DeepMPLS: Fast Analysis of MPLS Configurations Using Deep Learning

Fabien Geyer1,2 and Stefan Schmid3

IFIP Networking 2019
Tuesday 21st May, 2019

1Chair of Network Architectures and Services
Technical University of Munich (TUM)

2Airbus Central R&T
Munich

3Faculty of Computer Science,
University of Vienna, Austria
Motivation

Network failures can have a large impact

- **Github**: We discovered a misconfiguration on this pair of switches that caused what’s called a "**bridge loop**" in the network
- **Amazon**: A network change was [...] executed incorrectly [...] more "stuck" volumes and added more requests to the **re-mirroring storm**
- **GoDaddy**: Service outage was due to a series of internal network events that **corrupted router data tables**.
- **United Airlines**: Experienced a **network connectivity issue** [...] interrupted the airline’s flight departures, airport processing and reservations systems

Managing network is hard

- Mostly done by human with limited automation
- **Can we provide better tools and methods for assisting sysadmins?**
Motivation

Network automation and verification

Challenges in routing

- **Reachability**: Can traffic from ingress port A reach egress port B?
- **Loop-freedom**: Are the routes implied by the forwarding rules loop-free?
- **Policy**: Is it ensured that traffic from A to B never goes via C?
- **Waypoint enforcement**: Is it ensured that traffic from A to B is always routed via a node C (e.g., intrusion detection system or a firewall)?

Automation and formal verification

- Some routing properties can be formally verified . . .
- . . . but it comes at a computational cost and leaves routing configuration to sysadmin
Motivation

Analysis of MPLS networks – Example network

MPLS Configuration

PUSH

10

20

SWAP

11

21

SWAP

12

POP

What happens in case of link failure?

Fast Reroute Around 1 Failure

Fast Reroute Around 2 Failures

Fast Rerouting may lead to inefficient paths

Motivation

Analysis of MPLS networks – Example network

Fast Reroute Around 1 Failure
Motivation
Analysis of MPLS networks – Example network

Fast Rerouting may lead to inefficient paths
Motivation
Automated analysis of MPLS configuration

Formal verification

- Related work: NetKAT [Anderson et al., 2014], HSA [Kazemian et al., 2012], VeriFlow [Khurshid et al., 2013], Anteater [Mai et al., 2011]
- Difficult problem: some existing tools have a super-polynomial runtime, some verification are even undecidable

Polynomial-time solution

- Proposal using Push-Down Automata to verify MPLS networks [Schmid and Srba, 2018]
- P-Rex tool available [Jensen et al., 2018]
- Validation of MPLS queries using regular expressions in the form of: $a^b < c^k$
- Only allows to detect but not fix configurations
Motivation

Deep Learning

Challenges

- Can we speed-up the network verification?
- What about fixing and optimizing network configurations?

General idea

- Build a framework for combining analysis of MPLS networks and deep learning
- Model problem as graph and process the graph using neural networks
- Predictions of the neural network can be used to statistically infer properties of the network
Outline

Graph Neural Network

Numerical evaluation

Conclusion
Graph Neural Network
Graph encoding - Network and MPLS configuration

Nodes
- **Physical network**: routers and interfaces
- **MPLS elements**: Rules, labels, actions
- **Query** and elements of regex

Edges
- Relationship between nodes
Graph Neural Network
Graph encoding - Network and MPLS configuration
Graph Neural Network

Graph encoding - Network and MPLS configuration

Input label

Rule

Swap

Label for Swap

Input interface

Output interface

Graph Neural Network
Graph encoding - Network and MPLS configuration
Graph Neural Network

Graph encoding - Query

\[
\begin{align*}
\text{Initial label} & \quad \text{Final label} \\
\text{Query} & \quad \text{V1} \\
\text{50} & \quad \text{52} \\
\text{V1} & \quad \text{V2} \\
\text{V3} & \quad \text{V4} \\
\end{align*}
\]
Graph Neural Network
Graph encoding - Query
Graph Neural Network

Graph encoding - Node features

Input features
- Node type encoded as categorical feature
- Edges have no input feature

Output features
- Binary classification problem for some nodes

Predictions
- Satisfiability: Heuristic for verifying if a query is satisfiable
- Routing trace: Heuristic for generating a trace of routers which match a satisfiable query
- Partial synthesis: Synthesis of an MPLS configuration in order to satisfy a query
Graph Neural Network

Graph Neural Networks – Introduction

Graph Neural Networks [Scarselli et al., 2009] and related architectures are able to process general graphs and predict feature of nodes o_v

Principle

- Each node has a *hidden* vector $h_v \in \mathbb{R}^k$
- ... computed according to the vector of its neighbors
- ... and are propagated through the graph

Algorithm

- Initialize $h_v^{(0)}$ according to features of nodes
- for $t = 1, \ldots, T$ do
 - $a_v^{(t)} = AGGREGATE \left(\{ h_u^{(t-1)} \mid u \in Nbr(v) \} \right)$
 - $h_v^{(t)} = COMBINE \left(h_v^{(t-1)}, a_v^{(t)} \right)$
- return $READOUT \left(h_v^{(T)} \right)$
Graph Neural Network
Graph Neural Networks – Implementation

Implementation (simplified)

- Initialize $h^{(0)}_v$ according to features of nodes
- for $t = 1, \ldots, T$ do
 - $AGGREGATE \rightarrow a^{(t)}_v = \sum_{u \in Nbr(v)} h^{(t-1)}_u$
 - $COMBINE \rightarrow h^{(t)}_v = \text{Neural Network} \left(h^{(t-1)}_v, a^{(t)}_v \right)$
- $READOUT \rightarrow \text{return Neural Network} \left(h^{(T)}_v \right)$

Training

- Using standard gradient descent techniques

Different approaches

- Gated-Graph Neural Network
- Graph Convolution Network
- Graph Attention Networks
- Graph Spatial-Temporal Networks
- ...

→ Hot area of research in the ML community
Numerical evaluation

Dataset generation

- Generation of more than 90,000 topologies based on the Network Zoo [Knight et al., 2011]
- Generation of MPLS rules and queries based on random generator
- Validation of the MPLS configurations using P-Rex [Jensen et al., 2018]
- Dataset available online: https://github.com/fabgeyer/dataset-networking2019

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min</th>
<th>Max</th>
<th>Mean</th>
<th>Median</th>
</tr>
</thead>
<tbody>
<tr>
<td># of routers</td>
<td>3</td>
<td>30</td>
<td>10.6</td>
<td>10</td>
</tr>
<tr>
<td># MPLS labels</td>
<td>8</td>
<td>689</td>
<td>225.3</td>
<td>174</td>
</tr>
<tr>
<td># MPLS rules</td>
<td>8</td>
<td>795</td>
<td>319.5</td>
<td>248</td>
</tr>
<tr>
<td>Size of push-down automaton</td>
<td>17</td>
<td>37006</td>
<td>5441.2</td>
<td>2692</td>
</tr>
<tr>
<td># of nodes in analyzed graph</td>
<td>36</td>
<td>2333</td>
<td>914.4</td>
<td>713</td>
</tr>
<tr>
<td># of edges in analyzed graph</td>
<td>48</td>
<td>4000</td>
<td>1615.4</td>
<td>1261</td>
</tr>
</tbody>
</table>

Table 1: Statistics about the generated dataset.

Types of queries:

- $< l_i \geq r_i < l_o \geq k$
- $< l_i \geq r_i \cdot < r_o < l_o \geq k$
- $< l_i > . \cdot < r_o < l_o > k$
- $< r_i \cdot \cdot < r_o < \cdot > k$
- $< l_i > r_i \cdot < r_o < \cdot > k$
Numerical evaluation

Baselines

Reminder on tasks

Satisfiability Heuristic for verifying if a query is satisfiable
Routing trace Heuristic for generating a trace of routers which match a satisfiable query
Partial synthesis Synthesis of an MPLS configuration in order to satisfy a query

Comparison between machine learning results with a random-based baseline

- For the Satisfiability and Routing trace tasks: random walk in the MPLS network
- For the Partial synthesis task: random choice
Numerical evaluation

Query satisfiability - Neural Network Training

Baseline (mean)

Accuracy

Train
Test

Training iterations ($\times 10^3$)
Numerical evaluation

Routing trace - Neural Network Training

![Graph showing accuracy vs. training iterations](image)

- **Baseline (mean)**
- **Train**
- **Test**

<table>
<thead>
<tr>
<th>Training iterations ($\times 10^3$)</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.4</td>
</tr>
<tr>
<td>0.5</td>
<td>0.6</td>
</tr>
<tr>
<td>1</td>
<td>0.8</td>
</tr>
<tr>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>2.5</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>
Numerical evaluation

Runtime

![Graph showing execution time per query (ms) vs. size of push-down automaton (×10^3). The graph compares P-Rex (CPU), DeepMPLS (CPU), and DeepMPLS (GPU).]
Conclusion

Contributions

- Framework combining MPLS analysis and graph-based deep learning
- Fast heuristic for verifying MPLS configurations
- Prediction of actions to take to fix MPLS configurations
- First steps towards more complicated tasks and networks
- Dataset: https://github.com/fabgeyer/dataset-networking2019

Future work

- Synthesis of full MPLS configurations based on reinforcement learning
- Test and generalize our approach for other configurations, e.g., based on Segment Routing
SIGPLAN Not., 49(1).

P-Rex: Fast Verification of MPLS Networks with Multiple Link Failures.
In Proc. 14th International Conference on emerging Networking EXperiments and Technologies (CoNEXT).

Header space analysis: Static checking for networks.
In Proc. of USENIX NSDI.

Veriflow: verifying network-wide invariants in real time.

The Internet Topology Zoo.
IEEE Journal on Selected Areas in Communications, 29(9):1765–1775.

Debugging the data plane with anteater.

The Graph Neural Network Model.

Polynomial-Time What-If Analysis for Prefix-Manipulating MPLS Networks.
In Proc. of IEEE INFOCOM.