Synthesizing and Scaling WAN Topologies using Permutation-invariant Graph Generative Models

Max Helm, and Georg Carle

October 30, 2023

CNSM 19

Niagara Falls, Canada

Chair of Network Architectures and Services Department of Computer Engineering Technical University of Munich

Tur Uhrenturm

Motivation

Motivation

Non-isomorphic

- Graph can not be mapped to the original graph
- Think of two adjacency matrics that are different but describe same graph

Similar structure

- Graph properties (e.g., number of nodes)
- Graph metrics (e.g., degree centrality)
- Graph distribution metrics (e.g., maximum mean discrepancy of graph mertic)

Background

Why?

- Machine-learning applications need training data
- Training data needs to be realistic and abundant
- Alternative to random graph generation (e.g., Erdős–Rényi)
- No additional knowledge needed (e.g., Autonomous System graphs approximate powerlaw graphs)

Background

What?

aies)

 Alternative to random graph generation (e.g., Erdős–Rényi)

Why?

 No additional knowledge needed (e.g., Autonomous System graphs approximate powerlaw graphs) Use Internet Topology Zoo (approx. 250 WAN topolo-

Related Work

2022 18th International Conference on Network and Service Management (CNSM)

Comparing Traditional and GAN-based Approaches for the Synthesis of Wide Area Network Topologies

Katharina Dietz, Michael Seufert, Tobias Hoßfeld University of Würzburg, Germany {katharina.dietz, michael.seufert, tobias.hossfeld}@uni-wuerzburg.de

- Generative Adverserial Network
- Works on adjacency matrix permutations
- Henceforth referred to as *Dietz*

 \rightarrow Permutation invariant: \checkmark \rightarrow Used and tested for WANs: \checkmark

Related Work

Scalable Deep Generative Modeling for Sparse Graphs

2022 18th International Conference on Network and Service Management (CNSM)

Comparing Traditional and GAN-based Approaches for the Synthesis of Wide Area Network Topologies

Katharina Dietz, Michael Seufert, Tobias Hoßfeld University of Würzburg, Germany {katharina.dietz, michael.seufert, tobias.hossfeld}@uni-wuerzburg.de

- Generative Adverserial Network
- Works on adjacency matrix permutations
- Henceforth referred to as *Dietz*

Hanjun Dal¹ Azade Naz¹ 'Iujin Li² Bo Dal¹ Dale Schuurmans¹ GraphGDP: Generative Diffusion Processes for Permutation Invariant Graph Generation

Han Huang¹, Leilei Sun^{1*}, Bowen Du¹, Yanjie Fu², Weifeng Lv¹

Permutation Invariant Graph Generation via Score-Based Generative Modeling

Chenhao Niu¹, Yang Song², Jiaming Song², Shengjia Zhao², Aditya Grover², Stefano Ermon²

- Graph based models
- Work directly on graphs

 \rightarrow Permutation invariant: \checkmark \rightarrow Used and tested for WANs: $\pmb{\times}$

⇒ Adapt and benchmark permutation-invariant approaches on the task of WAN topology generation

Methodology

Name	Year	Approach	Permutation Invariant	Directed	Edge Weights	Node Feat.
Netgan	2018	Random walks	✓	×	×	×
GraphRNN	2018	Autoregr. model	BFS-order	×	×	×
GSM	2020	Score match w/ GNNs	1	×	×	×
BiGG	2020	Autoregr. tree model	DFS-/BFS-order	1	X ¹	1
GraphGDP	2022	Diffusion model	\checkmark	×	×	×

¹Possible to indirectly include edge weights as node features

Methodology

.

Name	Year	Approach	Permutation Invariant	Directed	Edge Weights	Node Feat.
Netgan	2018	Random walks	✓	×	×	×
GraphRNN	2018	Autoregr. model	BFS-order	×	×	×
GSM	2020	Score match w/ GNNs	✓	×	×	×
BiGG	2020	Autoregr. tree model	DFS-/BFS-order	1	X ¹	1
GraphGDP	2022	Diffusion model	\checkmark	×	×	×

¹Possible to indirectly include edge weights as node features

 \Rightarrow Compare and benchmark these five approaches against each other and related work

Methodology

ТΠ

Results

One Topology Example

Direct graph metric comparison to original graph:

- Betweenness Centrality (BC)
- Closeness Centrality (CC)
- Degree Centrality (DC)

Distribution distance of graph metric:

- Kolmogorov-Smirnov (KS) distance of BC
- Kolmogorov-Smirnov (KS) distance of CC
- Kolmogorov-Smirnov (KS) distance of DC

Results

Good and Bad Fits

Good Scores:

ТШ

Results

Good and Bad Fits

Good Scores:

Bad Scores:

Results All Topologies

Does it work consistently for all topologies?

- Maximum Mean Discrepancy (MMD)
- Measures similarity of all momentums
- Often used to evaluate graph generative models
- Over all graphs

\Rightarrow Specifically **BiGG** and **GraphGDP** are able to generate high quality WAN topologies

 \Rightarrow Specifically **BiGG** and **GraphGDP** are able to generate high quality WAN topologies

What about changing the size of the network?

 \Rightarrow Specifically **BiGG** and **GraphGDP** are able to generate high quality WAN topologies

What about changing the size of the network?

Name	Year	Approach
Kronecker Gscaler	2010 2016	Kronecker product matrix operation DNA shotgun sequencing variation
EvoGraph	2018	Preferential edge attachment

Results

Summary:

- Permutation-invariant models outperform adjacency-matrix-based approaches
- Scaling WAN topologies works well with preferential edge attachment, but not import pickle • with DNA shotgun sequencing or Kronecker products

In the paper:

- Description of generation and scaling methods ٠
- Dataset available

Paper:

Dataset (interactive):

import networks as nx

with open(filename, 'rb') as f: graphs = pickle.load(f)

Dataset:

