

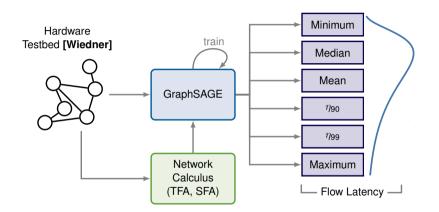
Predicting Latency Quantiles using Network Calculus-assisted GNNs

Max Helm, Georg Carle

2nd Graph Neural Networking Workshop 2023 December 8, 2023, Paris

Chair of Network Architectures and Services Department of Computer Engineering Technical University of Munich

What? Why?



[Wiedner] Wiedner, Florian, et al. "HVNet: Hardware-Assisted Virtual Networking on a Single Physical Host." IEEE INFOCOM 2022-IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS). IEEE, 2022.

What? Why? Questions to Answer

How well can we predict latency quantiles in a hardware setup?

Can Network Calculus bounds improve prediction performance?

Related Work

Work	Year	GNN	Formal Method as Input	Data Source	Prediction Target
Rusek et al.	2020	1	×	Simulation	Normal, (gamma) distribution
Ferriol-Galmés et al.	2022	1	×	Simulation	Mean
Wang et al.	2022	1	×	Simulation	Mean per timestep
Yang et al.	2022	1	×	Simulation	Distribution (mean, η_{99} reported)
Zhang et al.	2023	1	1	Simulation	Mean
Suárez-Varela et al.	2023	1	×	Hardware Testbed	Mean
This Work	2023	1	✓	Hardware Testbed	Mean + Quantiles

[Rusek] Rusek, Krzysztof, et al. "Routenet: Leveraging graph neural networks for network modeling and optimization in sdn." IEEE Journal on Selected Areas in Communications 38.10 (2020): 2260-2270.

[Ferriol-Galmés] Miquel Ferriol-Galmes, Krzysztof Rusek, Jose Suarez-Varela, Shihan Xiao, Xiang Shi, Xiangle Cheng, Bo Wu, Pere Barlet-Ros, and Albert Cabellos-Aparicio. 2022. Routenet-Erlang: A Graph Neural Network for Network Performance Evaluation. In IEEE INFOCOM 2022-IEEE Conference on Computer Communications. IEEE, 2018–2027.

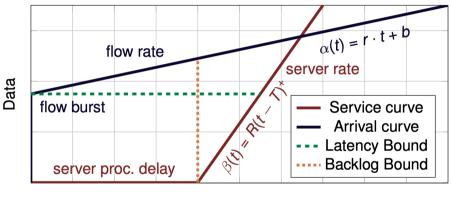
[Wang] Mowei Wang, Linbo Hui, Yong Cui, Ru Liang, and Zhenhua Liu. 2022. xNet: Improving Expressiveness and Granularity for Network Modeling with Graph Neural Networks. In IEEE INFOCOM 2022 - IEEE Conference on Computer Com- munications. 2028–2037.

[Yang] QingqingYang,XiPeng,LiChen,LibinLiu,JingzeZhang,HongXu,Baochun Li, and Gong Zhang. 2022. DeepQueueNet: Towards Scalable and Generalized Network Performance Estimation with Packet-level Visibility. In Proceedings of the ACM SIGCOMM 2022 Conference. 441–457.

[Zhang] LianmingZhang,BenleYin,QianWang,andPingpingDong.2023.GraphNeural Network-based Delay Prediction Model Enhanced by Network Calculus. In 2023 IFIP Networking Conference (IFIP Networking). IEEE, 1–7.

[Suárez-Varela] Jose Suarez-Varela et al. 2021. The graph neural networking challenge: a world- wide competition for education in Al/ML for networks. ACM SIGCOMM Computer Communication Review 51, 3 (2021), 9–16. Helm, Carle — Predicting Latency Quantiles using Network Calculus-assisted GNNs 4

Network Calculus Primer



Time

πп

Network Calculus Primer

Total Flow Analysis [Bondorf]:

$$\begin{split} D_{s_i} &= \begin{cases} h\left(\alpha_{s_i}, \beta_{s_i}\right) & \text{if } |F(s_i)| = 1 \text{ (FIFO per } \mu\text{Flow)} \\ bp\left(\alpha_{s_i}, \beta_{s_i}\right) & \text{otherwise} \end{cases} \\ D_{P(\text{foi})}^{\text{TFA}} &= \sum_{s_i \in P(\text{foi})} D_{s_i} \end{split}$$

- Aggregate flows
- Calcluate latency bound per hop
- Sum up bounds along flow path

Separate Flow Analysis [Bondorf]:

$$\beta_{s_i}^{\text{l.o.foi}} = \beta_{s_i} \ominus \alpha_{s_i}^{x(\text{foi})}, \qquad \beta_{P(\text{foi})}^{\text{l.o.SFA foi}} = \bigotimes_{s_i \in P(\text{foi})} \beta_{s_i}^{\text{l.o.foi}}.$$

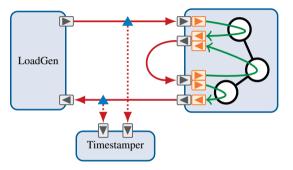
 $D^{\text{foi}} = h\left(\alpha^{\text{foi}}, \beta_{P(\text{foi})}^{\text{l.o.SFA}_{\text{foi}}}\right),$

- Calculate left-over service curve per hop
- · Convolute left-over service curves along the path
- Calculate latency bound

[Bondorf] Bondorf, Steffen. Worst-Case Performance Analysis of Feed-Forward Networks–An Efficient and Accurate Network Calculus. Diss. Technische Universität Kaiserslautern, 2016.

Measurements

Setup [Gallenmüller], [Wiedner]:



Measurements

Setup [Gallenmüller]. [Wiedner]:

LoadGen Timestamper Timestamper

Results [Wiedner]:

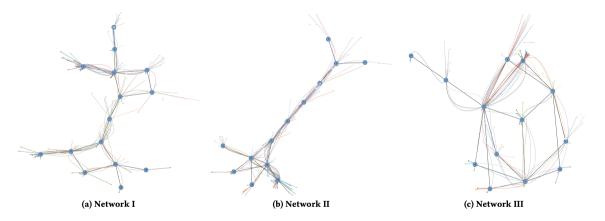
[Gallenmüller] Gallenmüller, Sebastian, et al. "How Low Can You Go? A Limbo Dance for Low-Latency Network Functions." Journal of Network and Systems Management 31.1 (2023): 20.

[Wiedner] Wiedner, Florian, et al. "HVNet: Hardware-Assisted Virtual Networking on a Single Physical Host." IEEE INFOCOM 2022-IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS). IEEE, 2022.

ТШ

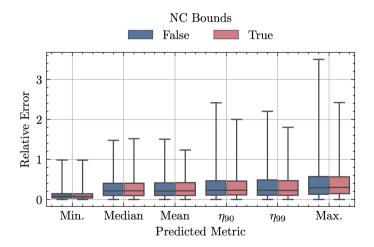
Measurements

Example Network Topologies

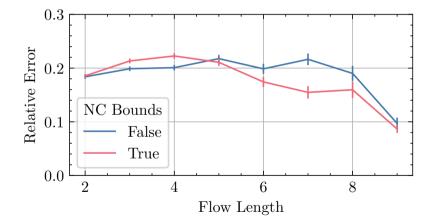


Measurements on 100 random, non-isomorph network topologies

Latency Quantile Point Predictions



Latency Quantile Point Predictions



ТΠ

ТШП

Importance of Network Calculus Results

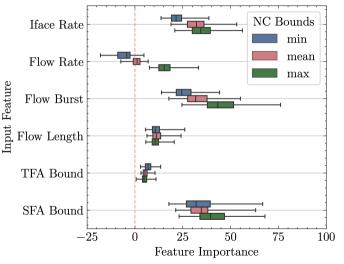
Network Calculus analysis methods:

- Total Flow Analysis (**TFA**): Bounds on flow aggregates on per-hop basis
- Separate Flow Analysis (SFA): Bounds per flow using left-over service curves and service curve convolutions

Importance of Network Calculus Results

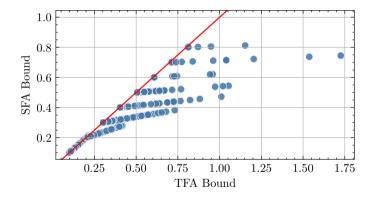
Network Calculus analysis methods:

- Total Flow Analysis (TFA): Bounds on flow aggregates on per-hop basis
- Separate Flow Analysis (SFA): Bounds per flow using left-over service curves and service curve convolutions



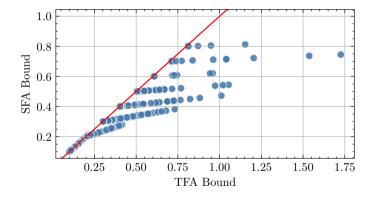
ШТ

Importance of Network Calculus Results



ТЛ

Importance of Network Calculus Results



• SFA bounds always as tight or tighter than TFA bounds

πп

• TFA provides worse upper bounds

Conclusion

Data:

- Simple GNN for quantile point predictions
- Based on hardware measured latencies
- 100 different network topologies
- Limitations: queueing, network size, sample size

Paper:

Results:

- Network Calculus bounds reduce large prediction errors
- Network Calculus more useful for higher quantiles
- GNN is able to include bound tightness into decision making
- Limitations: GNN architecture, Network Calculus analysis methods

пп

Data and Code:

Questions?: helm@net.in.tum.de