

Beyond Mean: Spatio-Temporal Modeling of Queue Utilizations and Flow Latencies Using T-GNNs

Max Helm, Benedikt Jaeger, Christopher Pfefferle, and Georg Carle

October 4, 2023

ITC 35

Turin, Italy

Chair of Network Architectures and Services Department of Computer Engineering Technical University of Munich

Tur Uhranturm

Network Simulator (e.g., ns-3, OMNeT++)

Record Performance Metrics

\Rightarrow Save wall clock time by predicting instead of simulating

Background

Graph Neural Networks:

• Graph: G = (V, E)

Temporal Graph Neural Networks:

• Set of graph snapshots: $\mathcal{G} = (\mathcal{V}, \mathcal{E}, t)$

Methodology

Datasets

Dataset generation:

- 300 random network topologies (non-isomprohic graphs)
- UDP traffic
- Random, non-repeating on-off traffic models

Dataset stats:

Dataset	Topologies	Snapshots	Queue Events
Train	140	2.5M	12.16M
Test	60	1.1M	5.21M
Evaluation	100	1.8M	8.69M

Network Simulator

ТШП

ТΠ

Methodology Dataset Details

Methodology Network Encoding

- Interface nodes encode egress interfaces of routers
- Flow nodes encode flow parameters and path
- Path order nodes encode flow direction

Methodology

ТЛП

Network Encoding Dynamic Example

Graph at t=3.54s:

Methodology

Network Encoding Dynamic Example

Methodology T-GNN Architecture

Results

Queue Occupancy Predictions

ТШ

Results

Comparison to a Static GNN

ТЛП

Results

Comparison to a Static GNN

 \Rightarrow T-GNN out-performs classic GNN on the task of modeling queue filling- and draining stages

ТЛП

Results

Comparison to a Static GNN

 \Rightarrow T-GNN out-performs classic GNN on the task of modeling queue fillingand draining stages

(as expected)

Does the T-GNN model always perform well?

Does the T-GNN model always perform well?

Does it fail under certain circumstances?

Results Failure Case Analysis

Results

Failure Case Analysis

πп

ТШ

Results

Failure Case Analysis

Results

Failure Case Analysis

- Drop caused by leaving flow, link still saturated, corrected 300ms later
- Build-up is delayed to wait for second flow, LSTM reserves capacity
- Utilization share equals flow rate ratio Helm, Jaeger, Pfefferle, Carle — Beyond Mean 15

Results Failure Case Analysis

Results Failure Case Analysis

(a) t = 3.09

(b) t = 3.11

Results

Decision Process: Feature Importance

Conclusion

Contributions:

- Model of temporal queue utilizations using a T-GNN
- Temporal information allows direct derivation of quantiles
- Analysis of shortcomings of the method
- Published dataset

In the paper:

- Comparison to Network Calculus
- End-to-end flow-level delay derivation from queue utilizations
- Placement in relation to other SOTA approaches
- Second order feature importance

helm@net.in.tum.de

