

Application of Network Calculus Models on Programmable Device Behavior

Max Helm¹, Henning Stubbe¹, Dominik Scholz¹, Benedikt Jaeger¹, Sebastian Gallenmüller¹, Nemanja Deric², Endri Goshi², Hasanin Harkous², Zikai Zhou², Wolfgang Kellerer², and Georg Carle¹

September 2, 2021

The International Teletraffic Congress ITC 33 Avignon, France (virtual)

¹Chair of Network Architectures and Services Department of Informatics

²Chair of Communication Networks Department of Electrical and Computer Engineering

Technical University of Munich

Motivation

Programmable device workflow

Motivation

Programmable device workflow

Generic Programmable Device

+

Program

=

Programmed Device

Software-Defined Networking

OpenFlow or P4

Device for specific usecase e.g. latency requirement

Dynamic modeling workflow

Generic Device Model

Collection of Network Calculus models Selection of Functionality Models

Service curves for logical functions

Model of Programmed Device

Derive worst-case latency bounds

Background SDN

Software-defined Networking (SDN)

- Separation of concern for networks
- Three distinct planes with specific tasks:
 - Management and configuration
 - · High-level network algorithms
 - Packet forwarding tasks
- Two well-known implementations of the SDN concept
 - OpenFlow (on the control plane)
 - P4 (on the data plane)

Background

Ш

OpenFlow vs. P4

OpenFlow

- Introduces programmability to the control plane
- Used for the manipulation of *existing protocols*
- Allows comparatively high-level packet manipulation

P4

- Introduces programmability to the data plane
- Creation of entirely new protocols
- Allows low-level packet manipulation

Shared design between P4 & Openflow

- Packet processing pipeline applies the match-action principle:
 - User define patterns (matches) to execute packet processing tasks (actions)

Challenges

- Device performance changes significantly depending on the programmed network task
- Conceptual differences between both languages hinder their direct comparison

Background

Performance Bounds in Networks

Network Calculus

- Calculate worst-case delay bounds in networks
- Represents nodes and data flows as wide-sense increasing functions
- Combines these functions to calculate bounds

Service Curve

- Wide-sense increasing function describing a node, depends on arrival and departure times of flow datums
- Multiple nodes can be combined into one node by convolving their service curves

Device Model

- Logical funtions f_n in the Device under Test (DuT)
- Baseline function f₀ needed to operate device
- Feed-forward network of additional functions

Device Model

- Logical funtions f_n in the Device under Test (DuT)
- Baseline function f₀ needed to operate device
- Feed-forward network of additional functions

Measurements

- Goal: measure each logical function in isolation
- Measure baseline function f₀
- Measure each logical function pair f₀ + f_i

Device Model

- Logical funtions f_n in the Device under Test (DuT)
- Baseline function f₀ needed to operate device
- Feed-forward network of additional functions

Measurements

- Goal: measure each logical function in isolation
- Measure baseline function f₀
- Measure each logical function pair f₀ + f_i

Service Curve Model

- Approximate service curve parameters for each logical function using measurements of function pairs
- Subtract influence of baseline function
- Latency parameter for service curve of f₁: T^{f₁} = T^{f₀+f₁} - T^{f₀}

Device Mode

• Logical funtions f_n in the Device

Baseline function for needed to op-

Feed-forwational functions

Measurements

Goal: measure each logical function in isolation

Service Curve Model

- Approximate service curve parameters for each logical function using measurements of function pairs
- Model any combination of logical functions while minimizing required measurements
 - Latency parameter for service

ТИП

Investigated Platforms

Figure 1: Zodiac FX

- 4 × 100 Mbit/s Ethernet ports
- · low-cost, embedded hardware
- supports OpenFlow (realized as software)

Figure 2: NetFPGA SUME

- 4 × 10 Gbit/s Ethernet ports
- powerful hardware
- supports P4 programming language

Setup

OpenFlow / Zodiac FX

- OpenFlow controller required for switch management
- external timestamper monitoring network traffic via splitter

P4 / NetFPGA

- standalone P4 implementation using prefilled tables
- external timestamper monitoring network traffic via fiber-optical splitter

Differences between Platforms

Why did we choose the different plattforms?

- Demonstrate the applicability of our framework, despite obvious differences:
 - OpenFlow (control plane programability) vs. P4 (data plane programability)
 - 100 Mbit/s vs. 10 000 Mbit/s
 - Embedded platform (Zodiac FX) vs. high-performance platform (NetFPGA)

Goal:

- Apply NC to programmable network devices
- Find a common framework applicable to vastly different platforms
- Therefore, we create and measure common test scenarios for both platforms

Investigated Test Scenarios

Parameter	Values
num. rules packet size match types action types	1 64 B port, tp-dst, dl-dst, masked-nw-dst, five-tuple, all output, set-dl-src, strip-vlan, set-vlan-id, set-nw-src, set-nw-tos, set-tp-src

Table 1: Investigated match-action scenarios

- We use the match-action principle of P4 and OpenFlow as a common foundation for our comparison
- We investigate different match types and action types separately
- We start with the most basic forwarding scenarios (port & output) and gradually increase the complexity of the forwarder selecting the given match and action types

Comparison of Match Performance

- Variable match, fixed action
- Latency measurements and their comparison to the baseline function

OpenFlow / Zodiac FX

- Latencies scale with amount of data to be matched
- Maximum deviation from baseline is $\approx 6 \, \mu s$

Comparison of Match Performance

- Variable match, fixed action
- Latency measurements and their comparison to the baseline function

OpenFlow / Zodiac FX

- Latencies scale with amount of data to be matched
- Maximum deviation from baseline is $\approx 6 \, \mu s$

- Maximum deviation from baseline is $\approx 0.01 \, \mu s$
- Time resolution of hardware is 0.0125 us

ТІЛП

Comparison of Action Performance

Variable action, fixed match

OpenFlow / Zodiac FX

- Deviations of 2 µs to 5 µs for lower layer manipulations (MAC, VLAN)
- Deviations of $\approx 9\,\mu s$ for network and transport layer manipulations

ТІЛП

Comparison of Action Performance

Variable action, fixed match

OpenFlow / Zodiac FX

- Deviations of 2 μs to 5 μs for lower layer manipulations (MAC, VLAN)
- Deviations of ≈ 9 μs for network and transport layer manipulations

P4 / NetFPGA

• Maximum deviations $\approx 0.01\,\mu s$ for any action

ПІП

Evaluating the Predictive Power of our Model

- Use measurements to derive model of other logical function combinations for both devices
- Calculate latencies for the combinations
- Perform measurements for the new combinations
- Compare them to the model results and calcuate the relative error

ПП

Evaluating the Predictive Power of our Model

- Use measurements to derive model of other logical function combinations for both devices
- Calculate latencies for the combinations
- Perform measurements for the new combinations
- Compare them to the model results and calcuate the relative error

Predictive Quality Evaluation (Worst Case)

OpenFlow / Zodiac FX

- Relative error below 1%
- Relatively high variance between function combinations

P4 / NetFPGA

- Relative error below 0.75%
- Comparatively low variance

Predictive Quality Evaluation (Worst Case)

Model exhibits a reasonable predictive power.

No high correlation between error and types of function in combinations indicates good overall performance.

tions

Comparatively low variance between function combinations

Conclusion

Summary & Contributions

Summary

- Measurements demonstrate (expected) performance gaps between platforms
- Dynamic models show low error for both platforms respectively

Contributions

- We successfully applied NC to describe programmable network devices
- We applied the same methodology to entirely different classes of programmable network devices

In the Paper

- Detailed description of service curve parameter approximation
- Details on measurement methodology and gathered data
- Evaluation of model considering best- and median-case latencies

Future Work

- Exact service curve derivation based on inversion of the min-plus convolution
- More complex service curve shapes

Backup Slides

Backup Slides

ТИП

Predictive Quality Evaluation (Best Case)

OpenFlow / Zodiac FX

Similar behavior

P4 / NetFPGA

Similar behavior

Backup Slides

Predictive Quality Evaluation (Median Case)

OpenFlow / Zodiac FX

Similar behavior

P4 / NetFPGA

 More variance between different function combinations