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Motivation

Non-isomorphic

Similar structure

• Graph can not be mapped to the original graph
• Think of two adjacency matrics that are different but describe same graph

• Graph properties (e.g., number of nodes)
• Graph metrics (e.g., degree centrality)
• Graph distribution metrics (e.g., maximum mean discrepancy of graph mertic)
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Background

Why?

GNN Delay

• Machine-learning applications need training data
• Training data needs to be realistic and abundant
• Alternative to random graph generation

(e.g., Erdős–Rényi)
• No additional knowledge needed (e.g., Autonomous

System graphs approximate powerlaw graphs)

What?

• Wide Area Network (WAN) topologies
• Use Internet Topology Zoo (approx. 250 WAN topolo-

gies)
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Related Work

• Generative Adverserial Network
• Works on adjacency matrix permutations
• Henceforth referred to as Dietz

→ Permutation invariant: ✗

→ Used and tested for WANs: ✓

• Graph based models
• Work directly on graphs

→ Permutation invariant: ✓

→ Used and tested for WANs: ✗

⇒ Adapt and benchmark permutation-invariant approaches on the task of WAN topology generation
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Methodology

Name Year Approach Permutation Invariant Directed Edge Weights Node Feat.

Netgan 2018 Random walks ✓ ✗ ✗ ✗

GraphRNN 2018 Autoregr. model BFS-order ✗ ✗ ✗

GSM 2020 Score match w/ GNNs ✓ ✗ ✗ ✗

BiGG 2020 Autoregr. tree model DFS-/BFS-order ✓ ✗1 ✓

GraphGDP 2022 Diffusion model ✓ ✗ ✗ ✗

1Possible to indirectly include edge weights as node features

⇒ Compare and benchmark these five approaches against each other and related work
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Methodology

compare

train

One topology
from

Internet Topo. Zoo

Netgan

BiGG

GraphRNN

GSM

GraphGDP

Gen. graphs

Gen. graphs

Gen. graphs

Gen. graphs

Gen. graphs

Graph metrics,
KS distance,

MMD

Graph metrics,
KS distance,

MMD
of Dietz et al.
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Results
One Topology Example
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Direct graph metric comparison to original graph:
• Betweenness Centrality (BC)
• Closeness Centrality (CC)
• Degree Centrality (DC)

Distribution distance of graph metric:
• Kolmogorov-Smirnov (KS) distance of BC
• Kolmogorov-Smirnov (KS) distance of CC
• Kolmogorov-Smirnov (KS) distance of DC
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Results
Good and Bad Fits

Good Scores:

Bad Scores:
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Results
All Topologies

Does it work consistently for all topologies?
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• Maximum Mean Discrepancy (MMD)

• Measures similarity of all momentums

• Often used to evaluate graph generative
models

• Over all graphs
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Results

⇒ Specifically BiGG and GraphGDP are able to generate high quality WAN topologies

What about changing the size of the network?

Name Year Approach

Kronecker 2010 Kronecker product matrix operation
Gscaler 2016 DNA shotgun sequencing variation
EvoGraph 2018 Preferential edge attachment
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Results
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Conclusion
Summary:

• Permutation-invariant models outperform adjacency-matrix-based approaches
• Scaling WAN topologies works well with preferential edge attachment, but not

with DNA shotgun sequencing or Kronecker products

In the paper:

• Description of generation and scaling methods
• Dataset available

Paper: Dataset (interactive): Dataset:
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