
Beyond Mean: Spatio-Temporal Modeling of Queue
Utilizations and Flow Latencies Using T-GNNs

Max Helm, Benedikt Jaeger, Christopher Pfefferle, Georg Carle
Department of Computer Engineering, Technical University of Munich

{helm, jaeger, pfefferl, carle}@net.in.tum.de

Abstract—Network planning and control require precise, re-
liable, and dynamic digital network models to easily obtain
performance metrics. One central performance metric in any
network is the end-to-end latency of connections which can
be inferred from queue utilizations along its path. Models
take a variety of forms: simulation, emulation, stochastic and
deterministic formal methods, and machine-learning-based or
-assisted approaches. Simulation and emulation require either
too much computational time or too many hardware resources,
while formal methods often have a high computational complexity
leading to poor scalability. Machine-learning-based methods scale
better to larger problem spaces, however, current approaches
mainly concentrate on mean performance metric predictions.
We show that such an approach can be extended to predict
queue utilization and end-to-end latency behavior over time in
dynamic networks. This is achieved by utilizing Temporal Graph
Neural Networks (T-GNNs) which can model spatio-temporal
dependencies. The approach achieves a mean queue utilization
error of 5.5% and a flow-level end-to-end latency MARE of 5%-
55% depending on time resolution over 100 random topologies.
We show that this approach outperforms a non-temporal, static
Graph Neural Network (GNN) on the same task in terms of
capturing dynamic network behavior such as queue build-up and
draining. The approach performs similar to related work while
increasing flow rates by up to three orders of magnitude—this
improvement is bought with a trade-off in supported scheduling
mechanisms and traffic patterns. Our results show that such a
T-GNN approach can be useful for performance modeling of high
data rate flows in dynamic networks.

Index Terms—graph neural networks, time series, temporal,
latency prediction

I. INTRODUCTION

Modeling network behavior plays a central role in network
planning, maintenance, and performance evaluation. It is of
specific importance to have models that can accurately and
precisely react to changes in the network. Furthermore models
should be able to compute performance metrics in adequate
time, such that the network can be dynamically re-configured
on performance metric- or network component changes. This
is a typical pattern used for digital twins: The model (as the in-
stance of a digital twin) is fed with dynamic information from
the network, computes performance metrics, and returns this
information to the network, which can perform adjustments
based on this data.

A performance metric of particular interest is end-to-end
latency of flows as well as congestion at all device queues in
the network. The metrics can be obtained at two levels: either
as a scalar with assurance on the validity, or as a timeseries
of metrics.

At both levels, these can be obtained using different ap-
proaches. The scalar can be obtained, for example, using
Queuing Theory (QT) [1] which provides a mean value, deter-
ministic network calculus [2], [3] which provides a worst-case
upper bound, stochastic network calculus [4] which provides a
worst-case upper bound with a violation probability, extreme
value theory [5] which provides expected worst cases or arbi-
traty percentiles, and machine-learning-based approaches [6]
which can, e.g., provide mean values with a certain accuracy.

The timeseries can be obtained using, for example, simula-
tion with a network simulator such as ns-31 or OmNET++2,
network emulation with Mininet3 or Containernet [7], or live
measurements on the system of interest.

We develop a machine-learning-based model that predicts
timeseries of congestion and latencies in dynamically changing
networks. Our solution relies on GNNs with an extension into
the temporal domain to model time-dependent correlations.
This approach is called T-GNNs. Compared to existing works,
we work on a more diverse set of random topologies, we use
flows with data rates three orders of manitude larger. To be
computationally feasible, we make trade-offs in the number of
traffic patterns and scheduling algorithms.

Our contributions are as follows:
1) We implement an approach to extract queue utilizations

with ms granularity in simulated networks with conges-
tion which increases flow latencies. This is applied to
300 randomly generated networks with 10,000 timesteps
each.

2) We implement, based on related work, a spatio-temporal
T-GNN model that can predict queue utilizations over
time.

3) We identify the most influential factors for the decision
making of the T-GNN model

4) We compare a static GNN approach on the same task.
5) We provide open-source access to our temporal dataset

and the T-GNN implementation4.
Section II provides background knowledge and shows

related work. Section III details our approach and Sec-
tion IV evaluates the performance of the approach and com-
pares it to a static baseline. Section VI explains how to
reproduce our results, before Section VII concludes with future
work.

1 https://www.nsnam.org/ 2 https://omnetpp.org/ 3 http://mininet.org/
4 https://github.com/tgnn-test/dataset

...

...t = 0 t = 1 t = n

Fig. 1: Graph with time-variant features and topology at
different time steps t. Edges and nodes can be added or
removed, and node features (red and green 2× 1 vectors) can
change their values. Adapted from [12]

II. BACKGROUND AND RELATED WORK

The following covers relevant concepts of GNNs, T-GNNs,
and latency modeling. Furthermore, it provides an overview
of related work in these three areas.

A. Background

GNNs [8] are a neural network approach that can work
directly on graph-structured data, utilizing the permutation
invariance property of graphs. This means that different rep-
resentations of the same graph lead to the same results, which
is not fundamentally true for other approaches, such as Con-
volutional Neural Networks for image processing. Geometric
deep learning approaches, such as GNNs, can be considered
generalizations of many of these other neural network ap-
proaches [9]. The input graph is defined as G = (V,E) where
V is a set of vertices and E is a set of edges. Each vertex
and edge is associated with a vector of features. These inputs
are encoded into two matrices, the feature matrix, and the
adjacency matrix. During the training of GNNs, a message
passing step and an aggregation step are performed. The
message passing exchanges information along the edges of the
graph, the aggregation aggregates the exchanged information
into a hidden state at each vertex. The aggregation is typically
an invariant function, e.g., mean, sum, or maximum. However,
more sophisticated methods exist, such as attention-based or
Long short-term memory (LSTM)-based approaches [10].

T-GNNs are an extension from the purely spatial domain to
a spatio-temporal domain [11], [12]. They allow predictions
on time-variant graphs with time-variant features. Figure 1
shows an example of a time-variant graph with time-variant
features. Nodes and edges can be removed or added, and
feature vectors can be changed over time. The input graph
is extended compared to GNNs to a set of graphs including
time steps: G = (V, E , T) where T is a set of time steps,
indicating a period of time. T-GNNs typically utilize LSTM
cells to capture long- and short-range temporal dependencies.
An LSTM cell outputs a hidden state and a cell state, which
are used as inputs in the next iteration. Together with the forget
gate, they allow capturing temporal dependencies.

Latency modeling in networks can be approached using a
myriad of approaches. Latencies over time can be obtained
using three approaches. First, network simulators, such as ns-3

or discrete event simulators with extensions for communica-
tion networks, such as OmNET++. Second, emulation such as
Mininet or Containernet. Third, measurements on live systems.

Mean latencies can be obtained using QT which requires
the sending behavior of devices to conform to specific traffic
models. Mean latencies can also be obtained using machine-
learning-based approaches such as RouteNet [6], [13], [14].
Worst-case upper bounds on latencies can be obtained by
employing formal methods, such as network calculus.

B. Related Work
Spatio-temporal predictions have been applied to traffic

forecasting on road networks using different T-GNN archi-
tectures [15]–[20]. These approaches mostly rely on fixed
road networks, whereas we generate 300 random network
configurations.

Yao et al. propose a GNN-based architecture for the pre-
diction of cumulative flow throughput and evaluate it on real-
world data of a backbone network [21]. Wang et al. propose
a timeseries-based GNN architecture to predict the temporal
behavior of Call Detail Records in 5G networks and evaluate
their approach on real-world data [22]. Our approach predicts
performance metrics on a more granular level while relying
on simulated data of 300 randomly generated topologies.

Taheri and Berger-Wolf propose the DyGrAE T-GNN ar-
chitecture [23]. Our approach uses a slightly modified version
thereof, as explained in Section III-A.

RouteNet is a GNN-based model predicting end-to-end
latencies of network paths under a variety of traffic and
scheduler models [6]. They achieve small MAPE values while
maintaining scalability to networks of up to 300 nodes. Our
approach uses smaller topologies and more homogeneous
traffic and scheduler models but introduces temporal latency
predictions instead of mean predictions. Furthermore, our
approach supports flows with sending rates two to three orders
of magnitude larger.

Wang et al. propose an extension to RouteNet to predict
temporal end-to-end latencies of network paths [24]. They
rely on a factorization approach, i.e., they use the outputs of
previous time steps as inputs to a GNN model. The architecture
consists of an encoder block that creates embeddings per
timestep. The embeddings are concatenated with the GNN
outputs of the previous timestep. This is then fed into the GNN
block. The output of the GNN block is used for concatenation
to the next timestep and as an input to a final decoder
block that acts as a latency readout function. Our approach
utilizes a dedicated temporal component with an LSTM cell
as shown in Figure 2. Furthermore, we don’t manually use
outputs of previous timesteps as inputs for future timesteps.
Our approach supports flows with sending rates two to three
orders of magnitude larger. Additionally, we provide access
to our temporal dataset as well as the model architecture and
tranining scripts.

III. METHODOLOGY

This section provides an overview of the T-GNN architec-
ture, graph representation, dynamic graph representation, the

GGNN LSTM LayerNorm FFNN

Fig. 2: Structure of the Temporal GNN

Layer Type Size

Spatial GGNN 53248w + 384b
Temporal LSTM 98304w + 1024b
After Cell LayerNorm 128w + 128b
Output Fully Connected 128w + 1b∑

153,345 parameters

TABLE I: Temporal GNN layers with weight w and bias b
parameters

dataset generation, and the training process.

A. Temporal GNN Architecture

The temporal GNN architecture consists of two main com-
ponents: a Gated Graph Neural Network (GGNN), and an
LSTM. The GGNN is responsible for modeling the spatial
aspects while the LSTM is responsible for modeling the tem-
poral aspects, resulting in an architecture capable of modeling
spatio-temporal behavior. This architecture is supplemented
with a normalization layer to deal with vanishing gradients,
and a fully connected feed-forward network to decode the
results. A representation of the data flow through these com-
ponents is shown in Figure 2. The data flow is implemented by
the forward function. This function additionally includes a
LeakyReLU activation function and a dropout layer between
the normalization layer and the feed-forward network. The
LeakyReLU is used over a ReLU to avoid the “dying ReLU”-
problem, effectively not discriminating between inputs. The
dropout is used to avoid overfitting and increase generalization
capabilities by randomly de-activating connections. Further-
more it includes a Hardtanh activation function with a range of
zero to one after the final feed-forward network. This is used
to scale the output to a normalized queue utilization value.
Table I shows a detailed view of the distribution of model
parameters between all layers.

The model uses the DyGrEncoder5 recurrent graph convo-
lutional layer implemented in PyTorch Geometric Temporal.

B. Graph Representation

The graph representation is a logical representation of
the physical network topology and flow configurations [25],
[26]. This representation is the direct input to the T-GNN.
Figure 3b shows an example of such a representation for
a small topology. Egress interface nodes are modeled as
individual nodes, while ingress interfaces are not included.
This is because delay induced by queuing typically occurs at

5 https://pytorch-geometric-temporal.readthedocs.io/en/latest/modules/root.ht
ml#torch geometric temporal.nn.recurrent.dygrae.DyGrEncoder

f0

f1

(a) Topology with flows

f0

f1

Flow node

Interface nodes

Path node

(b) Graph representation with flow-, path order-, and
egress interface nodes

Fig. 3: Topology and corresponding graph representation

the egress interfaces [27]. Each flow is modeled as a separate
node and is connected to each egress interface it traverses.
Between flow and interface nodes, we included path nodes
which indicate the direction of transmission of the flow. The
direction is encoded as a scalar feature of the path nodes.
This graph representation supports the message passing step by
grouping functionally dependent nodes topographically close
together. Interface nodes connect flows that interfere with each
other at this interface over four hops. This means a message
passing step with four unroll operations exchanges information
between two interfering flows.

C. Temporal Representation
Temporal behavior, such as variations in sending rate of

flows, is encoded by adding and removing edges in the graph
representation at the respective time steps. This leads to the
generation of a dynamic graph.

A dynamic graph is a mathematical structure G = (V, E , T)
where V = {V (t)}t∈T is a collection of node sets, E =
{E(t)}t∈T is a collection of edge sets, and T is a time span.
For each t ∈ T a graph snapshot is defined as G(t) =
(V (t), E(t)), equivalent to the static definition. This static
graph represents one time step of the dynamic graph. [28]

Figure 4 shows two snapshots of such a dynamic graph
using our graph representation to encode logical dependencies.
We can observe that the size of the graph changes over time.
Furthermore, the graph is fully connected at the first timestep,
while being disconnected at the second one. A subgraph of a
disconnected graph thereby encodes a realm in which flows
interact by traversing the same egress interfaces. Flow nodes
in disconnected parts of a graph do not interact at any point
in the network.

D. Datasets
We generated data utilizing the ns-3 network simulator [29].

The dataset consists of randomly generated networks with

F-0

I-0-3

P-0-0

I-3-1

P-0-1

I-1-2

P-0-2

I-2-4

P-0-3

I-4-5

P-0-4

F-1 P-1-0

P-1-1

I-4-6

P-1-2

F-5

P-5-0

P-5-1

I-2-10

P-5-2

(a) Graph snapshot at t = 3.54

F-0

I-0-3

P-0-0

I-3-1

P-0-1

I-1-2
P-0-2

I-2-4

P-0-3

I-4-5
P-0-4

F-1

P-1-0

P-1-1

I-4-6

P-1-2

F-2

P-2-0

I-3-7

P-2-1

F-3
P-3-0

P-3-1

P-3-2

I-2-8

P-3-3

F-4

I-4-2
P-4-0

I-2-1

P-4-1

I-1-3

P-4-2

I-3-0
P-4-3

I-0-9

P-4-4

(b) Graph snapshot at t = 6.45

Fig. 4: Two snapshots of a dynamic graph using our graph
representation. Indicates the logical dependencies of a single
topology at different time steps. Blue nodes show egress
interfaces, green nodes flows, and grey nodes paths.

Parameter Median Min Max Unit

Number of nodes 10.0 7 12 —
Number of links 9.0 6 11 —
Number of flows 5.0 4 6 —
Flow length 4.0 3 7 Hops
Packet size 1472.0 1472 1472 B
Link rate 50.0 10 100 Mbit s−1

Flow rate 29.0 10 199 Mbit s−1

Queue size 125.0 125 125 kB
Link delay 0.549 0.101 1.0 ms
On/off interval 1.8 0.5 3.0 s
End-to-end flow delay 36.76 0.81 196.14 ms
Packet Inter-arrival-time 0.0012 0.0010 4.10 s

TABLE II: Distributions of parameter values for randomly
generated networks

random flow- and node configurations. All flows are periodic
with on- and off intervals and carry UDP payloads of a fixed
size. The distribution of values for each parameter is shown
in Table II. Specifically, the flow rates, link rates, and on-
off intervals are chosen such that at times we can observe no
congestion and at other times we can observe heavy congestion
between multiple flows.

To extract the labels for our datasets, we need to measure
and export the queue utilization levels at different points in
time. We sample the amount of data in each queue in fixed
intervals of 1 ms. In conjunction with the maximum queue
size, we can derive the queue utilization. Depending on the
exact sampling time, queues might contain single packets,
despite having zero utilization and being able to transmit
packets without queueing. These instances are sanitized in a
postprocessing step.

Figure 5 shows the queue utilization of egress interfaces
over all topologies and timesteps. We can observe that 80%
of timesteps have queues with zero utilization. This does not

0 50 100
Utilization [%]

0

20

40

60

80

100

PD
F/

C
D

F
[%

]

PDF
CDF

(a) All queues

0 50 100
Utilization [%]

0

20

40

60

80

100

PD
F/

C
D

F
[%

]

PDF
CDF

(b) Non-zero utilization queues

Fig. 5: Mean queue utilizations in the training dataset

mean that the queues are not traversed by flows, it only means
that the number of packets in the queues is less than or equal to
one, i.e., the sum of rates of the traversing flows is less than the
transmission speed of the interface. When only considering the
non-zero utilized queues, we can observe a normal distribution
of utilization between 0 and 100% as shown in Figure 5b.

Since we want to model end-to-end latencies, we need to
derive them from the queue utilizations. We follow a similar
approach as [30] by calculating the queueing delay of a packet
in a queue as shown in Equation (1) where u is the measured
queue utilization, smax is the maximum size of the queue, and
c is the link speed.

dqueueing =
u · smax

c
(1)

The end-to-end latency of a flow then consists of the sum
of per-queue queueing, transmission, and serialization delays
of all traversed queues as well as the propagation delay of all
traversed links. This is shown in Equation (2) where P is the
set of egress interfaces traversed by the flow and li is the link
attached to interface i.

latencye2e =
∑
i∈P

diqueuing + ditrans. + diserial. + dlipropa. (2)

The queue utilizations are used as ground truth for the
T-GNN model and the end-to-end flow latencies are calculated
in a post-processing step.

We create a total of three datasets. A training dataset to
train the T-GNN, a test dataset to calculate the test loss
during the training process, and an evaluation dataset to
analyze the performance of the fully trained model. The sizes
of the datasets are shown in Table III, we can observe a
46.67%, 20%, 33.33% split, which lays within commonly used
bounds [31].

E. Training Process

Hyperparameter tuning is performed manually by evaluating
the test accuracy of models with different parameter combina-

Dataset Topologies Snapshots Queue Events

Train 140 2.5M 12.16M
Test 60 1.1M 5.21M
Evaluation 100 1.8M 8.69M

TABLE III: Number of topologies and time snapshots per
dataset, resulting in a 46.67%, 20%, 33.33% split. Queue
events are the number of ground truth labels per dataset.

tions after the first training epoch on a small subset of training
data. We use the mean squared error as a loss function since
we perform a regression task on the queue utilization. The
model is trained for 200 epochs, after which no additional
performance gains were registerable. Afterwards we select the
best performing one based on loss values.

IV. EVALUATION

This section evaluates the prediction quality of the fully
trained T-GNN model. The evaluation is performed at the
queue, flow, and network levels. Furthermore, we perform a
comparison to a static GNN implemented by us, and another
state-of-the-art approach. Last, we analyze the importance
of different input features on the prediction quality, drawing
conclusions about the learned correlations.

A. Queue Level

The T-GNN model predicts the utilization of queues on
the egress interfaces of devices. Figure 7 (middle) shows the
utilization labels (ground truth) and predictions of one such
queue over the full period of 10 s. To the left and right are
depictions of the same queue, at a higher time resolution,
highlighting queue build-up and drain events. We can observe
that the three queue build-up and draining events are accurately
reflected in the models’ predictions. When considering the
higher time resolution plots of queue build-ups, we can see
that the linear increase in queue utilization is approximated
with a non-linear function. However, the linear function of
the queue draining event is predicted as a linear function with
a small offset. Both build-up and draining exhibit only small
deviations at the ms resolution.

Figure 8 contrasts these observations with a queue for
which the T-GNN models’ predictions exhibited a larger error.
We can observe some artifacts in the utilization predictions,
expressed through volatile and abrupt changes in utilization.
Specifically, we can observe a sudden drop in utilization in
the queue draining event, before the incorrect prediction is
corrected and the queue is finally drained correctly.

The queue build-up event plateaus at 40% before the T-GNN
model corrects itself within 200 ms. Figure 6 shows the
corresponding network configuration. The queue in Figure 8 is
the egress interface of the highlighted router. We can see that
four flows traverse this router, with three of them traversing
this egress interface. The behavior of these three flows over
time is shown in Figure 9a. The summation of their on-
off periods, leading to the number of currently active flows
on this interface, is shown in Figure 9b. The green dashed
lines correspond to the two artifacts in the draining phase

f19Mbit/s
0

f11Mbit/s
1

f17Mbit/s
2 f16Mbit/s

3

f18Mbit/s
4

f23Mbit/s
5

10 Mbit/s

30 Mbit/s

40 Mbit/s

10 Mbit/s

Fig. 6: Example topology with flow rates and relevant link
rates. Flow rates are sending rates in On-state of the On-
Off traffic model. Queue utilization of the ingress interface
highlighted by the red circle is displayed in Figure 8.

shown in Figure 8. We can see that the sudden drop of queue
utilization is caused by the number of active flows dropping
from two to one. However, the link is still being saturated
by this one flow, which the T-GNN model did not represent
correctly, before correcting itself 300 ms later. The red dotted
lines correspond to the artifacts during the queue build-up.
We can see that the incorrect prediction of 40% utilization
stems from an incorrect distribution of the utilization over
these two flows. We assume that the LSTM cell “reserves”
queue utilization for the second flow (f3) that is to join f0
shortly. The 40% utilization roughly corresponds to the ratio
between the sum of the two flow rates of f0 and f3 and their
respective rates, which is 46% to 54%.

Figure 10 is looking at a cumulative metric over each queue
utilization over time of each of the 100 topologies in the
evaluation dataset. The chosen metric is the Mean Absolute
Error (MAE) between predicted queue utilization and the
ground truth. The average MAE is 0.055, meaning on average
we have an error of 5.5% in the queue utilization predictions.
Furthermore, we can observe fluctuations in the MAE over
time, which correlate to the cumulative transmission rates of
all flows. Additionally, the peak MAE values at approximately
3.5 s, 7 s, and 8.75 s correspond to 2×, 4×, and 5× the mean
on-off interval of 1.75.

B. Flow Level

To evaluate the predictions of the T-GNN model on a
flow level, we calculate the end-to-end latencies of flows as
described in Section III. We calculate the end-to-end latency
once from the predicted utilizations, and once from the ground
truth utilizations. We perform this step on our full evaluation
dataset of 100 topologies.

C. Network Level

At the network level, i.e., averaging the flows per topology
and then averaging over all 100 topologies, we observe an
MdAPE of 13.37%.

D. Comparison to Static Model

To evaluate the effectiveness of the temporal component
of the T-GNN, we compare it to a static GNN. The static

0.0 2.5 5.0 7.5 10.0

Time [s]

0

20

40

60

80

100

Q
u

eu
e

U
ti

li
za

ti
on

[%
]

Increasing & Decreasing: 10s

label

pred

6.0 6.05

Time [s]

0

20

40

60

80

100

Increasing: 100ms

label

pred

6.0 6.005

Time [s]

0

20

40

60

80

100

Increasing: 10ms

label

pred

6.6 6.65

Time [s]

0

20

40

60

80

100

Decreasing: 100ms

label

pred

6.6 6.605

Time [s]

0

20

40

60

80

100

Decreasing: 10ms

label

pred

Fig. 7: Queue utilization labels and predictions over a timespan of 10 s. Highlights queue utilization increase and decrease over
timespans of 100 s and 10 s.

0.0 2.5 5.0 7.5 10.0

Time [s]

0

20

40

60

80

100

Q
u

eu
e

U
ti

li
za

ti
on

[%
]

Increasing & Decreasing: 10s

label

pred

3.0 3.5 4.0

Time [s]

0

20

40

60

80

100

Decreasing: 100ms

label

pred

3.6 3.65

Time [s]

0

20

40

60

80

100

Decreasing: 10ms

label

pred

4.5 5.0

Time [s]

0

20

40

60

80

100

Increasing: 100ms

label

pred

5.25 5.3

Time [s]

0

20

40

60

80

100

Steady state: 10ms

label

pred

Fig. 8: Queue utilization labels and predictions over a timespan of 10 s. Highlights queue utilization increase and decrease over
timespans of 100 s and 10 s.

model is trained on the same data for the same amount of
epochs. Each snapshot of the dynamic graph is represented as
a separate static graph.

Figure 11 shows a comparison of the performance during
queue build-up and draining events. While the T-GNN model
predicts the increase and decrease in utilization over time with
reasonable accuracy, we can see that the static GNN model
jumps from zero to full utilization. The jumps happen at the
moments where the queue starts to fill and drain respectively.
This shows that the temporal component is able to better
capture and model these dynamics.

However, the overall MAE score of the static model (5.2%)
is very similar to that of the T-GNN model.

An explanation for the similar performance of the two
models, despite the better queue build-up and draining model
of the T-GNN, are artifacts in the T-GNN models predictions
that are absent in the GNN predictions. Such an artifact is
shown in Figure 12. We see an increase in predicted utilization
over a timespan of 20 ms which is seemingly random. Upon
further investigation, such artifacts are caused by the removal
of edges between flow and interface nodes (connected by path
nodes). At t = 3.09 a flow that has not been saturating the
link, and thus has not been building up a queue, stops sending.

This is modeled in the T-GNN by removing the corresponding
edge between flow and interface as shown in Figure 13.

If the link were to be saturated, we would expect to see
a change in queue utilization upon removal of the flow. We
assume that this line of reasoning is the cause for these types
of artifacts.

E. Comparison to State-of-the-Art

Comparison to state-of-the-art machine learning approaches
is difficult, since to our knowledge, there is only one approach
that predicts temporal latencies in computer networks [24].
However, they do not provide a reference dataset to compare
against. This means that we aren’t able to perform a direct
comparison, instead, this is a broad placement of our approach
into related work. We additionally compare to RouteNet-
Erlang [14] as a close related work because it predicts mean
latency values in computer networks. Table IV shows the
Mean Absolute Relative Error (MARE) and MAPE scores
as reported in related work compared to the MARE for our
GNN and T-GNN approach. Furthermore, it includes a T-GNN
model which was trained and evaluated on a different time
granularity of 10 ms instead of 1 ms. The results show a de-
crease in error, which is to be expected since lower frequency

0

1
on

-o
ff

Flow = f0

0

1

on
-o

ff

Flow = f2

0 2 4 6 8 10

Time [s]

0

1

on
-o

ff

Flow = f3

(a) On-off periods of the three flows

0 2 4 6 8 10

Time [s]

0

2

#
F

lo
w

s

(b) Number of active flows

Fig. 9: On-off behavior and temporal overlap of the three flows
traversing the egress interface of the queue utilization shown
in Figure 8

0 2 4 6 8 10

Time [s]

0.00

0.02

0.04

0.06

0.08

Q
ue

ue
U

til
iz

at
io

n
M

A
E

0

5000

10000

∑ Fl
ow

ra
te

s
[M

bi
t/s

]

MAE∑
Flow rates

Fig. 10: The Mean Absolute Error (MAE) over time between
queue utilization labels and predictions over all 100 topologies
in the evaluation dataset which correlates with the sum of flow
rates of currently sending flows

sampling of queue utilizations leads to the disappearance of
certain effects. Overall, our approach can reach similar results
to related work, albeit on a different dataset.

F. Comparison to Network Calculus

We compare our results to a simple network calculus model.
The model estimates the worst-case backlog of each queue
using the total flow analysis. The results show an infinite
backlog for 80.87% of queues. The remaining 19.13% of
queues exhibit queue utilizations from 2.18% to 32.78%. Since

6.0 6.05

Time [s]

0

20

40

60

80

100

U
ti

li
za

ti
o
n

[%
]

label

temporal

static

(a) Queue build-up

6.6 6.61 6.62

Time [s]

0

20

40

60

80

100

U
ti

li
za

ti
o
n

[%
]

(b) Queue drain

Fig. 11: Comparison of queue build-up and draining phases
between temporal and static model

3.08 3.09 3.1 3.11 3.12 3.13

Time [s]

0

25

50

75

100
U

ti
li
za

ti
on

[%
]

label

temporal

static

Fig. 12: Artifacts in queue utilization predictions of the
T-GNN model, compared against the labels and GNN model
predictions. Erroneous increase in utilization is due to a flow
finishing transmission and the corresponding removal from the
dynamic graph.

F-0

I-0-3

P-0-0 I-3-1

P-0-1

I-1-2

P-0-2

I-2-4

P-0-3

I-4-5

P-0-4

F-1

P-1-0

P-1-1I-4-6

P-1-2

F-2

P-2-0

I-3-7

P-2-1

F-4

I-4-2

P-4-0

I-2-1 P-4-1

I-1-3

P-4-2
I-3-0

P-4-3

I-0-9

P-4-4

F-5

P-5-0

P-5-1

I-2-10

P-5-2

(a) t = 3.09

F-0

I-0-3

P-0-0

I-3-1
P-0-1

I-1-2

P-0-2

I-2-4

P-0-3

I-4-5

P-0-4

F-1

P-1-0

P-1-1

I-4-6 P-1-2

F-2

P-2-0

I-3-7

P-2-1

F-5

P-5-0

P-5-1

I-2-10
P-5-2

(b) t = 3.11

Fig. 13: Removal of a flow that leads to the artifact in T-GNN
prediction observed in Figure 12. Responsible flow, path, and
interface nodes are highlighted in dashed red.

Metric Approach Score Metric

Mean
RouteNet-Erlang [6] 6.00% [6] MARE
RouteNet-Fermi [14] 6.24% [14] MARE

Per-timestep
GNN (ours) 64.89% MARE
T-GNN1ms (ours) 55.35% MARE
T-GNN10ms (ours) 5.04% MARE
xNet0.2ms to 5ms [24] <5-7% [24] MAPE

TABLE IV: Comparison of Mean Absolute Relative Error
(MARE) and MAPE of different approaches. Mean and Per-
timestep approaches do not compute the same metric and
perform predictions on different datasets. T-GNNt means a
model trained and evaluated on a time granularity of t.

the majority of backlogs are infinite, it is not possible to
calculate end-to-end delays.

G. Feature Importance

The feature importance is a model-agnostic approach to
reconstructing the reasoning that led to a specific machine-
learning prediction. It can be derived by permuting one input
feature at a time over the whole evaluation dataset, calculating
the MAE of the predictions using this adjusted dataset, and
calculating the difference to the baseline as shown in Equa-
tion (3). [32]

Ifeature = MAEfeature −MAEbaseline (3)

The baseline is the MAE of the non-permuted dataset. A
larger difference means a bigger influence of this feature on
the final prediction. Figure 14 shows the MAE and feature
importance scores of the input features of our model. We
can observe that the egress link bandwidth has the largest
influence, while the link delay has the smallest influence. This
makes sense since the egress link bandwidth is the deciding
factor of whether a queue builds up or whether all incoming
traffic can be served without queueing. The link delay has the
smallest influence, which makes sense since the link delay
does not directly correlate with queue utilization — except
when flows start sending at similar times and have different
link delays towards a common point of interference. In this
case, the build-up phase of the queue might vary slightly. The
same applies to the queue draining phase.

Node type, flow rate, and path order value have a similar,
medium-sized impact. This makes sense because the flow
rate has an impact on whether a queue is heavily utilized or
not, however, the influence is less than that of the interface
bandwidth because we have multiple flows at single interfaces.
The path order value has some influence because it encodes
in which direction congestion propagates along the flow path.
The node type has an obvious influence by encoding which
nodes are interfaces, flows, or paths. We can conclude that the
T-GNN model learns meaningful dependencies between input
features.

Furthermore, all features have a mostly positive impact on
model accuracy, as indicated by the majority of feature scores

Type Rate Path Delay Bandwidth Baseline
Feature

−0.2

0.0

0.2

0.4

Sc
or

e

MAE
Importance

Fig. 14: MAE and feature importance score of each input fea-
ture as determined by the permutation-based MAE difference
to the baseline. An unseeded random permutation is repeated
100 times to increase confidence.

being larger than zero. One outlier is the flow rate feature,
which indicates that results derived from the model based on
the rate lead to wrong results in a few cases. Therefore, feature
engineering should be improved in the future to remove the
flow rate anomalies. Second order feature importance is shown
in Appendix A Figure 15.

V. LIMITATIONS

The current approach has a few limitations that are dis-
cussed in the following. The MARE is relatively high com-
pared to state-of-the-art models for mean latency prediction.
However, this is to be expected since taking the mean over a
timeseries removes certain effects that need to be predicted
correctly when modeling each timestep. For example, the
build-up and draining of queues are reduced to a single value.
The ability to apply this approach to networks with a number
of nodes in the order of hundreds is limited because of the pro-
hibitive cost of generating a training dataset. Some prediction
artifacts remain with this dynamic graph encoding approach.
The training time of such as temporal model is relatively high
(×36) compared to a static model. The inference time per
topology varies between 32 s and 47 s.

VI. REPRODUCIBILITY

We provide access6 to the three datasets as well as training
and evaluation scripts.

VII. CONCLUSION

We implemented a data generation process that utilizes a
network simulator to export sanitized queue utilization levels
in networks with UDP flows competing for resources at
multiple multiplexing points. We have shown that T-GNN
models can capture spatio-temporal dependencies, such as
queue build-up and draining phases with an error of 5.5%.
The spatial component is required to accurately model flow
paths, while the temporal component is needed to accurately
model queue utilization over time. We have shown that the

6 https://github.com/tgnn-test/dataset

temporal extension to GNNs outperforms the static approach
during dynamic events in the network. Taking a permutation-
based feature importance approach, we have shown that the
T-GNN learns the correct dependencies between input features
and latency behavior over time at each queue in the network.

REFERENCES

[1] A. K. Erlang, “The theory of probabilities and telephone conversations,”
Nyt. Tidsskr. Mat. Ser. B, vol. 20, pp. 33–39, 1909.

[2] R. L. Cruz, “A Calculus for Network Delay. I. Network Elements in
Isolation,” IEEE Transactions on information theory, vol. 37, no. 1, pp.
114–131, 1991.

[3] J.-Y. Le Boudec and P. Thiran, Network Calculus: a Theory of Deter-
ministic Queuing Systems for the Internet. Springer Science & Business
Media, 2001, vol. 2050.

[4] Y. Jiang, Y. Liu et al., Stochastic Network Calculus. Springer, 2008,
vol. 1.

[5] S. Coles et al., An Introduction to Statistical Modeling of Extreme
Values. Springer, 2001, vol. 208.

[6] M. Ferriol-Galmés, K. Rusek, J. Suárez-Varela, S. Xiao, X. Shi,
X. Cheng, B. Wu, P. Barlet-Ros, and A. Cabellos-Aparicio, “Routenet-
Erlang: A Graph Neural Network for Network Performance Evaluation,”
in IEEE INFOCOM. IEEE, 2022, pp. 2018–2027.

[7] M. Peuster, H. Karl, and S. van Rossem, “MeDICINE: Rapid prototyping
of production-ready network services in multi-PoP environments,” in
2016 IEEE Conference on Network Function Virtualization and Software
Defined Networks (NFV-SDN), Nov 2016, pp. 148–153.

[8] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini,
“The Graph Neural Network Model,” IEEE transactions on neural
networks, vol. 20, no. 1, pp. 61–80, 2008.

[9] M. M. Bronstein, J. Bruna, T. Cohen, and P. Velickovic, “Geometric
Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges,” CoRR,
vol. abs/2104.13478, 2021. [Online]. Available: https://arxiv.org/abs/21
04.13478

[10] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How Powerful are Graph
Neural Networks?” CoRR, vol. abs/1810.00826, 2018.

[11] E. Rossi, B. Chamberlain, F. Frasca, D. Eynard, F. Monti, and M. Bron-
stein, “Temporal Graph Networks for Deep Learning on Dynamic
Graphs,” arXiv preprint arXiv:2006.10637, 2020.

[12] B. Rozemberczki, P. Scherer, Y. He, G. Panagopoulos, A. Riedel,
M. Astefanoaei, O. Kiss, F. Beres, G. López, N. Collignon et al.,
“Pytorch Geometric Temporal: Spatiotemporal Signal Processing with
Neural Machine Learning Models,” in Proceedings of the 30th ACM
International Conference on Information & Knowledge Management,
2021, pp. 4564–4573.

[13] K. Rusek, J. Suárez-Varela, P. Almasan, P. Barlet-Ros, and A. Cabellos-
Aparicio, “Routenet: Leveraging Graph Neural Networks for Network
Modeling and Optimization in SDN,” IEEE Journal on Selected Areas
in Communications, vol. 38, no. 10, pp. 2260–2270, 2020.

[14] M. Ferriol-Galms, J. Paillisse, J. Surez-Varela, K. Rusek, S. Xiao, X. Shi,
X. Cheng, P. Barlet-Ros, and A. Cabellos-Aparicio, “RouteNet-Fermi:
Network Modeling with Graph Neural Networks,” 2022.

[15] L. Bai, L. Yao, C. Li, X. Wang, and C. Wang, “Adaptive Graph
Convolutional Recurrent Network for Traffic Forecasting,” 2020.
[Online]. Available: https://arxiv.org/abs/2007.02842

[16] C. Zheng, X. Fan, C. Wang, and J. Qi, “GMAN: A Graph Multi-
Attention Network for Traffic Prediction,” in Proceedings of the
AAAI conference on artificial intelligence, vol. 34, no. 01, 2020, pp.
1234–1241.

[17] S. Guo, Y. Lin, N. Feng, C. Song, and H. Wan, “Attention based Spatial-
Temporal Graph Convolutional Networks for Traffic Flow Forecasting,”
in Proceedings of the AAAI conference on artificial intelligence, vol. 33,
no. 01, 2019, pp. 922–929.

[18] J. Bai, J. Zhu, Y. Song, L. Zhao, Z. Hou, R. Du, and H. Li, “A3T-
GCN: Attention Temporal Graph Convolutional Network for Traffic
Forecasting,” ISPRS International Journal of Geo-Information, vol. 10,
no. 7, p. 485, 2021.

[19] L. Zhao, Y. Song, C. Zhang, Y. Liu, P. Wang, T. Lin, M. Deng, and
H. Li, “T-GCN: A Temporal Graph Convolutional Network for Traffic
Prediction,” IEEE transactions on intelligent transportation systems,
vol. 21, no. 9, pp. 3848–3858, 2019.

[20] B. Yu, H. Yin, and Z. Zhu, “Spatio-Temporal Graph Convolutional
Networks: A Deep Learning Framework for Traffic Forecasting,” arXiv
preprint arXiv:1709.04875, 2017.

[21] Z. Yao, Q. Xu, Y. Chen, Y. Tu, H. Zhang, and Y. Chen, “Internet
Traffic Forecasting using Temporal-Topological Graph Convolutional
Networks,” in 2021 IJCNN. IEEE, 2021, pp. 1–8.

[22] Z. Wang, J. Hu, G. Min, Z. Zhao, Z. Chang, and Z. Wang, “Spatial-
Temporal Cellular Traffic Prediction for 5 G and Beyond: A Graph
Neural Networks-Based Approach,” IEEE Transactions on Industrial
Informatics, 2022.

[23] A. Taheri and T. Berger-Wolf, “Predictive Temporal Embedding of
Dynamic Graphs,” in Proceedings of the 2019 IEEE/ACM International
Conference on Advances in Social Networks Analysis and Mining, 2019,
pp. 57–64.

[24] M. Wang, L. Hui, Y. Cui, R. Liang, and Z. Liu, “xNet: Improving
Expressiveness and Granularity for Network Modeling with Graph
Neural Networks,” in IEEE INFOCOM 2022 - IEEE Conference on
Computer Communications, 2022, pp. 2028–2037.

[25] F. Geyer and S. Bondorf, “DeepTMA: Predicting Effective Contention
Models for Network Calculus using Graph Neural Networks,” ser.
INFOCOM 2019, Paris, France, Apr. 2019.

[26] B. Jaeger, M. Helm, L. Schwegmann, and G. Carle, “Modeling TCP
Performance Using Graph Neural Networks,” ser. GNNet ’22. New
York, NY, USA: Association for Computing Machinery, Dec. 2022.

[27] S. Bondorf, “Worst-Case Performance Analysis of Feed-Forward Net-
works - An Efficient and Accurate Network Calculus,” doctoralthesis,
Technische Universität Kaiserslautern, 2016.

[28] C. D. Barros, M. R. Mendonça, A. B. Vieira, and A. Ziviani, “A Survey
on Embedding Dynamic Graphs,” ACM Computing Surveys (CSUR),
vol. 55, no. 1, pp. 1–37, 2021.

[29] G. F. Riley and T. R. Henderson, “The ns-3 Network Simulator,” in
Modeling and tools for network simulation. Springer, 2010, pp. 15–34.

[30] B. K. de Aquino Afonso and L. Berton, “QT-Routenet: Improved GNN
generalization to larger 5G networks by fine-tuning predictions from
queueing theory,” ITU Journal on Future and Evolving Technologies,
vol. 3, no. 2, pp. 134–141, jul 2022.

[31] V. R. Joseph, “Optimal Ratio for Data Splitting,” Statistical Analysis
and Data Mining: The ASA Data Science Journal, vol. 15, no. 4, pp.
531–538, 2022.

[32] A. Fisher, C. Rudin, and F. Dominici, “All Models are Wrong, but
Many are Useful: Learning a Variable’s Importance by Studying an
Entire Class of Prediction Models Simultaneously,” 2018. [Online].
Available: https://arxiv.org/abs/1801.01489

APPENDIX

Typ
e-R

ate

Typ
e-P

ath

Typ
e-D

ela
y

Typ
e-B

an
dw

idt
h

Rate
-P

ath

Rate
-D

ela
y

Rate
-B

an
dw

idt
h

Path
-D

ela
y

Path
-B

an
dw

idt
h

Dela
y-B

an
dw

idt
h

Feature

−0.1

0.0

0.1

0.2

0.3

0.4

Im
po

rt
an

ce

Fig. 15: Second-order feature importance of each combination
of two input features

