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What? Why?
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What? Why?
Questions to Answer

How well can we predict latency quantiles in a hardware setup?

Can Network Calculus bounds improve prediction performance?
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Network Calculus Primer
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Network Calculus Primer

Total Flow Analysis [Bondorf]:

• Aggregate flows
• Calcluate latency bound per hop
• Sum up bounds along flow path

Separate Flow Analysis [Bondorf]:

• Calculate left-over service curve per hop
• Convolute left-over service curves along the path
• Calculate latency bound

[Bondorf] Bondorf, Steffen. Worst-Case Performance Analysis of Feed-Forward Networks–An Efficient and Accurate
Network Calculus. Diss. Technische Universität Kaiserslautern, 2016.
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Measurements

Setup [Gallenmüller], [Wiedner]:
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• Measured 14 billion latency values

[Gallenmüller] Gallenmüller, Sebastian, et al. "How Low Can You Go? A Limbo Dance for Low-Latency Network
Functions." Journal of Network and Systems Management 31.1 (2023): 20.

[Wiedner] Wiedner, Florian, et al. "HVNet: Hardware-Assisted Virtual Networking on a Single Physical Host." IEEE
INFOCOM 2022-IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS). IEEE, 2022.
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Measurements
Example Network Topologies

Measurements on 100 random, non-isomorph network topologies
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Prediction Evaluation
Latency Quantile Point Predictions
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Prediction Evaluation
Latency Quantile Point Predictions
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Prediction Evaluation
Importance of Network Calculus Results

Network Calculus analysis methods:
• Total Flow Analysis (TFA): Bounds on flow

aggregates on per-hop basis
• Separate Flow Analysis (SFA): Bounds per

flow using left-over service curves and
service curve convolutions
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Prediction Evaluation
Importance of Network Calculus Results
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• SFA bounds always as tight or tighter than
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• TFA provides worse upper bounds
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Conclusion

Data:

• Simple GNN for quantile point predictions
• Based on hardware measured latencies
• 100 different network topologies
• Limitations: queueing, network size,

sample size

Paper:

Results:

• Network Calculus bounds reduce large prediction errors
• Network Calculus more useful for higher quantiles
• GNN is able to include bound tightness into decision making
• Limitations: GNN architecture, Network Calculus analysis

methods

Data and Code:

Questions?: helm@net.in.tum.de
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