information of buffers, the rings only contain in-
dices for this table as shown in Figure [/] To supply a
device with new buffers, the driver first adds new de-
scriptors into free slots in the descriptor table and then
enqueues the slot indices into the available ring by ad-
vancing its head. Conversely, a device picks up new de-
scriptor indices from this ring, takes ownership of them
and then signals completion by enqueuing the indices
into the used ring, where the driver finalizes the opera-
tion by clearing the descriptor from the table. The queue
indices are maintained in DMA memory instead of in
registers like in the ixgbe implementation. Therefore,
the device needs to be informed about all modifications
to queues, this is done by writing the queue ID into a
control register in IO port memory region. Our driver
also implements batching here to avoid unnecessary up-
dates. This process is the same for sending and receiving
packets. Our implementations are in virtio_legacy_—
setup_tx/rx_queue ()|

The command queue is a transmit queue that is used
to control most features of the device instead of via reg-
isters. For example, enabling or disabling promiscuous
mode in virtio_legacy_set_promiscuous () is done
by sending a command packet with the appropriate flags
through this queue. See specification Section 5.1.6.5 for
details on the command queue. This way of controlling
devices is not unique to virtual devices. For example, the
Intel XL.710 40 Gbit/s configures most features by send-
ing messages to the firmware running on the device [24]].

6.2 Packet Handling

Packet transmission in virtio_tx_batch()|and recep-
tion in [virtio_rx_batch() works similar to the ixgbe
driver. The big difference to ixgbe is passing of metadata
and offloading information. Virtqueues are not only used
for VirtlO network devices, but for other VirtlO devices
as well. Therefore, the DMA descriptor does not contain
information specific for network devices. Packets going
through Virtqueues have this information prepended in
an extra header in the DMA buffer.

This means that the transmit function needs to prepend
an additional header to each packet, and our goal to sup-
port device-agnostic applications means that the applica-


https://github.com/emmericp/ixy/blob/df1cddbbf5d0889f5cbd0085a1c5969ffffcec24/src/driver/virtio.c#L272
https://github.com/emmericp/ixy/blob/df1cddbbf5d0889f5cbd0085a1c5969ffffcec24/src/driver/virtio.c#L46
https://github.com/emmericp/ixy/blob/df1cddbbf5d0889f5cbd0085a1c5969ffffcec24/src/driver/virtio.c#L46
https://github.com/emmericp/ixy/blob/df1cddbbf5d0889f5cbd0085a1c5969ffffcec24/src/driver/virtio.c#L220
https://github.com/emmericp/ixy/blob/df1cddbbf5d0889f5cbd0085a1c5969ffffcec24/src/driver/virtio.c#L189
https://github.com/emmericp/ixy/blob/df1cddbbf5d0889f5cbd0085a1c5969ffffcec24/src/driver/virtio.c#L428
https://github.com/emmericp/ixy/blob/df1cddbbf5d0889f5cbd0085a1c5969ffffcec24/src/driver/virtio.c#L364

tion cannot know about this requirement when allocating
memory. Ixy handles this by placing this extra header in
front of the packet as VirtlO DMA requires no alignment
on cache lines. Our packet buffers already contain meta-
data before the actual packet to track the physical ad-
dress and the owning memory pool. Packet data starts at
an offset of one cache line (64 byte) in the packet buffer,
due to alignment requirements of other NICs. This meta-
data cache line has enough space to accommodate the
additional VirtlO header, we have explicitly marked this
available area as head room for drivers requiring this.
Our receive function offsets the address in the DMA de-
scriptor by the appropriate amount to receive the extra
header in the head room. The user’s ixy application treats
the metadata header as opaque data.

6.3 VirtlO Performance

Performance with VirtIO is dominated by the implemen-
tation of the virtual device, i.e., the hypervisor, and not
the driver in the virtual machine. It is also possible to
implement the hypervisor part of VirtlO, i.e., the de-
vice, in a separate user space application via the Vhost-
user interface of gemu [45]. Implementations of this ex-
ist in both Snabb und DPDK. We only present baseline
performance measurements running on gemu with Open
vSwitch and in VirtualBox, because we are not interested
in getting the fastest possible result, but results in an en-
vironment that we expect our users to have. Optimiza-
tions on the device side are out of scope for this paper.

Running ixy in gemu 2.7.1 on a Xeon E3-1230 V2
CPU clocked at 3.30 GHz yields a performance of
only 0.94Mpps for the ixy-pktgen application and
0.36 Mpps for ixy-fwd. DPDK is only marginally faster
on the same setup: it manages to forward 0.4 Mpps, these
slow speeds are not unexpected on unoptimized hypervi-
sors [[12]. Performance is limited by packet rate, not data
rate. Profiling with 1514 byte packets yield near iden-
tical results with a forwarding rate of 4.8 Gbit/s. VMs
often send even larger packets with an offloading fea-
ture known as generic segmentation offloading offered
by VirtlO to achieve higher rates. Profiling on the hy-
pervisor shows that the interconnect is the bottleneck.
It fully utilizes one core to forward packets with Open
vSwitch 2.6 through the kernel to the second VM. Per-
formance is even worse on VirtualBox 5.2 in our Vagrant
setup [9]. It merely achieves 0.05 Mpps on Linux with a
3.3 GHz Xeon E3 CPU and 0.06 Mpps on macOS with a
2.3 GHz Core 17 CPU (606 Mbit/s with 1514 byte pack-
ets). DPDK achieves 0.08 Mpps on the macOS setup.
Profiling within the VM shows that over 99% of the CPU
time is spent on an x86 OUT IO instruction to communi-
cate with the virtual device/hypervisor.

7 Conclusions: Reproducible Research

We discussed how to build a user space driver for NICs
of the ixgbe family which are commonly found in servers
and for virtual VirtlO NICs. Our goal is not build yet
another packet IO framework — but a tool for education.
Therefore, reproducible research is important to us.

The full code of ixy and the scripts used to to repro-
duce these results is available on GitHub [8, [10]. Our
DPDK forwarding application used for comparison is
available in [[10]. We used commit df1cddbb of ixy for
the evaluation of ixgbe and virtio, commit a0f618d on
a branch [37]] for the normal sized pages. Most results
were obtained on an Intel Xeon E5-2620 v3 2.4 GHz
CPU running Debian 9.3 (kernel 4.9) with a dual port
Intel X520-T2 (82599ES) NIC and a dual port X540-
T2 NIC. The NUMA results where obtained on a sys-
tem with two Intel Xeon E5-2630 v4 2.2 GHz CPUs
with the same NICs and operating system. Turboboost,
Hyper-Threading, and power-saving features were dis-
abled. VirtIO results were obtained on various systems
and hypervisors as described in the evaluation section.
All loads where generated with MoonGen [11] and its
12-load-latency.lua script.

Our performance evaluation offers some unprece-
dented looks into performance of user space drivers. Ixy
allows us to assess effects of individual optimizations,
like DMA buffers allocated on huge pages, in isola-
tion. Our driver allowed for a simple port to normal-
sized pages, this would be significant change in other
framework Not everyone has access to servers with
10 Gbit/s NICs to reproduce these results. However, ev-
eryone can build a VM setup to test ixy with our VirtlO
driver. Our Vagrant setup is the simplest way to run ixy
in a VM on any operating system in VirtualBox, instruc-
tions are in our repository [9]. VirtualBox turned out to
be slower by a factor of 20 than a setup on gemu-kvm
which is also relatively easy to build. We have validated
Ixy’s functionality on a Proxmox 4.4 hypervisor and with
virsh/libvirt on Ubuntu 16.04.
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