
Synthesizing and Scaling WAN Topologies using
Permutation-invariant Graph Generative Models

Max Helm, Georg Carle
Department of Computer Engineering

Technical University of Munich
Munich, Germany

{helm, carle}@net.in.tum.de

Abstract—Real-world Wide Area Network (WAN) topologies
are scarce. The shift towards machine learning in network
management and optimization brings a need for large datasets,
including real-world topologies. WAN topologies can be gen-
erated using graph generative models. Graph generative mod-
els can be divided into parameterized and data-driven ap-
proaches. Data-driven approaches can be further divided into
permutation-invariant and permutation-variant. In this paper,
we improve on existing work, which utilized adjacency-matrix-
based, permutation-variant Generative Adversarial Networks to
synthesize WAN topologies. We achieve this by using existing,
data-driven approaches that are permutation-invariant w.r.t.
their input. Our results show a decrease in the mean Kolmogorov-
Smirnov distance over various graph theoretical metrics of 80%.
Furthermore, we employ graph upscaling models to increase
WAN topology sizes while preserving their properties up to
a scaling factor of 256. We publish all datasets and hope
they can be of help in training machine learning models, such
as communication network performance prediction models or
digital twins, enabling better automated network management.

Index Terms—graph; wide area networks; generative machine
learning

I. INTRODUCTION

The need for large and diverse datasets of communication
networks is increasing due to new applications of machine-
learning to network control and optimization. An integral
part of a dataset are the network topologies. Especially real-
world Wide Area Network (WAN) topologies are a limited
resource [1]. Related work tries to alleviate this lack of data
by employing Generative Adverserial Networks (GANs) to
generate realistic WAN topologies [2].

The goal of this work is to give an overview over different
existing methods to achieve the same goal, benchmark them
against each other, and give recommendations wich method
produces the best results. Additionally, we provide a dataset
produced by the best-performing method.

Another drawback of real-world WAN topologies is that
they are limited in size [1]. Often, we want to evaluate
machine-learning models on their ability to generalize to larger
input spaces, including the topology size. To this end we com-
pare three existing graph up-scaling approaches. Furthermore,
we provide a dataset of larger topologie based on real-world
WANs that retain their topological structure for scaling factors
of up to 256.

compare

train

One topology
from

Inetrnet Topo. Zoo

Netgan

BiGG

GraphRNN

GSM

GraphGDP

Gen. graphs

Gen. graphs

Gen. graphs

Gen. graphs

Gen. graphs

Graph metrics,
KS distance,

MMD

Graph metrics,
KS distance,

MMD
of Dietz et al.

Fig. 1: Workflow of comparing different graph generation
approaches.

The remainder of the paper is structured as follows. Sec-
tion II provides an overview of data-dirven methods that are
used to generate and scale networks. Section III gives an
overview of related work in WAN generation. Section IV
details our methodology for comparing different approaches.
Section V provides the results of the graph generation and
up-scaling benchmarks. Section VI shows some limitations of
this work with notes on reproducibility in Section VII and
concluding remarks in Section VIII.

II. BACKGROUND

This section introduces background information about
WANs and generative machine learning methods.

A. Internet Topology Zoo

The Internet Topology Zoo [1] is a collection of Wide Area
Network (WAN) topologies from real deployments around
the world, while concentrating mostly on Europe and North
America. It contains over 250 topologies and is regularly used
as data source for publications, e.g., as input for machine-
learning methods [8], [9].

B. Generative Adversarial Networks

Generative Adversarial Networks (GANs) [10] are a
machine-learning approach to estimating the underlying distri-
bution from which a set of samples is drawn. They are based
on game theory and pit two models, with different optimization
goals, against each other. They are mostly used for image
synthesis.



TABLE I: Five selected graph generation methods, each based on different underlying approaches, and their capabilities.

Name Year Reference Approach Permutation Invariant Directed Edge Weights Node Feat.

Netgan 2018 [3] Random walks 3 7 7 7
GraphRNN 2018 [4] Autoregressive model BFS-order 7 7 7
GraphScoreMatching 2020 [5] Graph score matching with GNNs 3 7 7 7
BiGG 2020 [6] Autoregressive tree model DFS-/BFS-order 3 71 3
GraphGDP 2022 [7] Diffusion model 3 7 7 7

1Possible to indirectly include edge weights as node features

C. Graph Neural Networks

Graph Neural Networks (GNNs) [11] are a machine-
learning approach that works directly on graph-structured data.
The main advantage is that this approach is permutation
invariant w.r.t. the input, meaning the nodes and edges in the
graph can be in any order without influencing the result. This
means we can avoid costly data augmentation methods, such
as generating all adjancency matrices for a graph, which would
otherwise be needed in order to cover the whole input space.
The number of adjacency matrices of a graph is n! with n
being the number of nodes in the graph.

GNNs work on a graph in the form of a set of vertices and
edges G = (V,E). They utilize the message-passing paradigm
to propagate information through the graph. It consists of
message passing, aggregation, and update. During message
passing, the hidden state of a node is sent to all neighbors.
Then, these hidden states from neighbors are aggregated at
each node. Finally, the hidden state of each node is updated
using a function of its own hidden state and the aggregated
hidden states from its neighbors.

D. Diffusion Models

Diffusion models [12] are a machine learning approach that
consists of a Markov chain. The Markov chain is trained
to reverse a noise-adding process. This can be used to, for
example, generate realistic images from images of gaussian
noise.

E. Kronecker Product

The kronecker product is a matrix operation on two matrices
of arbitrary sizes. Iterative application of the kronecker product
can be used to scale the size of graphs [13].

III. RELATED WORK

Dietz et al. [2] compare a GAN-based approach to classic,
non-data-driven approaches on the task of WAN topology syn-
thesis. They implemented a GAN and encoded topologies as
pixel images of their adjacency matrices. Adjacency matrices
are permuted to approximate permutation invariance. They
consider distances between nodes as edge weights encoded
as RGB-values of the pixels. Postprocessing is done base on
a Bernoulli model with consideration for the symmetry of ad-
jacency matrices. The evaluation is based on the Betweenness
Centrality (BC), Closeness Centrality (CC), Degree Centrality
(DC), and the Kolmogorov-Smirnov distance between their
distributions. They conclude that the GAN approach is flexible
and can approximate networks well. In contrast, they note that

it struggles with permutations in adjacency matrices and that
it requires complex posprocessing. This work indentifies and
applies existing methods to alleviate these drawbacks. Namely,
we show that permutation invariance can be achieved using
related work and postprocessing is not necessary.

Other approaches such as ErdősRényi [14], Barabási-
Albert [15], Watts-Strogatz [16], or Scale-free Clustering [17]
rely on very few parameters and have shortcomings in accu-
racy. They are commonly used to generate graph datasets in
the communication networks domain. We refer to [2] for a
more in-depth analysis.

Leskovec et al. [13] apply a Kronecker graph up-scaling
method to autonomous system graphs.

IV. METHODOLOGY

In this section, we explain the approach for generating and
scaling graphs. Furthermore, we show how we compare the
quality of results.

A. Graph Generation

We compare five different machine-learning-based methods
for graph generation. Table I details all approaches. The
reference data source for all generation approaches is the
Internet Topology Zoo.

Netgan [3] is based on the GAN architecture with a gener-
ator and a discriminator. They utilize random walks on graphs
to generate new graphs. The discriminator needs to distinguish
between true graphs and generated graphs solely based on
given random walks over the respective graphs. The approach
is permutation invariant due to the nature of the random walks.

GraphRNN [4] is an autoregressive model. It is not permuta-
tion invariant. However, the authors achieve weak permutation
invariance by collapsing graphs to their Breadth-first search
(BFS) tree representations.

GraphScoreMatching (GSM) [5] relies on graph score
matching and GNNs to generate new graphs.

BiGG [6] is another approach relying on autoregression.
They achieve weak permutation invariance in a similar way as
GraphRNN, by considering the Depth-first- and Breadth-first-
search (DFS and BFS) representations of graphs.

GraphGDP [7] is an approach that relies on a diffusion
model. They achieve permutation invariance by relying on
a permutation equivariant edge prediction which results in a
permutation invariant log-likelihood function.

To enable a fair comparison we ensure two things. First,
we do not perform any hyperparameter optimization on any
of the models. Most of the models have examples defined for



(a) Géant2001 (b) BREN

(c) BtNorthAmerica (d) GtsSlovakia

Fig. 2: Four selected topologies from the Internet Topology
Zoo

the community-small dataset. We take the hyperparmeters
selected by the authors for this dataset, since it is similar in
size to the Internet Topology Zoo. Second, we concentrate on
undirected graphs without node labels or edge weights since
this is the largest subset supported by all models.

The workflow of the comparison approach is shown in Fig-
ure 1. Starting with a single topology, we train each of the five
models. The early stopping method is either a fixed number
of epochs or another criterion, for example, the validation
accuracy or the edge overlap. Next, we use each model to
generate a set of 100 topologies. We compare these topolo-
gies based on graph metrics and their distribution distances
(Kolmogov-Smirnov and Maximum Mean Discrepancy) as
explained in Section IV-C.

B. Graph Up-scaling

The goal of graph up-scaling is to generate a graph that
is larger in size than a given graph while retaining graph
theoretical properties. We compare three different graph up-
scaling methods on the Internet Topology Zoo. They are listed
in Table II.

Kronecker [13] is based on the kronecker product that can
be calculated over matrices of different sizes.

Gscaler [18] is based on an adaption of DNA shotgun
sequencing.

EvoGraph [19] is based on a preferential edge attachment
mechanism.

The workflow of comparing these methods on the Internet
Topology Zoo is shown in Figure 3. We train each method on
a single topology. Next, we generate graphs with each method
that are of size s(G′) = s(G) · 2n ∀n ∈ {1, 2, 3, 4, 5, 6, 7, 8}
with s(G) being the size of the original graph.

The generated graphs of different scales are then compared
to the original topology using graph metrics and distribution
distances as explained in Section IV-C.

train

train

train

One topology
from

Internet Topo. Zoo

Kronecker

Gscaler

EvoGraph

Up-scaled graphs

scale=2...
scale=256

scale=2...
scale=256

scale=2...
scale=256

Graph metrics
KS distance

MMD

Fig. 3: Comparison methodology for three graph upscaling
methods

TABLE II: Three approaches to scale up graphs while pre-
serving graph properties

Name Year Reference Approach

Kronecker 2010 [13] Kronecker product matrix operation
Gscaler 2016 [18] DNA shotgun sequencing variation
EvoGraph 2018 [19] Preferential edge attachment

C. Quality Comparison

We employ two different comparison techniques based on
related work.

1) Graph Metrics: The first comparison is based on graph
metrics. We directly compare the graph metrics of generated
graphs to the baseline graphs. Less difference, while main-
taining non-isomporphism, indicates a better generative model.
The types of metrics are taken from two areas of related work.

WAN Synthesis We compare all approaches in the same
way as [2], using the Betweenness Centrality (BC), Closeness
Centrality (CC), and Degree Centrality (DC).

Graph Generation and Upscaling We compare all ap-
proaches using graph metrics typically employed in graph
generation and graph upscaling papers. These metrics are the
clustering coefficient, orbit count, motif, spectra of Laplacian
Eigenvalues, triangle count, wegdge count, claw count, assor-
tativity, and gini coefficient.

2) Distance Measures: The second comparison is based on
distance measures of the distributions of the graph metrics
between the generated and baseline graphs.

WAN Synthesis We compare all approaches using the same
method as [2], the Kolmogorov-Smirnov (KS) distance. This
distance compares the distribution of BC, CC, and DC values
of a generated graph to the distribution of the same values
in the baseline graph. This ensures that graph structure is
maintained over the entire graph, not only in the mean over
all nodes.

Graph Generation and Upscaling We use the Maximum
Mean Discrepancy (MMD) over all graph metrics to compare
graphs. The MMD is a kernel-based approach to estimate the
closeness of two distributions.

V. EVALUATION

In this section we evaluate the results of the comparison of
graph generation and graph up-scaling methods.



D
ie
tz

N
et

ga
n

B
iG

G

G
ra

ph
R
N
N
G

SM

G
ra

ph
G

D
P

0.05

0.10

0.15

0.08

(a) BC

D
ie
tz

N
et

ga
n

B
iG

G

G
ra

ph
R
N
N
G

SM

G
ra

ph
G

D
P

0.2

0.3

0.4

0.35

(b) CC

D
ie
tz

N
et

ga
n

B
iG

G

G
ra

ph
R
N
N
G

SM

G
ra

ph
G

D
P

0.10

0.15

0.20

0.11

(c) DC

D
ie
tz

N
et

ga
n

B
iG

G

G
ra

ph
R
N
N
G

SM

G
ra

ph
G

D
P

0.0

0.2

0.4

0.6

0.8

1.0

(d) KS BC

D
ie
tz

N
et

ga
n

B
iG

G

G
ra

ph
R
N
N
G

SM

G
ra

ph
G

D
P

0.0

0.2

0.4

0.6

0.8

1.0

(e) KS CC

D
ie
tz

N
et

ga
n

B
iG

G

G
ra

ph
R
N
N
G

SM

G
ra

ph
G

D
P

0.0

0.2

0.4

0.6

0.8

1.0

(f) KS DC

Fig. 4: Synthesis for the Géant2001 topology. Baseline model
is highlighted in gray. Target metric (derived from the original
Géant2001 topology) is indicated as a red dashed line. Top row
shows basic graph metrics (the closer to the red dashed line,
the better), bottom row shows the distance in the distribution
of graph metrics (lower is better).

A. Graph Generation

To evaluate the quality of generated graphs, we use the
metrics defined in Section IV-C.

First, we concentrate on four topologies from the Internet
Topology Zoo. We do this to have a direct comparison to
Dietz et al. [2] (noted as Dietz for brevity in all comparisons).
The four topologies (Géant2001, BREN, BtNorthAmerica,
GtsSlovakia) are shown in Figure 2. For each of the four
graphs we train each of the five generation methods and
generate a set of 100 graphs.

The results for the Géant2001 topology are shown in Fig-
ure 4. We can observe that for the graph metrics, Netgan,
BiGG, and GraphGDP perform better than the baseline GAN
(Dietz) while GraphRNN and GSM perform mostly worse.
We note that Netgan always matches the DC perfectly. The
Kolmogorov-Smirnov (KS) distance of these metrics exhibits a
smiliar pattern. This means that Netgan, BiGG, and GraphGDP
outperform the basline in generating (I) graphs with similar
mean properties, and (II) graphs in which the properties are
similarly distributed throughout the graphs.

The results for the BREN topology are shown in Figure 5.
We can observe a slightly different behavior as for the
Géant2001 topology. For example, Netgan performs signifi-
cantly worse on this topology while still maintaining a perfect
match of DC. Another example is that GraphGDP performs

D
ie
tz

N
et

ga
n

B
iG

G

G
ra

ph
R
N
N
G

SM

G
ra

ph
G

D
P

0.00

0.05

0.10

0.15

0.07

(a) BC

D
ie
tz

N
et

ga
n

B
iG

G

G
ra

ph
R
N
N
G

SM

G
ra

ph
G

D
P

0.4

0.6

0.40

(b) CC

D
ie
tz

N
et

ga
n

B
iG

G

G
ra

ph
R
N
N
G

SM

G
ra

ph
G

D
P

0.2

0.4

0.6

0.30

(c) DC

D
ie
tz

N
et

ga
n

B
iG

G

G
ra

ph
R
N
N
G

SM

G
ra

ph
G

D
P

0.0

0.2

0.4

0.6

0.8

1.0

(d) KS BC

D
ie
tz

N
et

ga
n

B
iG

G

G
ra

ph
R
N
N
G

SM

G
ra

ph
G

D
P

0.0

0.2

0.4

0.6

0.8

1.0

(e) KS CC

D
ie
tz

N
et

ga
n

B
iG

G

G
ra

ph
R
N
N
G

SM

G
ra

ph
G

D
P

0.0

0.2

0.4

0.6

0.8

1.0

(f) KS DC

Fig. 5: Synthesis for the BREN topology. Baseline model is
highlighted in gray.

similar to the baseline on BC but exhibits an extremely low
KS distance on BC. This indicates that it is able to distribute
the shortest paths that pass through a given node significantly
more realisticly in the generated networks. We assume this
is of high importance specifically for the BREN topology
since it consists of a very densly connected subgraph and
a very sparsly connected subgraph. Furthermore, we assume
this topologic structure is the reason why all other approaches
exhibit similar metrics but significantly worse KS distances
compared to the Géant2001 topology.

The results for the BtNorthAmerica topology are shown
in Figure 6 We can, again, observe better results for the
Netgan, BiGG, and GraphGDP methods while GraphRNN
has a hard time accurately generating graphs. BiGG has
especially low errors in all distance metrics. We assume these
high accuracies are due to the more homogeneous topology
structure of BtNorthAmerica.

The results for GtsSlovakia show mixed results (plots omit-
ted for brevity). Netgan performs worse than the baseline
on this topology while BiGG performs slightly better and
GraphGDP is the only siginificantly better method compared
to the baseline. Netgan exhibits especially large errors in the
KS distance for CC while BiGG exhibits large errors in the
KS distance for DC. We assume that is the case because
GtsSlovakia has high variation in the node degrees. Therefore,
it is easy to approximate a mean measure over the degrees and
harder to distribute them adequately throughout the topology.

Next, we move from graph metrics and their distribution
distances to the Maximum Mean Discrepancy (MMD) over



D
ie
tz

N
et

ga
n

B
iG

G

G
ra

ph
R
N
N
G

SM

G
ra

ph
G

D
P

0.04

0.06

0.08

0.05

(a) BC

D
ie
tz

N
et

ga
n

B
iG

G

G
ra

ph
R
N
N
G

SM

G
ra

ph
G

D
P

0.4

0.5

0.38

(b) CC

D
ie
tz

N
et

ga
n

B
iG

G

G
ra

ph
R
N
N
G

SM

G
ra

ph
G

D
P

0.10

0.15

0.20

0.25

0.13

(c) DC

D
ie
tz

N
et

ga
n

B
iG

G

G
ra

ph
R
N
N
G

SM

G
ra

ph
G

D
P

0.0

0.2

0.4

0.6

0.8

1.0

(d) KS BC

D
ie
tz

N
et

ga
n

B
iG

G

G
ra

ph
R
N
N
G

SM

G
ra

ph
G

D
P

0.0

0.2

0.4

0.6

0.8

1.0

(e) KS CC

D
ie
tz

N
et

ga
n

B
iG

G

G
ra

ph
R
N
N
G

SM

G
ra

ph
G

D
P

0.0

0.2

0.4

0.6

0.8

1.0

(f) KS DC

Fig. 6: Synthesis for the BtNorthAmerica topology. Baseline
model is highlighted in gray.

0.0 0.5 1.0 1.5

MMD(cluster)

Dietz
Netgan

BiGG
GraphRNN

GSM
GraphGDP

(a) MMD of cluster

0.0 0.5 1.0 1.5

MMD(degree)

Dietz
Netgan

BiGG
GraphRNN

GSM
GraphGDP

(b) MMD of node degree

0.0 0.5 1.0 1.5

MMD(motif)

Dietz
Netgan

BiGG
GraphRNN

GSM
GraphGDP

(c) MMD of graph motif

0.0 0.5 1.0 1.5

MMD(orbit)

Dietz
Netgan

BiGG
GraphRNN

GSM
GraphGDP

(d) MMD of graph orbits

Fig. 7: Maximum Mean Discrepancy (MMD) over various
graph and node metrics. Averaged over all topologies. Baseline
model is highlighted in gray.

graph metrics. Figure 7 shows the four types of MMD we
will be considering. They are averaged over all topologies.
We can observe that over all types of MMD, only BiGG
and GraphGDP outperform the baseline. GraphRNN and GSM
perform similar to the baseline while Netgan performs signif-
icantly worse, including an especially large variance.

To illustrate the importance of accurately matching these
metrics and minimizing the error in KS and MMD, we
show generated topologies for each of the methods. We only
consider the Géant2001 topology for this purpose. Figure 8
shows for each method a generated topology that achieved a

(a) Original (b) Netgan (c) BiGG

(d) GraphRNN (e) GSM (f) GraphGDP

Fig. 8: Original Géant2001 topology and a generated sample
with a low error score for each generation method.

(a) Original (b) Netgan (c) BiGG

(d) GraphRNN (e) GSM (f) GraphGDP

Fig. 9: Original Géant2001 topology and a generated sample
with a high error score for each generation method.

low error score. While Figure 9 shows generated topologies
with a high error score. We can observe, for example, for
Netgan in Figure 8b and Figure 9b, that a low error score leads
to a graph with similar structure to the original (Figure 8a) and
a high error score leads to a graph where at least parts of the
topology are very differently structured.

We summarize the capabilities of the five graph generation
methods in comparison to the baseline GAN in Table III. It
shows the mean KS distances and MMD values averaged over
all topologies per method. We can observe that both BiGG
and GraphGDP are strictly better than the baseline for all
metrics. Furthermore, BiGG and GraphGDP claim the best
performance for all metrics, also against Netgan, GraphRNN,
and GSM. BiGG mostly performs well for the MMD metrics
while GraphGDP performs best for all KS distances. This
highlights the need for a diverse set of metrics to explore
capabilities of graph generators.

B. Graph Up-scaling

We evaluate three graph up-scaling tools on the task of
scaling Internet Topology Zoo networks to different scale
factors. The three approaches are Kronecker, Gscaler, and
EvoGraph as listed in Table II. We scale each topology with
each method to a scale factor of 21 . . . 28.

Figure 10 shows the scaling of the BREN topology which
is chosen because of its unique topological structure. The
top row shows Kronecker, the middle row Gscaler, and the
bottom row EvoGraph. Each row starts with the original graph
and progresses from a scale factor of 2 to a scale factor



TABLE III: Mean distance metrics KS and MMD over all topologies per method. Methods with the best performing metric
are highlighted.

Method KS BC KS CC KS DC MMD(degree) MMD(cluster) MMD(motif) MMD(orbit)

Dietz et al. 0.338 0.490 0.234 0.305 0.525 0.639 0.390

Netgan 0.396 0.579 0.274 0.691 0.771 0.775 0.685
BiGG 0.249 0.334 0.197 0.066 0.123 0.064 0.191
GraphRNN 0.238 0.517 0.460 0.339 0.334 0.235 0.363
GSM 0.201 0.431 0.279 0.187 0.493 0.515 0.325
GraphGDP 0.147 0.311 0.180 0.084 0.255 0.293 0.133

TABLE IV: Mean distance metrics KS and MMD over all topologies and scales per method. Methods with the best performing
metric are highlighted.

Method KS BC KS CC KS DC MMD(degree) MMD(cluster) MMD(motif) MMD(orbit)

EvoGraph 0.443 0.702 0.857 1.630 0.935 1.863 1.930
Gscaler 0.531 0.980 0.886 1.058 1.356 0.972 0.984
Kronecker 0.483 0.714 0.914 1.995 1.253 1.382 1.956

of 64. We can observe that Kronecker populates the graph
with new nodes and edges without accurately retaining the
topological structure. Gscaler generates two disconnected sub
graphs at scale factor 2 and three disconnected sub graphs
for each scale factor above that. EvoGraph manages to scale
the topology while maintaining the topological structure over
all scale factors. We assume this is due to the preferrential
edge-attachment mechanism employed by EvoGraph, which
keeps the underlying structure of the graph and adds edges in
a structure preserving manner in each step.

Table IV shows a summary of all KS distance and MMD
metrics for each method averaged over all scales and topolo-
gies. The KS distance metrics accurately identify EvoGraph
as the most suitable method for WAN topology generation.
However, the MMD metrics prefer Gscaler which is not
an accurate representation of an intuitively worse-performing
approach.

VI. LIMITATIONS

While we compare five methods for graph generation with
themselves and to a baseline as well as three methods for
graph up-scaling, there are approaches that are not covered by
this work. We selected the methods to provide a variety of
different existing approaches, while not selecting approaches
that are very similar to one another.

Furthermore, some approaches are capable of generating
and up-scaling graphs, e.g. by setting the scale factor to 1
for generation and any other number for scaling. We don’t
consider this and divide approaches strictly into generation
and up-scaling, based on their main purpose.

Next, we concentrated on undirected graphs without edge
weights, since this is the largest common set of supported
features of all methods.

Additionally, we don’t include any classical graph genera-
tion methods in our comparison. We refer to Dietz et al. [2]
for a comparison of these approaches.

Lastly, we don’t perform any hyperparameter optimization
on any of the approaches. Therefore, this comparison serves

the purpose of testing the performance of readily available
digitial artifacts to be used in research and not necessarily the
methodologies themselves.

VII. REPRODUCIBILITY

We provide access to our data and scripts to obtain this
data1. More explicitly, we provide the following datasets.

1) Graph generation:
• 100 synthetic Géant2001 topologies
• 100 synthetic BREN topologies
• 100 synthetic BtNorthamerica topologies
• 100 synthetic GtsSlovakia topologies

2) Graph up-scaling:
• Géant2001 topologies with scale factors 2-256
• BREN topologies with scale factors 2-256
• BtNorthAmerica topologies with scale factors 2-256
• GtsSlovakia topologies with scale factors 2-256

VIII. CONCLUSION

We performed a comparison of five (mostly) permutation-
invariant graph generation methods to a permutation-variant
GAN-based baseline and between themselves. We showed
that, for the task of WAN topology generation, two ap-
proaches outperform the baseline (and current state-of-the-
art for WAN topology generation in the literature [2]). We
achieved Kolmogorov-Smirnov distances of 0.15, 0.31, and
0.18 compared to the baseline of 0.34, 0.49, and 0.23. This is a
percentage improvement of 79.87%. We note that we restricted
ourselves to undirected graphs without edge weights.

Furthermore, we performed a comparison of three graph
up-scaling methods. We showed that WAN topologies can be
scaled with a scaling factor of up to 256 without losing their
topological structure when carefully selecting the up-scaling
method.

Lastly, we provide a dataset of generated and up-scaled
WAN topologies.

1 https://github.com/tgnn-test/dataset-graphscaling



(a) Original (b) Kronecker scale=2 (c) Kronecker scale=4 (d) Kronecker scale=32 (e) Kronecker scale=64

(f) Original (g) Gscaler sacle=2 (h) Gscaler scale=4 (i) Gscaler scale=32 (j) Gscaler scale=64

(k) Original (l) EvoGraph scale=2 (m) EvoGraph scale=4 (n) EvoGraph scale=32 (o) EvoGraph scale=64

Fig. 10: Graph up-scaling at the example of the BREN topology. The first row uses Kronecker, ther second row Gscaler, and
the last row EvoGraph. We show the evolution from the original graph (left) over scales 2, 4, 32, and 64 (right).

ACKNOWLEDGMENT

European Union Horizon 2020 (project SLICES-SC,
101008468, and SLICES-PP, 101079774). Bavarian Ministry
of Economic Affairs, Regional Development and Energy
(project 6G Future Lab Bavaria). German Federal Ministry
of Education and Research (project 6G-life, 16KISK002, and
project 6G-ANNA, 16KISK107).

REFERENCES

[1] S. Knight, H. X. Nguyen, N. Falkner, R. Bowden, and M. Roughan,
“The Internet Topology Zoo,” IEEE Journal on Selected Areas in
Communications, vol. 29, no. 9, pp. 1765–1775, 2011.

[2] K. Dietz, M. Seufert, and T. Hoßfeld, “Comparing Traditional and
GAN-based Approaches for the Synthesis of Wide Area Network
Topologies,” in 2022 18th International Conference on Network and
Service Management (CNSM). IEEE, 2022, pp. 64–72.

[3] A. Bojchevski, O. Shchur, D. Zügner, and S. Günnemann, “Netgan:
Generating Graphs via Random Walks,” in International conference on
machine learning. PMLR, 2018, pp. 610–619.

[4] J. You, R. Ying, X. Ren, W. Hamilton, and J. Leskovec, “GraphRNN:
Generating Realistic Graphs with Deep Auto-Regressive Models,” in
International conference on machine learning. PMLR, 2018.

[5] C. Niu, Y. Song, J. Song, S. Zhao, A. Grover, and S. Ermon, “Permuta-
tion Invariant Graph Generation via Score-based Generative Modeling,”
in International Conference on Artificial Intelligence and Statistics.
PMLR, 2020, pp. 4474–4484.

[6] H. Dai, A. Nazi, Y. Li, B. Dai, and D. Schuurmans, “Scalable Deep
Generative Modeling for Sparse Graphs,” in International conference
on machine learning. PMLR, 2020, pp. 2302–2312.

[7] H. Huang, L. Sun, B. Du, Y. Fu, and W. Lv, “GraphGDP: Generative
Diffusion Processes for Permutation Invariant Graph Generation,” in
2022 IEEE International Conference on Data Mining (ICDM). IEEE,
2022, pp. 201–210.

[8] K. Rusek, J. Suárez-Varela, P. Almasan, P. Barlet-Ros, and A. Cabellos-
Aparicio, “Routenet: Leveraging Graph Neural Networks for Network
Modeling and Optimization in SDN,” IEEE Journal on Selected Areas
in Communications, vol. 38, no. 10, pp. 2260–2270, 2020.

[9] M. Ferriol-Galms, J. Paillisse, J. Surez-Varela, K. Rusek, S. Xiao,
X. Shi, X. Cheng, P. Barlet-Ros, and A. Cabellos-Aparicio, “RouteNet-
Fermi: Network Modeling with Graph Neural Networks,” 2022.
[Online]. Available: https://arxiv.org/abs/2212.12070

[10] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative Adversarial Net-
works,” Communications of the ACM, vol. 63, no. 11, pp. 139–144,
2020.

[11] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini,
“The Graph Neural Network Model,” IEEE transactions on neural
networks, vol. 20, no. 1, pp. 61–80, 2008.

[12] J. Sohl-Dickstein, E. A. Weiss, N. Maheswaranathan, and S. Ganguli,
“Deep Unsupervised Learning using Nonequilibrium Thermodynamics,”
2015.

[13] J. Leskovec, D. Chakrabarti, J. Kleinberg, C. Faloutsos, and Z. Ghahra-
mani, “Kronecker graphs: An Approach to Modeling Networks.” Journal
of Machine Learning Research, vol. 11, no. 2, 2010.

[14] P. ERDdS and A. R&wi, “On Random Graphs I,” Publ. math. debrecen,
vol. 6, no. 290-297, p. 18, 1959.

[15] A.-L. Barabási and R. Albert, “Emergence of Scaling in Random
Networks,” science, vol. 286, no. 5439, pp. 509–512, 1999.

[16] D. J. Watts and S. H. Strogatz, “Collective Dynamics of Small-world
Networks,” nature, vol. 393, no. 6684, pp. 440–442, 1998.

[17] P. Holme and B. J. Kim, “Growing Scale-free Networks with Tunable
Clustering,” Physical review E, vol. 65, no. 2, p. 026107, 2002.

[18] J. Zhang and Y. Tay, “GSCALER: Synthetically Scaling A Given
Graph.” in EDBT, vol. 16, 2016, pp. 53–64.

[19] H. Park and M.-S. Kim, “EvoGraph: An Effective and Efficient Graph
Upscaling Method for Preserving Graph Properties,” in Proceedings
of the 24th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, 2018, pp. 2051–2059.


